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1. Introduction

The COVID-19 pandemic has been one of the most destructive pandemics of the last few
centuries. It has strongly affected every sector globally, including the education sector [1], the
healthcare sector [2], the financial sector [3], religious festivals [4], the travel and tourism
industry [5], international relations [6], sports affairs [7], show business industries [8], the food supply
chain [9] and agricultural markets [10].

Among the above sectors, the healthcare sector has been the most affected by the
COVID-19 pandemic as millions of persons have died around the globe. Based on updates up to
January 16, 2022, 18:12 GMT, 327.6 million COVID-19 cases and 5.56 million deaths have been
registered around the globe, while 266.99 million infected people have recovered. For a comparison
of COVID-19 events in Asian countries, refer to [11]. For a comparison of the COVID-19 events
in 189 different countries, refer to [12]. Furthermore, the authors of [13] looked at the distribution of
COVID-19 in different selected countries during different phases of the pandemic. They provide
a “horse race of sorts” that compares various distributions, as well as various mixtures of
distributions. They also present an extensive review of the literature, considering COVID-19 mortality
and morbidity.

Around the globe, the top 10 countries with the largest number of confirmed COVID-19
cases (registered cases) as of January 16, 2022 are (i) the USA, with 66,712,140 registered cases; (ii)
India, with 37,122,164 registered cases; (iii) Brazil, with 22,975,723 registered cases; (iv) the UK,
with 15,217,280 registered cases; (v) France, with 13,894,255 registered cases; (vi) Russia,
with 10,803,534 registered cases; (vii) Turkey, with 10,457,164 registered cases; (viii) Italy
with 8,698,962 registered cases; (ix) Spain, with 8,093,036 registered cases; and (x) Germany,
with 7,977,550 registered cases. In contrast, the top 10 countries with the most total COVID-19
deaths (registered deaths) are (i) the USA, with 873,215 registered deaths; (ii) Brazil, with 621,007
registered deaths; (iii) India, with 486,094 registered deaths; (iv) Russia, with 321,320 registered
deaths; (v) Mexico, with 301,334 registered deaths; (vi) Peru, with 203,376 registered deaths; (vii) the
UK, with 151,987 registered deaths; (viii) Indonesia, with 144,170 registered deaths; (ix) Italy,
with 141,104 registered deaths; and (x) Iran, with 132,075 registered deaths. For more, see
https://www.worldometers.info/coronavirus/.

Owing to the serious effects of the COVID-19 pandemic on the health sector, it is crucial to learn
more about this deadly pandemic. In this regard, numerous statistical methods have been introduced
and implemented to predict and model COVID-19 behavior (events or data); see [14–21].

As we know, extreme distribution theory, including heavy-tailed (HT) and long-range dependence,
is a current area of active research due to its importance in a vast range of applications as well as its
violation of classical assumptions. The readers are referred to [22, 23] and their citations for precise
definitions of these effects as well as the current state of theory in this area. Particularly, the HT
distributions offer satisfactory performance when applied to health-related sectors [24]. However,
only a limited number of probability models possess HT characteristics. As of my last update in
September 2021, researchers were indeed exploring and developing new probability distributions with
HT characteristics. HT distributions are statistical distributions with more significant probabilities of
extreme events or outliers than normal distributions. They are characterized by slowly decaying tails
and a higher likelihood of extreme values.
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These distributions have gained attention in various fields, including finance, economics,
telecommunications and other domains where extreme events play a crucial role. Traditional
probability distributions, such as the Gaussian (normal) distribution, are not suitable for modeling HT
data, as they underestimate the likelihood of extreme events.

Some of the well-known HT distributions include the following:
1. Cauchy distribution: It has a very heavy tail and lacks a defined mean and variance.
2. Student’s t-distribution: It is frequently employed to estimate the mean of a normally distributed

population in cases in which the sample size is limited. Additionally, it displays fat tails.
3. Pareto distribution: Often used to model income and wealth distributions, this distribution has a

power-law tail.
4. Generalized Pareto distribution: It is an extension of the Pareto distribution, often used to model

extreme values.
5. Levy distribution: It is characterized by infinite variance and heavy tails.
Researchers might have been working on novel HT distributions or refining existing ones to better

capture extreme events in real-world data. Additionally, they could explore these distributions’
applications in various fields, develop estimation methods and study their theoretical properties.

We recommend checking recent research papers and articles in relevant scientific journals and
conferences for the most up-to-date information on specific developments in probability distributions
with HT characteristics; see [25, 26].

Due to the usefulness of HT distributions in medical and other practical fields, we make a significant
contribution to this research domain by introducing a new approach (or family of distributions) that
exhibits HT characteristics. This novel method is referred to as the generalized exponential-U (GE-U)
family of distributions. The GE-U method is derived through a combination of the T-X method and the
exponential model with the probability density function (PDF) defined as w (t) = e−t. The following
section presents the derivation of the proposed GE-U distributions.

2. Development of the GE-U family

Assume that T ∈ R is a random variable (RV) with the PDF w (t), where T ∈
[
φ1, φ2

]
for −∞ ≤ φ1 <

φ2 ≤ ∞. Let X be an RV with the cumulative distribution function (CDF) U (x;ψψψ) that is dependent
on a parameter vector ψψψ. Now, consider a function of U (x;ψψψ), denoted by M

[
U (x;ψψψ)

]
, satisfying the

following three conditions:

(i) M
[
U (x;ψψψ)

]
∈

[
φ1, φ2

]
,

(ii) M
[
U (x;ψψψ)

]
is differentiable as well as a monotonically increasing function,

(iii) M
[
U (x;ψψψ)

]
→ φ1 as x→ −∞ and M

[
U (x;ψψψ)

]
→ φ2 as x→ ∞.

The CDF of the T-X approach of [27] is defined by

K (x;ψψψ) =

∫ M[U(x;ψψψ)]

φ1

w (t) dt, x ∈ R, (2.1)

with the PDF k (x;ψψψ)

k (x;ψψψ) =

{
d
dx

M
[
U (x;ψψψ)

]}
w

{
M

[
U (x;ψψψ)

]}
, x ∈ R.
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For more about the T-X method, we refer the reader to [28].
Let T > 0 follow the exponential distribution with the parameter θ > 0, if its CDF is given by

W (t) = 1 − e−θt (2.2)

Using θ = 1 in Eq (2.2), we can find that

W (t) = 1 − e−t (2.3)

Corresponding to Eq (2.3), the PDF w (t), can be written as

w (t) = e−t (2.4)

Here, we implement the T-X method to introduce the GE-U family of distributions. The GE-U

family is introduced by replacing M
[
U (x;ψψψ)

]
= − log

(
ϕ2[1−U(x;ψψψ)]
[ϕ−U(x;ψψψ)]2

)
and using Eq (2.4) in Eq (2.1). Let

X follow the GE-U family; then, its DF is given by

K (x;ϕ,ψψψ) = 1 −
ϕ2Ū (x;ψψψ)[
ϕ − U (x;ψψψ)

]2 , ϕ > 2, ϕ < 0, x ∈ R (2.5)

where, Ū (x;ψψψ) = 1 − U (x;ψψψ) is the survival function (SF) of the baseline model. It is important to
note that the DF in Eq (2.5) is only true if ϕ > 2 and ϕ < 0. The step-by-step derivation of Eq (2.5) is
provided in Appendix A.

By searching for and studying the literature on distribution theory, we observed that the GE-U
method has not been proposed or used so far. This is one of the reasons to study the GE-U method.
Regarding K (x;ϕ,ψψψ) as provided in Eq (2.5), the PDF k (x;ϕ,ψψψ) is given by

k (x;ϕ,ψψψ) =
ϕ2u (x;ψψψ)[

ϕ − U (x;ψψψ)
]3

[
ϕ − 2 + U (x;ψψψ)

]
, x ∈ R (2.6)

where d
dxU (x;ψψψ) = u (x;ψψψ) .

Regarding K (x;ϕ,ψψψ) as provided in Eq (2.5) and the PDF k (x;ϕ,ψψψ) presented in Eq (2.6), the SF
S (x;ϕ,ψψψ) = 1 − K (x;ϕ,ψψψ) and hazard function (HF) h (x;ϕ,ψψψ) =

k(x;ϕ,ψψψ)
1−K(x;ϕ,ψψψ) are given, respectively, by

S (x;ϕ,ψψψ) =
ϕ2Ū (x;ψψψ)[
ϕ − U (x;ψψψ)

]2 , x ∈ R

and

h (x;ϕ,ψψψ) =
u (x;ψψψ)

Ū (x;ψψψ)
[
ϕ − U (x;ψψψ)

] [
ϕ − 2 + U (x;ψψψ)

]
, x ∈ R

The primary advantage of the proposed GE-U method is its adherence to the characteristics of
HT distributions. This feature offers the method an excellent fit to data sets exhibiting HT behavior.
In practical terms, it means that the GE-U method can effectively model and capture the statistical
properties of data sets with heavy tails, making it a valuable tool in various applications wherein such
distributions are encountered.
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However, the GE-U method has certain disadvantages too. The disadvantages of the GE-U method
are that (i) its distribution function is not in an explicit form and (ii) the form of the PDF of the
GE-U method is complicated. Therefore, obtaining various distributional properties of the mentioned
probability distribution demands increased computational efforts and extensive mathematical work.

In the following section, we explain an application of the GE-U method to present a broadened and
extended form of the Weibull distribution. This newly introduced variant is referred to as the
generalized exponential-Weibull (GE-Weibull) distribution. The subsequent section will present
detailed expressions for the CDF and PDF of the GE-Weibull model.

3. The GE-Weibull model: a special model

Let us assume that the DF U (x;ψψψ) and PDF u (x;ψψψ) of the Weibull distribution are provided as
follows:

U (x;ψψψ) = 1 − e−λxδ , x ≥ 0, δ, λ ∈ R+ (3.1)

and

u (x;ψψψ) = δλxδ−1e−λxδ

respectively, where ψψψ = (δ, λ). The DF of the GE-Weibull model is derived by integrating Eq (3.1) into
Eq (2.5). We can say that K (x;ϕ,ψψψ) is given by

K (x;ϕ,ψψψ) = 1 −
ϕ2e−λxδ[

ϕ − 1 + e−λxδ
]2 , x ≥ 0 (3.2)

According to Eq (3.2), the PDF is expressed as follows:

k (x;ϕ,ψψψ) =
ϕ2δλxδ−1e−λxδ[
ϕ − 1 + e−λxδ

]3

[
ϕ − 1 − e−λxδ

]
(3.3)

Figure 1 displays various graphs representing k (x;ϕ,ψψψ) of the GE-Weibull model, as defined in
Eq (3.3), for different scenarios:

(i) δ = 1.3, λ = 1.0, ϕ = 200 (gold curve line); (ii) δ = 1.3, λ = 0.8, ϕ = 500 (green curve line); (iii)
δ = 1.3, λ = 0.6, ϕ = 9000 (blue curve line); (iv) δ = 1.3, λ = 0.4, ϕ = 12000 (red curve line); and (iii)
δ = 1.3, λ = 0.3, ϕ = 15000 (black curve line).

The plots of k (x;ϕ,ψψψ) in Figure 1 illustrate that as the value of λ decreases and the value of ϕ
increases, the GE-Weibull distribution behaves like the HT distribution.
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Figure 1. The plots of f (x;ϕ,ψψψ) for different values of δ, λ and ϕ.

Furthermore, the SF S (x;ϕ,ψψψ) and HF h (x;ϕ,ψψψ) of the GE-Weibull model are given by

S (x;ϕ,ψψψ) =
ϕ2e−λxδ[

ϕ − 1 + e−λxδ
]2 , x > 0

and

h (x;ϕ,ψψψ) =
ϕ2δλxδ−1[

ϕ − 1 + e−λxδ
]3

[
ϕ − 1 − e−λxδ

]
, x > 0

respectively.

Different plots of h (x;ϕ,ψψψ) for the GE-Weibull model are shown in Figure 2. The HF plots for the
GE-Weibull model are shown for (i) δ = 0.3, λ = 1.5, ϕ = 2.5 (red curve line); (ii) δ = 2.2, λ = 0.1, ϕ =

2.1 (green curve line); and (iii) δ = 0.2, λ = 0.9, ϕ = 3.5 (gold curve line).

The plots of h (x;ϕ,ψψψ) in Figure 2 reveal that the GE-Weibull distribution can capture three possible
patterns, i.e., (i) decreasing (red curve line), (ii) bathtub (gold curve line) and (iii) increasing (green
curve line). The plots of h (x;ϕ,ψψψ) in Figure 2 show that the GE-Weibull distribution is more flexible
than the Weibull distribution as it captures the monotonic hazard shapes such as the decreasing and
increasing hazard shapes. Besides the monotonic hazard shapes, the GE-Weibull distribution also
captures the bathtub hazard shape, which is a very crucial monotonic hazard shape.
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Figure 2. The plots of h (x;ϕ,ψψψ) for the GE-Weibull distribution.

Furthermore, different plots of K (x;ϕ,ψψψ) for the GE-Weibull distribution are shown in Figure 3.
These plots are shown for different values of δ, λ and ϕ.
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Figure 3. The plots of K (x;ϕ,ψψψ) for the GE-Weibull distribution for different values of δ, λ
and ϕ.

The plots in Figures 1–3 were obtained by using the R-programming software. As an example, the
R code for the plots of the DF for the proposed model is provided in Appendix B.

4. The HT characteristics of the GE-U distributions

The section offers a complete mathematical treatment to prove the HT characteristics of the GE-U
distributions.

4.1. The regularly varying tail behavior

The importance of regularly varying tail behavior (ReVaTB) cannot be understated when
identifying HT distributions [29]. In this context, we calculate the ReVaTB of the GE-U distributions.
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As indicated in [30], this is expressed in terms of the SF Ū(x;ψψψ).
Theorem 1: If S (x;ψ)ψ)ψ) = 1 − U(x;ψ)ψ)ψ) is a regularly varying function (RaVaF), then
S (x;ϕ,ψ)ψ)ψ) = 1 − M(x;ψ,ψ)ψ)ψ) is also a RaVaF.

Proof. Assume that limx→∞
S (px;ψ)ψ)ψ)
S (x;ψ)ψ)ψ) = n(p) is a finite function that is nonzero and that ∀ p > 0. Using

Eq (2.5), we have

S (px;ϕ,ψψψ)
S (x;ϕ,ψψψ)

=
ϕ2 [

1 − U (px;ϕϕϕ)
][

ϕ − U (px;ψψψ)
]2 ×

[
ϕ − U (x;ψψψ)

]2

ϕ2 [
1 − U (x;ψψψ)

] ,
S (px;ϕ,ψψψ)
S (x;ϕ,ψψψ)

=

[
1 − U (px;ψψψ)

][
1 − U (x;ψψψ)

] × [
ϕ − U (x;ψψψ)

]2[
ϕ − U (px;ψψψ)

]2 (4.1)

Taking limx→∞ on both sides of Eq (4.1), we get

lim
x→∞

S (px;ϕ,ψψψ)
S (x;ϕ,ψψψ)

= lim
x→∞

[
1 − U (px;ψψψ)

][
1 − U (x;ψψψ)

] × [
ϕ − U (x;ψψψ)

]2[
ϕ − U (px;ψψψ)

]2 (4.2)

Because limx→∞U (x;ψψψ) = 1, from Eq (4.2), we get

lim
x→∞

S (px;ϕ,ψψψ)
S (x;ϕ,ψψψ)

= lim
x→∞

[
1 − U (px;ψψψ)

][
1 − U (x;ψψψ)

] × [
ϕ − U (∞;ψψψ)

]2[
ϕ − U (p.∞;ψψψ)

]2 ,

lim
x→∞

S (px;ϕ,ψψψ)
S (x;ϕ,ψψψ)

= lim
x→∞

[
1 − U (px;ψψψ)

][
1 − U (x;ψψψ)

] × [
ϕ − U (∞;ψψψ)

]2[
ϕ − U (∞;ψψψ)

]2 ,

lim
x→∞

S (px;ϕ,ψψψ)
S (x;ϕ,ψψψ)

= lim
x→∞

[
1 − U (px;ψψψ)

][
1 − U (x;ψψψ)

] × [
ϕ − 1

]2[
ϕ − 1

]2 ,

lim
x→∞

S (px;ϕ,ψψψ)
S (x;ϕ,ψψψ)

= lim
x→∞

S (px;ψψψ)
S (x;ψψψ)

,

lim
x→∞

S (px;ϕ,ψψψ)
S (x;ϕ,ψψψ)

= n (p) (4.3)

We can see that Eq (4.3) is non-zero and finite and that ∀ p > 0. Thus, S (x;ϕ,ψψψ) is a RaVaF.

4.2. The regular variational result

Let X follow a power law characteristic; then, we have

S (x;ψψψ) = 1 − U (x;ψψψ) = P(X > x) ∼ x−θ

Now, by incorporating the findings of Karamata’s theorem, we can write S (x;ϕ,ψψψ) as

S (x;ϕ,ψψψ) = x−θL(x)

where L(x) represents a slowly varying function (VaF). Note that
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S (x;ϕ,ψψψ) =
ϕ2 [

1 − U (x;ψψψ)
][

ϕ − U (x;ψψψ)
]2 (4.4)

Because 1 − U (x;ψψψ) ∼ x−θ, from the expression in Eq (4.4), we get

S (x;ϕ,ψψψ) =
ϕ2x−θ

(ϕ − x−θ)2

S (x;ϕ,ψψψ) = x−ϕL (x)

where L(x) =
ϕ2

(ϕ−x−θ)2 . Accordingly, if we can show that L(x) is a slow VaF, then the RaVaTB

derived above is true. Using the results of [31], ∀ θ > 0 and we must show that

lim
x→∞

L(px)
L(x)

= 1 (4.5)

After conducting further computational analysis, we have obtained the following results:

L(px)
L(x)

=
ϕ2(

ϕ − (px)−θ
)2 ×

(
ϕ − x−θ

)2

ϕ2 ,

L(px)
L(x)

=

(
ϕ − x−θ

)2(
ϕ − (px)−θ

)2 (4.6)

Now, taking limx→∞ on both sides of Eq (4.6), we get

lim
x→∞

L(px)
L(x)

=

(
ϕ − x−θ

)2(
ϕ − (px)−θ

)2 (4.7)

Because x→ ∞, limx→∞
1
xθ = 0 and limx→∞

1
xθpθ = 0. So from Eq (4.6), we get

lim
x→∞

L(px)
L(x)

=
ϕ2

ϕ2

Finally, we are led to the proof of Eq (4.7), given by

lim
x→∞

L(px)
L(x)

= 1 (4.8)

Since the expression in Eq (4.8) is identical to Eq (4.5), we can say that L(x) is a slow VaF.

5. Estimation and simulation

This section describes the derivation of the maximum likelihood estimators (MLES)
(
ϕ̂MLE, ψ̂ψψMLE

)
of the parameters (ϕ,ψψψ) . After computing ϕ̂MLE and ψ̂ψψMLE, a simulation study (SiSt) was conducted to
assess the performances of ϕ̂MLE and ψ̂ψψMLE.

Networks and Heterogeneous Media Volume 18, Issue 4, 1575–1599



1584

5.1. Estimation

Consider a set of random samples (RS) of size of n, say X1, X2, ..., Xn, taken from k (x;ϕ,ψψψ). Then,
regarding k (x;ϕ,ψψψ), the likelihood function (LiF) expressed by κ (ϕ,ψψψ|x1, x2, ..., xn) is given by

κ (ϕ,ψψψ|x1, x2, ..., xn) =

n∏
b=1

k (xb;ϕ,ψψψ) (5.1)

Incorporating Eq (2.6) in Eq (5.1), we have

κ (ϕ,ψψψ|x1, x2, ..., xn) =

n∏
b=1

ϕ2u (xb;ψψψ)[
ϕ − U (xb;ψψψ)

]3

[
ϕ − 2 + U (xb;ψψψ)

]
Corresponding to κ (ϕ,ψψψ|x1, x2, ..., xn), the log LiF η (x1, x2, ..., xn|ϕ,ψψψ) is given by

η (x1, x2, ..., xn|ϕ,ψψψ) = 2 logϕ +

n∑
b=1

log u (xb;ψψψ) +

n∑
b=1

log
[
ϕ − 2 + U (xb;ψψψ)

]
− 3

n∑
b=1

log
[
ϕ − U (xb;ψψψ)

]
In connection with η (x1, x2, ..., xn|ϕ,ψψψ) , the partial derivatives of the given expression with respect to
ϕ and ψψψ are as follows:

∂

∂ϕ
η (x1, x2, ..., xn|ϕ,ψψψ) =

2
ϕ

+

n∑
b=1

1[
ϕ − 2 + U (xb;ψψψ)

] − n∑
b=1

3[
ϕ − U (xb;ψψψ)

] , (5.2)

and

∂

∂ψψψ
η (x1, x2, ..., xn|ϕ,ψψψ) =

n∑
b=1

∂
∂ψψψ

u (xb;ψψψ)

u (xb;ψψψ)
+

n∑
b=1

∂
∂ψψψ

U (xb;ψψψ)[
ϕ − 2 + U (xb;ψψψ)

] (5.3)

− 3
n∑

b=1

∂
∂ψψψ

U (xb;ψψψ)[
ϕ − U (xb;ψψψ)

]
respectively.

Solving ∂
∂ϕ
η (x1, x2, ..., xn|ϕ,ψψψ) = 0 and ∂

∂ψψψ
η (x1, x2, ..., xn|ϕ,ψψψ) = 0, yields ϕ̂MLE and ψ̂ψψMLE

respectively.
From the expressions in Eqs (5.2) and (5.3), it is obvious that the MLEs

(
ϕ̂MLE, ψ̂ψψMLE

)
of (ϕ, ψ) are

not in an explicit form. Therefore, they cannot be obtained analytically and we must use an iterative
procedure such as the Newton-Raphson method to obtain the MLEs of ϕ and ψ numerically.

In the next section, we use the optim() R-function with a well-known algorithm, i.e.,
method = "SANN" to obtain the numerical values of the MLEs of the GE-Weibull distribution.
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5.2. Simulation

Regarding this part of the paper, we describe a numerical study conducted to assess the
performances of ϕ̂MLE and ψ̂ψψMLE via a SiSt. To carry out the SiSt, we adopted the inverse DF (quantile
function) method to obtain the random numbers (RNs) from the GE-U distributions with the DF
K (x;ϕ,ψψψ) and PDF K (x;ϕ,ψψψ).

The SiSt was carried out for two sets of δ, λ and ϕ, i.e., (a) δ = 0.7, ϕ = 2.1, λ = 1 and (b)
δ = 0.8, ϕ = 2.2, δ = 1, λ = 1.2. For both sets of combination values of δ, λ and ϕ presented in (a)
and (b), an RS of the sizes n = 35, 70, 105, ..., 700 were obtained by using the formula

Q (v) = (1 − v) U (x;ψψψ)2 +
(
ϕ2 − 2ϕ (1 − v)

)
U (x;ψψψ) − ϕv = 0

where v ∈ (0, 1) .
For each combination value of δ, λ and ϕ, the simulation process was repeated N = 700 times. The

performances of ϕ̂MLE and ψ̂ψψMLE were evaluated by calculating two statistical measures: (i) the biases
and (ii) the mean square error (MSE). The mathematical expressions of these measures are given by

Bias
(
∆̂∆∆
)

=
1
N

N∑
b=1

(
∆̂∆∆ −∆∆∆

)
and

MS E
(
∆̂∆∆
)

=
1
N

N∑
b=1

(
∆̂∆∆ −∆∆∆

)2

respectively, where ∆∆∆ = (ϕ,ψψψ) .
For (a) δ = 0.7, ϕ = 2.1, λ = 1 and (b) δ = 0.8, ϕ = 2.2, δ = 1, λ = 1.2, the results of the SiSt for the

GE-Weibull model are respectively summarized in Tables 1 and 2. These tables provide information
on the estimated values of the parameters

Moreover, Figures 4 and 5 display graphical representations of the SiSt outcomes. Figure 4
illustrates the performance of the MLEs.

These visual representations complement the tabulated results and clarify how the estimators
perform under various conditions and sample sizes. The combination of tables and figures contributes
to a comprehensive assessment of the GE-Weibull model’s fitting and the reliability of the MLEs in
terms of capturing the model’s parameters.

From Table 1, Table 2, Figure 4 and Figure 5, we can easily observe the following:

• The MLEs
(
δ̂MLE, λ̂MLE, ϕ̂MLE

)
tend to stable as n increases.

• The MSEs of δ̂MLE, λ̂MLE and ϕ̂MLE decrease as n increases.
• The biases of δ̂MLE, λ̂MLE and ϕ̂MLE decay to zero as n increases.
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Table 1. The simulation results of the GE-Weibull distribution.

n Par. MLE MSEs Biases

35 δ 0.7518305 0.02247213 0.05183051
ϕ 2.9472000 4.09630218 0.84719998
λ 1.4653645 2.00189631 0.46536453

70 δ 0.7404539 0.01351612 0.04045387
ϕ 2.8713390 3.19850410 0.77133907
λ 1.1695551 0.74498885 0.16955511

105 δ 0.7374223 0.00887764 0.03742227
ϕ 2.7470570 2.31273869 0.64705656
λ 1.0241156 0.22840275 0.02411562

140 δ 0.7347455 0.00684264 0.03474549
ϕ 2.6740990 1.80481582 0.57409908
λ 0.9791432 0.10594344 –0.02085683

210 δ 0.7251409 0.00430109 0.02514085
ϕ 2.5078820 1.17924265 0.40788158
λ 0.9724903 0.04517405 –0.02750967

280 δ 0.7202965 0.00278435 0.02029646
ϕ 2.4308560 0.83369898 0.33085636
λ 0.9650424 0.01788276 –0.03495761

350 δ 0.7146632 0.00199612 0.01466315
ϕ 2.3374580 0.57413146 0.23745766
λ 0.9735187 0.01219812 –0.02648126

420 δ 0.7086894 0.00118388 0.00868939
ϕ 2.2400450 0.34417393 0.14004501
λ 0.9847389 0.00667778 –0.01526112

490 δ 0.7054110 0.00058862 0.00541101
ϕ 2.1926560 0.17625191 0.09265563
λ 0.9879661 0.00384176 –0.01203392

560 δ 0.7033871 0.00036959 0.00338705
ϕ 2.1610040 0.12874643 0.06100378
λ 0.9923401 0.00315161 –0.00765986

630 δ 0.7041488 0.00044260 0.00414875
ϕ 2.1339140 0.12976574 0.06391366
λ 0.9916484 0.00228205 –0.00835155

700 δ 0.7025575 0.00023478 0.00255750
ϕ 2.0862540 0.08124501 0.04625401
λ 0.9933496 0.00151237 –0.00665041

* Set 1: δ = 0.7, ϕ = 2.1, λ = 1.
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Table 2. The simulation results of the GE-Weibull distribution.

n Par. MLE MSEs Biases

35 δ 0.9453885 0.01968309 0.04538846
ϕ 2.8955960 3.79597445 0.69559603
λ 1.7057310 2.06114888 0.50573079

70 δ 0.9369372 0.00990611 0.03693720
ϕ 2.7763330 2.51574135 0.57633297
λ 1.3626320 0.71742022 0.16263211

105 δ 0.9333706 0.00726861 0.03337062
ϕ 2.8240060 2.18216357 0.62400620
λ 1.2376500 0.31604070 0.03764968

140 δ 0.9292065 0.00515427 0.02920649
ϕ 2.6870030 1.53044148 0.48700322
λ 1.1826590 0.09967348 –0.01734086

210 δ 0.9222892 0.00318813 0.02228924
ϕ 2.5900550 1.05587577 0.39005548
λ 1.1605110 0.03559935 –0.03948925

280 δ 0.9142504 0.00196588 0.01425039
ϕ 2.4536770 0.67126752 0.25367710
λ 1.1768190 0.02793972 –0.02318052

350 δ 0.8913531 0.00134416 0.01135311
ϕ 2.3993490 0.47376809 0.19934870
λ 1.1747980 0.01387896 –0.02520224

420 δ 0.8879459 0.00084715 0.00794585
ϕ 2.3344010 0.29290345 0.13440100
λ 1.1809260 0.00766314 –0.01907393

490 δ 0.8646660 0.00051300 0.00466603
ϕ 2.2741020 0.16139263 0.07410175
λ 1.1902010 0.00492606 –0.00979894

560 δ 0.8546499 0.00050067 0.00464987
ϕ 2.2490050 0.17555898 0.07900536
λ 1.1889950 0.00521592 –0.01100532

630 δ 0.8313969 0.00014206 0.00139694
ϕ 2.2334170 0.04508217 0.02341718
λ 1.1967230 0.00153255 –0.00327667

700 δ 0.8115219 0.00014158 0.00152194
ϕ 2.2162900 0.04783998 0.02629003
λ 1.2157720 0.00116897 –0.00422816

* Set 2: δ = 0.8, ϕ = 2.2, δ = 1, λ = 1.2.
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Figure 4. The simulation results for the GE-Weibull model for δ = 0.7, ϕ = 2.1, λ = 1.
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Figure 5. The simulation results for the GE-Weibull model for δ = 0.8, ϕ = 2.2, δ = 1, λ =

1.2.

6. Data analyses

As mentioned earlier, the modeling and prediction of the current pandemic are crucial and have
attracted great interest from researchers. In this section, therefore, we describe the implementation of
the GE-Weibull model to analyze three data sets.

• The initial data set consisted of the survival times (STs) observed in individuals diagnosed with
COVID-19.
• The second and third data sets represent the mortality rates (MRs) of the patients (infected by

COVID-19), and they were taken from Mexico and Holland, respectively.

All three data sets along with the respective references are provided in Table 3. The STs of the
COVID-19 patients taken from China are expressed by x1. Additionally, the MRs of the patients
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selected from Mexico and Holland are expressed by x2 and x3, respectively. Some descriptive measures
of the selected data sets are presented in Table 4. Furthermore, the plots corresponding to the selected
data sets, namely the (i) box plots, (ii) histograms and (iii) total time on test (TTT) plots, are also
shown in Figure 6. These plots reveal that the selected data sets are right-skewed and have some
extreme observations. Alternatively, the TTT plots tell us about the behavior of the hazard rates. We
refer interested readers to [32] for more information about the TTT plot.
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Figure 6. The histograms, box plots and TTT plots of the data sets.
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Table 3. The COVID-19 data sets.

Notation Observations References

x1 0.054, 0.064, 0.704, 0.816, 0.235, 0.976, 0.865, 0.364, 0.479, 0.568, 0.352, 0.978,
0.787, 0.976, 0.087, 0.548, 0.796, 0.458, 0.087, 0.437, 0.421, 1.978, 1.756, 2.089,
2.643, 2.869, 3.867, 3.890, 3.543, 3.079, 3.646, 3.348, 4.093, 4.092, 4.190, 4.237,
5.028, 5.083, 6.174, 6.743, 7.274, 7.058, 8.273, 9.324, 10.827, 11.282, 13.324,
14.278, 15.287, 16.978, 17.209, 19.092, 20.083

[33]

x2 8.826, 6.105, 9.391, 14.962, 10.383, 7.267, 13.220, 16.498, 11.665, 6.015, 10.855,
6.122 , 6.656, 3.440, 5.854, 10.685, 10.035, 5.242, 4.344, 5.143, 7.630, 14.604,
7.903, 6.370, 3.537, 6.327, 4.730, 3.215, 9.284, 12.878, 8.813, 10.043, 7.260,
5.985 , 6.412, 3.395, 4.424, 9.935, 7.840, 9.550, 3.499, 3.751, 6.968, 3.286,
10.158, 8.108, 6.697, 7.151, 6.560, 2.077, 3.778, 2.988, 3.336, 6.814, 8.325,
7.854, 8.551, 3.228, 7.486, 6.625, 6.140, 4.909, 4.661, 5.392, 12.042, 8.696,
1.815, 3.327, 5.406, 6.182, 1.041, 1.800, 4.949, 4.089, 3.359, 2.070, 3.298, 5.317,
5.442, 4.557, 4.292, 2.500, 6.535, 4.648, 4.697, 5.459, 4.120, 3.922, 3.219, 1.402,
2.438, 3.257, 3.632, 3.233, 3.027, 2.352, 1.205, 3.218, 2.926, 2.601, 2.065, 3.029,
2.058, 2.326, 2.506, 1.923

[34]

x3 14.918, 7.498, 6.940, 10.656, 2.857, 2.254, 12.274, 10.289, 10.832, 7.099, 3.461,
3.647, 5.928, 13.211, 7.968, 7.584, 5.307, 5.048, 5.431, 5.555, 6.027, 4.097,
3.611, 4.960, 4.462, 3.883, 1.974, 1.273, 1.416, 4.235

[34]

Table 4. Some descriptive measures of the data sets presented in Table 3.

Data n Mean Median Variance Skewness Kurtosis Range

x1 53 4.787 3.079 30.198 1.379 3.853 20.029
x2 106 5.822 5.279 10.561 0.973 3.666 15.457
x3 30 6.157 5.369 12.484 0.833 2.953 13.645

The fitting results for the GE-Weibull distribution have been compared with the Weibull distribution
and its other prominent extensions. These distributions include the

• Weibull distribution,
• Kumaraswamy Weibull (K-Weibull) model of [35]

and
• new alpha power cosine-Weibull (NAPC-Weibull) model of [36]. See for more references [37–39]

To obtain the analytical proof of the best fit of the competing models, four statistical tools were
applied:

• Anderson-Darling (AD) test,
• Cramer-von Mises (CM) test,
• Kolmogorov-Smirnov (KS) test.

In addition to the aforesaid statistical tests, the p-values for all GE-Weibull and rival distributions were
also calculated.
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After analyzing the above data sets, the MLEs of the competing models were calculated as presented
in Table 5. Furthermore, the values of the statistical tests for the fitted models are provided in Table 6.
These results show that the GE-Weibull model is the most appropriate model to give the best fit to the
COVID-19 data sets.

Using the COVID-19 data sets taken from China, Mexico and Holland, some empirical plots,
namely, the estimated PDF, DF and Kaplan-Meier SF of the GE-Weibull model were derived as
presented in Figures 7–9. The visual illustrations of the GE-Weibull model in Figures 7–9 also
confirm its close-fitting capability as it pertains to the COVID-19 data sets.

Table 5. The values of δ̂, λ̂, ϕ̂, â, τ̂ and α̂ of the fitted models.

Data Models δ̂MLE λ̂MLE ϕ̂MLE âMLE τ̂MLE α̂MLE

x1 GE-Weibull 0.82272 0.27035 –7.78309 - - -
Weibull 0.79022 0.32179 - - - -
K-Weibull 1.37571 0.01101 - 0.51340 3.07498 -
NAPC-Weibull 0.79752 0.15065 - - - 0.52606

x2 GE-Weibull 2.12658 0.01340 –3.00338 - - -
Weibull 1.92306 0.02656 - - - -
K-Weibull 1.93559 0.15343 - 0.91662 0.16190 -
NAPC-Weibull 1.47938 0.05112 - - - 4.11544

x3 GE-Weibull 2.05602 0.01252 –2.35038 - - -
Weibull 1.87110 0.02688 - - - -
K-Weibull 1.96043 0.17618 - 0.96010 0.12168 -
NAPC-Weibull 1.47249 0.04644 - - - 3.79227

Table 6. The values of the analytical measures of the fitted models.

Data Models CM AD KS p-value

x1 GE-Weibull 0.074901 0.471266 0.119130 0.43940
Weibull 0.07558 0.476885 0.125150 0.37760
K-Weibull 0.075099 0.492309 0.126990 0.35980
NAPC-Weibull 0.076949 0.481563 0.124750 0.38150

x2 GE-Weibull 0.07921 0.50153 0.06185 0.81210
Weibull 0.10241 0.65874 0.06986 0.67900
K-Weibull 0.10990 0.71298 0.07773 0.53750
NAPC-Weibull 0.13346 0.85822 0.06877 0.69220

x3 GE-Weibull 0.03301 0.21613 0.08006 0.98230
Weibull 0.04773 0.29327 0.09412 0.93050
K-Weibull 0.05159 0.31394 0.11512 0.77960
NAPC-Weibull 0.05670 0.34905 0.09940 0.89990
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Figure 7. The plots of the fitted PDF, DF and SF of the GE-Weibull model for the STs of the
COVID-19 patients taken from China.
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Figure 8. The plots of the fitted PDF, DF and SF of the GE-Weibull model for MRs of the
COVID-19 patients taken from Mexico.
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Figure 9. The plots of the fitted PDF, DF and SF of the GE-Weibull model for MRs of the
COVID-19 patients taken from Holland.
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7. Discussion

The HT distributions are significant to cater to the extreme observations. There are not many
available probability distributions that possess the HT phenomena (i.e., characteristics and behaviors).
Due to the crucial role of HT distributions in the medical sectors, we introduced a new method to
obtain flexible extensions of the available probability distributions. The HT behavior of the suggested
method is shown visually (see Figure 1) and mathematically (see Section 3). Based on the proposed
GE-U family, a novel modification of the Weibull model has been considered and studied.

To demonstrate the practical use of the newly proposed GE-Weibull model, we examined its
application on three medical data sets obtained from China, Holland and Mexico. The GE-Weibull
distribution was applied to these data sets and its performance was compared against that of the
traditional Weibull distribution and other notable extensions of the Weibull distribution, namely the
K-Weibull and NAPC-Weibull distributions. We employed four widely recognized statistical
evaluation criteria to assess the most appropriate model for the given medical data sets.

Upon thoroughly examining these datasets, we presented the numerical outcomes and fitted
distributions of the GE-Weibull model in Table 6. Notably, for all three data sets, the information
criterion values associated with the GE-Weibull distribution were consistently lower than for the other
models. For x1, the values of the statistical tests for the GE-Weibull model were given by
CM = 0.074901, AD = 0.471266, KS = 0.119130 and p-value = 0.43940. For x2, the values of the
statistical tests for the GE-Weibull model were given by CM = 0.07921, AD = 0.50153,
KS = 0.06185 and p-value = 0.81210. For x3, the values of the statistical tests for the GE-Weibull
model were given by CM = 0.03301, AD = 0.21613, KS = 0.08006 and p-value = 0.98230.

Since, for all three medical data sets, the GE-Weibull model performed better, we can conclude that
the GE-Weibull distribution was the best and most-suited distribution to implement for these medical
data sets.

8. Concluding remarks

This paper provides significant contributions to the advancement of distribution theory. A novel
statistical method has been introduced and developed, enabling the generation of new probability
distributions within the GE-U family. The MLEs for the GE-U distribution parameters has been
derived. Building upon the GE-U family, a new model called the “GE-Weibull distribution” has been
proposed. The HT characteristics of the GE-Weibull distribution were also investigated. To assess its
performance, a comprehensive SiSt was conducted to evaluate the GE-Weibull distribution’s
parameter estimation. Additionally, the suitability of the GE-Weibull distribution was thoroughly
examined by analyzing three distinct medical data sets from different countries: China, Holland and
Canada. Based on specific information criteria, it was concluded that the GE-Weibull distribution was
the most appropriate model for accurately representing and analyzing these medical data sets.
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Appendix A

Here, we provide the step-by-step derivation of the expression provided in Eq (2.2). Using

M
[
U (x;ψψψ)

]
= − log

(
ϕ2[1−U(x;ψψψ)]
[ϕ−U(x;ψψψ)]2

)
, by taking φ1 as the lower limit of the exponential distribution with

Networks and Heterogeneous Media Volume 18, Issue 4, 1575–1599



1598

the PDF w (t) = e−t in Eq (2.1), we get

K (x;ϕ,ψψψ) =

∫ − log
(
ϕ2[1−U(x;ψψψ)]
[ϕ−U(x;ψψψ)]2

)
0

e−t dt,

K (x;ϕ,ψψψ) = −e−t

∣∣∣∣∣∣− log
(
ϕ2[1−U(x;ψψψ)]
[ϕ−U(x;ψψψ)]2

)

0

,

K (x;ϕ,ψψψ) = −

elog
(
ϕ2[1−U(x;ψψψ)]
[ϕ−U(x;ψψψ)]2

)
− e−0

 ,
K (x;ϕ,ψψψ) = −

ϕ2 [
1 − U (x;ψψψ)

][
ϕ − U (x;ψψψ)

]2 − 1
 ,

K (x;ϕ,ψψψ) = 1 −
ϕ2 [

1 − U (x;ψψψ)
][

ϕ − U (x;ψψψ)
]2 ,

K (x;ϕ,ψψψ) = 1 −
ϕ2Ū (x;ψψψ)[
ϕ − U (x;ψψψ)

]2

Appendix B

Here, we provide the R code that we used to obtain the plots for the DF and SF of the proposed
model. In the given R code, we have used v for ϕ, lam for λ and del for δ.

########################################################################

R code for obtaining the plot of the DF of the GE-Weibull distribution

########################################################################

x=seq(0, 5, 0.01);

dis=function(x, v, lam, del)

1-((vˆ2)*exp(-lam*xˆdel)/((v-1+exp(-lam*xˆdel))ˆ2))

a=dis(x,2.5, 1.6, 1.8)

a

plot(x,a,type="l",col="red",lwd=4, lty=8, xlab="x", ylab="K(x)")

legend(1.5,0.5, legend = c(expression(paste(delta," = ","1.8, ",lambda,

" = ","1.6, ",varphi," = ",2.5))), lty =c(1,5,8),cex=1.1,

col=c(’red’),box.lty=0)

########################################################################

R code for obtaining the plot of the SF of the GE-Weibull distribution

########################################################################

x=seq(0, 5, 0.01);

dis=function(x, v, lam, del)

((vˆ2)*exp(-lam*xˆdel)/((v-1+exp(-lam*xˆdel))ˆ2))
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a=dis(x,2.5, 1.6, 1.8)

a

plot(x,a,type="l",col="red",lwd=4, lty=8, xlab="x", ylab="S(x)")

legend(1.5,0.5, legend = c(expression(paste(delta," = ","1.8, ",lambda,

" = ","1.6, ",varphi," = ",2.5))), lty =c(1,5,8),cex=1.1,

col=c(’red’),box.lty=0)
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