
http://www.aimspress.com/journal/nhm

NHM, 18(4): 1539–1574.
DOI: 10.3934/nhm.2023068
Received: 18 May 2023
Revised: 18 June 2023
Accepted: 05 July 2023
Published: 19 July 2023

Research article

Influence maximization in social networks using role-based embedding

Xu Gu1, Zhibin Wang1, Xiaoliang Chen1,2,*, Peng Lu2, Yajun Du1 and Mingwei Tang1

1 School of Computer and Software Engineering, Xihua University, Chengdu, 610039, China
2 Department of Computer Science and Operations Research, University of Montreal, Montreal, QC

H3C3J7, Canada

* Correspondence: Email: chexiaol@iro.umontreal.ca, chenxl@mail.xhu.edu.cn.

Abstract: Influence maximization (IM), a central issue in optimizing information diffusion on
social platforms, aims to spread posts or comments more widely, rapidly, and efficiently. Existing
studies primarily focus on the positive effects of incorporating heuristic calculations in IM approaches.
However, heuristic models fail to consider the potential enhancements that can be achieved through
network representation learning techniques. Some recent work is keen to use representation learning
to deal with IM issues. However, few in-depth studies have explored the existing challenges in IM
representation learning, specifically regarding the role characteristics and role representations. This
paper highlights the potential advantages of combining heuristic computing and role embedding to
solve IM problems. First, the method introduces role granularity classification to effectively categorize
users into three distinct roles: opinion leaders, structural holes and normal nodes. This classification
enables a deeper understanding of the dynamics of users within the network. Second, a novel role-
based network embedding (RbNE) algorithm is proposed. By leveraging the concept of node roles,
RbNE captures the similarity between nodes, allowing for a more accurate representation of the
network structure. Finally, a superior IM approach, named RbneIM, is recommended. RbneIM
combines heuristic computing and role embedding to establish a fusion-enhanced IM solution,
resulting in an improved influence analysis process. Exploratory outcomes on six social network
datasets indicate that the proposed approach outperforms state-of-the-art seeding algorithms in terms
of maximizing influence. This finding highlights the effectiveness and efficacy of the proposed
method in achieving higher levels of influence within social networks. The code is available at
https://github.com/baiyazi/IM2.
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1. Introduction

Social networking is currently sustaining the exchange of information among individuals, societies,
and nations. An ever-increasing number of individuals tend to share their experiences and comments
partially or entirely through online media platforms such as Weibo [1] and Facebook. The privacy
features of social networks can remove communication barriers between individuals, allowing them
to express themselves candidly and openly. Anyone can freely express and share their feelings [2],
assess others’ perspectives, and acknowledge supported opinions on social media platforms. Central to
the entire communication discipline in social networks stems from viral marketing [3]. This strategic
approach to information diffusion has been widely adopted in various domains, including product
promotion [4], personalized recommendations [5], targeted advertising [6], the selection of influential
users [7–10].

Information diffusion phenomena in social networks has brought about both immense convenience
and potential threats in the dissemination of groundbreaking ideas. The perceptions of individuals
within a social network have the ability to influence the commenting behavior and awareness of their
neighboring users, leading to intermittent changes in the network topology. These individual
perceptions, known as user influence, are critical for understanding user behavior, uncovering network
propagation dynamics, and examining topology evolutions. The influence maximization (IM)
problem, which was formulated by Kempe et al. [11], is a challenging issue that has been proven to
be NP-hard. Cecilia et al. [12] discovered that examining the citizenship competencies plays an
important role in a complex system like a society, and it is crucial to study their effects given the
significance of these competences in shaping social systems. Within the domain of social network
analysis, IM emerges as a pivotal undertaking involving carefully selecting a seed group within a
given social network to maximize its influence on a broad spectrum of individuals. This optimization
problem holds profound significance for the process of refining information diffusion strategies to
accomplish diverse objectives, which can range from viral marketing and opinion-shaping to social
mobilization. When executed adeptly, IM engenders remarkable enhancements in the efficiency and
effectiveness of such campaigns. Notably, within the context of viral marketing, IM facilitates the
identification of potential customers, thereby curtailing marketing costs and bolstering profits.
Furthermore, IM plays a pivotal role in molding public opinion across various domains such as
politics, health, and the environment, while also galvanizing individuals for social causes
encompassing protests, donations, and petitions. By harnessing IM effectively, substantial dividends
can be reaped, efficiently leveraging the power of social networks to accomplish a multitude of
objectives. By employing diffusion cascades, it becomes possible to optimize the reach of influence
for the chosen seed set [13, 14]. Identifying influential nodes within social networks offers invaluable
insight into the underlying mechanisms that govern information diffusion phenomena, thereby
informing effective strategies for message propagation. Moreover, the exploration of IM contributes
to the development of novel algorithms and techniques that maximize the extent and impact of
information dissemination in social networks.

An independent cascade (a stochastic diffusion model) is generally employed in IM to simulate the
dissemination of information by seed nodes. The spread of influence is commonly measured in terms
of the number of activated users. However, the majority of research in IM has focused on stochastic
diffusion patterns, and few studies have explored the global-scale role approximation of social
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network users. In reality, each user in a social network plays a specific role, whether as an opinion
leader, a structural hole user, or an ordinary user. All of them contribute to the overall diffusion of
information. This study takes into account the social reality that users with similar roles in a social
network exhibit comparable behaviors and attributes. For instance, structural hole users can facilitate
the exchange between two communities in a social network, while ordinary users typically receive
information passively. By identifying user roles in a social network, researchers can better understand
the mechanisms behind information diffusion phenomena and develop more accurate models for
solving IM problems.

In recent years, several user role identification studies have recommended the knowledge
contribution approach proposed in [15]. This approach identifies three user roles, namely givers,
takers, and matchers, based on their knowledge contribution to disseminated information. Research
context in light electric vehicle applications promotes the differentiation of more roles such as the
vigilant user, passive collaborator, active decision-maker, and ambassador [16]. This
four-dimensional role classification, determined by participation degrees, is particularly important in
the service promotion of electric vehicles. Some studies [17, 18] have emphasized the importance of
user role division in the information diffusion process. However, these studies have yet to consider the
key factor of user roles in the existing IM research. Furthermore, network structure information has
not been fully incorporated into studies on user role division.

The study delves into a novel network embedding algorithm that integrates user role information,
thereby adding a fresh and invaluable perspective to the realm of efficient IM solutions. In particular,
the proposed approach utilizes network embedding’s benefits to incorporate similarities between users’
global roles, and is hence termed as role-based network embedding (RbNE). This methodology entails
the mapping of social network nodes into a fixed-dimensional space, whereby they are represented as
low-dimensional vectors that capture both the structural and user role information. After calculating
the embedding vectors of nodes, a novel logical propagation network can be constructed based on their
similarities. Finally, a greedy heuristic algorithm is introduced to select a seed set of k nodes.

The main contributions of our work are enumerated as follows:

1. To address the existing gap in the literature where network structure information is not fully
incorporated into role division analyses, we propose a novel user role division algorithm that
incorporates both coarse-grained user role division (CGURD) and fine-grained user role division
(FGURD). CGURD aims to divide users into different groups based on their overall contribution
to the network, while FGURD focuses on identifying more precise user roles based on their
relationships with neighboring nodes. By combining these two approaches, we can achieve a more
comprehensive understanding of user roles in social networks, which can provide new insights
into the IM problem.

2. Current research has not examined the effects of the user’s global roles in efforts to solve the IM
problem. A systematic understanding of how the global roles contribute to capturing the seed set
with the most significant influence is still lacking. Therefore, this paper proposes a novel network
embedding algorithm, entitled RbNE, to preserve the approximation between users’ global roles.
Subsequently, a greedy heuristic algorithm, named RbneIM, is developed to select the seed set S.
This algorithm considers the users’ global roles as an essential factor in selecting the seed set and
enables the identification of users who can maximize the influence spread in a social network.

3. Our study extensively evaluates the performance of RbneIM on four real-world datasets. The
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experimental results indicate that our approach significantly outperforms the state-of-the-art
methods, thereby demonstrating its superior performance in terms of solving the IM problem.

2. Related work

2.1. Social networks and linear threshold models

The task of IM was initially specified in social networks. Accordingly, this paper follows the same
applied background. A social network can be represented by a two-tuple G = (V,E), where V =
{v1, v2, ..., vn} and E ⊆ V × V = {ei j} represent a set of n nodes and a set of edges between the nodes,
respectively. An edge ei j = (vi, v j) indicates a potential relationship between nodes vi and v j, which is
also associated with a weight wi j ⩾ 0 of their connection strength. Table 1 summarizes the notations
employed in this paper.

Table 1. Notations used in this paper.

Notation Description of notation
V The set of nodes in a social network
E The set of edges in a social network
A User characteristic matrix A|V |×D

S Selected set of seed nodes, S ⊂ V
Nei(u) Direct neighbors of node u
In fuv Local influence of node u on node v
B(u) Betweenness centrality of node u
OLIu Opinion leader influence score of node u
NC(u) Network constraint coefficient value of node u
S im(u, v) Relationship between node u and node v
Pr(V | v) Probability of being activated by v’s neighbors
Pr(V | S ) Probability of being activated by seed nodes S

In social networks, many spreading processes can be modeled as complex chain reactions. Kempe
et al. [19] introduced two probability diffusion models, namely independent cascade (IC) and linear
threshold (LT), to explain these processes. A framework based on submodular functions is proposed
to analyze the performance guarantees of algorithms for influence problems. Kempe et al. show
that a greedy strategy can be within 63% of optimal for several classes of models, and they present
computational experiments that demonstrate the superiority of their approximation algorithms over
other node-selection heuristics. Among them, LT models are commonly involved as an extremely
representative framework for understanding these mechanisms. This study evaluates the effectiveness
of the seed node selection using the LT model [20]. We assume that a node v ∈ V of a social network
G is influenced by each incoming neighbor weight w ∈ [0, 1], which contributes to the idea behind
the LT. An inactive user becomes active once the number of its neighbors reaches a certain threshold
θ of active states. Specifically, each node v in a social network G has a threshold θ in the interval
[0, 1], representing the conditional value of the node v being activated. The activation of node v can be
formalized as follows:
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∑
u∈Nei(v)

wuv ⩾ θ (2.1)

where Nei(v) refers to the direct neighbors of node u. Specifically, in the LT model, each node has two
attributes: threshold and weight. A node’s threshold is a value between 0 and 1, indicating how many
active neighbors it needs to become activated. The weight of a neighbor is also a value between 0 and
1, representing the neighbor’s influence on the node. If the threshold of a node i is t and the neighbor
set is N, then the node i will be activated under the following condition:∑

( j ∈ N, the total weight o f j when activated) ≥ t (2.2)

where the total weight of j when activated refers to the sum of all edge weights connecting to node j.

2.2. Influence maximization

In social network analysis, IM is a crucial concept that involves selecting a subset of nodes or
edges in a given network to maximize the impact of a particular objective. Individual characteristics
and the effects between individuals are expressed in the form of social network topology. Hence,
influence has both global and local scopes. A node with stronger global influence in a network has the
ability to control the spread of information and behavior in the network. Moreover, a small subset of
highly influential nodes in a social network can control the propagation of most of the information.
Thus, selecting the correct seed nodes is crucial to achieving maximum impact in the spread of
information in a social network. IM technology is useful for identifying critical nodes to maximize
the impact of information diffusion throughout the network. Compared to a random selection of
nodes, IM technology can predict and quantify influence, leading to more effective resource allocation
and planning strategies. A node’s influence on another node is considered local influence, and the
more a node influences another node, the more the latter will follow and imitate the former’s behavior
in the social network. The process of defining node influence through local influence and network
structure can yield better results, taking into account the requirements of different applications.
Studies of dynamic social network nodes’ influence has mostly been on static network topologies,
examining users’ influence or users’ influence variation on static topologies over time.

The literature on IM problems can be traced back to a study by Domingos and Richardson [21].
Kempe et al. [19] then formulated the IM problem for the first time and presented two essential
conclusions. First, IM issues can be modeled as a class of discrete optimization problems. Second, IM
problems are NP-hard, which limits the development of existing IM approaches. Most of the current
approaches rely on simple greedy calculations, traversing each node in the social network to calculate
its marginal impact benefit. Nodes with larger marginal impact benefits are then included in the seed
set S. The formation process can be expressed as follows.

u← arg max
u∈(V\S)

σ(S ∪ u) − σ(S) (2.3)

where the value of σ(S) represents the propagation range of a node set S, typically measured by the
number of activated nodes. To construct the final seed set, greedy methods have been commonly
employed to select the nodes with the highest influence benefit continuously. However, these methods
have been criticized for their low efficiency and high time complexity, making them impractical for
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large-scale networks. As a result, recent research has focused on improving the extensibility and
efficiency of the IM problem.

Most research on IM is based on traditional propagation models such as IC and LT [20] and their
variations. However, some studies have shown that the IC and LT models may not accurately
approximate influence. To address this issue, Oriedi et al. [22] proposed a selective breadth-first
traversal algorithm that efficiently generates an optimal seed set for IM. According to their argument,
using models like the IC and LT models may result in an incorrect influence estimation. The authors
have proposed an algorithm to create the best seed set for maximizing influence. They have tested
their method using real data and proved that it is better than traditional IM algorithms. Oriedi et al.
have effectively developed a more precise approach for modeling social network influence. Similarly,
Sun et al. [23] introduced the self-Aactivation IC (SAIC) model that incorporates self-activation as an
additional factor in influence propagation, where nodes can be self-activated and selected as seeds.
They characterized two optimization problems arising from self-activation: preemptive IM (PIM) and
boosted PIM (BPIM). Specifically, the PIM problem involves identifying nodes that can reach the
most number of nodes before other self-activated nodes if self-activated. In contrast, the BPIM
problem aims to select seeds that are guaranteed to reach the most number of nodes before other
self-activated nodes. They proposed scalable algorithms for both PIM and BPIM to address these
challenges and assessed their approximation guarantees. The results of their study indicate that the
algorithms perform much better than baseline methods, particularly for the PIM problem and the
BPIM problem when there are varying self-activation behaviors among nodes.

Guo and Wu [24] investigated adaptive influence maximization with multiple activations problems,
which take into account that not all users are willing to become influencers in the seed set. The
researchers addressed a problem wherein each user is connected with a probability of activation as a
seed, allowing for multiple triggers. To mathematically model this scenario, Guo and Wu have
proposed a novel concept called adaptive-dr-submodularity, defined on the domain of an integer
lattice, to maximize an adaptive monotone and dr-submodular functions while satisfying the expected
knapsack constraint. This problem has not been previously investigated in existing studies,
necessitating a comprehensive exploration of its approximability. They have developed a strategy that
combines an adaptive greedy policy with sampling techniques to tackle the challenge of estimating
expected influence spread while maintaining the approximation ratio and reducing time complexity.
Other related work can be found in [25–28]. Luo et al. [25] have proposed the iterative competitive
opinion maximization model, which aims to maximize the total opinions in competitive scenarios by
combining user opinions and rival strategies. Unlike existing IM approaches, this model effectively
suppresses the propagation of negative opinions and identifies optimal responses to opponents’ seed
node choices. The authors employ an iterative inference algorithm based on the greedy strategy to
reduce computational complexity and achieve optimal outcomes. Zhang and Zhang [26] investigated
the computational complexity of IM and analyzed the approximation guarantee of the greedy
algorithm within the generalized model. Their research introduces a coordination game model that
offers a game-theoretic perspective on IM. This model extends existing frameworks such as the
majority vote model and the LT model. Furthermore, the incorporation of strategies to improve the
algorithm’s performance represents a significant contribution to the existing body of literature.
However, as mentioned in the introduction section, every user in a social network plays a role in
disseminating information. The previous IM studies mentioned above ignore the global-scale role
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approximation of users in the network. Liu et al. [27] introduced CONE, an active learning
framework designed to address the estimation of user opinions in multi-round campaigns involving
influence propagation. Their methodological approach to modeling user preference data is notable for
their ability to handle scenarios in which prior knowledge of user opinions is unavailable. This
approach holds practical implications, particularly in viral marketing, and including precision
advertising and reputation management domains. Banerjee et al. [28] have presented a pioneering
model, termed UIC, to overcome the existing constraints in the literature. The UIC model stands out
by integrating users’ economic factors into their product adoption and purchase decisions, aiming to
maximize social welfare and foster customer loyalty within the network. Additionally, the authors
shed light on the underexplored realm of complementary items, which has received limited scrutiny in
previous studies on multiple items.

Several recent studies on IM have effectively utilized deep learning techniques to identify and
evaluate user influence in social networks [29–36]. These studies have shown promising results in the
area of improving the performance of IM algorithms. Keikha et al. [29] have presented a novel
methodology to tackle the challenge of IM on interconnected networks, employing deep learning
techniques. Their proposed algorithm harnesses the power of deep learning for feature engineering,
allowing for the preservation of both local and global structural information. By showcasing
monotonicity and submodularity, the algorithm provides an assurance of an optimal solution. Notably,
this study pioneers the utilization of network embedding to address the IM problem, marking a
significant advancement in the field. Zhan et al. [30] proposed a general framework called NE-IM that
leverages representation learning to address computational cost and improve stability. NE-IM
contains two components: structure-based embedding and feature-based embedding. Their work
incorporates heterogeneous information in IM models and applies representation learning to improve
the efficiency and accuracy of IM models. Tian et al. [31] proposed two topic-aware social influence
propagation models based on IC and LT models and developed a deep influence evaluation model to
evaluate the user influence under different circumstances. They encoded the feature of each node by a
vector, which enabled them to construct a solution efficiently without considering the complex graph
structure. Their network learns a generalized heuristic framework to solve the NP-hard TIM problem
using meta-learning, without requiring specialized knowledge and improving advertising injections.
Li et al. [32] have presented a framework aimed at maximizing market influence in the USA domestic
air passenger transportation market by adjusting flight frequencies. They used neural networks to
predict market influence while considering several features such as air carrier performance features
and transportation network features. They integrated neural networks to predict market influence and
developed an adaptive gradient ascent method for solving the nonlinear optimization problem in flight
frequency optimization. Zhang et al. [33] designed a network dynamic GCN to extract the in-depth
structural information of social networks for IM. The proposed algorithm utilizes a leader fake
labeling mechanism to generate node labels that are helpful for seed node selection during training.
Finally, a heuristic method based on the Mahalanobis distance was developed to select influential seed
nodes with learned node representations. Li et al. [34] suggested a Gaussian propagation model based
on social networks and a multi-dimensional space modeling approach for propagation simulation.
Their approach uses an improved CELF algorithm to accelerate the IM algorithm and evaluate the
proposed technique based on theoretical proofs. Li et al. [35] then proposed a new approach to IM in
social networks that takes into account multi-dimensional characteristics such as user emotions and
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group features. Specifically, Li et al. defined user emotion power and cluster credibility as measures
of the interaction effects of individual emotions and proposed a potential influence user discovery
algorithm based on an emotion aggregation mechanism to locate seed candidate sets. Li et al. [36]
proposed a novel adaptive agent-based evolutionary approach to solve the IM problem in dynamic and
large-scale social networks. A key component of the proposed approach is an adaptive solution
optimizer that drives the evolutionary process and adapts candidate solutions dynamically. Motivated
by the success of these works, our paper aims to take the next step and integrate the global role
information of users in the final embedding vector using network embedding. By incorporating this
additional information, our proposed method will further enhance the accuracy and effectiveness of
IM in social networks.

2.3. Network representation learning

Network representation learning, also known as network embedding [37], has garnered significant
attention in recent years. This technology aims to transform a network’s features into a
low-dimensional continuous representation matrix while retaining the network structure and inherent
properties. Recent advances in deep learning have enabled researchers to generate node embeddings
through social network analysis techniques, such as DeepWalk [38], LINE [39], and node2vec [40].
These techniques utilize a prearranged random walk strategy to construct a corpus that displays the
connections between the network components while preserving the characteristics of the network
structure. The SkipGram model [41] is employed to acquire the node vector representation of a
network. This model uses the context of words to identify the underlying relationships between nodes
in the network. After an extensive process, the low-dimensional embedding representations of the
nodes in the network are established, allowing a greater understanding of the network structure and
the underlying relationships between nodes. Although these random walk methods have been proven
to achieve better performance in network embedding, they ignore nodes’ global structure and
properties. Analyzing these global structures and node characteristics is essential to understanding the
network accurately. Consequently, a few investigators have started to integrate network exploration
techniques with other node properties. For example, Keikha et al. [42] devised a network embedding
algorithm, community aware random walk for network embedding (CARE), that aims to conserve the
local neighborhood and community information of a network while maintaining its global structure.

Drawing on prior literature, we innovatively utilized random walks to extract the embedding
matrix of the target network. Diverging from previous studies, our novel approach places emphasis on
incorporating the user’s global role information. This integration enables a comprehensive
representation of roles and their local neighbors within the network. As a result, our methodology
provides an enhanced perspective of the user’s network position and their potential associations with
other users.

3. Methodology

3.1. Analysis of user role division

Information dissemination is a complex process due to the dynamic influence of one user on
another [43]. The structural attributes of users in a social network reflect their roles in different
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communities. In this context, the primary challenge is to understand how the network structure affects
the dissemination of information in a role-divided scenario. Most of the existing random walk
methods based on the network structure only consider the influence of the direct domain nodes in a
network, such as edge propagation probabilities between two nodes, while ignoring the roles of users
in the network. Users with similar roles in the network tend to have similar structural attributes, and
previous research methods have not accurately captured this feature.
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Figure 1. Case network.

Figure 1 shows a classic social network scenario. Each node in the network represents a user, and the
connection table between the nodes indicates the relationship between the users. In addition, the shared
colors (yellow or red) in the figure imply that these nodes have similar global roles. Two communities,
labeled as C1 and C2, are also depicted in the figure, each having its own opinion leaders (yellow nodes
1 and 4) that usually have similar attributes, such as higher node degrees. Red nodes 2 and 3 span
multiple communities and typically play a critical role in the exchange of community information.
Such red users are generally called structural hole nodes in a social network. This example highlights
two essential aspects of following users on social networks:

1. Similar user roles usually have similar attributes;
2. Different user roles have distinct functions in the exchange of information.

The global role information of users in the network plays a vital role in information dissemination.
In the traditional random walk sampling process, first-order or high-order neighbor nodes are
considered, but the similarity of users with similar global roles is overlooked. In network
representation learning, we hope that similar nodes in the network will eventually have similar vector
representations. Therefore, users with comparable global roles should have corresponding vector
representations. However, conventional or biased random walks cannot accurately approximate the
user’s global role. This paper addresses this limitation by incorporating the user’s global role into the
traditional random walk process. By sampling from the training corpus, we obtain the vector
representation of each node. In the upcoming research, the aim is to investigate the role division of
users in the network. The problem will be approached from two perspectives. First, the focus will be
on CGURD. Second, the issue of user role division will be addressed in greater detail.

In a given social network G(V, E), it is possible to represent its attributes or structural characteristics
using a matrix A of dimensions |V | × D, where D represents the embedded dimension in A|V |×D. Users
in the network with similar attributes or structural characteristics are expected to belong to the same
role set. This study aims to map each user Vi to its corresponding role R j in the set of user roles
R = R1,R2, ...,RK . It is assumed that user roles in the network can be classified into K categories
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where K is significantly smaller than |V |, i.e., k ≪ |V |. Our aim is to determine a mapping function
ϕ : Vi → Rk that can map each user to its role R based on its attributes or structural information.

In network representation learning, the concepts of coarse-grained and fine-grained refer to two
distinct levels of abstraction concerning the network graph. Coarse-grained clustering aims to
consolidate nodes to maximize their similarity within groups while minimizing the similarity between
groups. This method typically produces larger clusters consisting of nodes with similar properties or
roles in the network. Conversely, fine-grained clustering aims to group nodes with highly specific
features or roles, resulting in smaller clusters with nodes possessing more precise properties or roles
within the network.

Coarse-grained clustering typically yields smaller clusters comprising nodes with more specific
properties or roles, facilitating the identification of larger-scale patterns and communities in the
network. This approach is especially advantageous when computational efficiency is a priority. In
contrast, fine-grained clustering focuses on identifying highly specific patterns or roles within the
network. As a result, this approach may generate a larger number of clusters and require more
computational resources. Nevertheless, the fine-grained approach offers valuable insights into the
intricate structural properties and relationships present in the network.

3.1.1. CGURD

We can intuitively express the simple mapping of vector Ai by using either its cumulative sum or
average value. Specifically, this can be expressed as follows:

ϕ(x) = R(x1 + x2 + x3 + ... + xD)
or = R((x1 + x2 + x3 + ... + xD)/D)

(3.1)

The vector x = [Ai1, Ai2, Ai3, ..., AiD] is obtained from the matrix A, where R(x) represents the
specific user role of x. This means that when a vector value x is input, its corresponding role category
is output. It should be noted that if the matrix A represents the structural characteristics of users, such
as the adjacency matrix of social network G, then the sum of features for each user represents the
degree of its node. Intuitively, the mapping relationship described above is divided based on the node
degree of users.

Unfortunately, Eq (3.1) is not interpretable if the matrix A represents the attribute characteristics
of the nodes. Therefore, we need an alternative approach to address this issue. In this paper, we
introduce the Non-negative matrix factorization (NMF) algorithm to handle this problem. The process
of obtaining user roles from the user characteristic matrix can be represented in Figure 2:
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Figure 2. Diagram of NMF decomposition of user characteristic matrix A.

Based on the concept of NMF matrix decomposition, the dimensionality of the user characteristic
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matrix A|V |×D can be reduced using the following iterative formula:

A|V |×D ≈ R|V |×M × FM×D (3.2)

In the NMF algorithm, we utilize the search matrix R|V |×M = [r1 r2 ... rM] ∈ R+|V |×M and the
coefficient matrix FM×D = [ f1 f2 ... fD] ∈ R+M×D to reduce the dimensionality of the user characteristic
matrix A|V |×D. Among them, M is the number of basis vectors and is often much smaller than |V | or D,
i.e., M ≪ |V |,M ≪ D. In this paper, the matrix R is regarded as a user role matrix, where each row
represents the role feature vector to which the user belongs. On the other hand, the F matrix represents
the probability of each role to which each user belongs. We aim to minimize the loss function:

L(R, F) = arg min
R,F

(
1
2
∥A − RF∥2 + R(R, F)) (3.3)

s.t. R, F ≥ 0

The final user role matrix R is obtained after minimizing the loss function with a regularization
penalty R(R, F). Afterward, the matrix R ∈ R|V |×M is partitioned into K disjoint sets of nodes
V1,V2, ...,VK by solving the k-means objective as follows:

min
Vi,i∈[1,K]

K∑
j=1

∑
ri∈V j

∥ri − c j∥
2,where c j =

∑
ui∈V j

ri

|V j|
(3.4)

In the process described above, the user role division algorithm can be described as Algorithm 1.

3.1.2. FGURD

To analyze the characteristics of user roles during information dissemination in online social
networks, this study classifies all users into three categories: opinion leaders, spanner holes, and
ordinary users. The definition and primary properties of a node are illustrated in Figure 1. using a
simple example.

Opinion leader: This refers to the minority of individuals at the core of the network who serve as
a crucial source of information and influence within the community, capable of shaping the attitudes
of the majority. As illustrated in the figure above, the yellow node is located at the center of the
community to which it belongs, representing an opinion leader.

Structural hole users: Structural hole users are in a key position in the network but differ from
opinion leader nodes in terms of high influence. They significantly impact the depth and breadth of
information dissemination by acting as bridges between different communities. As demonstrated in
the above figure, the red nodes represent such users.

Ordinary users: In the context of online social networks, ordinary users refer to those who do
not possess the characteristics of structural holes or belong to a group of opinion leaders. Despite
not having a central position in the network, ordinary users represent the majority of users and are
considered edge users. They play a crucial role in information dissemination. In the presented figure,
the white nodes depict ordinary users, emphasizing their significance as an integral part of the network.
Although ordinary user nodes may not directly affect the global structure and evolution of the network
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Algorithm 1 CGURD(A, K, max iter)
Input:

The matrix of user’s characteristic A ∈ R|V |×D

Number of user role types K
The number of algorithm iterations iter

Output:
User role partition dictionary RoleDic

1: Initialize dictionary RoleDic to empty
2: Initialize the value of M to satisfy M ≪ |V |,M ≪ D
3: Perform SVD decomposition on initial matrix A
4: Randomly initialize R ∈ R|V |×M, F ∈ RM×D

5: for iter in range(1, max iter + 1) do
6: if L(R, F) ≥ 1e − 4 then
7: Update matrix R by gradient descent
8: Update matrix F by gradient descent
9: else

10: break
11: end if
12: end for
13: Perform k-means clustering by applying Eq (3.4).
14: Get node label and map to RoleDic
15: return RoleDic

like influential user nodes, they are also an indispensable part of the social network. Ordinary users
nodes play the following roles in the benefits of social networks:

• Provide content: Ordinary users can provide rich and diverse content to social networks, attract
more users to join the network and increase the value of the whole social network.
• Spreading information: Ordinary users can spread information and opinions by their own

behavior, so they can help content and opinion diffusion by spreading and reposting even if they
have no influence.
• Guide the diffusion of the network: Ordinary users establish their own social relationships,

improve their exposure rate, and then attract more ordinary users like them to join the network,
thus contributing to the prosperity and development of social networks.

Online social network users exhibit several significant traits, prompting the search for a viable
approach to differentiate user roles based on these attributes.

(1) Opinion leader influence

The present study focuses on identifying opinion leaders within the network by analyzing both
the local and global characteristics of users and studying each node’s influence. In the information
dissemination process, the local influence that node u has on node v is determined by two main factors.
First, the influence of node u itself is typically evaluated by its degree within the social network.
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Second, the number of mutual friends of node u that have an influence on node v which can be measured
by the Jaccard coefficient.

In fuv = α1D(u) + α2
|Nei(u) ∩ Nei(v)|
|Nei(u) ∪ Nei(v)|

(3.5)

where, In fuv represents the local influence of node u on node v. D(u) is an expression related to 1-
hop neighbors of user u, which is applied to measure the local influence of user u. Nei(u) is the set
of direct neighbors of u. Jaccard’s coefficient |Nei(u)∩Nei(v)|

|Nei(u)∪Nei(v)| is a widely-used measure to estimate the
mutual friends of nodes u and v, and it is adopted to calculate the local influence of nodes u and v. The
balance-parameters α1 and α2 satisfy α1 + α2 = 1. The formula to calculate D(i) is as follows:

D(i) =
Nei(i)∑

K∈G Nei(k)
(3.6)

To calculate the influence value for node i on its neighbors, the influence-gathering equation is used.
This equation takes into account the local influence of the node i on node v and the influence of each
node by other nodes. After obtaining the local influence of a node, we can calculate the influence value
for node i on its neighbors using Eq (3.7):

In fi =
1
|N(i)|

∑
v∈N(i)

In fvi (3.7)

where N(i) is the neighbor set of node i. In terms of the global influence of nodes in social networks,
this study focuses on the betweenness centrality of nodes.

B(u) =
∑

v,k,u∈V,v,k,u

Pvuk

Pvk

B̂(u) =
B(u)∑

v,u
∑

k,u,v
Pvuk
Pvk

(3.8)

Equation (3.8) defines the betweenness centrality of a node, which is used to determine the global
influence of nodes in social networks. Here, Pvk represents the number of shortest paths between two
nodes v and k, while Pvuk represents the number of shortest paths between nodes v and k passing through
node u. B̂(u) stands for the normalized global influence. Finally, we can obtain the betweenness
centrality of node u.

This study combines local and global structural information to obtain the influence of node i in the
entire network.

OLIu = β1In fu + β2B(u) (3.9)

where OLIu represents the opinion leader influence OLI score of node u.
In order to achieve a balance between global and local influences in the calculation of OLIu, the

balance parameters β1 and β2 are utilized. These parameters are designed to adjust the relative weight
of each factor, and they are subject to the constraint that their sum must equal 1. By combining global
and local structural information, the opinion leader index of each node can be determined. The process
of identifying opinion leaders in social networks is described in Algorithm 2.

As presented in Table 2, we employed diverse methods to assess the influence of nodes in the case
network, which is illustrated in Figure 1.
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Algorithm 2 OLI(G, α1, α2, β1, β2, k)
Input:

Network: G(V, E)
Node local influence balance parameters: α1 and α2

OLI balance parameters: β1 and β2

Number of nodes selected: k
Output:

Top k opinion leader set: OLIsList
1: Initialize OLIsList to empty
2: Initialize the list OLIsVal to store the OLI value of each node
3: for u in V do
4: Get D(u) by using Eq (3.6)
5: Initialize temporary variable val to zero
6: Calculate the betweenness centrality of nodes in network by using Eq (3.8)
7: for v in Nei(u) do
8: Get by equation |Nei(u)∩Nei(v)|

|Nei(u)∪Nei(v)| and store into temp
9: val = val + temp

10: end for
11: Calculate In fu =

1∑
k∈G len(Nei(k)) ∗ val (reference Eq (3.7))

12: Get betweenness centrality of node u and store into B(u)
13: Get OLIu by using Eq (3.9)
14: Append OLIu to OLIsVal
15: end for
16: Sort the node by score
17: Get top k nodes
18: return OLIsList

To evaluate the effectiveness of our proposed approach, we compared it against several
well-known centrality measures, including degree centrality (DC), betweenness centrality (BC),
closeness centrality (CC), and eigenvector centrality (EC). The final row of Table 2 displays the sum
of values for each method. It is worth noting that the sum of the respective columns for each method
is different. In order to visualize the data more intuitively, we employed a stacked line chart to
demonstrate the trends in the different node measurement methods within the case network, as
illustrated in Figure 3.

The network structure depicted in Figure 1 reveals that node 1 and node 4 have higher centrality,
which is consistent with the trends illustrated in Figure 3 for all methods. Figure 3 indicates that
the proposed OLI method exhibits a similar trend as the other methods, but with a higher degree of
discrimination. Therefore, compared to the other methods evaluated in Table 2, the method proposed in
this paper performs better. For the case network structure of Figure 1, we set α1 and α2 to 0.8 and 0.2,
respectively, and β1 and β2 to 0.5 each. Since the network structure is small, this study emphasizes the
node’s own influence when computing the local influence of the node. The local and global structural
information of the nodes are integrated, and the same weight is assigned to the node’s local influence
and global influence to calculate the final OLI.
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Table 2. A case study to compare the calculation results for OLI.

Node DC BC CC EC OLI
1 0.5000 0.6040 0.5380 0.5790 0.3830
2 0.1430 0.3850 0.5190 0.2540 0.2120
3 0.1430 0.0769 0.4000 0.1090 0.0585
4 0.4290 0.5110 0.5000 0.2510 0.3250
5 0.2140 0.0055 0.3780 0.3510 0.0577
6 0.1430 0.0000 0.3680 0.2840 0.0388
7 0.1430 0.1040 0.4120 0.2100 0.0722
8 0.0714 0.0000 0.3410 0.0767 0.0100
9 0.1430 0.0000 0.3500 0.1100 0.0438
10 0.1430 0.0000 0.3680 0.2840 0.0388
11 0.1430 0.0000 0.3680 0.2550 0.0429
12 0.1430 0.0000 0.3680 0.2550 0.0429
13 0.2140 0.0934 0.3890 0.1470 0.0892
14 0.1430 0.0000 0.3680 0.1220 0.0396
15 0.1430 0.0000 0.3500 0.1100 0.0438
sum 2.8584 1.7798 6.0170 3.3977 1.4982

(2) Structural hole score

Burt’s theory of structural holes [44] explains the competitive relationships in social networks. In
the realm of social networks, it is a common occurrence for individuals with similar professional or
personal interests to seek each other out and form tight-knit communities. The ties between these
groups, however, tend to be comparatively sparse. In network parlance, nodes that serve as inter-group
conduits, known as “structural holes”, play a crucial role in facilitating the exchange of information
across community boundaries. As shown in Figure 1, nodes 2 and 3 act as bridges for communication
between two communities. The ability of a node to utilize structural holes is measured by the network
constraint coefficient, as shown in Eq (3.10). A smaller network constraint coefficient indicates a

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Node Label

DC BC CC EC OLI

Figure 3. Stacked line graph of the changing trend of various node measurement methods
for the case network.
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greater possibility of structural holes, which can be beneficial for information dissemination.
The network constraint coefficient value for node u is denoted by NC(u):

NC(u) =
∑

v∈Nei(u)

(wuv +
∑

k∈Nei(v)

wvkwku)2,

(k, u, v ∈ Vand k , u, v)
(3.10)

where, wuv represents the ratio of the energy invested by node u to maintain the relationship with node
v to the total energy invested by node u, as shown in Eq (3.11).

wuv =
weightuv∑

k∈Nei(u) weightuk
(3.11)

Equation (3.10) is applied to calculate the network constraint coefficient value for all nodes in the
network. In an unweighted graph, the edge weight weightuv is equal to 1 if there is a connecting edge
between node u and node v, and it represents the weight value of the edge from node u to node v
otherwise. After calculating the network constraint coefficient values for all nodes, we can identify
the first k nodes with smaller values as the target structural hole nodes.

(3) Ordinary nodes

The selection thresholds for opinion leaders and structural hole users in the network are determined
as γ1 and γ2, respectively, based on the findings of Wu et al. [45]. According to their study, only 1%
of users in a network are considered as opinion leaders or structural hole users. However, they play a
crucial role in creating or participating in 50% of the links in the network. To obtain the set of ordinary
user nodes in the network, Equation 3.12 is utilized.

Or = V − Op − S t, (|Op| = |V | ∗ γ1 , |S t| = |V | ∗ γ2) (3.12)

where Or represents a collection of ordinary nodes, Op represents a collection of opinion leader nodes,
S t represents a collection of structural hole nodes, and V represents all nodes in the network. Finally,
the process of FGURD of nodes in the network can be described by Algorithm 3.

3.2. Role-based random walk for embedding

In the previous section, the process of identifying user roles in social networks was discussed.
To obtain network embedding representations of users that preserve the local structure and global
role approximations, a random walk-based network embedding approach is adopted, as illustrated in
Figure 4. First, the role of nodes in the network is calculated using either Algorithm 1 or Algorithm 3.
Second, the first-order or second-order local approximation of the node is captured by the random walk
of the topological structure, and the approximation of the global role of the node is preserved through
the random walk of the node role. By combining all random walks into one corpus, node embeddings
can be learned by training the SkipGram model with negative sampling [46]. The SkipGram model
can predict the conditional probability of co-occurrence among words within a fixed window size, and
maximizing this probability allows the model to obtain vector representations of words in the corpus.
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Algorithm 3 FGURD(G, α1, α2, β1, β2, γ1, γ2)
Input:

Network: G(V, E)
Node local influence balance-parameters: α1 and α2

OLI balance-parameters: β1 and β2

Threshold for the number of opinion leaders and structural hole users: γ1 and γ2

Output:
User role partition dictionary RoleDic

1: Initialize dictionary RoleDic to empty
2: OLNumber = |V | ∗ γ1

3: S HNumber = |V | ∗ γ2

4: Get OLNumber opinion leaders in the network via Algorithm 1.
5: Initialize the list S HsList to empty
6: for u in V do
7: Calculate network constraint coefficient value by Eq (3.10) and Eq (3.11).
8: Add node network constraint coefficient value to S HsList
9: end for

10: Sort S HsList in reverse order; select S HNumber nodes
11: Get ordinary nodes by Eq (3.12).
12: Map the node to the corresponding role and add them to RoleDic
13: return RoleDic

The objective of the SkipGram model is to maximize the average log probability of a sequence of
training words w1, w2, w3, ..., wT , as shown in the equation above.

max
1
T

T∑
t=1

∑
−win≤ j≤win, j,0

logp(wt+ j | wt) (3.13)

where the parameter win represents a predefined window size, with a larger value leading to more
additional training examples and potentially higher accuracy. The softmax function is employed to
estimate the probability distribution of p(wt+ j | wt), which is defined as follows:

p(wO | wI) =
exp (v

′T
wO

vwI )∑W
w=1 exp (v′Tw vwI )

(3.14)

where the word representations of “input” and “output” data are denoted as vw and v
′

w, respectively. W
is the total number of words in the vocabulary.

In the context of network embedding, the random walk algorithm is commonly used to generate
sequences of nodes. Starting from an initial node u ∈ G, the algorithm randomly selects a neighboring
node and moves to it. This process is repeated for a predefined number of steps. A method for network
embedding called Role-based Random Walk Network Embedding (RbNE) has been developed, and
its pseudocode is presented in Algorithm 4. RbNE takes a social network as input and outputs low-
dimensional representations for each node in the network, where nodes with similar roles will have
similar representations. To obtain the node representations in RbNE, each node in the network is first

Networks and Heterogeneous Media Volume 18, Issue 4, 1539–1574.



1556

divided into roles using either Algorithm 1 or Algorithm 3, which correspond to CGURD and FGURD,
respectively. Then, the role of the node is used to perform random walk simulation, resulting in the
node’s representation. The random walk network embedding methods that are divided by user roles
in Algorithm 1 and Algorithm 2 are named RbNE-CG and RbNE-FG, respectively. The parameter
settings for the algorithms are detailed in the corresponding sections.

𝐴 × |𝐷|

Social network

User role division

- Opinion Leader

- Structural hole user

- Ordinary users

[1, 4, …]

[2, 3, …]

[7, 9, …]

example

Random walk based on 

topological structure to 

capture the first-order or 

second-order similarity 

of nodes.

Random walk based on 

the user's role to capture 

the approximation of the 

user's global role.

Corpus SkipGram

Output:

…

…

…

( 𝑽 ∗ 𝜸𝟏) × 𝑫

( 𝑽 ∗ 𝜸𝟐) × 𝐃

( 𝑽 ∗ 𝟏 − 𝜸𝟏 − 𝜸𝟐 ) × 𝑫

Figure 4. Addition of user role random walks to train the network embedding.

Algorithm 4 RbNE(G, len,number, win, d)
Input:

Social network: G(V, E)
Maximum length of random walk: len
Number of random walks: number
Window length: win
Final representation size: d

Output:
Matrix of node representations: Φ ∈ R|V |×d

1: Initialize walks to empty
2: Divide user roles through Algorithm 1 or Algorithm 3, and store the results in RoleDic
3: for node u in V do
4: Get the list of roles Rolesu = RoleDic[u]
5: walk1 = TraditionalRandomWalk(G, u, len)
6: walk2 = RolebasedWalk(G, u, Rolesu, len)
7: Append walk1 to walks
8: Append walk2 to walks
9: end for

10: SkipGram(Φ, walks, win)
11: return Φ

The traditional random walk method (line 5, Algorithm 4 captures the local approximation of
nodes, similar to Deepwalk and node2vec. In contrast, the random walk method based on node role
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(line 6, Algorithm 4 captures the global node approximation. As a result, the final training corpus
walks contains both the local neighbor approximation relationship and the global role approximation
relationship of each node.

Embedding techniques in network analysis entail the inclusion of neighboring nodes, degrees,
labels, and other relevant attributes to impart specifications onto the individual nodes within the
network. This approach unveils valuable associations and connections between nodes, ultimately
amplifying the efficacy of both network analysis and machine learning methodologies.

3.3. IM with node embeddings

The representations of all nodes in the network G are now available and are denoted as Φ ∈ R|V |×d.
To measure the relationship between any two nodes, the cosine similarity of their representation vectors
can be calculated directly using the following equation:

S im(u, v) =
Φu · Φv

∥Φu∥ × ∥Φv∥
(3.15)

The relationship score between two nodes u and v is defined as S im(u, v) in our approach. A higher
score indicates a higher probability of node u influencing node v. Thus, a new logically structured
network called a propagation probability network can be constructed, where the similarity between
two nodes is determined by Eq (3.15). To simplify the network, a similarity threshold θ is introduced.
Only when their similarity score is greater than θ is a logical connection edge added between two nodes
u and v. Hence, the adjacency matrix representation of the connection strength between any two nodes
in the network can be described as follows:

pu,v =

S im(u, v), i f S im(u, v) ⩾ θ
0, otherwise

(3.16)

where θ represents the hyper parameter and θ belongs to the interval (0, 1). By applying the weight
calculation method, we can obtain the desired new logical structure network. In this structure, pu,v

denotes the probability of information propagation from node u to node v. Assuming the independence
of influence probabilities among users, the probability of node i being activated by its neighbor Nei(i)
can be computed using the propagation probability of its friends:

Pr(V | v) = 1 −
∏

u∈Nei(v)

(1 − pu,v) (3.17)

Similarly, the total influence spread of all non-seed nodes under the influence of the seed node set S
can be quantified for each vertex u ∈ V:

Pr(V | S) =
1
|V |

∑
u∈V

1 −∏
v∈S

(1 − pu,v)


= 1 −

1
|V |

∑
u∈V

∏
v∈S

(1 − pu,v)
(3.18)

The objective of the IM task is to increase the number of activated nodes influenced by the seed node
set S, which is equivalent to maximizing the value of Pr(V | S). Therefore, our optimization goal can
be formulated as follows:
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arg max
S

(Pr(V | S)) = arg max
S

1 − 1
|V |

∑
u∈V

∏
v∈S

(1 − pu,v)


= arg min

S

 1
|V |

∑
u∈V

∏
v∈S

(1 − pu,v)

 (3.19)

As the direct optimization of the optimization goal is not feasible, a greedy heuristic algorithm
is utilized in this study. Specifically, for undirected networks, a Connected components [19] type
of heuristic is employed to compute the score for each node; and subsequently, the k nodes with
the highest scores are chosen. Algorithm 5. presents the three-step procedure, which includes the
following:

1. Calculation of the similarity between each user utilizing the network embedding matrix Φ and
construction of a new logical network structure matrix A (lines 2–3).

2. Random deletion of edges according to their weights to acquire connected components in the
network (lines 11–20).

3. Assign each node a weight value based on the number of its neighbors and select the k nodes with
the highest weight values as the seed node set (lines 21–28).

By implementing this heuristic algorithm, the seed node set S can be effectively selected.

3.4. Algorithmic complexity discussion

The proposed RbneIM algorithm (Algorithm 5) has a time complexity of O(R ∗ |V | ∗ k), where R
and k are both constants. The outer loop runs for a constant number of iterations R, while the inner
loop traverses the network and the current cropped subgraph, which has a constant size k. In contrast,
the RbNE algorithm (Algorithm 4) has greater time complexity determined by the most expensive of
its three parts. First, Algorithm 3 is called to perform role division, which has a time complexity of
O(|V | ∗ n), where n is the largest number of node neighbors in the network |Nei(i)|. Second, in the
sampling process, the algorithm iterates according to the predefined sampling length len (constant) and
randomly adds nodes to the sampling sequence according to predefined rules, which takes O(|V | ∗ len)
time. Finally, the SkipGram algorithm has a time complexity of O(|V |). Therefore, the time complexity
of the RbNE algorithm is O(|V |)∗(O(|V |∗n)+O(|V |∗ len)+O(|V |)). Since n, k, and len are all constants,
the final time complexity of the proposed RbneIM algorithm is O(|V |2). Several baseline methods
utilize matrix operations, but this approach can lead to memory insufficiency when dealing with large-
scale graphs. In contrast, the RbneIM method employs heuristic algorithms that significantly reduce
the computational complexity, resulting in strong scalability.

Algorithm 5 RbneIM(G, Φ, θ, P, R, k)
Input:

Social network: G(V, E)
Embedding matrix of G: embedding ∈ R|V |×d

Hyper parameter of connecting edges: θ
Propagation probability under Independent Cascade: P
Number of iterations: R
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Number of seed nodes: k
Output:

Selected node seed list: S eeds
1: Initialize S eeds to empty
2: Calculate the cosine similarity matrix A of each node in the embedding matrix Φ via Eq (3.15)
3: According to Eq (3.16), A[A < θ] = 0 processing to get logical network structure L
4: Initialize node’s score dict score = {0 : 0, 1 : 0, 2 : 0, ...}
5: for i = 1...R, do
6: G′ = deepcopy(L)
7: Randomly select blocked edges by (1 − P)pi j and remove them from G′

8: Initialize connected components dict ccDict to empty
9: Initialize node’s visited list vis = [ f alse, ...]

10: Initialize the count variable index = 0
11: for node ∈ G′ do
12: if not vis[node] then
13: vis[node] = true
14: ccDict[index + +] = [node]
15: nodes = G′.neighbors(node)
16: for nei ∈ nodes do
17: if not vis[nei] then
18: vis[nei] = true
19: ccDict[index].append(nei)
20: nodes.append(G′.neighbors(nei))
21: end if
22: end for
23: end if
24: Sort ccDict according to size
25: for component ∈ ccDict do
26: nodes = ccDict.values()
27: temp score = 1

√
len(nodes)

28: for node ∈ nodes do
29: score[node]+ = temp score
30: end for
31: end for
32: end for
33: end for
34: Select k nodes with the smallest score from score
35: return S eeds

4. Experimental evaluation

This section begins by presenting the social network dataset and parameter settings employed in
this study. Subsequently, the baseline algorithm used is briefly introduced, followed by an analysis of
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the experimental findings.

4.1. Datasets

This study utilized six public real-world datasets to provide varying-sized networks. This aimed to
assess the feasibility and effectiveness of the proposed IM method. Table 3 presents a comprehensive
overview of the datasets. The datasets were carefully selected based on their diversity, which includes
different types of social networks, ranging from online social networks to co-authorship networks.
Moreover, the datasets contain a varying number of nodes and edges, ranging from small-scale
networks to large-scale networks, thus providing a diverse range of networks for our analysis. By
using such diverse datasets, we aim to evaluate the performance of our proposed method under
different network settings, which can help to enhance the generalizability of our findings.

Table 3. Statistics for the datasets used in the experiments, including the number of nodes
(#Node) and the number of edges (#Edge).

Dataset #Node #Edge
Dolphins 62 161
Facebook Caltech36 769 16662
NetScience 1591 5880
Cora 2710 5430
Ca-GrQc 4158 26850
Facebook-Government 7057 89428

(i) Dolphins* [47]. The dataset used in this study is an undirected social network consisting of 62
dolphins living in a community off of Doubtful Sound, New Zealand. The dataset encompasses
frequent associations between the dolphins in the form of links between them.

(ii) Facebook Caltech36† [48]. A social friendship network extracted from Facebook consisting of
people as nodes, with edges representing friendship ties.

(iii) NetScience‡ [49]. The NetScience dataset is a co-authorship network that involves scientists
working on network theory and experiments. A visual representation of the largest component of
this network can be accessed via the URL.

(iv) Cora§. The Cora dataset is a collection of machine learning papers, and it includes the citation
relationships between them. These relationships are used to construct the network topology for
this dataset.

(v) Ca-GrQc¶ [50]. The Ca-GrQc dataset is a collaboration network of arXiv General Relativity and
Quantum Cosmology. It is derived from the e-print arXiv and includes scientific collaborations
between author papers submitted to the General Relativity and Quantum Cosmology categories.
The dataset covers papers submitted between January 1993 and April 2003.

(vi) Facebook-Government∥ [51].The data collection process involved gathering information on the
*http://www-personal.umich.edu/ mejn/netdata/
†https://networkrepository.com/socfb-Caltech36.php
‡http://www-personal.umich.edu/ mejn/centrality/
§https://linqs.soe.ucsc.edu/data
¶http://snap.stanford.edu/data/ca-GrQc.html
∥https://networkrepository.com/fb-pages-government.php
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Facebook pages of politicians in November 2017. The resulting network is represented as nodes,
which correspond to the politician pages, and edges, which indicate mutual relationships between
them.

We have plotted the frequency distribution of user node degrees to characterize the Cora and
NetScience datasets.

(a) Cora (b) NetScience

Figure 5. Node degree distribution of users on Cora and NetScience. The x axis represents
the node degree of users, and the y axis represents the number of such users (valued as
loglog).

The user node degree distributions for the Cora and NetScience datasets are presented in Figure 5,
indicating a power-law distribution. This suggests that certain users are more susceptible to influence
from their social connections.

4.1.1. Baseline methods

This paper introduces three typical initial ranking methods and a state-of-the-art IM method to
evaluate the comparative performance of the proposed RbneIM method.

(i) Random: Nodes are initially ranked randomly.
(ii) Degree centrality [52]. Degree centrality measures the influence of a node based on the number

of its neighbors, with nodes having higher degrees being considered as more influential.
(iii) Betweenness centrality [53]. The betweenness centrality measures the extent to which a node

acts as a bridge along the shortest paths between other nodes. A node with higher betweenness
centrality has a greater number of shortest paths passing through it. The betweenness of node u
is calculated by Eq (3.8).

(iv) Pagerank centrality [54]. The PageRank centrality measures the importance of a node based on
the structure of the network. It was originally created to evaluate the importance of web pages by
using their link structures. Since then, it has been applied in various fields, such as social network
analysis, link prediction and recommendation analysis.

(v) DeepIM [29]. The DeepIM algorithm is the first to employ deep learning techniques to solve the
IM problem. It uses the CARE algorithm [42] to learn node embeddings. Cosine similarity is
employed to measure similarity between nodes, k similar nodes are recorded for each node, and a
set of seed nodes is selected through statistical analysis.
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(vi) GCNIM [33].The research contributes to the field of social network analysis by proposing a
new technique that overcomes the limitations of traditional algorithms and deep learning-based
approaches while achieving high performance and efficiency in the area of seed set identification
for IM tasks.

(vii) ABEM [36]. The approach utilizes agent-based modeling and genetic algorithms to effectively
address the complex task of selecting key influencers in a distributed environment. By leveraging
these techniques, the approach identifies users’ influence capability and optimizes the influencer
set’s selection. This innovative solution tackles the challenge of capturing real-time user and
diffusion features, enabling the accurate and efficient identification of key influencers.

It is noteworthy that this paper presents two algorithms, namely CGURD (Algorithm 1) and
FGURD (Algorithm 3), for role division. The role division outcome will have an impact on the
sampling outcome of the final random walk process, leading to a different embedding representation
vector of the node under the two algorithms. Therefore, the use of these two node partitioning
algorithms will ultimately influence the selection of seed nodes. In this paper, the RbneIM algorithm
is executed using Algorithm 1. and Algorithm 3. for node division, resulting in RbneIM-CG and
RbneIM-FG, respectively.

(i) RbneIM-CG: This model utilizes the CGURD algorithm to determine the global role of users
in the network. The RbNE algorithm is then employed to perform the sampling of the training
corpus. The final selection of seed nodes is accomplished through RbneIM.

(ii) RbneIM-FG: Compared with the RbneIM-CG model, only the user role division algorithm is
different.

4.2. Analysis and comparison

This section presents an analysis of the key techniques proposed in this paper and compares them
with existing approaches to demonstrate the feasibility of the proposed approach. IM is the foundation
for introducing and understanding influence dissemination within social networks.

(i) Our proposed methodology presents several advantages over existing deep learning IM methods.
It leverages network embedding techniques to assign attribute values to user nodes, allowing for
a more comprehensive analysis of user influence. Unlike other methods that primarily focus on a
single global factor or the node’s own attributes, our approach also takes into account the influence
factor between users, providing a more nuanced understanding of influence dynamics in social
networks. Additionally, our methodology considers attributes at multiple levels of granularity,
enabling a more fine-grained analysis and capturing the diverse factors that contribute to user
influence.

(ii) Our study presents an innovative algorithm for user role division, integrating both CGURD and
FGURD to offer a comprehensive and refined approach. The CGURD component of our
algorithm focuses on classifying users into distinct groups based on their overall network
contribution, allowing for a broader understanding of user roles. In contrast, the FGURD aspect
concentrates on analyzing the relationships between users and their adjacent nodes to identify
more specific and localized user roles. By combining CGURD and FGURD, our algorithm
provides a robust and precise user role division strategy that captures the intricacies of user
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dynamics in the network. Furthermore, the methods evaluated in this paper employ various
network embedding techniques, as outlined in Table 4.

Table 4. A detailed comparison of the model proposed in this paper and other studies.

Methods Node attributes Nodes selected

DeepIM

DeepIM preserves both global and
local macro properties of user nodes
by utilizing network embedding
techniques of deep learning methods.

Random walk is used to assign
values to nodes.

ABEM

Represents users as autonomous and
proactive agents that possess the ability
to communicate with their neighbors,
extract information from the local
environment, and estimate their influence
capacity. ABEM utilizes agent-based
modeling to identify potential influencers
in changing real-world networks.

The search scope of ABEM is
continually updated through user
agents, which is a task efficiently
executed by the proposed algorithms.
These algorithms maintain the existing
potential influencers while concurrently
modifying parts of the solutions.

GCNIM

A network dynamic GCN with adaptive
layers according to different network
scales was designed to obtain the
information representation of node
position influence.

This method incorporates a leader fake
labeling mechanism that automates
the generation of node labels to
facilitate the selection of seed
nodes during model training.

Ours
The global location influence (Algorithm 1)
attribute and the influence attribute between
nodes (Algorithm 3)

Our method encompasses both the local
neighbor approximation relationship and
the global role approximation
relationship for every node
(Algorithm 4).

4.3. Parameter setting

The experiments conducted in this study used default values for various parameters mentioned
in the paper. Specifically, the node local influence balance parameters α1 and α2 in Eq (3.15) were
set to 0.8 and 0.2, respectively. The OLI score balance parameters β1 and β2 in Eq (3.5) were set to 0.5
and 0.5, respectively. In Eq (3.12), the thresholds γ1 and γ2 for opinion leaders and structural hole nodes
were set to 0.2 and 0.1, respectively. Other parameters used in the experiments were set as follows:
random walk length len = 80, random walk number number = 10 and embedding matrix dimension
d = 256. The SkipGram training window size was set to win = 5, and the negative sampling frequency
and learning rate were both set to 0.025. The threshold θ = 0.5 was used to establish a connection
edge between any two nodes of the new logical network in Eq (3.16). In the RbneIM algorithm, the
propagation probability of the IC model was set to 0.5, and the number of algorithm iterations R = 20.
The non-default value parameters for each dataset are shown in Table 5.
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Table 5. Non-default values of parameters applied in experiments for six datasets.

Dataset θ len γ1 γ2

Dolphins 0.7 140 0.14 0.16
Facebook Caltech36 0.9 80 0.18 0.12
NetScience 0.5 80 0.12 0.18
Cora 0.5 20 0.18 0.12
Ca-GrQc 0.1 40 0.12 0.18
Facebook-Government 0.7 60 0.16 0.14

All methods were implemented using Python 3, and the experiments were performed on a
Windows OS with AMD Ryzen 5 3500U, 2.10 GHz CPU and 16 GB memory. Details of our software
and hardware environments were as follows: Windows 11, Python ver. 3.6.6, NumPy ver. 1.19.2,
NetworkX ver. 2.1, Gensim ver. 3.8.3, Pandas ver. 0.24.2, Matplotlib ver. 2.2.3.

5. Results

In Eq (3.16), a threshold parameter θ was defined to create a new logical network structure, which
directly affects the performance of the RbneIM model. Therefore, the analysis of θ parameters is
performed first. Seed node sizes were selected based on the dataset scale, ranging from 2 to 20 with
a stride of 2 for the Dolphins dataset, and from 5 to 50 with a stride of 5 for the remaining datasets.
Experimental results are displayed in Figure 6, where θ was chosen as a value between 0.1 to 0.9 with a
step size of 0.2. The figure shows that different datasets have different optimal θ values. The influence
spread was considered for various numbers of seed nodes, and a counting method was used to evaluate
the pros and cons of each θ in the current dataset. The best performing θ was then selected for each
dataset value. Finally, the chosen values for θ were 0.7, 0.9, 0.5, 0.5, 0.1 and 0.7 for the Dolphins,
Facebook Caltech36, Netscience, Cora, CA-GrQc and Facebook-Government datasets, respectively.

We present a comprehensive comparison of the influence spread achieved by different algorithms,
namely random, DC, BC, PageRank centrality, DeepIM and RbneIM, utilizing the LT model. The
corresponding results are illustrated in Figure 7 for six distinct networks. Upon examining smaller
datasets, as depicted in Figure 7a for Dolphins and Figure 7b for Facebook Caltech36, we notice that
the influence spread generated by various models exhibit similar outcomes. However, our proposed
RbneIM method maintained its superior effectiveness. As the dataset size increased, both DeepIM
and RbneIM consistently outperformed the other approaches by a substantial margin, with RbneIM
exhibiting the highest level of performance. Experiments on multiple datasets demonstrated the
superior performance of the proposed RbneIM method.
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Table 6. The selection ratio experiment for opinion leaders and structural hole nodes, where
the horizontal axis is γ1, and the vertical axis is six datasets respectively.

Dataset 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Dolphins 51.4 51.7 51.8 51.1 51.1 50.5 51.92 51.2 46.2 50.3
Facebook Caltech36 567.3 568.4 570.6 558.1 554.4 576.5 578.9 580.9 585.4 574.2
NetScience 303.6 305.2 305.9 310.3 312.5 317.2 312.8 310.3 303.6 310.4
Cora 1343.0 1260.6 1297.7 1320.8 1322.0 1342.3 1342.9 1368.5 1381.7 1368.1
Ca-GrQc 1009.2 1024.1 1069.3 1096.2 1107.3 1202.3 1188.1 1172.2 1158.8 1103.4
Facebook-Government 3603.6 3374.1 3033.1 3112.9 3277.4 3312.3 3557.0 3642.8 3413.6 3376.1
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Figure 6. Effects of different values of θ (see Eq (3.16)) in the RbneIM algorithm on different
datasets.
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Figure 7. Comparison of the simulation results for LT models with various baseline methods
and different numbers of seed sets.

Additionally, the size of the seed nodes selected for each dataset varied due to the differences in
dataset size. For example, in the Dolphins network, the seed node size [2, 4, 6, ...] was selected, with
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Table 7. Average of experimental results of different seed node selection algorithms on six
networks.

Dataset Random Degree Betweenness Pagerank DeepIM RbneIM
Dolphins 13.6 17.1 19.0 17.4 33.6 39.6
Facebook Caltech36 25.2 41.7 258.6 111.3 370.9 429.3
NetScience 122.8 187.9 186.6 179.4 320.2 421.9
Cora 118.5 185.1 237.1 185.8 634.2 930.2
Ca-GrQc 86.7 178.5 263.4 182.4 614.9 664.8
Facebook-Government 242.7 341.3 459.6 297.7 1795.3 2037.5

a maximum of 20 nodes selected for the seed node set. For Facebook Caltech36, a maximum of 50
nodes were selected, and for the remaining datasets, up to 200 nodes were selected. The average results
of LT simulations for each of the six networks, with varying numbers of seed nodes, are reported in
Table 7.

The average influence diffusion of each algorithm on six datasets with different seed node numbers,
taken from 20 experiments was calculated in Table 7. The results indicate that our proposed RbneIM
algorithm outperforms the baseline algorithms, particularly Random and DC. Random selects the seed
node randomly from any network node, while DC centrality uses the number of neighboring nodes in
one hop. BC and PageRank centrality calculate the number of shortest paths through a node and the
importance of its links, respectively. DeepIM takes into account the node community structure factor
in the network embedding and calculates node similarity to select seed nodes. However, these baseline
algorithms do not consider users’ global role similarity, which reduces their efficiency in selecting seed
nodes.

As the proposed network embedding algorithm relies on a sequence of random walk sampling, an
analysis was conducted to examine the impact of different random walk lengths on the RnbeIM model.
To this end, the experiment involved selecting random walk lengths len ranging from 20 to 200 with
a step size of 20; the analysis results are presented in Table 8. Seed node sets were determined based
on the size of the datasets, with a size of 20 for the Dolphins dataset and 50 for the remaining datasets.
Corresponding to the step size, the number of seed node sets was calculated, and 200 rounds of LT
model propagation simulation were carried out. The final results represent the average value, with one
decimal place reserved. The analysis in Table 8 highlights that different step lengths of various datasets
have a notable impact on the experimental outcomes. The optimal result is identified in bold font in the
table, and its corresponding random walk length was selected as the parameter value on this dataset.
Table 5 presents the selected parameter values.

Table 8. Effect of different random walk lengths len on the experimental results.
Dataset 20 40 60 80 100 120 140 160 180 200
Dolphins 53.5 56.8 53.3 54.8 55.1 56.0 60.1 53.3 53.5 53.0
Facebook Caltech36 587.8 621.8 612.7 624.3 595.7 577.4 581.4 595.8 561.7 560.0
NetScience 615.8 591.4 606.6 617.7 612.4 593.1 597.7 596.3 608.0 596.7
Cora 1336.6 1317.0 1315.8 1329.1 1315.7 1310.5 1295.8 1311.6 1266.4 1254.9
Ca-GrQc 1081.7 1200.4 1060.4 1114.4 1098.9 952.0 1081.2 1021.3 988.7 986.0
Facebook-Government 1130.6 2671.5 3530.8 2836.7 2482.8 2280.4 2258.7 2252.8 1944.6 2100.3
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Figure 8. Comparative experiments of RbneIM-FG and RbneIM-CG on six datasets.

In addition, a comparison was made between the RbneIM-FG and RbneIM-CG models proposed
in this paper on six datasets. It is noteworthy that in the previous experiments, the RbneIM model
used the FGURD (Algorithm 3.) algorithm by default to divide user roles in the network, which is
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the RbneIM-FG model. The experimental results are presented in Figure 8, which shows that the
RbneIM-FG model outperforms the RbneIM-CG model.

The results clearly demonstrate that the use of a global influence algorithm alone to select the
seed set yields extremely low propagation efficiency. However, by leveraging the proposed FGURD
algorithm to identify different influence roles, the efficiency of influence propagation is significantly
improved. The observed discrepancy in experimental outcomes underscores the inadequacy of relying
solely on global influence. The proposed model combining global and local information for network
embedding achieved the best results on the six datasets, serving as a confirmation of the method’s
effectiveness on IM issues.

The paper sets the thresholds for opinion leaders and structural hole nodes as γ1 and γ2 (as described
in Eq (3.12), respectively. The values of γ1 and γ2 are set to 0.2 and 0.1, respectively, in the parameter
setting section. It should be noted that these values may vary depending on the network structure.
Here, we assumed that 70% of the nodes in any social network are ordinary nodes. To explore the
impact of varying these two parameters, this study included an experiment for which the result is
presented in Table 6. The number of seed nodes was set to a fixed value for each dataset, with different
divisions made based on the dataset size. For example, the Dolphins dataset was set to 20, while the
Facebook Caltech36 and Netscience datasets were set to 50. The remaining three datasets were set to
200. We varied the value of γ1 from 0.02 to 0.2 with a step size of 0.02, corresponding to γ2 = 0.3−γ1.
The optimal results are displayed in bold font in Table 6, and the corresponding x-axis value was
selected as the value of γ1 for the dataset, with 0.3 − γ1 being the value of γ2. The selected parameter
values are shown in Table 5.

6. Conclusion and future work

The present paper introduces a novel network embedding algorithm, named RbNE, for social
networks; it incorporates users’ global roles into the embedding process. The proposed RbNE
approach merges the CGURD and FGURD methods, aiming at gathering both the overall contribution
of the user to the network and the relationships between the user and its neighboring nodes. This
results in a more comprehensive representation of the user’s global role and approximate user
information. Building on this embedding method, we propose a greedy heuristic algorithm, RbneIM,
to solve the IM problem by fully integrating the global role information and filtering out the seed set.

Previous studies have encountered challenges in effectively integrating both local and global
information concerning users in social networks. A notable limitation has been the neglect of the IM
problems’ sensitivity to the global roles of users. Additionally, there is a lack of comprehensive
understanding regarding the potential contribution of global roles in identifying seed sets that exhibit
substantial influence. To address these gaps, this paper proposes the RbNEIM approach, which
considers users’ global role as a crucial criterion in selecting seed sets and identifying users with the
potential to maximize their impact on social networks. We evaluated RbNEIM on six popular social
network datasets and compared its performance with state-of-the-art methods and recent baselines.
The results demonstrate that our proposed method outperforms existing techniques, highlighting its
superior performance in terms of solving IM problems. In future work, we will explore the
optimization potential of graph neural networks and attention mechanisms to further enhance the
performance of RbNEIM.
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Experimental analysis reveals the following: (1) RbNEIM can combine global and local
information for network embedding, and it can comprehensively maintain the approximation between
the user’s global roles; (2) By integrating heuristic calculation and role embedding methods, RbNEIM
can significantly improve the performance of the IM problem by considering the user’s global role as
an essential factor in selecting the seed set and identifying users who can spread the maximum
influence in the social network; (3) The proposed method is robust to hyperparameter tuning. The
insights gained from this study have the potential to advance the development of future social
networks and IM problems.
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