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Abstract: In this paper, an adaptive grid method is put forward to solve a singularly perturbed
convection-diffusion problem with a discontinuous convection coefficient. First, this problem is
discretized by using an upwind finite difference scheme on an arbitrary nonuniform grid except the
fixed jump point. Then, a first-order maximum norm a posterior error estimate is derived. Further,
based on this a posteriori error estimation and the mesh equidistribution principle, an adaptive grid
generation algorithm is constructed. Finally, some numerical experiments are presented that support
our theoretical estimate.
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1. Introduction

Singularly perturbed problems have been widely used to describe various models of physics and
engineering [1, 2]. Typical examples include the Navier-Stokes equation with large Reynolds number
in fluid dynamics, the convective heat transport with a large Péclet number, etc. A notable feature of
these problems is that the high-order derivative term is multiplied by a small positive parameter ε. In
general, when ε → 0, the solutions of these problems exhibit boundary layers or inner layers, which
are basically thin regions in the neighbourhood of the boundary or interior of the domain. Thus, it is a
challenge to obtain a reliable numerical solution due to the existence of boundary layer and/or inner
layers in the continuous solution. To overcome this difficulty, one effective method is to use some
nonuniform meshes that are fine where layers appear in the solution. To the best of our knowledge,
such meshes can be divided into two classes: layer-adapted meshes (Shishkin mesh and Bakhvalov
mesh) and adaptive grids, see the monographs [2] and references therein for dedicated discussions on
such meshes and relevant numerical methods. In the past two decades, layer-adapted mesh
approaches have attracted considerable attention in the numerical methods of singularly perturbed
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problems community, especially for the singularly perturbed ordinary differential equations with a
discontinuous convection coefficient. The authors in [3] considered a singularly perturbed
convection-diffusion problem with a discontinuous convection coefficient and presented an almost
first-order uniformly convergent numerical scheme on a Shishkin-type mesh. Cen [4] considered a
singularly perturbed convection-diffusion equations with discontinuous convection coefficient and
constructed a second-order hybrid difference scheme on a Shishkin mesh. Shanthi et al. [5] developed
a classical upwind finite difference scheme on a Shishkin mesh for a singularly perturbed
second-order ordinary differential equation with two parameters and a discontinuous source term and
proved that their proposed method was almost first-order uniformly convergent. In [6–8], the authors
constructed some parameter-uniform hybrid finite difference schemes on a Shishkin-type mesh for
singularly perturbed convection-diffusion problems with a discontinuous source term and a
discontinuous convection coefficient. Tamilselvan and Ramanujam [9] constructed a finite difference
scheme on a Shishkin mesh to solve a weakly coupled system of two singularly perturbed
convection-diffusion equations with discontinuous convection coefficients and gave the rigorous proof
of the parameter uniform convergence in the global maximum norm. Pathan and Vembu [10]
proposed a parameter-uniform hybrid numerical method on a Shishkin mesh to solve a weakly
coupled system of two singularly perturbed convection-diffusion equations with discontinuous
convection coefficients and source terms. Aarthika et al. [11] considered a two-dimensional singularly
perturbed reaction-diffusion equation with a discontinuous source term and constructed a hybrid finite
difference method on a piecewise uniform Shishkin mesh. Further, they proved that the hybrid finite
difference method was almost second-order uniformly convergent with respect to the perturbation
parameter.

While the ε-uniformly convergent layer-adapted grid methods have been applied successfully to
singularly perturbed ordinary differential equations with a discontinuous coefficient, a lot of
researchers pay attention to discuss the layer-adapted mesh approaches for singularly perturbed
time-dependent/independent problems with a discontinuous coefficient (or discontinuous source
term), see, e.g., [12–16]. On this basis, the layer-adapted grid method for a system of singularly
perturbed parabolic problems with a discontinuous coefficient (or discontinuous source term) has
been discussed in the literature. For example, Rao and Chawla [17] considered a parameter-uniform
numerical method for a parabolic system with an arbitrary number of linear singularly perturbed
equations of reaction-diffusion type coupled in the reaction terms with a discontinuous source term
and proved that their numerical method was uniformly convergent of first order in time and almost
second order in the spatial variable. The authors in [18] proposed a finite difference scheme on a
Shishkin mesh to the solution of a two-parameter singularly perturbed convection-diffusion-reaction
system of partial differential equations with discontinuous coefficients. Rao and Chaturvedi [19]
analyzed a numerical method for a coupled system of two singularly perturbed parabolic semilinear
reaction-diffusion equations having discontinuous source terms and proved that the proposed method
was parameters-uniformly convergent of first-order in time and almost second-order in space.

It should be pointed out that there have been extensive studies on layer-adapted grid approach of
singularly perturbed problems with a discontinuous coefficient (or discontinuous source term).
However, to the best of our knowledge, limited work has been done in the adaptive grid algorithm
based on the a posteriori error estimation for these problems. Hence, the main body of this text is to
develop an adaptive grid method for the following singularly perturbed convection-diffusion equation
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with a discontinuous convection coefficientLu(x) ≡ εu′′(x) + a(x)u′(x) = f (x), x ∈ Ωd = (0, d) ∪ (d, 1),
u(0) = gl, u(1) = gr,

(1.1)

where 0 < ε ≪ 1 is a small positive parameter, gl, gr are two given constants, d is a jump point in
any function with [ω(d)] = ω(d+) − ω(d−) and a, f ∈ C2(Ωd). Furthermore, there exist three positive
constants αi(i = 1, 2) and C, such that

a(x) < −α1 < 0, x < d, a(x) > α2 > 0, x > d, (1.2)
| [a(d)] |≤ C, | [ f (d)] |≤ C. (1.3)

These hypotheses guarantee that this problem (1.1) has a solution u ∈ C1(Ω)
⋂

C2(Ωd)
(see [3, Theorem 1]. Moreover, there exist an interior layer in the vicinity of the point of discontinuity
x = d.

The constructive organization of this article is as follows: some facts about the exact solution u and
the corresponding discretization scheme of problem (1.1) are listed in Section 2. Moreover, the stability
bound for the calculated solution uN

i (on an arbitrary grid) is given. Then, in Section 3, a maximum
norm a posteriori error estimate is derived, see Theorem 3.1, which is the most fundamental result of
our paper. In Section 4, we construct an adaptive grid generation algorithm by using our presented a
posteriori estimate to monitor-function equidistribution. Numerical results are presented in Section 5
that sustain our theoretical estimate. Finally, Section 6 is a summary of our conclusions.

Notation 1.1. Throughout the paper, C will denote a generic positive constant that is independent of ε
and of the mesh parameter N. It may take different values in different places. For a given continuous
function v(x) on Ω̄ = [0, 1], the L∞ norm is defined by ∥v(·)∥∞,Ω̄ = sup |v(x)|. Meanwhile, for a given
mesh function vN =

(
vN

0 , v
N
1 , · · · , v

N
N

)
, we define the discretization maximum norm

∥∥∥vN
∥∥∥
∞
= max

0≤i≤N

∣∣∣vN
i

∣∣∣.
2. Preliminary results

In view of [3], the differential operator L fulfillment maximum principle. Thus, Eq (1.1) has a
unique solution u, which has the following bound.

Lemma 2.1. [3] Let u ∈ C(Ω̄) ∩C2(Ωd) be the exact solution of problem (1.1). Then

∥ u ∥∞,Ω̄≤ max {|gl|, |gr|} +
1
γ
∥ f ∥∞,Ω̄, (2.1)

where γ = min {α1/d, α2/(1 − d)}.

Corollary 2.1. For any two arbitrary functions v(x) and w(x), satisfy v(0) = w(0), v(1) = w(1) and

Lv(x) − Lw(x) = F(x),

where F(x) is a piecewise continuous function, then

∥v(x) − w(x)∥∞,Ω̄ ≤
1
γ
∥Lv(x) − Lw(x)∥∞,Ω̄ .
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Proof. For any two arbitrary functions v(x) and w(x), let µ = v − w. Obviously µ(0) = µ(1) = 0. Then
the desire result can be followed from Lemma2.1.

□

For our numerical method, we construct an arbitrary mesh Ω̄N
d = {xi}

N
i=0 with xs = d, x0 = 0 and

xN = 1, where 1 < s < N is a index. Let hi = xi − xi−1, i = 1, · · · ,N be the local mesh step size. Then
for a given grid function {zi}

N
i=0, we define some difference operators as follows:

D+zN
i =

zN
i+1 − zN

i

hi+1
, D−zN

i =
zN

i − zN
i−1

hi
, D2zN

i =
D+zN

i − D−zN
i

ℏi
,

where ℏi =
hi+1+hi

2 , i = 1, · · · ,N − 1. Furthermore, we discretize the problem (1.1) on the above mesh
Ω̄N

d using the following finite difference scheme:

LNuN
i ≡


εD2uN

i + ai− 1
2
D−uN

i = fi− 1
2
, 1 ≤ i ≤ s,

D−uN
s − D+uN

s = 0, i = s,

εD2uN
i + ai+ 1

2
D+uN

i = fi+ 1
2
, s + 1 ≤ i ≤ N,

uN
0 = gl, uN

N = gr,

(2.2)

where uN
i is the approximation solution of u(x) at point x = xi, ai− 1

2
= a ((xi−1 + xi)/2) , ai+ 1

2
=

a ((xi + xi+1)/2), fi− 1
2
, fi+ 1

2
are similar to ai− 1

2
, ai+ 1

2
.

Lemma 2.2. [3] Let uN be the solution of the discrete scheme (2.2). Then∥∥∥uN
∥∥∥
∞
≤ max {|gl|, |gr|} +

1
γ
∥ f ∥∞,Ω̄ , (2.3)

where γ = min {α1/d, α2/(1 − d)}.

3. A posteriori error estimation

In order to obtain a posteriori error estimation of the solution uN of Eq (2.2), we first define a
piecewise quadratic function ũN(x) on the interval Ji = [xi−1, xi], i = 1, 2, · · · ,N as follows:

ũN(x) =



1
2

(x − xi−1) (x − xi)D2uN
i

+
1
hi

[
uN

i (x − xi−1) + uN
i−1(xi − x)

]
, x ∈ Ji, 1 ≤ i ≤ N − 1,

1
2

(x − xN−1) (x − xN)D2uN
N−1

+
1

hN

[
uN

N(x − xN−1) + uN
N−1(xN − x)

]
, x ∈ JN .

(3.1)

Then

ũN(xi−1) = uN
i−1, ũN(xi) = uN

i ,
(
ũN(x)

)′′
= D2uN

i ,(
ũN(x)

)′
= D2uN

i (x − xi−1/2) + D−uN
i .
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Theorem 3.1. Let u(x) be exact solution of the problem (1.1), uN
i be the discrete solution of the discrete

scheme (2.2) and ũN(x) be the piecewise quadratic function defined by (3.1). Then we have∥∥∥u(x) − ũN(x)
∥∥∥
∞,Ω̄
≤ max

1≤i≤N
Qi, (3.2)

where

Qi =

Cℏi

(
1 +

∣∣∣D−uN
i

∣∣∣ + ∣∣∣D2uN
i

∣∣∣) , i = 1, · · · ,N − 1,

Cℏi

(
1 +

∣∣∣D−uN
i

∣∣∣ + ∣∣∣D2uN
i−1

∣∣∣) , i = N.
(3.3)

Proof. First, for ∀x ∈ (xi−1, xi), 1 ≤ i ≤ s, it follows from Eqs (1.1), (2.2) and (3.3) that

Lu(x) − LũN(x) = f (x) −
[
εD2uN

i + a(x)
(
D2uN

i

(
x − xi− 1

2

)
+ D−uN

i

)]
= f (x) − fi− 1

2
+ ai− 1

2
D−uN

i − a(x)
(
D2uN

i

(
x − xi− 1

2

)
+ D−uN

i

)
.

(3.4)

Then applying Taylor formula to a(x) and f (x) at x = xi− 1
2
, we obtain∣∣∣Lu(x) − LũN(x)

∣∣∣ ≤ ∣∣∣∣ f ′(ξ1)
(
x − xi− 1

2

)∣∣∣∣ + ∣∣∣∣a′(ξ2)
(
x − xi− 1

2

)
D−uN

i

∣∣∣∣
+

∣∣∣∣∣∣
(
ai− 1

2
+

1
2

a′(ξ2)
(
x − xi− 1

2

)) (
x − xi− 1

2

)
D2uN

i

∣∣∣∣∣∣
≤ Chi

(
1 +

∣∣∣D−uN
i

∣∣∣ + ∣∣∣D2uN
i

∣∣∣) ,
(3.5)

where ξ1, ξ2 ∈ (xi− 1
2
, x). For x ∈ (xi−1, xi), s ≤ i < N, similar to Eqs (3.4) and (3.5), it is easy to get

∣∣∣Lu(x) − LũN(x)
∣∣∣ = ∣∣∣∣ f (x) − fi+ 1

2
+ ai+ 1

2
D+uN

i − a(x)
(
D2uN

i

(
x − xi− 1

2

)
+ D−uN

i

)∣∣∣∣
≤

∣∣∣∣ f ′(ξ) (x − xi+ 1
2

)∣∣∣∣ + ∣∣∣∣ai+ 1
2
D+uN

i − ai+ 1
2
D−uN

i

∣∣∣∣ + ∣∣∣∣∣12a′(ξ)
(
x − xi+ 1

2

)
D−uN

i

∣∣∣∣∣
+

∣∣∣∣ai+ 1
2

(
x − xi− 1

2

)
D2uN

i

∣∣∣∣ + ∣∣∣∣∣12a′(ξ)
(
x − xi+ 1

2

) (
x − xi− 1

2

)
D2uN

i

∣∣∣∣∣
≤

∣∣∣∣ f ′(ξ) (x − xi+ 1
2

)∣∣∣∣ + ∣∣∣∣ai+ 1
2
ℏiD2uN

i

∣∣∣∣ + ∣∣∣∣∣12a′(ξ)
(
x − xi+ 1

2

)
D−uN

i

∣∣∣∣∣
+

∣∣∣∣ai+ 1
2

(
x − xi− 1

2

)
D2uN

i

∣∣∣∣ + ∣∣∣∣∣12a′(ξ)
(
x − xi+ 1

2

) (
x − xi− 1

2

)
D2uN

i

∣∣∣∣∣
≤Cℏi

(
1 +

∣∣∣D−uN
i

∣∣∣ + ∣∣∣D2uN
i

∣∣∣) .

(3.6)

Furthermore, for x ∈ (xN−1, xN), one has∣∣∣Lu(x) − LũN(x)
∣∣∣ ≤ CℏN

(
1 +

∣∣∣D−uN
N

∣∣∣ + ∣∣∣D2uN
N−1

∣∣∣) . (3.7)

Thus, it follows from (3.4)-(3.7) that

|Lu(x) − LũN(x)| ≤

Cℏi

(
1 +

∣∣∣D−uN
i

∣∣∣ + ∣∣∣D2uN
i

∣∣∣) , i = 1, · · · ,N − 1,

Cℏi

(
1 +

∣∣∣D−uN
i

∣∣∣ + ∣∣∣D2uN
i−1

∣∣∣) , i = N.
(3.8)

Finally, using Corollary 2.1 and Eq (3.8), yields,∥∥∥u(x) − ũN(x)
∥∥∥
∞,Ω̄
≤ C ∥Lu(x) − Lũ(x)∥∞,Ω̄ ≤ max

1≤i≤N
Qi. (3.9)

This completes the proof.
□
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4. An adaptive grid algorithm

To this day, there are many researchers have studied adaptive grid methods for singularly perturbed
problems with a continuous convection coefficient and a source term, and have made many significant
research results (see [20–26] for example). Here, the main contribution of this text is to design an
adaptive grid method to solve the singularly perturbed convection-diffusion equation (1.1) for the first
time.

As far as we known, for a given positive monitor function Mi (·), the hinge technique of adaptive
grid method is to discover a grid {xi}

N
i=0 such that

hiMi (·) =
1
N

N∑
j=1

h jM j (·) for i = 1, · · · ,N. (4.1)

Here, Eq (4.1) is called the discrete mesh equidistribution principle. Here, according to the output of
Theorem 3.1, we select the monitor function as below:

Mi = 1 +
∣∣∣D−uN

i

∣∣∣ + √∣∣∣D2uN
i

∣∣∣. (4.2)

In an effort to the equidistributed mesh Ω̄N and the corresponding numerical solution uN
i , we design the

grid generation algorithm as follows:
Step 1. For a given positive integer N, choose an initial uniform mesh

Ω̄
N,(0)
d =

{
0 = x(0)

0 < x(0)
1 < · · · < x(0)

N = 1
}
.

Step 2. For k = 0, 1, · · · and the grid Ω̄N,(k)
d , there exists a index J such that the grid point x(k)

J
satisfying ∣∣∣x(k)

J − d
∣∣∣ = min

0≤i≤N

∣∣∣x(k)
i − d

∣∣∣ .
Then let x(k)

J = d.

Step 3. Let
{
uN,(k)

i

}N

i=0
be the solution of discretization scheme (2.2) on Ω̄N,(k)

d . Set

M̃(k)
i =

M(k)
i−1 + M(k)

i

2
, i = 1, · · · ,N, (4.3)

where M(k)
i = 1 +

∣∣∣D−uN,(k)
i

∣∣∣ + √∣∣∣D2uN,(k)
i

∣∣∣ and M(k)
0 = M(k)

1 , M(k)
N = M(k)

N−1.

Step 4. Let h(k)
i = x(k)

i − x(k)
i−1, i = 1, · · · ,N and set Φ(k)

0 = 0 and

Φ
(k)
i =

i∑
j=1

h(k)
j M̃(k)

j , i = 1, · · · ,N. (4.4)

Then let ϕ(k)(s) be the piecewise linear interpolant function through
(
Φ

(k)
i , x

(k)
i

)
and generate the new

grid Ω̄N,(k+1) by using x(k+1)
i = ϕ(k)(Y (k)

i ).
Step 5. Choose a positive constant ϵ, if the stopping criterion

max
0≤i≤N

∣∣∣x(k+1)
i − x(k)

i

∣∣∣ ≤ ϵ (4.5)

holds true, go to Step 6, otherwise return to Step 2.
Step 6. Set Ω̄∗d = Ω̄

N,(k+1)
d and

{
u∗i

}N

i=0
=

{
uN,(k+1)

i

}N

i=0
then stop.

Networks and Heterogeneous Media Volume 18, Issue 4, 1528–1538.



1534

5. Numerical results and discussion

In order to verify our theoretical result, we took into account the following test question

εu′′ + a(x)u′ = f , (5.1)
u(0) = 0, u(1) = 1, (5.2)

where

a(x) =

 − 1, 0 ≤ x ≤ 0.5,
1, 0.5 < x ≤ 1,

f (x) =

0, 0 ≤ x ≤ 0.5,
1, 0.5 < x ≤ 1.

Since the exact solution of this problem (5.1) is not known, we use the following double mesh
principle to calculate the maximum point-errors and the corresponding convergence rates: Let uN

i and
u2N

i be the numerical solutions of the discrete scheme (2.2) on mesh Ω̄N and Ω̄2N , respectively, where
the grid Ω̄2N is obtained by bisecting the original mesh Ω̄N . Then the errors and rates of convergence
are computed in the usual way:

eN = max
0≤i≤N

|uN
i − u2N

i |, rN = log2

(
eN

e2N

)
. (5.3)

Table 1. The maximum errors, convergence orders.

ε
Number of mesh-intervals, N

27 28 29 210 211

2−4
eN 5.05e-03 2.19e-03 9.31e-04 4.76e-04 2.11e-04
rN 1.20 1.23 0.97 1.17

2−6
eN 4.92e-03 2.55e-03 1.29e-03 5.84e-04 2.37e-04
rN 0.95 0.97 1.14 1.29

2−8
eN 4.39e-03 2.25e-03 1.15e-03 6.11e-04 2.64e-04
rN 0.97 0.97 0.92 1.21

2−10
eN 4.89e-03 2.60e-03 1.15e-03 5.62e-04 2.11e-04
rN 0.91 1.17 1.03 1.00

2−12
eN 5.04e-03 2.49e-03 1.19e-03 5.31e-04 3.00e-04
rN 1.02 1.07 1.16 0.83

2−14
eN 5.10e-03 2.56e-03 1.25e-03 5.43e-04 2.85e-04
rN 1.00 1.03 1.20 0.94

2−16
eN 5.11e-03 2.18e-03 1.29e-03 5.39e-04 2.93e-04
rN 1.22 0.80 1.25 0.90

Next, for ε = 2−2 j, j = 2, · · · , 8 and N = 2k, k = 7, · · · , 11, we use our presented adaptive grid
method to solve this test problem. The error and rates of convergence for the numerical solutions
are displayed in Table 1 . It is shown from Table 1 that the accuracy of our adaptive grid method
is first-order, which is confirmed our theoretical result given in Theorem 3.1. Moreover, to illustrate
the advantageous of our adaptive grid method, for ε = 2−3, 2−15 and the same N, Table 2 gives the
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numerical results obtained by using our adaptive grid and the Shishkin mesh, respectively, which are
evidences that the maximum point-wise errors of our presented adaptive grid method are much better
than that obtained by the Shishkin mesh.

To verify our adaptive grid generation algorithm given in Section 4, Figure 1 represents the grid
iteration process for N = 64 and ε = 2−8. It is shown that the solution of this test problem has a interior
layer at x = 0.5.

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

It
e

ra
ti
o

n
s
  

k

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1. Mesh iteration process with N = 64 and ε = 2−8.

Table 2. Comparison of numerical results with Shishkin mesh.

N ε = 2−3 ε = 2−15

Shishkin mesh Adaptive mesh Shishkin mesh Adaptive mesh
27 eN 2.84E-02 3.22E-03 9.67E-02 5.10E-03

rN 0.93 1.01 1.60 1.16
28 eN 1.49E-02 1.60E-03 3.15E-02 2.28E-03

rN 0.96 1.45 1.50 0.93
29 eN 7.63E-03 5.78E-04 1.11E-02 1.20E-03

rN 0.98 1.38 0.94 1.17
210 eN 3.86E-03 2.22E-04 5.79E-03 5.33E-04

rN 0.99 1.00 0.95 0.90
211 eN 1.94E-03 1.11E-04 3.00E-03 2.89E-04

rN 1.00 1.00 0.95 1.03
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6. Conclusions

This paper mainly discussed an a posteriori error estimation in maximum norm for a finite
difference scheme to the singularly perturbed convection-diffusion equation with a discontinuous
convection coefficient. To deal with the jump point x = d, we designed an adaptive grid generation
algorithm based on the presented a posteriori error estimation and the mesh equidistribution principle.
It should be pointed out that the proposed adaptive grid algorithm used in this work can be extended
to structure an adaptive grid approach that applies to the other singularly perturbed problems with a
discontinuous coefficient and a source term.
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