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Abstract: In a bounded domain, the solution of linear homogeneous time fractional parabolic equation
is known to exhibit polynomial type decay rate (the so-called Mittag-Leffler stability) over time, which
is quite different from the exponential decay of classical parabolic equation. We firstly use the finite
element method or finite difference method to discretize the parabolic equation in space to obtain
fractional ordinary differential equation, and then use fractional linear multistep method (F-LMM) to
discretize in time to obtain a fully discretized schemes. We prove that the strongly A-stable F-LMM
method combined with appropriate spatial discretization can accurately maintain the long-term optimal
algebraic decay rate of the original continuous equation. Numerical examples are included to confirm
the correctness of our theoretical analysis.
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1. Introduction

Let Ω ⊂ Rd be a bounded domain with smooth boundary ∂Ω. Consider the initial-boundary value
problem for a time-fractional parabolic equation:

Dα
t u(x, t) − Lu(x, t) = 0, x ∈ Ω, t ≥ 0, (1.1)

subject to the Dirichlet-boundary condition u(x, t) = 0 for x ∈ ∂Ω and the initial value u(x, 0) =
u0(x), x ∈ Ω. Here Dα

t u(t) := 1
Γ(1−α)

∫ t

0
(t − s)−αu′(s)ds denote the Caputo time fractional derivative of

order α ∈ (0, 1) and L be a linear second-order elliptic operator in H2(Ω) ∩ H1
0(Ω)

(Lu)(x, t) =
d∑

i, j=1

∂i(ai j(x)∂ ju(x)) +
d∑

j=1

b j(x)∂ ju(x) + c(x)u(x, t). (1.2)
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Like [1], we assume that ai j = a ji > 0 in Ω, and also either c ≥ 0 or c − 1
2

∑d
j=1 ∂ jb j ≥ 0 to ensure the

existence and uniqueness of the solution.
The time fractional parabolic equation with order α ∈ (0, 1) include diffusion, sub-diffusion

equation and other types, which are often used to describe various transport processes with memory
effect. The existence, uniqueness and stability of solutions of fractional partial differential equations
(F-PDEs) have been deeply studied and many important results have been obtained. Many typical
results, such as fractional comparison principle [2] and maximum principle [3], have been established.
Compared with the standard parabolic equation, the solution of the anomalous parabolic model (1.4)
has two typical characteristics [4]:

• weak singularity at t = 0. That is the solution of the equation pointwise satisfies the estimation∣∣∣∣∂ku(x,t)
∂tk

∣∣∣∣ ≤ C(1 + tα−k). In particularly, for k = 1 we have

|u′(·, t)| ≤ C
(
1 + tα−1

)
∥u0∥L2(Ω), i.e., ∥u′(·, t)∥L2(Ω) → +∞ as t → 0+; (1.3)

• long-time polynomial decay rate,

∥u(·, t)∥L2(Ω) ≤
C

1 + tα
∥u0∥L2(Ω) = O(t−α) as t → +∞. (1.4)

In this paper, we mainly focus on the long time behavior of numerical solution. In [5], it is pointed
out that the asymptotic stability and long-time decay behavior of solution to linear homogeneous
Caputo time fractional ordinary differential equations (F-ODEs) are completely determined by the
eigenvalues of the coefficient matrix. For the F-PDE, the optimal long time estimation of the solution
is also established [6–8]. Similarly, asymptotic stability also applies to fractional systems obtained
from different practical problems. Examples include fractional-order coupled reaction-diffusion
neural networks without strong connectedness [9], fractional-order memristor neural networks with
leakage delay [10], time fractional reaction-diffusion systems with unknown time-varying input
uncertainties [11], and non-autonomous fractional order neural networks with impulses [12]. The
asymptotic stability of exact discretization numerical scheme for Caputo-Hadamard fractional
differential equation on the time scale is proved in [13].

In [5], the authors proves that the numerical solutions of the linear homogeneous F-ODEs are
Mittag-Leffler stable by singularity analysis of the generating function, which shows the numerical
solution completely preserves the same optimal decay rate for a long time as that for the continuous
equation. In this paper, we first convert the F-PDE into a F-ODE system through the finite element
method or finite difference method in the spatial direction, and then use the methods and ideas
from [5] to prove that for a large class of strongly A-stable numerical methods, the numerical solution
can accurately maintain the long-time decay rate of the continuous equation.

The main work of this paper is to establish the numerical Mittag-Leffler stability of F-PDEs and
obtain the same long-time decay rate of the numerical solution as that of the continuous solution. The
detailed description can be expanded from the following aspects:

• For homogenous F-PDEs, we use two spatial discretization methods to obtain time F-ODEs, and
then use strong A-stable fractional linear multistep methods (F-LMMs) to get the corresponding
generating function equation of numerical solution.
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• We mainly use the singularity analysis of the generating function to establish the Mittag-Leffler
stability conditions of numerical solution for the fully discretized scheme.

The rest of the paper is organized as follows. In Section 2, we first review the properties of solution
for F-ODE system. Then we derive the space semi-discretization scheme by finite element or finite
difference for Eq (1.4) and combine with F-LMMs to obtain the fully discretized schemes. In Section
3, we prove the numerical solution preserves the long-time decay rate O(t−αn ). Numerical examples are
included in Section 4.

2. Numerical methods for F-PDE

Let us start with the main results on Mittag-Leffler stability for F-ODE system.

Lemma 2.1. [14] Consider the F-ODE system Dα
t y(t) = Ay(t) where y ∈ Rd and A is a constant

coefficient matrix. Let λA be the eigenvalue of matrix A. Then it holds that
(i) The solution to F-ODE is asymptotically stable if and only if all the eigenvalues λA satisfy that

λA ∈ Λα := {z ∈ C\{0} : | arg(z)| >
απ

2
}. (2.1)

(ii) If all the eigenvalues λA ∈ Λα, the solution to the F-ODE is Mittag-Leffler stable, i.e., ∥y(t)∥ =
O(t−α) as t → ∞.

2.1. Spatial discretization methods

In order to apply the main results and ideas of F-ODE, we first discretize the equation in space. We
will consider two typical methods, namely the finite element method and the finite difference method.

2.1.1. Finite difference approximation

Let Ω̄h be the tensor product of d = 2 uniform meshes {ih}Mi=0, where Ωh := Ω̄h\∂Ω denotes the set
of interior mesh nodes. Now, consider the spatial difference semidiscretization{

Dα
t u(x, t) = Lhu(x, t), x ∈ Ωh, t > 0,

u(·, t) = 0 in Ω̄h ∩ ∂Ω, u(x, 0) = u0 in Ω̄h,
(2.2)

where Lh is a standard central differential operator defined by

Lhu(x, t) :=
2∑

p,q=1

1
2

h−2{apq(x + hδp)[u(x + hδp, t) − u(x + hδp − hδq, t)]

+ apq(x − hδp)[u(x − hδp, t) − u(x − hδp + hδq, t)]
+ apq(x)[u(x + hδq, t) − 2u(x, t) + u(x − hδq, t)]}

−

2∑
p=1

1
2

h−1bp(x)[u(x + hδp, t) − u(x − hδp, t)] − c(x)u(x, t).

(2.3)

Then the spatial finite difference semi-discrete scheme of Eq (1.4) can be written as

Dα
t uh = Lhuh, (2.4)
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where Lh is the spatial difference matrix.
The local truncation error of the solution of the above semi-discrete scheme is known to be O(h2)

under the condition h−1 ≥ maxk=1,2

{
1
2∥bk∥L∞(Ω)∥a−1

k ∥L∞(Ω)

}
in the norm L∞(Ω) [15]. In the following

finite element semi-discrete scheme, when the coefficient satisfies c − 1
2

∑2
k=1 ∂kbk ≥ 0, it can also be

obtained that the local truncation error is O(h2).

2.1.2. Finite element method

Let Vh ⊂ H1
0(Ω) ∩ C(Ω̄) be the Lagrange finite element space of a quasi-uniform simplical

triangulation T of Ω. Let uh ∈ Vh satisfy

⟨Dα
t uh, vh⟩h = Ah(uh, vh), ∀vh ∈ Vh (2.5)

with uh
0 = u0, and ⟨·, ·⟩h is an approximation of the inner product L2(Ω). Let ⟨·, ·⟩ denoting the exact

L2(Ω) inner product, then the bilinear from Ah is defined by Ah(u, v) := ⟨Lu − cu, v⟩ + ⟨cu, v⟩h [15].
We construct an approximation of the solution in a family of finitely dimension subspaces:

Vh :=
{
ρi
}M+1

i=1
, (ρi, ρ j) = δi j,

where {ρi}M+1
i=1 is an orthonormal basis of Vh. So we have uh =

∑M+1
i=1 (uh, ρi)ρi, and when we take vh = ρ j,

Eq (2.5) can be rewritten as

Dα
t

M+1∑
i=1

(uh, ρi)
〈
ρi, ρ j

〉
h
=

M+1∑
i=1

(uh, ρi)Ah(ρi, ρ j). (2.6)

This leads to the finite element semi-discrete scheme for Eq (1.4)

Dα
t uh = Lhuh (2.7)

with Lh ∈ R
(M+1)×(M+1) determined by L−1

1 L2, where L1(i, j) = ⟨ρi, ρ j⟩h and L2(i, j) = Ah(ρi, ρ j). Since
L1 is known as the identity matrix, there is Lh := L2. Therefore, for the two spatial discretization
methods, we have a unified form as that given in Eqs (2.4) and (2.7), but Lh has a different meanings.

2.2. Time discretization method and generating function

We recall some basic concepts and notations. Let δd := (1, 0, 0, . . .) be the convolution identity and
δi, j be the Kronecker function. Denote u = (u0, u1, . . .), where un ∈ C

1, be a discrete sequence. When
u, v are two scalar sequences, we define the discrete convolution v ∗ u = ω, where ωn =

∑n
j=0 vn− ju j.

The sequence v is said to be invertible only if v ∗ u = δd and u is the inverse of v, i.e. u = v−1. The
generating function for u = (u0, u1, . . .) is defined as Fu(z) =

∑∞
n=0 unzn, z ∈ C. Then it is easy to to see

if v ∗ u, then Fv∗u(z) = Fv(z)Fu(z) and if ω = µ−1 then Fµ(z) = 1/Fω(z).
In Eq (1.4), let un be the approximation of u(·, tn) by implicit scheme on uniform grid tn = nτ with

step size τ > 0 in the form

Dα
τ (un) :=

1
τα

n∑
j=0

µ j(un− j − u0) = Lhun, n ≥ 1. (2.8)
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In order to include n = 0, Eq (2.8) can be rewritten as

1
τα

n∑
j=0

µ j(un− j − u0) = Lh(un − u0δn,0), n ≥ 0.

Let ω = µ−1. By generating function we have u − u0 = τ
αω ∗ Lh(un − u0δn,0), then

un − u0 = τ
α[ω ∗ Lh(un − u0δn,0)]n = τ

α

 n∑
j=0

ωn− jLhu j − ωnLhu0

 , n ≥ 0. (2.9)

In Eqs (2.8) and (2.9), the coefficients {µn} and {ωn} can be determined in several ways. Perhaps the
most famous method is the convolution quadrature (CQ) developed by Lubich [16, 17], which inherits
the excellent numerical stability characteristics of the classical linear multistep method (LMM).
Another important method is the L1 scheme [4]. Here we list the generating functions of several
widely used methods; see Table 1 or [5].

Table 1. Numerical methods and their generating functions.

Methods Fω(z) Fω(0)
F-BDF1 (1 − z)−α 1
F-BDF2 (1 − z)−α( 3−z

2 )−α ( 3
2 )α

F-Adams2 (1 − z)−α(1 − α
2 (1 − z)) 1 − α

2
L1 scheme z

(1−z)2 Li−1
α−1(z) 1

By generating function Fω(z) =
∑∞

j=0 ω jz j, as long as Fω(z) is given, the corresponding coefficients
{µn} and {ωn} will be determined accordingly. In summary, we obtain the fully discretized scheme for
Eq (1.4):

un = u0 + τ
α

n∑
j=1

ωn− jLhu j, n ≥ 1. (2.10)

3. Numerical Mittag-Leffler stability for F-PDEs

We now analyze the long-term qualitative behavior of the numerical solution of the fully discretized
scheme (2.10) for F-PDEs. We first review some related concepts and results of numerical solution for
F-ODEs [5, 17].

3.1. Numerical stability region of F-LMMs

The linear test model for F-ODEs (with α ∈ (0, 1)) is Dα
t y(t) = λy, which is asymptotic stable if

λ ∈ Λα, as indicated in Lemma 2.1. Applying F-LMMs to the fractional linear test equation gives

yn = y0 + λτ
α[ω ∗ (y − y0δd)]n, n ≥ 0. (3.1)

The numerical stability region for Eq (3.1) is defined by

Sατ := {ζ = λτα ∈ C \ {0} : yn → 0 as n→ ∞}, (3.2)
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and a numerical method is said to be A(β)-stable (with β ∈ (0, π)), if the region Sατ contains the infinite
wedge A(β) = {z ∈ C \ {0}; | arg(−z)| < β}. Similarly to ordinary differential equations (ODEs), if
the stability region Sατ contains the entire sector Λα, i.e., Sατ ⊃ Λα, then the method is said to be
A(απ2 )-stable, or simply A-stable.

Consider the classical k-step LMMs with generating polynomials ρ(z) =
∑k

j=0 α jz j and σ(z) =∑k
j=0 β jz j. Let

δ(z) =
zkρ(z−1)
zkσ(z−1)

=
α0zk + · · · + αk−1z + αk

β0zk + · · · + βk−1z + βk
.

The LMM defined by a generating polynomial Fω(z) = Fω(ρ,σ)(z) = δ(z)−1 for the classical ODE, with
order p ≥ 1 is called strong A(β)-stable if

δ(z) is analytic, with no zeros in a neighborhood of the unit disk |z| ≤ 1 except z = 1;
| arg δ(z)| ≤ π − β for |z| < 1; 1

τ
δ (e−τ) = 1 + O (τp) , with p ≥ 1 .

(3.3)

See [16,17]. The fundamental relationship between the stability regions of the classical LMMs and the
F-LMMs is given by

Lemma 3.1. [17] Consider a classical LMM defined by a generating polynomial Fω(z) = δ(z)−1

satisfies the stability conditions Eq (3.3). Let Sτ and Sατ be the stability regions of the standard LMM
and its corresponding F-LMM defined by Fω(z) = (Fω(z))α = δ(z)−α respectively. Then it holds that

(i) Sατ = C \ {1/Fω(z) : |z| ≤ 1};
(ii)

(
C \ Sατ

)
= (C \ Sτ)α;

(iii) LMM is A-stable if and only if the F-LMM is A-stable;
(iv) with π − φ = α(π − ψ), LMM is A(φ)-stable if and only if the F-LMM is A(ψ)-stable.

The above stability results are extended to general finite dimensional F-ODE systems in [5].

Lemma 3.2. [5, Theorem 7] Assume that the F-LMM satisfies the conditions in (3.3). Then for the
vector-valued F-ODEs Dα

t u(t) = Au with any step size τ > 0, the numerical stability region is given by

Sατ = det (I − ταFω(z)A) , 0 f or |z| ≤ 1

⇔
1

ταFω(z)
is not an eigenvalue of matrix A for |z| ≤ 1

⇔ C\

{
1

ταFω(z)
is an eigenvalue of matrix A for |z| ≤ 1

}
.

Lemma 3.2 shows that if λA ∈ Λα and the F-LMMs are strongly A-stable, then det (I − ταFω(z)A) ,
0 for all |z| ≤ 1 and τ > 0. This leads to the F-LMMs is unconditionally stable for the vector-valued
F-ODEs.

3.2. Mittag-Leffler stability analysis

Generating function is the main tool to study the long time behavior of numerical solutions for
time fractional differential equations. The following lemma gives the internal relationship between the
coefficient of generating function and the behavior of function singularity at z = 1.
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Lemma 3.3. [18] Assume Fu(z) is analytic on ∆(R, θ) := {z : |z| < R, z , 1, | arg(z − 1)| > θ} for
some R > 1 and θ ∈ (0, π2 ). If Fu(z) ∼ (1 − z)−β as z → 1, z ∈ ∆(R, θ) for β , {0,−1,−2,−3, · · · }, then
un ∼

1
Γ(β)n

β−1 as n→ ∞.

In the following, we study the polynomial long time decay rate for the numerical solution of Eq
(1.4). So before we do that we first need to check that Lh satisfies the condition of Lemma 3.3.

When h is so small such that h−1 ≥ maxk=1,2

{
1
2∥bk∥L∞(Ω)∥a−1

k ∥L∞(Ω)

}
, then the spatial central difference

operatorLh satisfies the discrete maximum principle. Hence, −Lh is an M-matrix. It is also known from
[1, Remark 7.2] that the matrix associated with the spatial linear finite element discretized operator
−Ah is also an M-matrix. So the real part of the eigenvalue of the semi-discrete matrix Lh is less
than 0, i.e. λLh ∈ C

−. The strong stability condition for F-LMMs yields 1/Fω(z) falls in region
{z : | arg z| ≤ απ

2 } ∩ C
+. Therefore 1/(ταFω(z)) is not an eigenvalue of Lh, which leads to that

det (I − ταFω(z)Lh) , 0, for all |z| ≤ 1 and τ > 0. (3.4)

Theorem 1. Assume the F-LMMs is strong A-stable in the fully discrete scheme (2.10) for F-PDE
(1.4). Then the numerical solution is Mittag-Leffler stable, i.e., ∥uh

n∥ = O(t−αn ) as n→ ∞ for any τ ≥ 0.

Proof. It follows from Eq (2.10) that uh
n = uh

0 + τ
α ∑n

j=1 ωn− jLhuh
j , then

uh
n = (I − ταωnLh)uh

0 + τ
α

n∑
j=0

ωn− jLhuh
j .

Multiply the above equation both sides by zn and sum over n form 0 to∞ to get that

Fuh(z) =
∞∑

n=0

(I − ταωnLh)znuh
0 + τ

αFω(z)LhFuh(z). (3.5)

From Eq (3.5), we can get

Fuh(z) = (I − ταFω(z)Lh)−1
(

1
1 − z

I − ταFω(z)Lh

)
uh

0

= (I − ταFω(z)Lh)−1
(
I − ταFω(z)Lh +

z
1 − z

I
)

uh
0

=

(
I +

z
1 − z

(I − ταFω(z)Lh)−1
)

uh
0.

We see from Eq (3.4) that the inverse (I − ταFω(z)Lh)−1 exists for |z| ≤ 1 and z , 1. And the
generating polynomial constructed under the condition of strong A-stability satisfies that [5], Fω(z) ∼
(1 − z)−α as z→ 1. So we have

Fuh(z) =
[
I +

z
1 − z

(I − τα(1 − z)−αLh)−1
]

uh
0

=

I + z
(1 − z)1−α

1
τα

(
(1 − z)α

τα
I − Lh

)−1 uh
0

=
1

(1 − z)1−α

(1 − z)1−αI +
z
τα

(
(1 − z)α

τα
I − Lh

)−1 uh
0.
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Since 0 < α < 1, we have (1 − z)1−α → 0 and (1 − z)α → 0 as z → 1. Therefore, we have
Fuh(z) ∼ 1

(1−z)1−α ·
1
τα

L−1
h uh

0 as z→ 1. By Lemma 3.3, we have uh
n ∼

1
Γ(1−α) L

−1
h uh

0n−ατ−α, which lead to the
desired results ∥uh

n∥ ∼ O(t−αn ) as n→ ∞. □

4. Numerical example

To quantitatively investigate the long-time decay rate of the numerical solution, we introduce the
index function

pα(tn) = −
ln (∥uh

n+5∥/∥u
h
n∥)

ln (tn+5/tn)
, (4.1)

which is numerical observation order of decay rate as O(t−pα
n ). It is independent of the initial value.

In the numerical example we take Ω = [0, 1]2, the initial value u0 = 10 sin (4πx) sin (4πy) and the
parameter a11 = a22 = 2, a12 = a21 = 1, b1 = b2 = 1, c = 1.

Table 2. Observed pα computed by L1 scheme in time and finite difference and finite element
(the values in brackets) in space with τ = 0.2, h = 1

32 .

tn α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
100 0.1003(0.1003) 0.3013(0.3013) 0.5026(0.5026) 0.7038(0.7038) 0.9049(0.9049)
300 0.1000(0.1000) 0.3004(0.3004) 0.5008(0.5008) 0.7013(0.7013) 0.9016(0.9016)
500 0.0999(0.0999) 0.3002(0.3002) 0.5005(0.5005) 0.7008(0.7008) 0.9010(0.9010)
700 0.0999(0.0999) 0.3001(0.3001) 0.5004(0.5004) 0.7006(0.7006) 0.9007(0.9007)
900 0.0999(0.0999) 0.3001(0.3001) 0.5003(0.5003) 0.7004(0.7004) 0.9005(0.9005)

Table 3. Observed pα computed by BDF1 scheme in time and finite difference and finite
element (the values in brackets) in space with τ = 0.2, h = 1

32 .

tn α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
100 0.1004(0.1004) 0.3018(0.3018) 0.5039(0.5039) 0.7064(0.7064) 0.9052(0.9052)
300 0.1000(0.1000) 0.3005(0.3005) 0.5013(0.5013) 0.7020(0.7020) 0.9030(0.9030)
500 0.1000(0.1000) 0.3003(0.3003) 0.5008(0.5008) 0.7013(0.7013) 0.9018(0.9018)
700 0.0999(0.0999) 0.3002(0.3002) 0.5005(0.5005) 0.7009(0.7009) 0.9013(0.9013)
900 0.0999(0.0999) 0.3001(0.3001) 0.5004(0.5004) 0.7007(0.7007) 0.9010(0.9010)

We calculate and observe index pα with various choices of parameters for F-BDF1 and L1 schemes,
as shown in Table 2 and Table 3 respectively, from which the decay rate data is completely consistent
with our theoretical prediction of Theorem 1, i.e., O(t−αn ).

Figure 1 shows the numerical solutions of Un at the initial time tn = 0, and Figures 2, 3, 4 are the
numerical solutions Un at the time tn = 10, 30, 100, respectively. From Figure 1 to Figure 4, it can be
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Figure 1. U0. Figure 2. Un for tn = 10.

Figure 3. Un for tn = 30. Figure 4. Un for tn = 100.

seen that the ∥Un∥ of the numerical solution decays with time, and further qualitative analysis can get
that ∥Un∥ = O(t−αn ), as expected.

Acknowledgments

The second author is partially supported by NSFC grant 12271463 and Fund of Hunan Provincial
Education Department 22B0173.

Conflict of interest

The authors declare there is no conflict of interest.

Networks and Heterogeneous Media Volume 18, Issue 3, 946–956.



955

References

1. N. Kopteva, Error analysis for time-fractional semilinear parabolic equations using
upper and lower solutions, SIAM J. Numer. Anal., 58 (2020), 2212–2234.
https://doi.org/10.1137/20M1313015

2. B. Jin, Fractional Differential Equations, Cham: Springer, 2021.

3. Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion
equation, Fract. Calc. Appl. Anal., 15 (2012), 141–160. https://doi.org/10.2478/s13540-012-0010-
7

4. M. Stynes, A survey of the L1 scheme in the discretisation of time-fractional problems, Numer.
Math. Theory Methods Appl., 15 (2022), 1173–1192. https://doi.org/10.4208/nmtma.OA-2022-
0009s

5. D. L. Wang, J. Zou, Mittag-Leffler stability of numerical solutions to time fractional ODEs, Numer.
Algorithms, 3 (2022). https://doi.org/10.1007/s11075-022-01379-8

6. K. Adam, R. Katarzyna, Y. Masahiro, Time-Fractional Differential Equations: A Theoretical
Introduction, Singapore: Springer, 2020, 109–119. https://doi.org/10.1007/978-981-15-9066-5

7. M. D’Abbicco, G. Girardi, Asymptotic profile for a two-terms time fractional diffusion problem,
Fract. Calc. Appl. Anal., 25 (2022), 1199–1228. https://doi.org/10.1007/s13540-022-00041-3

8. R. Zacher, Time fractional diffusion equations: solution concepts, regularity, and long-time
behavior, in Volume 2 Fractional Differential Equations, Berlin/Munich/Boston: Walter de Gruyter
GmbH, 2019, 159–180. https://doi.org/10.1515/9783110571660-008

9. Y. Cao, Y. G. Kao, J. H. Park, H. B. Bao, Global Mittag-Leffler stability of the delayed fractional-
coupled reaction-diffusion system on networks without strong connectedness, IEEE Trans. Neural
Netw. Learn. Syst., 33 (2022), 6473–6483. https://doi.org/10.1109/TNNLS.2021.3080830

10. Y. G. Kao, Y. Li, J. H. Park, X. Y. Chen, Mittag–Leffler synchronization of delayed fractional
memristor neural networks via adaptive control, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021),
2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718

11. F. D. Ge, Y. Q. Chen, Event-triggered boundary feedback control for networked
reaction-subdiffusion processes with input uncertainties, Inf. Sci., 476 (2019), 239–255.
https://doi.org/10.1016/j.ins.2018.10.023

12. Y. G. Kao, H. Li , Asymptotic multistability and local S -asymptotic ω-periodicity for the
nonautonomous fractional-order neural networks with impulses, Sci. China Inf. Sci., 64 (2021),
112207. https://doi.org/10.1007/s11432-019-2821-x

13. G. C. Wu, T. T. Song, S. Q. Wang, Caputo-Hadamard fractional differential equations on
time scales: Numerical scheme, asymptotic stability, and chaos, Chaos, 32 (2022), 093143.
https://doi.org/10.1063/5.0098375

14. D. Matignon, Stability results for fractional differential equations with applications to control
processing, Comput. Eng. Syst. Appl. Multiconf., 2 (1996), 963–968.

15. N. Kopteva, Error analysis of the L1 method on graded and uniform meshes for a fractional-
derivative problem in two and three dimensions, Math. Comp., 88 (2017), 2135–2155.
https://doi.org/10.1090/mcom/3410

Networks and Heterogeneous Media Volume 18, Issue 3, 946–956.

http://dx.doi.org/https://doi.org/10.1137/20M1313015
http://dx.doi.org/https://doi.org/10.2478/s13540-012-0010-7
http://dx.doi.org/https://doi.org/10.2478/s13540-012-0010-7
http://dx.doi.org/https://doi.org/10.4208/nmtma.OA-2022-0009s
http://dx.doi.org/https://doi.org/10.4208/nmtma.OA-2022-0009s
http://dx.doi.org/ https://doi.org/10.1007/s11075-022-01379-8
http://dx.doi.org/https://doi.org/10.1007/978-981-15-9066-5
http://dx.doi.org/https://doi.org/10.1007/s13540-022-00041-3
http://dx.doi.org/https://doi.org/10.1515/9783110571660-008
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3080830
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2020.2995718
http://dx.doi.org/https://doi.org/10.1016/j.ins.2018.10.023
http://dx.doi.org/https://doi.org/10.1007/s11432-019-2821-x
http://dx.doi.org/https://doi.org/10.1063/5.0098375
http://dx.doi.org/https://doi.org/10.1090/mcom/3410


956

16. C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal, 17 (1986), 704–719.
https://doi.org/ 10.1137/0517050

17. C. Lubich, Fractional linear multistep methods for Abel-volterra integral equations of the second
kind, Math. Comp., 45 (1985), 463–469. https://doi.org/10.1090/S0025-5718-1985-0804935-7

18. P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge: Cambridge University Press,
2009.

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Networks and Heterogeneous Media Volume 18, Issue 3, 946–956.

http://dx.doi.org/https://doi.org/ 10.1137/0517050
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-1985-0804935-7
http://creativecommons.org/licenses/by/4.0

	Introduction
	Numerical methods for F-PDE
	Spatial discretization methods
	Finite difference approximation
	Finite element method

	Time discretization method and generating function

	Numerical Mittag-Leffler stability for F-PDEs 
	Numerical stability region of F-LMMs
	Mittag-Leffler stability analysis

	Numerical example

