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Abstract: In the paper, we study structure-preserving scheme to solve general fractional Klein-
Gordon-Schrodinger equations, including one dimension case and two dimension case. First, the high
central difference scheme and Crank-Nicolson scheme are used to one dimension fractional Klein-
Gordon-Schrodinger equations. We show that the arising scheme is uniquely solvable, and approximate
solutions converge to the exact solution at the rate O(r? + h*). Moreover, we prove that the resulting
scheme can preserve the mass and energy conservation laws. Second, we show Crank-Nicolson scheme
for two dimension fractional Klein-Gordon-Schrédinger equations, and the proposed scheme preserves
the mass and energy conservation laws in discrete formulations. However, the obtained discrete system
is nonlinear system. Then, we show a equivalent form of fractional Klein-Gordon-Schrodinger equa-
tions by introducing some new auxiliary variables. The new system is discretized by the high central
difference scheme and scalar auxiliary variable scheme, and a linear discrete system is obtained, which
can preserve the energy conservation law. Finally, the numerical experiments including one dimension
and two dimension fractional Klein-Gordon-Schrédinger systems are given to verify the correctness of
theoretical results.

Keywords: Fractional Klein-Gordon-Schrodinger equations; conservation law; convergence; high
central difference scheme; scalar auxiliary variable scheme

1. Introduction

In the paper, we consider fractional Klein-Gordon-Schrédinger (KGS) equations with the fractional
Laplacian

0t — v(=A)2u + ufi(lul?, ¢) = 0, (1.1)
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atl¢ - A¢ + ¢ - f2(|u|27 ¢) = 07 (12’)
2 2
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and real valued unknown functions, and the fractional Laplace operator [1-4] is defined by

u(x) — u(y)
R |X _ y|n+a/2 '

(=A)2u(x) = C,

Let ¢, = v. Then, the fractional KGS system (1.1)—(1.2) can be expressed as the following form

iu, — v(=A) u = —ufi(luf, ¢), (1.3)
o=, (1.4)
vi—Ad+ ¢ = follul, ¢). (1.5)

The fractional KGS system (1.3)—(1.5) has the following mass and energy conserved laws

+00

Mass: M(z) = f lu(x, 1)*dx = M(0),

—00
+00

Energy: E(7) = f %(V2 + [Vl + ¢%) + V(=M ful® = f(ul*, $)dx = E(0).

When a = 2, the fractional KGS system (1.1) and (1.2) reduces to the integer KGS system [5—12].
When a # 2, the fractional KGS system [13—17] describes various important physical phenomena.
Recently, some attentions have been paid to fractional KGS system with fractional Laplacian, which
are fractional version of classical KGS equations and consider long-range interactions. In general,
the analytic solution of the fractional KGS system (1.1),(1.2) can not be derived due to nonlocality
and nonlinearity. Therefore, numerical method plays an important role in the study of the fractional
KGS system (1.1),(1.2). Various numerical methods [13—17] such as the finite difference method,
pseudo-spectral method, and symplectic method have been studied the fractional KGS system with
f(ul?, #) = |ul*¢, and the stability and convergence of the numerical methods have been discussed.

It is not difficult to find that there are some deficiencies in the numerical schemes of the frac-
tional KGS system. The first deficiencie is that the above finite difference methods are based on
fractional center difference scheme, and approximate solutions converge to the exact solution at the
rate O(t> + h?). To the best of the authors’knowledge, there are few research on higher-order scheme
for the fractional KGS system. The second deficiencie that the above numerical schemes are only
based on one dimension fractional KGS system, and high dimension fractional KGS systems are rarely
studied. In addition, there exist few reports on numerical scheme for general fractional KGS system in
Egs (1.1),(1.2) with f(|ul*, ¢) # |ul*¢.

The main goal of this paper is to construct structure-preserving scheme [18-22] for solving one
dimension and two dimension fractional KGS equations with fractional Laplacian operator. Some
numerical schemes were proposed to approximate the fractional Laplacian operator. The fractional
center difference scheme based on fractional Laplace operator was first developed in [23]. Based
on this work, some high-order schemes were constructed, and the results have be applied to some
fractional difference equations. In addition, finite element scheme and Fourier spectral scheme of
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fractional Laplace operator have been studied with some special boundary conditions. In this paper,
we use high-order difference scheme for fractional Laplace operator with zero boundary condition. By
using some useful lemmas, we prove that the scheme can preserve the mass and energy conservation
laws.

All structure-preserving schemes for the nonlinear fractional KGS system (f(|ul*, ¢) # |ul*¢) face
how to efficiently solve a large nonlinear system at each time step. In this paper, we consider structure-
preserving scheme for general fractional KGS equations (1.3)—(1.5). The high order central differences
are used for the space direction, with the Crank-Nicolson scheme applied to the time direction. How-
ever, the numerical scheme is nonlinear scheme, and it takes too much time in the numerical simulation.
Recently, scalar auxiliary variable scheme was introduce for gradient flows, and the numerical scheme
only requiring solving decoupled linear systems at each time step. As far as we know, there exist few
reports on scalar auxiliary variable scheme for fractional KGS system (1.3)—(1.5). In this paper, we
show a new scalar auxiliary variable scheme to solve two dimension fractional KGS system (1.3)—(1.5).

In this paper, we first show numerical scheme to solve one dimension fractional KGS system in
Eqgs (1.3)—(1.5), and discussed conservation, existence and uniqueness, stability and convergence of
the numerical scheme. Second, we show numerical scheme for two dimension fractional KGS system
by high order finite difference scheme in span and Crank-Nicolson scheme in time, and discussed
conservation of the numerical scheme. Third, we show scalar auxiliary variable scheme to solve two
dimension fractional KGS equations. Finally, some numerical examples are given, confirm theoretical
results and demonstrate the efficiency of the numerical schemes.

The outline of the paper is as follows. In Section 2, the structure-preserving scheme is proposed
for one dimension fractional KGS system, and convergence and stability of the numerical scheme is
proved. In Section 3, the high conservative difference scheme is proposed for two dimension fractional
KGS system. In Section 4, the numerical experiments are given, and the results verify the efficiency of
the conservative difference scheme. Finally, a conclusion and some discussions are given in Section 5.

2. Structure-preserving scheme for one dimension fractional KGS system

In the section, we show structure-preserving scheme for one dimension fractional KGS system
with f(jul>,#) # |ul*¢, and prove that the scheme can preserve mass and energy conservation laws.
Moreover, we show that the arising scheme is uniquely solvable, and approximate solutions converge
to the exact solution at the rate O(2 + h*).

2.1. Some useful lemmas

The fractional KGS system (1.1)—(1.2) contains a fractional Schrédinger equation and a classic
Klein-Gordon equation, and we consider boundary condition

u(x,t) =0,x € R/Q; p(x,1) = 0,x € 0Q; Q = (a,b).
Let M, N. Then, choose time-step 7 = T/N and mesh size h = (b — a)/M. Denote
xj=a+ jh, t,=nt, j=0,1,2,---, M,n=0,1,2, -
Then

I/t? = u(xj, tn)’ U;l X M(.Xj, tn), ¢;l = ¢('xja tn)a (D7 ~ ¢(XJ', tn)~
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Define
Qh:{x]|1S]SM_1}’ QT:{tnllﬁnSN—l}’
Q= {xl0 < j< M}, Q; = {£,l0 <n <N}

Suppose w = {w"; j=0, 1,2--- M, n=0, 1, 2--- N} be a discrete function in &, x Q., and
Z0={w=wilwo=wu =0, j=0,1,2 --- M).

For convenience, we define the finite difference operators

rg+l " rg+l _ wrf—l el Wrg+1 + el Wr!+l + W@—l
(Wn)t — J J (Wn)f — J J w 2 _ J J W 2 _ J J
b b i b i .
j T J o J 2 J 2

For any grid function u = {u;}, v = {v;}, define the discrete inner product, L?-norm and L”-norm as

M-1

vy =h ) uv, P = G u,
j=1

M-1
llfy = B Y i, 1< p < +oo, llully = sup |ujl
h = 0<j<M-1

For 0 < 6 < 1, we also define the fractional Sobolev norm ||u||ys and semi-norm |u|gs as

7/ h 7t/h
(1 + kPt dk, uly,s =f \k[*°[uk) > dk,

2
lullzs =

—n/h 7/h
where
1 , 1 /h .
ﬁ(k) =—h u 'e—lkxj, U: = —— T/l\(k)elkxjdk,
\/ZT JZGZ; ! ’ m -n/h

Lemma 1. [24] Let f(x) € CO[x;, xg], 2 < j < M = 2. Then
£1(x;) = %Lf(xj + h) — Zf}fzxj) + f(x;—h) _ %f(xj +2h) — Zf}fzxj) + f(x; —2h) + 00",

When j =1, M — 1,then
T 00) =2f(x) + fxo) 1 f(x3) =2f(x) + f(x1)

7 6 h? 6 h?
1 1
~ a0 = g )+ O,
M-1 =6 " g e
1 1
- 75" = 2 V) + O,
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Lemma 2. [20] Suppose that u € L,(R) and

ue LYR) = {ulf (1 + &N Tu(é)ldé < oo}
Then for a fixed h, we can obtain high order scheme
gA“u(x) lA“hu(x) = —(=A)?u(x) + O(h"),

where

(-DT(@ + 1)
T(E—k+ DO +k+1)

Aju(x) =h™ Z g(“)u(x kh), g(“)

k=—o00
Lemma 3. For any grid functions u" € Z°, we can obtain

1
Im< A(l n+2 _ _Azhun+2 Mn+2> — ,

3
1 1 4
Re(gAZu“f—gA‘z’hu”f,u?):;(gllAZU”“IIZ IIA LU - IIAZU"II2 —IIA WU,

where Im(s), Re(s) mean taking the imaginary part and the real part of a complex number s, respec-
tively.

1
Lemma 4. [25] (Diserete Sobolev inequality) For every 3 < 6 < 1, there exist a constant C = C(0) > 0

independent of h > 0 such that
llulli < Collullgs,

forallu € L.

1
Lemma 5. [25] (Gagliardo-Nirenberg inequality) For any 1 < 0o < 1, there exist a constant Cs, =
C(09) > 0 independent of h > 0 such that

80/0 1-6p/0
el < Co laall s lua =7

2.2. Conservative difference scheme

Applying Crank-Nicolson scheme in time and higher order difference scheme in space to the frac-
tional KGS system (1.3)—(1.5), we can obtain the following numerical scheme

(Ut —vicyrt o L AUS B~ JUUIR @) FAURE L - QU &)
TR T UrR — U U~ U i

2.1
(@, = Vi, (2.2)
wl aer 1 fQUIR, @Y — f(URP, @) f(|U"+1|2 " — fUTP, q’")

(Vn) A2 > (D 2 _ _ J J J
! J 2 (D;g+1 _ Q)lj’l (Dn+1 @n

I (23)
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U3 = up(x)), D} = go(x)), Vi = ¢1(x)), @4
U(’)l = U;/[’ (Dg = (Drlt/[’ (25)
where
Aa n+l 4 a n+l 1 o I’H—l
AhUj 2= §AhU] 2 — §A2hU] 2’
T oaonelt 1 nl o
gAz(D; B EAi(D; Jj=1
Az(Dn-f-% _ 4A2q)n+% 1A2 (Dn+% 2 . 2
WPy = 3P T - 3A®; 2 << M2,
7 n+i 1 n+l o,
Lot - Lart =

Theorem 1. The scheme (2.1)—(2.5) is conservative in the sense

Mass: M" = M""-.. = M°,
Energy: E" = E"'... = EY,

where
M" =|U" |1,
n 4 arrn 1 [e% n 1 4 n 1 n
E" =vGIATU™IP = S1IAZ, U™ + SIS 1AL - 1Az, @)
h M-1
+ (AT P AT )+ 0P+ VI = ) LAQUSEL @,
=1
Proof: Multiplying h(U;?H + U;.’)* to Eq (2.1) and summing it up for 1 < j < M — 1 can yield
l<Uln, 2Un+%> _ V<AZUH+%’ 2Un+%>

1 [f(IU”+1|2,<I>”) - fQU"?, @) N FQUE, 0 — f(UP, 0"
2 |Un+l|2 _ |Un|2 |Un+1|2 _ |Un|2

= JU™2,20™%).  (2.6)

Taking the imaginary part of Eq (2.6) and noting that Lemma 3 yields ||[U""!|> = ||U"||*. When n =
0,1,2,---, we can obtain M" = M"'... = MC.
Multiplying 2h(U7+1 - U})"/7 to Eq (2.1) and summing it up for I < j < M — 1 can yield

(U™, 20"y = WASU™ 3, 207

—(— 1 [f(lU"“|2, ") — f(U"P, @) N FQUTE, @) — fQUP, @)
) |Un*12 — | U2 |U12 — U2

U™, 207, 2.7)
It follows from Lemma 3 that
" 14 1 4 1
(ByUr,207) = —GIATU™IP = ZIA5,U™ P = SIATUMIP + 51A5,U"1P).
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Taking the real part of Eq (2.7) and noting that Lemma 3 yields
v 4 1 4 1
;(gllAZU””II2 - §IIA§;,U"“II2 - §IIAZU”II2 + gllA‘z’hU”IIZ)
p Ml
=52 DLAAUSTPL @) = FAUSPL @5 + QUSR] = FOUSPL @),
=1

Multiplying 2h(V}’+] - Vi)/7 to Eq (2.2) and summing it up for 1 < j < M — 1 can yield
(@7, 2V = (V'3 2V7.
Multiplying 2h((I)’}+1 — ®})/7 to Eq (2.3) and summing it up for 1 < j < M — 1 can yield

(V2,207 — (R20"™ 7 207y + (™7, 207

_<1[f(|Un|2, (Dn+1) _ f(lU"lz, (Dn) N f(lUn+1|2’ (Dn+1) _ f(lUnlea (Dn)
- 2 (Dn+l — P~ q)n+1 — @n

It follows from literature [24] that

1,207).

(A2 207)

1 4 1 4 1 h
= — —[GIAD"™ P = ZIIAZ, Q" P = ZIARD" + ZlIA3,®"IP) + Z(ADT P — |AZD )
T3 3 3 3 6 2 2

240+l 12 2 AN 2
+ (|Ahq)ﬂ,;r_%| - |AhCDM_%| )]
Noting that equation (@, V) = (V", ®"), we obtain

1 4 " 1 u 4 " 1 "

;[(gllAffD P - §||A§h® P - §||A}21q) I + gllAéh@ [®)
h n n n n

+ CUNOTE - IO P) + (A0 P = (AT, )]
1 1

+ ;(H‘Dnﬂll2 —[|0"[I*) + ;(HV"HH2 —[IV"IP?)

M-1

h
=~ D LAUSTE @ = fQUSTE @) + FAUSE, @57 - FQUSE, @),

J=

Combining Eqgs (2.8) and (2.11), we obtain
4 a n 1 a n 1 4 n 1 n
V(gIIAhU P - §IIA2hU Ry + §[§IIA§<D P - §IIA§h<D P

h M-1
+ g(IAf@’?llz + IAf,CD',I;_l%Iz) + "+ [IVP] — A Z FQUTHE, @

=

4 arm 1 a g 14 n 1 n
=V lIAU [ 1A%V %) + E[gllAiQ) [ §||A§h<D I

-1
h 24012 2R N 2 n+12 ny2 X n|2 n
+ (AP + AT, )+ 0P+ VI~ ) FQUSE, @),

J=1

(2.8)

(2.9)

(2.10)

(2.11)
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Whenn =0,1,2,---, we can obtain E" = E"' ... = EY. O

In [15], we show the theoretical analysis for f(|ul*, ¢) = |u*¢ +|u|*#. In similar analysis of literature
[15], we can obtain the theoretical analysis for f(jul?, ¢) = |u|* - " when [, m satisfy certain conditions.
For simplicity of notation, we only consider f(|u|*, ¢) = |u|*¢ in next theoretical analysis.

Theorem 2. The scheme (2.1)—~(2.5) is bounded in the discrete ;°.
Proof: Using Theorem 1 can obtain ||U"|| = C and

4
E" =V(§|IAZ‘U"+III2 ||A LU P + [ ||A2(I>"+1||2 ||A2;,<D"+1||2

h
+ SUALOYP + AL ) + 197 + (V"] = Z U P (2.12)

1
Noting that Young’s inequality ab < Zaz + b%, we can obtain
M-1 M-1 1
hz |Un+l (Dn+l < hZ |Un+l| |q)n+l| < hZ(lUn+l| +— |q)n+1| ) — ||Un+1||l4 ||q)n+l||2. (213)

Jj=1 J=1 j=1

1
Using Gagliardo-Nirenberg inequality and noting that 1 <oy < % can yield
nel)4 A SR I VI ntl
(1% IIZ;; < G |lU IIJ%IIU 1= < Cs(ellU™ | g T C@). (2.14)
) 2
It follows from [22] that there exists a constant 1 < C, < (—)“ such that
T

SIATUTP — S U = ClU™ 2.15)
SINOIE - SIA3 0P = o, 2.16)
Substituting Eqgs (2.15),(2.16) into Eq (2.12) can yield
CalU" -+ STy + ZAN@ P + IAJ0, )+ 1071 + V)
<E" 4 CoellU™ I g + Ce)) + 7107

Noting that IIU"IIZ% = |U”|é,g + ||U™1%, E" = E°, we have

(VCo = Co@)lU™ ', + 5 [C|®””IHl + = (IAid)"“I + |A2<D"“1I )+ 5 IICD"“II +IV™HPT < Cs,Ce) + E°.

2
H

a
2

C
When € < —, there exist a constant C, such that
50

@™, < GO < UM, <C.
2

It follows from Lemma 4 that [|[U"]|» < C, [|®"]|» < C. m]

Networks and Heterogeneous Media Volume 18, Issue 1, 463-493.
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2.3. Existence and Unique

Theorem 3. The solution of the numerical scheme (2.1)—(2.5) exists and unique.

Proof: Let P = U" — U",R" = V" = V", Q" = ®" — @". Then, it follows from Eqs (2.1)—(2.15) that

n+2

n+3 n+d —n+i=n+i )
(P — AYP! =—(U;7®,7 -U,7®, ) 1<j<M-11<n<N,

J
(Q’%),:R".*Z l<j<M-1,1<n<N,

(R, — 820, + 0" =
Multiplying h(P;fJrl + P})" to Eq (2.17) and summing it up for 1 < j < M — 1 can yield
i(P" = yATPE, prdy = (Ui - O, prody,
Taking the imaginary part of Eq (2.20) can obtain
%(”Pm”z CIPIP) = Im(— (U s — Dby, predy,
Noting that Theorem 2, then we can obtain
2%(”1"”””2 = IP"I1?) < CAP™ P + 1IP"IP + 1211 + 1Q71P).
Multiplying (R;?“ — R)/7 to Eq (2.18) and summing it up for 1 < j < M — 1 can yield
(ORI = (R™2,RY).
Multiplying (Q’}Jrl — 07)/7 to Eq (2.19) and summing it up for I < j < M — 1 can yield
(RELOD + (IO P = S1A5,07 I - SISO + 3143, 0'1P)
F LAY~ NI + NP - 160, P+, 0
:<5(|U"| + U - %qﬁ"ﬁ +1T™P), 0.
It follows from Theorem 2 that the Eq (2.24) can be expressed as the following form
(R}, O+ l[(L—tIIAzQ"HII - —IIA WO - A—LIIAZQ”IIZ + lIIAZhQ"IIZ)
+ (IA "”I |A2Q ?) + (IAzQ"HII - IAZQM_II )+ (IIQ"“II 2" h
SE(IIP”II2 + [IR™1> + R[]
Combining Eq (2.23) can yield

1
;(III’?”“II2 IR + — [( IIAZQ”“II2 IIAhQ””II2 IIA 2O+ —IIAhQ"II)

1 1o~ = ,
= 5(|U;?|2 + U - E(|U;?|2 +UM P, 1< j<M-1,1<n<N.

(2.17)
(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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h h 1
+ 2UMOVP =IOV + Z(A 00 P = 1AL, DT+ —(I0™ I = lIgh - (2.25)
C
< UPIE + IR + IR,

Adding Egs (2.22) and (2.25) can yield

1 1 1
—(IR™MP = IR D + =PI = 1IP"I) + =A™l = 12"
T T T
1 4 i 1 i 4 i 1 i
+ ;[(gllAiQ P - gllAﬁhQ P - §IIAZQ I” + §||A%hQ [®;
h n 71 h 71 7
+ 2107 - 1IN0 ) + 218,00 P = 14,05, P
C
SE(IIP”II2 + PP+ 1QP + 1Q™ P + IR + IR
Let
n o__ n+12 n+112 n+1 i apyn+l2 l a n+1y2 ﬁ 2 n+112 ﬁ 2 n+l |2
B =R + [P " + 1™ || + 5 11A, Q"] 1AZ, 0" 117 + —1A, 07| A
3 3 6 2 6 M-3
Then, we can obtain
B"-B"!' < Cr(B"+ B"™).
It follows from Gronwall’s inequality that
max (||B"|I) < ¢*“"||B%* = 0.
1<n<N

Noting that ||P**'|]? + ||Q™*"||> < B", we can obtain ||P"*'|]*> = 0,]|Q"*'|]* = 0. O

2.4. Convergence and error estimates

Let u;? = u(xj,t,), v’} = v(xj, tp), ¢;f = ¢(x;,1,). Then, we define the local truncation error as

A el nel el .
Ry = i), —vAyu> +u ¢ 1< j<M-1,1<n<N, (2.26)
1
Ry=(¢)), -V 1<j<M-11<n<N, (2.27)
A n+y 1 n n .
Ry = () — A+ ¢, - SUGP+ WG T < j<M=1,1<n<N. (2.28)

According to Taylor expansion, we obtain the following result.
Theorem 4. [R"| < C(1* + h*) holds as T,h — 0.

Theorem 5. Suppose that the problem (1.1),(1.2) has a smooth solution, then the solution U",®" of
difference scheme (2.1)—(2.5) converges to the true solution u, ¢ with order O(t*+h*) by the||-|| 1> nOTm.

Networks and Heterogeneous Media Volume 18, Issue 1, 463-493.
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Proof: Let €" L=U -l = b & =Vi=v Then, we obtain

A gl ek
:i(e';),—vAgej+2 +F 2 l<j<M-11<n<N,

1
Rgz(n;f)t—zf"” 1<j<M—1,1<n<N,

= (&) - h’h+77 -Gi1<j<M-11<n<N,

where
Fred =yt g,
1 1
:§(|Un|2 + |Un+1|2) _ §(|un|2 + |Mn+1|2)
| — —n 1
—— T+ U™T" = @7+ w7
2 2
1 _ — S
zi(e”U” +u'em + Ut 4y e,
Multiplying h(e"+1 +¢7)" to Eq (2.29) and summing it up for 1 < j < M — 1 can yield

(R!,2€"7) = i(e", 2" 7) — W(AZe"™ 3, 26" 3) 4+ (F™7, 22,

Taking the imaginary part of Eq (2.32) can yield

1
;(II@"“II lle"|I%) < IRTIP + CAlle™ 1 + eI + " 12 + 1”1

Multiplying h(f;?“ — &})/7 to Eq (2.30) and summing it up for 1 < j < M — 1 can yield

(Ry.E = — €8,

n+1

Multiplying h(r7

1 4
(R3, 1)) =<§?ﬂ7§’>+—[(—IIAlzm"“ll2 ||A2;177”+1||2 ||A77||2 —llAzhﬂ [®)

+ = (IA;,n’l’+12 IAhml)+(|A;%77”,V,+11|2 IAhanl)]+ (||77"+1|| 71D + <G", 7).

It follows from Cauchy-Schwarz inequality that

L n n n n
G,y = (G, Ry = 11" 2) < C™'IP + " IP + 1le" 17 + lle" I,
R,y = (R, Ry — "2y < COURMP + IRSIZ + 1™ 1P + l"IP).

Substituting Egs. (2.36) and (2.37) into Eq (2.35) and noting that Eqs (2.33) and (2.34) yields

1 1 4
;(II P = Nle"lP) + = (II§"“|I =171 + = [( AP~ gllAghn"HII — llAum

1
+ = (|Ah771+1|2 |Ah771| )+ (|AZT]X;11 |2 |Ah77M 1| )]+ ;(”ﬂnﬂllz - ||77"||2)

—n)/7 to Eq (2.31) and summing it up for 1 < j < M — 1 can yield

(2.29)
(2.30)
2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
(2.37)

1
"IIP + gllA‘ihn"llz)
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<CIRYIP + IRSI + RSN + 117" 11 + 11”11 + lle™ 117 + lle”]1?).

Let
B = [l P + " + %LIIA A —IIAZhU"HII + (IAhU'f”I + |Ahn;;11| ) + 7™ P,
Then,we can obtain
B" - B <t(RI* + IR + IRYIP) + Cr(B" + B* ™).
It follows from Gronwall’s inequality that
max B" <(B’ + TZ(IR I+ 1RSI
<(B® + CT (7% + h*y?)e™T.
Noting that B° = O(r* + h*), we can obtain
le"l < C@* + 1), 7"l < C@* + 1Y, 'l < C(* + 1Y), (2.38)
Multiplying h(e’”l e})"/7 to Eq (2.29) and summing it up for 1 < j < M — 1 can yield
(Rl &' ="y = i(el, " — &y — W(AZe"™ 2, ¢ — ") + (F™3 &™) — &), (2.39)

It follows from Eq (2.32) that can obtain
Re(F™7,¢"! — ¢"y =tRe(F"*3, —ivA%¢"? + iF™ 7 — iR")
=TII’1’1<F"+% , —VAZe’”%) - T(F'”% ,RY),
and _
(Agers et — ¢y = Cot(l" ' [z = 1€"F1ar2)-
Noting that

1 ~ 1 1, 1
[Im(F"*2, =vAje ") < CUF" 2P + el + lel!),
we can yield

n+12

1
Ha2 |en|i1a/2 ST(lenJrl 2a/z + |e o t |F"*2 3.10/2 + Re(RY, e — e"). (2.40)

le
It follows from [15] that can obtain

1
F3 2, < CUe™ B + € + (7 + B, IF"™2R < O + Y2,

Thus, Eq (2.40) can be expressed as

)2 <Ct(le" Loy + 1€ + (T + B°)?) + Re(R], "' — ™). (2.41)

n
Ha/z |

le —le Hal?

Summing up the superscript n to N and then replacing N by n, we get

n
|en+l|i]a/2 S C Z |el|i]a/2 + CT(TZ + h4)2.
1=0

It follows from Gronwall Inequality that
le" e < C(T* + 1Y),
Noting that Eq (2.38) can yield [le]l;> < C(T> + h*), lI7llie < C(t> + h*). O
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2.5. Iterative algorithm

Let U = [Ula UZ, T UM—l]a V = [Vl’ VZ’ T VM—1]7 D = [(Dl,(DZ’ T (DM—]]- Then’ we rewrite
the numerical scheme (2.1)—(2.5) as the following vector form
_l f(lUnle, (Dn) _ f(lUn|2, (Dn) f(lUn+l|2, (Dn+1) _ f(lU"|2, (Dn+1)

+ U,
2[ |Un+1|2 _ |Un|2 |Un+1|2 _ |Un|2 ]

iU — vAU™? =
(I)lt’l — Vn+%,
1[f(|U"|2,cD"+1) — F(U", @™ N FAUIPR o) — f(U™IP, @)

2 @+l — Pn o+l — n ]’
U° = uy, @° = ¢, V° = ¢y,

V' — BO™ + @3 =

where, matrices A, B represent differential matrix of fractional Laplacian operator and classical Lapla-
cian operator, respectively. In order to solve above nonlinear numerical scheme , we will use the
following iterative algorithm

'Un+1(s+l) —_yr ANUn+l(s+l) + U

1 - V.
T 2
B 1 f(lUn+1(S)|2,q)n) _ f(IU"|2,®") . f(lUn+1(s)|2’ (Dn+1(s)) _ f(lUn|2’(Dn+1(s)) Un+1(s) + U
- 2 |Un+1(s)|2 _ |Un|2 |Un+](s)|2 _ |Un|2 2 ’
(Dn+1(s+1) — " Vn+1(s) + Y
T - 2 ’
Vn+1(s+1) —_yn ~(Dn+1(s+l) + P (Dn+1(s+1) + P
- B +
T 2 2
B 1 f(lUnlz, (Dn+1(s+1)) _ f(lU"|2, (Dn) f(lUn+1(s+1)|2’ q)n+1(s+1)) _ f(|Un+1(S+l)|2, (Dn)
_5[ @1+ — n + i+ — n 1.

3. Structure-preserving scheme for two dimension fractional KGS system

In this section, we first show Crank-Nicolson scheme in time and high central difference scheme in
space, and the obtained scheme preserves mass and energy conservation laws. However, the obtained
discrete system is nonlinear system, and it takes too much time in the numerical simulation for two
dimension case. Then, we show a equivalent form of two dimension fractional KGS system by intro-
ducing some new auxiliary variables. The new system is discretized by the scalar auxiliary variable
scheme, and a linear discrete system is obtained, which can preserve energy conservation law.

Now, we consider boundary condition

u(x’y’ t) = 0’ (X,}’) € RZ/Q’ ¢(x’y’ t) = 0’ (xay) € aQ’ Q= (XL, xR) X (YL,)’R)-

Let
hy = (xg = x)/M, hy = (yg — y.)/M, T = T/N,

where M, N be positive integers. Then,
Xj=xp + jhy, ye = yr +khy, t, = nt.
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Denote

thh‘ (pydl S jSM—-1,1<k<M-1}, Q = {t]l <n <N -1},

Q. ={(x;,y)I0<j<M, 0<k< M}, Q, = {,0 <n < N}.
Then, the grid functlon can be defined by U” ~ (X}, Y tn), CD;{,( ~ ¢(xj, Yk, 1n), Where ”;!,k =
U(Xj Yies tn)s @y = O(X;, Vi, 1)- For any grid u = {ujk} ¢ = {¢;x}, we can define

M-1M-1

vy = hohy " " e, ull = G u).

J=1 k=1

Lemma 6. [26,27] Suppose that u € L;(R*) and

ue LR = {ulf (1 + |ED*m@)ldé < oo).

Then, for a fixed h = h, = hy, we can obtain high order scheme

4 1 a
gA“u(x y) — Aghu(x y) = Azu(x,y) + O(hY), 3.1
where
Alu(x,y) = k™2 Z Z gu(x — kh,y — Ih),
—00 [=—00
and g(a) are Fourier expansion coefficients of generation function

= [4sin%(Z in2(2)]%
p(x,y) = [4sin (2) + 4 sin (2)] ,

1 .
(@) — —t(kx+ly)d d )
gk’[ (27_[)2 f f[v_n’”]Z p(-x’ )’)e X y

Aiﬁh).q)(-xj’ )’k) = Aixq)(xja )’k) + Aiyq)(xj,)’k),

which can be calculated as

Lemma 7. Let

where

7 1
—A; (I)(Xl,)’k)"+2 — —AD(x, )", j = 1,

. 2

Aixq)(xj,)’k) = _Alzlcl)(xj’yk)n-'—i - §A§hq)(xj7yk)n+§72 < .] <M - 2’
1
EA OCxpr—1, )" L EA D(xpr—2, yi)"* ,] =M-1,

7 1 el
§Aicb(xj,y1>"+z = N0 3" k= 1,
ROy = { A (x, y)"E - §A§h®(xj,yk)”+%,2 <k<M-2,

1 1 n+l
AL, yu1)"" 2 = S, yy2) R k= M~ L.

6
Then, we obtain

AD(xj, ) = A, ©(xj, y) + OChy + h).
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3.1. Crank-Nicolson scheme

Applying Crank-Nicolson scheme in time and higher order difference scheme in space to two di-
mension fractional KGS system (1.3)—(1.5), we can obtain the following numerical scheme

1 f(lUn+l 2 (Dn f(lUnk|2 ;!,k) f(|Un+1 2 (Dn+l f(|U7k|2 (Dn+l

1

P, ay ity n+i
Z(Uj,k)t VA U P = 2 |Un+1|2 |Unk|2 |Un+1|2 |Unk|2 j,kza
(3.2)
hk=12,--- M-1,n=0,1,---,
(@) = j’,jz,j,kzl,z,---,M—1,n:0,1,---, (3.3)
il et 1 SAULR U = fQUTLE @) AU @D = FAUTE, @)
(Vi = 8, @ + @00 = S P o,
=y > 2 ol — @ Q! — o
./’k j’k j,k j,k
(3.4)
j7k: 17“' ’M_lan:()’l"" s
U?k = uo(Xj, V), (DQ = Po(xj, Vi), VQ =¢i1(xjy0), pk=1,2,--- ,M—1, (3.5)
U = Ui @i = Qs U"0 = UJM,CI)"M = (I)JM, n=0,1,---, (3.6)
where
n 1 4 n 1 n 1
AUTE = 38U * - AU 2
Let

B s, ®ix = (D@1 +1© D), AU = ZA3,Uj = AU.

Then, we can obtain

U gt L QUM @D = FQUIR O FQUTIE 0 - F(UIE 0
1

= + Un+7 :Oal,"',
2[ |Un+1|2 _ |Un|2 |Un+1|2 _ |Un|2 ] n
(3.7)
O =V"tin=01,--, (3.8)

0=

— (D, ®1+1®@D)P" + @2 = |

1 f(lUn|2 (Dn+1) f(lUn|2 (Dn) f(lUn+1|2’ (Dn+1) —f(lUn+1|2,(I)n)

2 (Dn+1 (0% (I)n+l — P
3.9

n=0,1,---,

where, ® represents kronecker product of matrices, Dy, D, are differential matrix of x, y direction, and
I is identity matrix.

Lemma 8. [19] Let A € R™" have eigenvalues {A j};?: » and let B € R™"™ have eigenvalues{u j};f’: \- Then
the m X n eigenvalues of A ® B are

/llﬂla' ot ’/ll,uma/IZIJIa' ot ’/lZ,uma"' a/ln,ul’” : 9/lnl~lm
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Lemma 9. [19] For matrixs A and B, (A® B)l = AT @ B”.

Let Ay = D, ® I + 1 ® D,. Then, it follows from Lemmas 8 and 9 that the matrix A, and A are
symmetric positive matrixs. Moreover, there exists fractional symmetric positive difference quotient

1
operator denoted by A? and A5 such that
1 1
_<Ahva V> = <AZ v, A}f V>, —<Av, v> = <A%V,A%V>

It follows from Lemmas 8 and 9 that the numerical scheme (3.7)—(3.9) preserves mass and energy
conservation laws.

3.2. Scalar auxiliary variable scheme

For f(lu*, ) = |ul*¢, it follows from Egs (3.2)—(3.6) that we can obtain the following numerical
scheme

iU, - vA“U”*5 = —U"+2<D;lzz,j,k =1,2,--- . M-1,n=0,1,---, (3.10)
(@), =V ”;5,j,k:12--- M—-1,n=0,1,---, 3.11)
Vi = A, @ ’”2 +<1>"+2 = —(|U”k| +H U k=1, ,M=1,n=0,1,---, (3.12)
UY = uo(xj,)’k) D%, = o) i), Vi = b1 (xj i), ok = 1,2, , M — 1, (3.13)
U = Uppyo @y = @y Uty = Uy @y =@ n=0,1,- (3.14)

We can prove that the resulting scheme (3.10)—(3.14) can preserve the mass and energy conservation
laws. However, the above numerical scheme is nonlinear scheme. In order to construct linear scheme,
we consider also the following finite difference scheme for fractional KGS system (1.3)—(1.5) with

fQul, @) = lul*¢

(UL~ VAU = U0 k= 1,2, M= 1,n=0,1,- -, (3.15)
(@7 = ]k,],k:12~~- M-1,n=0.1,---, (3.16)
Vioi= AL, O+ = ULP k=2, M =2,n=0,1,-", (3.17)
U- = up(X;j, Yi)s (D = ¢o(x}, ), Vj,k =¢i1(xj ), pk=1,2,--- M —1, (3.18)
Ui = Uppio @i = @y Uty = Uy @) = 0% 0= 0,1, (3.19)

We can also prove that the resulting scheme (3.15)—(3.19) can preserve the mass and energy conserva-
tion laws. However, the scheme is only conservation for f(jul?,¢) = |ul*¢. For f(lul*, ¢) # |ul*¢, we
use scalar auxiliary variable scheme to obtain linearly implicit scheme. Let g = \/( f(ul?, ¢), 1) + Co.
Then,

Of (ul, @) q
u )
OlulP  \[(f(uP, ¢), 1) + Co
¢ =, (3.21)

u — v(—=A>)u = — (3.20)
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Of (uP, ¢) q (3.22)
0p  \Kf(uP,¢). 1)+ Co

Af(lul? 0 0
(YD DRe(u - up) + (LUED %)

2(f(ul?, ¢), 1) + Co
Lemma 10. The fractional KGS system (3.20)—(3.23) has the following energy conserved laws

~Ap+¢ =

(3.23)

q: =

+00
E(t) = f V4 Vo + ¢? + 2[(-A) i ul* + g*dxdy = E(0).

Applying scalar auxiliary variable scheme in time and higher order difference scheme in space to
the fractional KGS system (1.3)—(1.5), we can obtain the following numerical scheme

—n+3 —n+i n+y
n wit0f (U 2@y Q..
iU, - vAs U AT /a ”"~| e ) ik , (3.24)
o\U, ”+2|2 \/ —n+l ) —n+l
Jk AU "1, D ), 1)+ Co
j’k:1’2’.‘.’M_]"n:O’17.."
1
@) =V j=12- ,M=1n=0,1,--, (3.25)
—n+l —n+i n+1
n n n+4 af(ll]k 2|29CI)‘J< 2) Q‘,k2
(Vi = B, 0+ @y F = S ’ : (3.26)
9. ) \/ —n+l 5 —n+l
Jik AU "1, D ), 1)+ Co
j,k:l 2, M=1,n=0,1,---,
— ol — el —n
(TP D Re( T - (U ))) + <—"f Walor D (@",),)
i vz P o’ .
(Qj’k)l‘: n T ’]’kzl’.",M_lvn:()’l""
—n+l  —n+i
2\/<f(|Uj,k P Y, 1)+ Co
(3.27)
o 3UT —UT 300 — @
where U ;4 i Ak Tk LD i Tk ik

2 2
Theorem 6. The scheme (3.24)—(3.27) is conservative in the sense

Energy: E" = E"'... = E°,

where

4 1 4 1

En :§”AZU’1+1”2 _ g”AghUrH-llP + §||Ai(1)n+l”2 _ §”A§hq)n+l”2
h
+ g(lAi@?llz + lAi(D’ﬂ_l%lz) + @™+ (VR - 10,
Proof: Multiplying 2h(U721 — U};)"/7 to Eq (3.24) and summing it up for 1 < j,k < M — 1 can

yield
|(9f(|U”+2|2 (I)"+2) Qn+%

A 1 n+i n+l
(UT —vAtU™2, 20" 7y = (U™ L2077y, (3.28)

AP TR, 3, 1) + Co
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Taking the real part of Eq (3.28) yields
( AU - IIA LU P - IIAZU"II2 —IIA W UIP)

. af(lUn+2|2 (Dn+2) Qn+%

—Re( T 20", (3.29)

5|Un 2| \/(f(lfjn+%|2’6n+%)’1>+co
Multiplying 2h(V}’+1 — Vi)/7 to Eq (3.25) and summing it up for 1 < j,k < M — 1 can yield
(@, 2V = (V™7 2V7). (3.30)
Multiplying 2h(<1>’frl — ®7)/7 to Eq (3.26) and summing it up for 1 < j,k < M — 1 can yield
6f(|(7n+%|2’ 5n+%) Qn+%

1

OO AT, B, 1) + Gy

(Vi = K2, "5+ ™3 200) = ( 207, (3.31)

It is easy to check that
L n 1 n n
(@"2,0F) = (L P = 10,
Noting that equation (@7, V;') = (V]', ®}), we obtain
1_4 1 4 1
;[(gIIAZCD”“II2 - §IIA§h<D””II2 - §|IA%<D"|I2 + §|IA§,1®"||2)
h
+ UM — AT P) + (4 P~ 1470, P)]
1 1
+ ;(II‘D"”II2 — ") + ;(IIV"HII2 —IV"IP) (3.32)
<af(|i7n+%|2, 6n+%) Qn+%

, D).

= — —
OO AT, B, 1) + Cy
Multiplying 2hQ’;:% to Eq (3.27) and summing itup for 1 < j,k < M — 1 can yield

<af(|(7”+2|2(1) 2) 2R€(U"+2 Un)>+<3f(|U| ‘1)2 2) CD?)

—~ n+

6|Un+ |2

2 \/<f(|l7n+%|2’6n+%)’ 1)+ Cy
Combining Egs (3.29),(3.32),(3.33), we obtain

.20 7). (3.33)

(Q,20"7) = (

4 [0 n 1 a n 4 n 1 n

§||AhU P - gllAth P+ §||Af,(D P - §||A§h‘13 P
h

+ g(lAﬁCD';”z + |A2CD’;;}%|2) + D™ + [V - 1M1

4 1

=§||AZU"||2— ||A LU+ —||Ai(1)"||2—§||A§;,C[)"||2

h

+ g(lAiq)"%l + |Aiq)’/:4_%|2) +|O"1* + (IV"II* = 10"II*.

Whenn =0,1,2,---,n, we can obtain E” = E"' ... = EY, O
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3.3. Iterative algorithm

In above subsection, we construct some structure-preserving schemes to solve two dimension frac-
tional KGS equations. In similar method of one dimension case, we can obtain the iterative al-
gorithms of numerical scheme (3.2)—(3.6) and numerical scheme (3.10)—(3.14). Now, we consider
the iterative algorithm of numerical scheme (3.15)—(3.19) and numerical scheme (3.24)—(3.27). Let
U=1[UnUp, - Uysual, Vo= Vi Ve, Vicival, © = [@4, @i, -+, Pyyoiy-1]. Then,
we rewrite the numerical scheme (3.15)—(3.19) and numerical scheme (3.24)—(3.27) as the following
vector form

Un+1 —yn Un+1 + " Un+l + U (I)n+1 + "

/ — A = — . 4
S T 2 2 (3.34)
q)n+1 _ (Dn—l Vn+1 + Vn—l
= , 3.35
2T 2 ( )
Vn+l _ Vn—l (Dn+l + (Dn—l
-B = |U", 3.36
> — = (3.36)
and
o (]n+2 2 (Dn+2 n+%
iU" — vAU™? = 0" SAUTT - ) O , (3.37)
0|U 2| \/(f(lUrH%lz’ q)n+%)’ 1+ Co
O = VI, (3.38)
rin+d2 gn+l n+%
vy port 4 gt - SOUE ) g , (3.39)
oo \/<f(|ﬁ"+%|2 &), 1) + Co
Afqu 2 2 n n 0 n
<—’f('llil',f L 2Re(TE - () + (LD (g
o= F , (3.40)

2T, 34, 1) + Cy

where, matrice B represents differential matrix of two dimension Laplacian operator.
Consider numerical scheme (3.34)—(3.36), if (U", ®", V"), n = 0,1,2,--- are known, then
@1 v of numerical scheme (3.34)—(3.36) is solve by the following linear equations
(Dn+1 _ Tvn+l — (Drl—l + Tvn—l’
Vi — B = B0 + V' 4+ 27|U"

Then, we can obtain U™ of numerical scheme (3.34)—(3.36) by solve linear equations

iUn+l _ gAUrHl + 2U”+1((Dn+l + (Dn) — lUn + gAUn _ 2U’1(®n+1 + (Dn)

Consider numerical scheme (3.37)—(3.40), the numerical solution U™*!, ®"*! V"*! of numerical
scheme (3.37)—(3.40) is solve by the following linear equations

YT g _ T g 200D B o

= — —
2 2 o\;u +2|2 \/<f(|Un+%|2’ (D'H'%), 1)+ C,
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rmm+i2 Fn+l 1
:iUn_l_gAUn_gA‘rH%af(lUFjL;ZD 2) o ’
o|\um 1| \/(f(lz]'n+%|2’5n+%)’ 1+ C,

q)n+1 _ Tvn+1 =" — TVn,

vt — Lpgrtt 4 Lot — TAf(U™ P, D) o+l
2 2 2 ] ————
v JUWW%R®%LU+CO
V' + Lo — Lo - TAf(U™ PR, @) Q"
B 2 2 2 aarH%

anﬁ“ﬂ25“3J>+co
<5f(|U'H2|2‘D 2) .2Re (Un+2 (Un) )>+<5f(|U| " 2) ((Dn+1)>
*3

6|Un+ |2

Qn+l _

2 PATR, T4, 1) + Co

(aqu"*de: 5 ,2Re(U"™2 - (U™), )>+<—aﬂ'U| o=, (@)

—_—

3| Un+ 1 |2

2 AT, 34, 1) + G

:Qn +

4. Numerical experiments

In above sections, we study some numerical schemes to solve following one dimension and two
dimension fractional KGS systems:

. f9f(|u|2 )
u — v(=A)3u " 4.1)
_Of(lul, ¢)
¢n_A¢+¢——a¢ , 4.2)
and
i, — v(=A)2u = —udp, (4.3)
bu— A+ ¢ = [ul’. (4.4)

Recently, some structure-preserving schemes such as linearly implicit conservative scheme, symplec-
tic scheme and multi-symplectic scheme have been designed and investigated for solving classical and
fractional KGS system. However, in these works main system (4.3),(4.4) have been considered. As far
as we know, there exist few studies on system (4.1),(4.2). In this paper, we consider not noly structure-
preserving scheme of fractional KGS system (4.3),(4.4) but also fractional KGS system (4.1),(4.2). For
two dimension case, we show linearly implicit conservative scheme (3.15)—(3.19) and fully implicit
conservative scheme (3.10)—(3.14) to solve fractional KGS system (4.3),(4.4), and the fully implicit
conservative scheme (3.10)—(3.14) is can obtain numerical result by above iterative algorithm. More-
over, we show also linearly implicit conservative scheme (3.24)—(3.27) and fully implicit conservative
scheme (3.2)—(3.6) to solve fractional KGS system (4.1),(4.2). For one dimension case, we only give a
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fully implicit conservative scheme (2.1)—(2.5), in fact, linearly implicit(3.15)—(3.19) and (3.24)—(3.27)
are still applicable to one dimensional case.

In this section, we give some numerical experiments to show the efficiency of the structure-
preserving schemes. The first numerical example shows the numerical errors and convergence rates of
the structure-preserving scheme, and check conservation property of the schemes. The second numer-
ical example shows the numerical result for the general fractional KGS system. The third numerical
example shows the numerical result for two dimension fractional KGS system.

4.1. Experiment A
When a = 2, the KGS system (4.3),(4.4) has the following solitary wave solutions [5]

_ 1—v2 404
(x — vt — xp) exp(i(vx +

1
241 = 12 2(1 = v2)t

sech?

),

(x.£.9) 32

u(x,t,v) =

41 =2
3 1

(x,t,v) = ————sech’ ———

¢ 4(1 —v?) 241 =12

where v is the propagating velocity of the wave and x, is the initial phase. We consider initial-value
(v=0.8,x) = —10)

(x = vt = Xo),

3V2

o = B (x — x0) expli(v2),

= sec
41 =2 2V1 =12
1
2V1 =12

sech? (x = xp).

3
Y= 30w

Errors and orders in time for U Errors and orders in time for &

L Error
)

’
’
L)

-2 -55 5 -4.5 -4

Figure 1. Errors and convergence orders in time for 4 = 0.00001, ¢ = 1.

In this example, we text errors, convergence orders and conservation of mass and energy of one
dimension KGS system by numerical scheme (2.1)—(2.5). First, we show errors and convergence
orders of numerical scheme (2.1)—(2.5) at time t = 1. For @ # 2, the numerical exact solutions are
obtained by a very fine mesh and a small time step. Then, we fix the space mesh 2 = 0.00001 and time
step 7 = 0.00001 to test time convergence orders and space convergence orders by numerical scheme
(2.1)—(2.5). The Figures 1-2 show time convergence orders and space convergence orders for different
@, and it is found that the scheme is of order 2 in time, order 4 in space. From Figures 1-2, we can
draw the observations: the approximate solution converge to the exact solution at the rate O(t? + h*),
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Figure 2. Errors and convergence orders in time for 7 = 0.00001, ¢ = 1.

and consistent with the theoretical estimates of Theorems 5—-6. Second, we examine the conservation
of mass and energy with x € [-20,20],7 € [0, 100], 7 = 0.01, 2 = 0.1. Figure 3 shows relative residuals
on the mass and energy errors for different values of @ by numerical scheme (2.1)—(2.5). It is found
that the numerical scheme preserves mass and energy conservation very well although energy varies
with a.

4.2. Experiment B

Consider following one dimension fractional KGS system

i0.u — %(—A)gu = ud + ylul*u, (4.5)

O + Prx + ¢ = |ul’, (4.6)
32 1

=~ \/%sechzz s ) X)) @.7)

do = S sech? ! (x — xp). (4.8)

41— oI -2

In this example, we simulate solitary wave and collisions of two solitary waves of fractional KGS
system (4.5)—(4.8) by numerical scheme (2.1)—(2.5). First, we simulate solitary wave of numerical
solutions for different orders a and difference parameter y by the numerical scheme (2.1)—(2.5).

Figures 4-6 display solitary wave of the numerical solutions for difference value of y = 0.8, 1.5, 2
and same value of @ = 2. It is found that the parameter vy affects the propagation velocity of the solitary
wave, and larger 7y, the propagation of the soliton got slower.

Figures 7-9 display solitary wave of the numerical solutions for difference value of @ = 2, 1.8, 1.5
and same value of y = 1. It is found that the parameter « affects also the propagation velocity of the
solitary wave, and smaller «, the propagation of the soliton got slower.

Second, we consider collisions of two solitary waves with x € [-20,20], ¢ € [0,30], 7 = 0.01,h =
0.1, and the initial data are chosen as (p; = 10, p, = 10,v; = 0.8,v, = —0.8)

Uy = u(x_p17oavl) + u('x—p27oav2)’
¢0 = ¢(x_pl70a Vl) + ¢(x_ pZ,O,VZ)-
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Figure 3. Conservation of mass (left) energy (right) of fractional KGS system by numerical

scheme (2.1)-(2.5).

Figure 4. The wave forms of the numerical solution, y = 0.8, @ = 2.

Networks and Heterogeneous Media

Volume 18, Issue 1, 463-493.



486

Figure 7. The wave forms of the numerical solution, y = 1,a = 2.

Figures 10-12 display solitary wave of the numerical solutions for difference value of y =
0.8, 1.5, 2 and same value of @ = 2. Figures 13-15 display solitary wave of the numerical solutions
for difference value of @ = 2, 1.8, 1.5 and same value of y = 1. It is found that the parameters «, y
affect also the propagation velocity of the solitary wave. When smaller @ and larger vy, the propagation
of the soliton got slower, the soliton changes faster and even a high oscillation appears.

In the two example, we show some numerical results of fractional KGS system (4.5)—(4.8) for soli-
tary wave case and collisions of two solitary waves case. In the process of time evolution, the solitary
wave moves towards the boundary gradually, and produces some small waves around the solitary wave.
In this paper, we only consider spatial range [-20, 20]. If we want to get a better numerical result, we
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Figure 9. The wave forms of the numerical solution, y = 1, @ = 1.5.

can expand the space a bit, but it will take more calculation time.

8L o0 o v o > a o
; ¢ g

Figure 10. The wave forms of the numerical solution, y = 0.8, @ = 2.
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Figure 13. The wave forms of the numerical solution, y = 1, @ = 2.

4.3. Experiment C

Consider two dimension fractional KGS system

1 .
0u — 5(—A)7u = —ug, 4.9)
Oup + Ap + ¢ = |uf, (4.10)
_ 2 i5/ cosh( \/4x2+y?)
ux.y. 0) = X+ 4 o= (427 "€ ™ (4.11)

#(x,y,0) = e $,(x,0) = @02, (4.12)
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Figure 14. The wave forms of the numerical solution, y = 1, = 1.8.

10 JuR
T~ 10
+ 0 20

Figure 15. The wave forms of the numerical solution, y = 1, = 1.5.

In the example, we simulate solitary wave numerical solutions for different orders @ by the scalar
auxiliary variable scheme (3.24)—(3.27). Figures 16—18 show the surface plots of the nucleon density
lu|* and meson field ¢ for different time ¢ = 3,5, 8 and same value of a = 2, respectively.

a=2,t=3 «=2,t=3

v 200 -200 M y -40  -40

Figure 16. Surface plots of the nucleon density |u|* (left column) and meson field ¢ (right
column).
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Figure 17. Surface plots of the nucleon density |u> (Ieft column) and meson field ¢ (right

column).
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Figure 18. Surface plots of the nucleon density |u|* (left column) and meson field ¢ (right
column).

Figures 19-21 show the surface plots of the nucleon density |u[> and meson field ¢ for different time
t = 3,5, 8 and same value of @ = 1.8, respectively. From Figures 16-21, we fine that the meson field

change periodically, and the order « affects the shape of nucleon field. They also show that « affects

the propagation velocity of the solitary wave.

«=1.8t=3

a=1.81=3

Figure 19. Surface plots of the nucleon density |u|* (left column) and meson field ¢ (right

column).
Volume 18, Issue 1, 463-493.
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Figure 20. Surface plots of the nucleon density |u> (Ieft column) and meson field ¢ (right
column).
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Figure 21. Surface plots of the nucleon density |u|* (Ieft column) and meson field ¢ (right
column).

5. Conclusion

In the paper, we study structure-preserving scheme to solve one dimension and two dimension
space fractional KGS equations. First, we use the high central differences scheme in space and Crank-
Nicolson scheme in time to discrete one dimension fractional KGS equations, which preserve mass and
energy conservation laws of the fractional system. Then, we show that the arising scheme is uniquely
solvable and approximate solutions converge to the exact solution at the rate O(r? + h*). Second, we
give the high central differences scheme in space, Crank-Nicolson scheme and scalar auxiliary variable
scheme in time for two dimension fractional KGS equations, which preserve one or more analytical
properties of the fractional system. Finally, the numerical experiments including some one dimensional
and two dimensional fractional KGS systems are given to verify the correctness of theoretical results.
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