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Abstract: In this paper, we employ the Galerkin spectral method to handle a multi-term time-
fractional diffusion equation, and investigate the numerical stability and convergence of the proposed
method. In addition, we find an interesting application of the Galerkin spectral method to solving
an inverse source problem efficiently from the noisy final data in a general bounded domain, and
the uniqueness and the ill-posedness for the inverse problem are proved based on expression of the
solution. Furthermore, we compare the calculation results of spectral method and finite difference
method without any regularization method, and get a norm estimate of the coefficient matrix of a
spectral method discretized. And for that we conclude that the spectral method itself can act as a
regularization method for some inverse problem (such as inverse source problem). Finally, several
numerical examples are used to illustrate the effectiveness and accuracy of the method.

Keywords: Multi-term time-fractional diffusion equation; Ill-posed problem; Inverse source
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1. Introduction

Let Ω be a bounded domain in Rd with sufficient smooth boundary ∂Ω. We consider the following
initial boundary value problem (IBVP) for the anomalous diffusion model with multi-term
time-fractional derivatives


s∑

j=1
q j ∂

α j

0+u(x, t) − (Lu)(x, t) = f (x)p(t), (x, t) ∈ Ω × I,

u(x, 0) = 0, x ∈ Ω,
u(x, t) = 0, (x, t) ∈ ∂Ω × I,

(1.1)
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where I = (0,T ) with T > 0 be fixed and ∂
α j

0+ is the Caputo fractional derivative defined by

∂
α j

0+u(x, t) =
1

Γ(1 − α j)

∫ t

0

∂u(x, s)
∂s

ds
(t − s)α j

, 0 < α j < 1.

For a fixed positive integer s, the orders α = (α1, ..., αs) and the coefficients q = (q1, ..., qs) are
restricted in the admissible sets

B := {(α1, ..., αs) ∈ Rs; α ≥ α1 > α2 > · · · > αs ≥ α}, (1.2)
Q := {(q1, ..., qs) ∈ Rs; q1 = 1, q j ∈ [q, q], ( j = 2, ..., s)}, (1.3)

with fixed 0 < α < α < 1 and 0 < q < q.
− L is a symmetric uniformly elliptic operator defined on D(−L) = H2(Ω) ∩ H1

0(Ω) given by

Lu(x, t) =
d∑

i=1

∂

∂xi

 d∑
j=1

ai j(x)
∂

∂x j
u(x, t)

 + c(x)u(x, t), x ∈ Ω,

in which the coefficients satisfy

ai j = a ji, 1 ≤ i, j ≤ d, ai j ∈ C1(Ω̄),

µ

d∑
i=1

ξ2
i ≤

d∑
i, j=1

ai j(x)ξiξ j, x ∈ Ω̄, ξ = (ξ1, . . . , ξd) ∈ Rd, for a constant µ > 0,

c(x) ≤ 0, x ∈ Ω̄, c(x) ∈ C(Ω̄).

If the number of fractional derivatives s, the orders α and its coefficients q, elliptic operator L and
source functions p(t), f (x) are given appropriately, then IBVP Eq (1.1) is a direct problem. Here the
spatial source term f (x) is unknown, so the inverse problem in the paper is to determine the spatial
source term f (x) based on problem Eq (1.1) and an additional terminal data

u(x,T ) = g(x), x ∈ Ω. (1.4)

Since the measurement is noise-contaminated inevitably, we denote the noisy measurement of g as
gδ(x) satisfying

∥gδ(x) − g(x)∥ ≤ δ. (1.5)

It is well known that the time-fractional diffusion equations (TFDEs) have a wide range of
applications in physics, chemistry and other aspects [1–5]. The most representative is continuous time
random walk problem in general non-Markovian processes. However, with the increasing demand on
the accuracy of the problem, the single-time fractional diffusion equation gradually failed to meet the
needs of the problem, so Schumer et al. [6] proposed using the multi-term time-fractional diffusion
equation (MTFDE) to increase the accuracy of the model. MTFDE is not only a useful tool for
describing the behavior of anomalous diffusion phenomena in highly heterogeneous aquifers and
complex viscoelastic materials [7], but can also be applied indirectly in the numerical solution of
distributed-order fractional differential equations [8].
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There are many studies on the direct problem for IBVP Eq (1.1) in recent years such as some
uniqueness and existence results [9], the maximum principle [10], and analytic solutions [11, 12]. In
terms of numerical work, there are also some papers on the numerical solutions by finite difference
methods [13–15] and by finite element methods [16–19].

Due to the spectral method needs fewer grid points to obtain highly accurate solution. Therefore,
the spectral method is more suitable for discrete MTFDE because of its huge computations. The
study of the spectral method can be divided into two categories in MTFDE. On the one hand, the time
fractional derivative is discreted by finite difference method and spectral method is applied for the space
variable. Guo et al. [20] studied the numerical approximation of distributed-order time-space fractional
reaction-diffusion equation. Jiang et al. [21] considered a Legendre spectral method on graded meshes
for handling MTFDE with non-smooth solutions in two-dimensional case. Liu et al. [22] applied
an alternating direction implicit Legendre spectral method to handle the multi-term time fractional
Oldroyd-B fluid type diffusion equation in the two-dimensional case. On the other hand, the spectral
method is applied both in space and in time. Zheng et al. [23] considered a high order numerical
method for handling MTFDE. Zaky [24] applied a Legendre spectral tau method to handle MTFDE.
However, we are interested not only in obtaining a numerical solution with high precision by using
spectral method, but also in determining the spatial source term in an inverse problem of the MTFDE.

As far as we know, the theory as well as numerical methods of inverse source problems for single
term (i.e,. s = 1) case in Eq (1.1) are relatively abundant. Zhang et al. [25] testified a uniqueness
result to inverse the spatial source term in one-dimensional case by using one-point Cauchy data and
proposed an efficient numerical method. Wei et al. [26] studied to identify a spatial source term in a
multi-dimensional time-fractional diffusion equation from boundary measured data. The uniqueness
for the inverse source problem is proved by the Laplace transformation method. Yan et al. [27]
studied to identify a spatial source term in a multi-dimensional time-fractional diffusion-wave
equation from a part of noisy boundary data. The uniqueness of inverse spatial source term problem is
proved by the Titchmarsh convolution theorem and the Duhamel principle. Sun et al. [28] devoted to
recovering simultaneously the fractional order and the space-dependent source term from partial
Cauchy’s boundary data in a multi-dimensional time-fractional diffusion equation. Recently, Yeganeh
et al. [29] came up with an interesting idea. They used a method based on a finite difference scheme
in time and a local discontinuous Galerkin method in space to determine a spatial source term in a
time-fractional diffusion equation. This has not been seen in previous studies.

For a multi-term case, however, research results on inverse source problem are relatively few at
present. Jiang et al. [30] built a weak unique continuation property for time-fractional
diffusion-advection equations, and they considered an inverse problem on determining identifying the
spatial source term by interior measurements. Li et al. [31] considered an inverse problem of
recovering time-dependent source term from the Cauchy data in a MTFDE, and they applied the
conjugate gradient method to identify the approximate source term. Recently, Sun et al. [32]
investigated an inverse the spatial source term in MTFDE with nohomogeneous boundary condition
from partially disturbed boundary data. They proposed the Levenberg-Marquardt regularization
method to compute an inverse source problem. In addition, simultaneous inversion of source term and
other terms has been studied. For instance, Malik et al. [33] studied an inverse problem of identifying
a time-dependent source term along with diffusion/temperature concentration from a non-local
over-specified condition for a space-time fractional diffusion equation. Sun et al. [34] considered a
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nonlinear inverse problem for simultaneously recovering the potential function and the fractional
orders in a MTFDE from the noisy boundary Cauchy data in the one-dimensional case. For other
inverse source problems, we can refer to [35–37]. Nevertheless, to the best knowledge of the authors,
no one has used the spectral method to determine a spatial source term in an inverse problem of
MTFDE.

In this paper, we will focus on two aspect research on our proposed model Eq (1.1). One is the study
on the direct problem. The theoretical analysis and the numerical scheme of the Galerkin spectral
method are proposed to solve the IBVP Eq (1.1). On the other hand, we use the Galerkin spectral
method to investigate an inverse spatial source term problem in a MTFDE from a noisy final data
in a general bounded domain. In the propose method, multi-term Caputo fractional derivatives are
discretized by the L1-formula and the Galerkin spectral method is applied for the space variable. At
the same time, the comparison between the Galerkin spectral method and the finite difference method
is added in this paper. Finally, we not only prove the validity of the Galerkin spectral method in the
application of MTFDE, but also verify the superiority of the Galerkin spectral method in forward and
inverse problems by comparing the numerical results with the finite difference method.

The remainder of this paper is organized as follows. Some preliminaries are presented in Section
2. The detailed convergence analysis of the presented method is shown in Section 3. Uniqueness
and ill-posedness for the inverse problem are showed in Section 4. We present the Galerkin spectral
method and the finite difference method algorithm in Section 5. Numerical results for four examples
are investigated in Section 6. Finally, we give a conclusion in Section 7.

2. Preliminary

We firstly introduce some preliminaries as follows in this section.

Definition 2.1. The multinomial Mittag-Leffler function is defined by (see [9, 38])

E(θ1,··· ,θs),θ0(z1, · · · , zs) :=
∞∑

k=0

∑
k1+···+ks=k

(k; k1, · · · , ks)
∏s

j=1 zk j

j

Γ(θ0 +
∑s

j=1 θ jk j)
,

where θ0, θ j ∈ R, and z j ∈ C ( j = 1, · · · , s), and (k; k1, · · · , ks) denotes the multinomial coefficient

(k; k1, · · · , ks) :=
k!

k1! · · · ks!
with k =

s∑
j=1

k j,

where k j ( j = 1, · · · , s) are non-negative integers.

For the convenience of the later, if the orders α = (α1, ..., αs) and its coefficients q = (q1, ..., qs)
satisfy Eq (1.2) and Eq (1.3), then we adopt the abbreviation

E(n)
α′,β(t) := E(α1,α1−α2,··· ,α1−αs),β(−λntα1 ,−q2tα1−α2 , · · · ,−qstα1−αs), t > 0, n = 1, 2, . . . ,

where α′ = (α1, α1 − α2, · · · , α1 − αs) and λn denotes the n-th eigenvalues of elliptic operator −L with
the homogeneous Dirichlet boundary condition.
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Lemma 2.2. ( [9]) Let 0 < αs < αs−1 < · · · < α1 < 1. Then,

d
dt

{
tα1 E(n)

α′ ,1+α1
(t)

}
= tα1−1E(n)

α′ ,α1
(t), t > 0.

Lemma 2.3. ( [9, 39]) Let 0 < αs < αs−1 < · · · < α1 < 1. Then the function tα1−1E(n)
α′ ,α1

(t) is positive
for t > 0.

Lemma 2.4. ( [40]) Let 0 < αs < αs−1 < · · · < α1 < 1. Then∣∣∣∣1 − λntα1 E(n)
α′ ,α1+1

(t)
∣∣∣∣ ≤ s∑

j=2

M(1 + q jtα1−α j)
1 + λntα1

, t > 0, n = 1, 2, . . . ,

where M ia a positive constant.

Proposition 2.5. Let 0 < αs < αs−1 < · · · < α1 < 1. Then we have E(n)
α
′
,1+α1

(t) > 0.

Proof. By Lemma 2.2 and 2.3, we know that

d
dt

{
tα1 E(n)

α′ ,1+α1
(t)

}
= tα1−1E(n)

α′ ,α1
(t) > 0.

Hence it is obvious E(n)
α′ ,1+α1

(t) > 0. □

Proposition 2.6. For λn > 0 and 0 < αs < αs−1 < · · · < α1 < 1, we have 0 < 1 − λntα1 E(n)
α′ ,1+α1

(t) < 1

for t > 0. Moreover, 1 − λntα1 E(n)
α′ ,1+α1

(t) is a strictly decreasing function on t > 0.

Proof. By Lemma 2.2 and 2.3, we have

d
dt

{
1 − λntα1 E(n)

α′ ,1+α1
(t)

}
= −λntα1−1E(n)

α′ ,α1
(t) < 0.

We notice that 1 − λntα1 E(n)
α′ ,1+α1

(t) is a continuous function on t. Hence, we have

limt→0(1 − λntα1 E(n)
α′ ,1+α1

(t)) = 1. By Lemma 2.4 we know limt→∞(1 − λntα1 E(n)
α′ ,1+α1

(t)) = 0. The proof
is completed. □

Lemma 2.7. For λn > 0 and 0 < αs < αs−1 < · · · < α1 < 1, such that

0 ≤ E(n)
α′ ,1+α1

(T ) ≤
1

Tα1λn
.

Proof. By Proposition 2.6, we know 0 < E(n)
α
′
,1+α1

(T ) < 1
λnTα1 . □

Lemma 2.8. Let k be a positive integer, ∆t > 0 and limk→∞ k∆t = T. We have the following properties
from the sequence defined by

ωk =

s∑
j=1

q j
∆t−α j

Γ(2 − α j)
(k1−α j − (k − 1)1−α j), (2.1)

where α j and q j are defined in equation Eq (1.1). Here we denote ω−1
k equivalent to 1

ωk
.
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(1) ωk is a decreasing sequence with respect to k;
(2) ω1 > · · · > ωk > 0 for each k;
(3) ω−1

k is an increasing sequence with respect to k;
(4) limk→∞ k−α1ω−1

k =
∆tα1

q1(1−α1)
Γ(2−α1) +

s∑
j=2

q j
T
α1−α j (1−α j)
Γ(2−α j)

.

Proof. First, let Φ(x) = ωx be a continuous function with respect to x, According to dΦ(x)
dx < 0, we

know Φ(x) is decreasing function, then we have ωk is decreasing the sequence. And we can direct to
check that ω1 > · · · > ωk > 0 for each k. In addition, we can easy to derive ω−1

k is increasing function.
Further, we have

lim
k→∞

k−α1ω−1
k = lim

k→∞

k−α1

q1∆t−α1

Γ(2−α1) (k
1−α1 − (k − 1)1−α1) +

s∑
j=2

q j
∆t−α j

Γ(2−α j)
(k1−α j − (k − 1)1−α j)

=: lim
k→∞

1
Ψ1

k + Ψ
2
k

,

where

Ψ1
k =

q1∆t−α1

Γ(2 − α1)
(k1−α1 − (k − 1)1−α1)kα1 ,

Ψ2
k =

s∑
j=2

q j
∆t−α j

Γ(2 − α j)
(k1−α j − (k − 1)1−α j)kα1 .

First we have

lim
k→∞
Ψ1

k = lim
k→∞

q1∆t−α1

Γ(2 − α1)
(1 − (1 −

1
k

)1−α1)k1−α1kα1

= lim
k→∞

q1∆t−α1

Γ(2 − α1)
lim
k→∞

(1 − 1 + (1 − α1)
1
k
+ o(

1
k

))k

=
q1(1 − α1)
Γ(2 − α1)

∆t−α1 ,

where we use the Taylor’s formula of (1 − 1/x)1−α1 in the second equation. Similarly, we have

lim
k→∞
Ψ2

k = lim
k→∞

s∑
j=2

q j
∆t−α j

Γ(2 − α j)
(k1−α j − (k − 1)1−α j)kα1

= lim
k→∞

s∑
j=2

q j
∆t−α j

Γ(2 − α j)
(k1−α j − (k − 1)1−α j)kα jk−α j∆t−α1∆tα1kα1

= lim
k→∞

s∑
j=2

q j
1

Γ(2 − α j)
(1 − (1 −

1
k

)1−α j)k(k∆t)−α j(k∆t)α1∆t−α1

=

s∑
j=2

q j
Tα1−α j(1 − α j)
Γ(2 − α j)

∆t−α1 .

For all these reasons, we arrive at

lim
k→∞

k−α1ω−1
k =

∆tα1

q1(1−α1)
Γ(2−α1) +

s∑
j=2

q j
Tα1−α j (1−α j)
Γ(2−α j)

. (2.2)
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This proof is complete. □

3. Semi-discretize scheme and full discretize scheme

In this section, we discuss semi-discretize and full discretize schemes of the problem Eq (1.1) in the
one-dimensional case. First, let tn := n∆t, n = 0, 1, · · · ,N, where ∆t := T

N (at leat satisfying ∆t < 1)
is the time step. We can denote un an approximation to u(x, tn), and in order to convenience we write
p(tn), f (x), a(x), c(x) is equal to pn, f , a, c, where f (x), p(tn) are the source terms of Eq (1.1), and
a(x), c(x) come from the definition of the symmetric uniformly elliptic operator L. Then we introduce
the time-fractional derivative is approximated by the L1 formula [41].

s∑
j=1

q j ∂
α j

0+u(x, tn) =
n∑

k=1

ωk(u(x, tn−k+1) − u(x, tn−k)) + rn
∆t,

where ωk =
s∑

j=1
q j

∆t−α j

Γ(2−α j)
(k1−α j − (k − 1)1−α j) and rn

∆t is the truncation error with the estimate

rn
∆t ≤ cu∆t2−α1 + · · · + cu∆t2−αs ≤ c1∆t2−α1 .

Here c1 is a constant depending on u, a j and T .
In this paper, we use H1-norm defined by

∥ν∥H1(Ω) =

(
∥ν∥2L2(Ω) +

1
ω1

∥∥∥∥∥dν
dx

∥∥∥∥∥2

L2(Ω)

) 1
2

.

where ω1 is defined in Lemma 2.8.

3.1. Semi-discretize scheme

In order to establish the complete semi-discrete problem, we define the error term rn by

rn :=
1
ω1

 n∑
j=1

ω j(u(x, tn− j+1) − u(x, tn− j)) −
s∑

j=1

q j ∂
α j

0+u(x, tn)

 . (3.1)

Then we have
|rn| =

1
ω1
|rn
∆t| ≤ c2∆t2−α1 , (3.2)

where c2 is a constant depending on u, a j and T .

Using the first term on right hand side of Eq (3.1) as an approximation of
s∑

j=1
q j ∂

α j

0+u(x, tn) leads to

the following finite difference scheme to Eq (1.1)

n∑
k=1

ωk(un−k+1 − un−k) −
(
a
∂un

∂x

)
x
− cun = f pn. (3.3)
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Then we have

un −
1
ω1

(
a
∂un

∂x

)
x
−

1
ω1

cun =

n−1∑
k=1

ωk − ωk+1

ω1
un−k +

ωn

ω1
u0 +

1
ω1

f pn. (3.4)

Multiply both sides by ν ∈ H1
0(Ω) and integrate over Ω and by Green formula. We can find un ∈ H1

0(Ω),
such that

(un, ν) +
1
ω1

(
a
∂un

∂x
,
∂ν

∂x

)
−

1
ω1

(cun, ν) =
n−1∑
k=1

ωk − ωk+1

ω1
(un−k, ν)

+
ωn

ω1
(u0, ν) +

1
ω1

( f pn, ν).

(3.5)

For convenience and without loss of generality, we consider the case ai j(x) ≡ 1, c(x) = 0. Stability of
the scheme Eq (3.5) is given in the following result.

Theorem 3.1. The semi-discretized problem Eq (3.5) is unconditionally stable in sense that for all
∆t > 0, holds

∥un∥H1(Ω) ≤ ∥u0∥L2(Ω) +
1
ω1

n∑
k=1

pk∥ f ∥L2(Ω).

Proof. we prove this theorem using induction. When n=1, scheme Eq (3.5) has

(u1, ν) +
1
ω1

(
∂u1

∂x
,
∂ν

∂x

)
= (u0, ν) +

1
ω1

(
1∑

k=1

p1 f , ν).

Taking ν = u1 and Schwarz inequality, we have

∥u1∥H1(Ω) ≤ ∥u0∥L2(Ω) +
1
ω1

1∑
k=1

pk∥ f ∥L2(Ω). (3.6)

Now for the following inequality to hold

∥u j∥H1(Ω) ≤ ∥u0∥L2(Ω) +
1
ω1

j∑
k=1

pk∥ f ∥L2(Ω), j = 1, 2, · · · , n − 1. (3.7)

We must prove that ∥un∥H1(Ω) ≤ ∥u0∥L2(Ω) +
1
ω1

∑n
k=1 pk∥ f ∥L2(Ω). Taking ν = un in Eq (3.5) and by using

Eq (3.7), we have

∥un∥H1(Ω) ≤

n−1∑
k=1

ωk − ωk+1

ω1
∥un−k∥L2(Ω) +

ωn

ω1
∥u0∥L2(Ω) +

1
ω1
∥ f ∥L2(Ω) pn

≤

 n−1∑
k=1

ωk − ωk+1

ω1
+
ωn

ω1

 ∥u0∥L2(Ω) +
1
ω1

n−1∑
k=1

pk∥ f ∥L2(Ω)

 + 1
ω1

pn∥ f ∥L2(Ω).

(3.8)

Hence, we have ∥un∥H1(Ω) ≤ ∥u0∥L2(Ω) +
1
ω1

∑n
k=1 pk∥ f ∥L2(Ω). □
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Now, we give the convergence estimate between the exact solution and the solution of the semi-
discretized problem.

Theorem 3.2. Let u(x, t) be the exact solution of Eq (1.1), {un}Nn=0 be the numerical solution of semi-
discretized Eq (3.5), and u(x, t0) = u0. Then there holds the following error estimates

∥u(x, tn) − un∥H1(Ω) ≤
c2ω1Tα1∆t2−α1

q1(1−α1)
Γ(2−α1) +

∑s
j=2

q jT
α1−α j (1−α j)
Γ(2−α j)

,

where c2 is a constant depending on u, a j and T .

Proof. We will verify that the following estimate

∥u(x, t j) − u j∥H1(Ω) ≤ c2ω1ω
−1
j ∆t2−α1 , j = 1, 2, · · · ,N. (3.9)

Here, we will prove it by the mathematical induction, let ên = u(x, tn) − un. For j = 1, we have, by
combining Eq (1.1), Eq (3.5), Eq (3.1), the error equation

(ê1, ν) +
1
ω1

(
∂ê1

∂x
,
∂ν

∂x

)
= (ê0, ν) + (r1, ν) ν ∈ H1

0(Ω). (3.10)

Taking ν = ê1, we have
∥u(x, t1) − u1∥H1(Ω) ≤ c2ω1ω

−1
1 ∆t2−α1 .

Hence, Eq (3.9) is proven for the case j=1. Now, Suppose the inequality Eq (3.9) holds for all j =
1, 2, · · · , n − 1. Then we need to prove that it holds also for j = n.

Similar to j = 1, we have ν ∈ H1
0(Ω)

(ên, ν) +
1
ω1

(
∂ên

∂x
,
∂ν

∂x

)
=

n−1∑
k=1

ωk − ωk+1

ω1
(ên−k, ν) +

ωn

ω1
(ê0, ν) + (rn, ν). (3.11)

Taking ν = ên, and using Eq (3.9). We have

∥ên∥H1(Ω) ≤

n−1∑
k=1

ωk − ωk+1

ω1
∥ên−k∥L2(Ω) +

ωn

ω1
∥ê0∥L2(Ω) + ∥rn∥L2(Ω)

≤

 n−1∑
k=1

ωk − ωk+1

ω1
+
ωn

ω1

 c2ω1ω
−1
n ∆t2−α1 .

Then we obtain
∥ên∥H1(Ω) ≤ c2ω1ω

−1
n ∆t2−α1 .

The estimate Eq (3.9) is proved. Notice that limk→∞ k∆t = T is clearly true. Then, we have

∥u(x, tn) − un∥H1(Ω) ≤ c2ω1ω
−1
n ∆t2−α1 = c2ω1n−α1ω−1

n ∆t−α1Tα1∆t2−α1 . (3.12)

Then by Eq (3.12) and Lemma 2.8, we deduce that for sufficently large n, the assertion of the theorem
is valid. □
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3.2. Full discretized scheme

First, we set
V M =

{
ν ∈ H1

0(Ω)|ν ∈ PM(Ω)
}
,

as the space of polynomials of degree ≤ M with respect to x. Let P be the orthogonal projection
operator from H1

0(Ω) into V M. Then for all ψ ∈ H1
0(Ω), we have Pψ ∈ V M. Further, we have ∀νM ∈ V M

such that

(Pψ, νM) +
1
ω1

(
∂Pψ
∂x

,
∂νM

∂x

)
= (ψ, νM) +

1
ω1

(
∂ψ

∂x
,
∂νM

∂x

)
. (3.13)

This the orthogonal projection operator satisfy the inequality [42]

∥ψ − Pψ∥H1(Ω) ≤ cM1−m∥ψ∥Hm(Ω), (3.14)

where ψ ∈ Hm(Ω) ∩ H1
0(Ω), m ≥ 1.

Now, we consider the Galerkin scheme as follow: find un
M ∈ V M, such that for all νM ∈ V M

(un
M, νM) +

1
ω1

(
∂un

M

∂x
,
∂νM

∂x

)
=

n−1∑
k=1

ωk − ωk+1

ω1
(un−k

M , νM) +
ωn

ω1
(u0

M, νM) +
pn

ω1
( fM, νM). (3.15)

Theorem 3.3. Let u(x, t) ∈ H1((0,T ),Hm(Ω)∩H1
0(Ω)), m > 1 be the exact solution of Eq (1.1), {un

M}
N
n=0

be the numerical solution of full discretization Eq (3.15), and u0
M = Pu0. Then there holds the following

error estimates

∥u(x, tn) − un
M∥H1(Ω) ≤

ω1Tα1(c2∆t2−α1 + cM1−m∥u∥L∞(Hm))
q1(1−α1)
Γ(2−α1) +

∑s
j=2

q jT
α1−α j (1−α j)
Γ(2−α j)

,

where c2 is a constant depending on u, a j, T, and ∥u∥L∞(Hm) := supt∈(0,T )∥u(x, t)∥Hm(Ω).

Proof. From Eq (1.1), Eq (3.1) satisfy ∀ν ∈ H1
0(Ω),

(u(x, tn), ν) +
1
ω1

(
∂u(x, tn)
∂x

,
∂ν

∂x

)
=

n−1∑
k=1

ωk − ωk+1

ω1
(u(x, tn−k), ν)

+
ωn

ω1
(u(x, t0), ν) + (rn, ν) +

pn

ω1
( f , ν).

(3.16)

By projecting u(x, tn) in Pu(x, tn) ∈ V M, applying Eq (3.13), we obtain for all νM ∈ V M

(Pu(x, tn), νM) +
1
ω1

(
∂Pu(x, tn)

∂x
,
∂νM

∂x

)
=

n−1∑
k=1

ωk − ωk+1

ω1
(u(x, tn−k), νM)

+
ωn

ω1
(u(x, t0), νM) + (rn, νM) +

pn

ω1
( f , νM).

(3.17)

Let ϵ̂n
M = Pu(x, tn) − un

M, ϵ
n
M = u(x, tn) − un

M by subtracting Eq (3.15) from Eq (3.17), we have

(ϵ̂n
M, νM) +

1
ω1

(
∂ϵ̂n

M

∂x
,
∂νM

∂x

)
=

n−1∑
k=1

ωk − ωk+1

ω1
(ϵn−k

M , νM) +
ωn

ω1
(ϵ0

M, νM) + (rn, νM) (3.18)
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Taking νM = ϵ̂
n
M in above equation and using the triangular inequality ∥ϵn

M∥H1(Ω) ≤ ∥ϵ̂
n
M∥H1(Ω)+∥u(x, tn)−

Pu(x, tn)∥H1(Ω), we obtain

∥ϵn
M∥H1(Ω) ≤

n−1∑
k=1

ωk − ωk+1

ω1
∥ϵn−k

M ∥H1(Ω) + ∥rn∥H1(Ω) + ∥u(x, tn) − Pu(x, tn)∥H1(Ω)

≤

n−1∑
k=1

ωk − ωk+1

ω1
∥ϵn−k

M ∥H1(Ω) + c2∆t2−α1 + cM1−m∥u(x, tn)∥Hm(Ω).

(3.19)

Here, we use the mathematical induction, by Eq (3.19), we can easy to verify when case of n=1.

∥ϵ1
M∥H1(Ω) ≤ ω1ω

−1
1 (c2∆t2−α1 + cM1−m∥u(x, t1)∥Hm(Ω)) (3.20)

Suppose we have proven

∥ϵ
j
M∥H1(Ω) ≤ ω1ω

−1
j (c2∆t2−α1 + cM1−m∥u(x, t j)∥Hm(Ω)) j = 1, 2, · · · , n − 1. (3.21)

And then we need prove ∥ϵn
M∥H1(Ω) ≤ ω1ω

−1
n (c2∆t2−α1 + cM1−m∥u(x, tn)∥Hm(Ω)) By Eq (3.19), Eq (3.21)

we have

∥ϵn
M∥H1(Ω) ≤

 n−1∑
k=1

ωk − ωk+1

ω1
+
ωn

ω1

ω1ω
−1
n

[
c2∆t2−α1 + cM1−m∥u(x, tn)∥Hm(Ω)

]
. (3.22)

Finally, by limk→∞ k∆t = T and the last equality have

∥u(x, tn) − un
M∥H1(Ω) = ω1ω

−1
n n−α1∆t−α1Tα1(c2∆t2−α1 + cM1−m∥u∥L∞(Hm)). (3.23)

Then by Eq (3.23) and Lemma 2.8, we deduce that for sufficently large n, the assertion of the theorem
is valid. □

Now we give error estimates for semi-discrete and full discrete problems in the following result.

Theorem 3.4. Let {un}Nn=0 ∈ Hm(Ω) ∩ H1
0(Ω), m > 1 is solution of semi-discrete problem Eq (3.5),

{un
M}

N
n=0 is the solution of full discrete problem Eq (3.15), and u0

M = Pu0. Then we have

∥un − un
M∥H1(Ω) ≤

cω1Tα1 M1−m max
1≤ j≤n
∥u j∥Hm(Ω)

q1(1−α1)
Γ(2−α1) +

∑s
j=2

q jT
α1−α j (1−α j)
Γ(2−α j)

,

Proof. According to the definition of P, for solution un of semi-discrete, we have

(Pun, νM) +
1
ω1

(
∂Pun

∂x
,
∂νM

∂x

)
=

n−1∑
k=1

ωk − ωk+1

ω1
(un−k, νM) +

ωn

ω1
(u0, νM) +

pn

ω1
( f , νM). (3.24)

Let ên
M = Pun − un

M, en
M = un − un

M, by subtracting Eq (3.15) from Eq (3.24), we have

(ên
M, νM) +

1
ω1

(
∂ên

M

∂x
,
∂νM

∂x
) =

n−1∑
k=1

ωk − ωk+1

ω1
(en−k

M , νM) +
ωn

ω1
(e0

M, νM). (3.25)
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Taking νM = ên
M in above equation and using the triangular inequality ∥en

M∥H1(Ω) ≤ ∥ên
M∥H1(Ω) + ∥un −

Pun∥H1(Ω), we obtain

∥en
M∥H1(Ω) ≤

n−1∑
k=1

ωk − ωk+1

ω1
∥en−k

M ∥H1(Ω) + ∥un − Pun∥H1(Ω)

≤

n−1∑
k=1

ωk − ωk+1

ω1
∥ϵn−k

M ∥H1(Ω) + cM1−m∥un∥Hm(Ω).

(3.26)

Here, we use the mathematical induction similar to Theorem 3.3, and by limk→∞ k∆t = T . We have
follow result

∥un − un
M∥H1(Ω) = ω1ω

−1
n n−α1∆t−α1Tα1cM1−m max

1≤ j≤n
∥u j∥Hm(Ω). (3.27)

Then by Eq (3.27) and Lemma 2.8, we deduce that for sufficently large n, the assertion of the theorem
is valid. □

4. Uniqueness and ill-posedness for the inverse problem

In this section, we discuss the uniqueness of solution and the ill-posed analysis of the unknown
source identification problem.

Denote the eigenvalues of the operator −L as λn and the corresponding eigenfunctions as φn ∈

H2(Ω)∩H1
0(Ω), then we have Lφn = −λnφn. Without loss of generality, suppose a family of eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·, limn→∞ λn = +∞, then {φn}
∞
n=1 constituting an orthonormal basis in

space L2(Ω).

Definition 4.1. ( [43]) For any γ > 0, define

D((−L)γ) =

ψ ∈ L2(Ω);
∞∑

n=1

λ2γ
n |(ψ, φn)|2 < ∞

 ,
where (·, ·) is the inner product in L2(Ω), and define its norm

∥ψ∥D((−L)γ) =

 ∞∑
n=1

λ2γ
n |(ψ, φn)|2


1
2

.

Lemma 4.2. ( [34]) For fixed α ∈ A, q ∈ Q, let f (x) ∈ Ld(0,T ), p(t) ∈ D((−L)γ) with some
d ∈ [1,∞] and γ ∈ [0, 1]. Then Eq (1.1) exists a unique solution u(x, t) given by

u(x, t) =
∞∑

n=1

fnQn(t)φn(x), (4.1)

where Qn(t) =
∫ t

0
p(s)(t − s)α1−1E(n)

α′,α1
(t − s)ds, and fn = ( f , φn).

From Lemma 4.2, we know there exists a unique weak solution u ∈ L2((0,T ); H2(Ω) ∩ H1
0(Ω)) for

the direct problem Eq (1.1), if we know a source function f (x)p(t) ∈ L∞(0,T ; L2(Ω)). And we know
the formal solution for Eq (1.1) can be expressed by

u(x, t) =
∞∑

n=1

fn

∫ t

0
p(s)(t − s)α1−1E(n)

α′,α1
(t − s)dsφn(x). (4.2)
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Applying u(x,T ) = g(x), we have

∞∑
n=1

gnφn(x) = g(x) =
∞∑

n=1

fnQn(T )φn(x), (4.3)

where gn = (g, φn) and Qn(T ) =
∫ t

0
p(s)(T − s)α1−1E(n)

α′,α1
(T − s)ds.

Theorem 4.3. If p(t) ∈ C[0,T ] satisfying p(t) ≥ p0 > 0 for all t ∈ [0,T ] , then the solution
u(x, t), f (x) of problem Eq (1.1) is unique.

Proof. By Lemma 2.3, we have E(n)
α′,α1

(t) > 0, for t > 0. From Lemma 2.2 and Proposition 2.5, we
know

Qn(T ) ≥ p0

∫ T

0
(T − s)α1−1E(n)

α′,α1
(T − s)ds = p0Tα1 E(n)

α′,1+α1
(T ) > 0. (4.4)

Hence, we know if g(x) = 0, we have f (x) = 0, and by Eq (4.2) we know u(x, t) = 0. The proof is
completed. □

In the following, we show the inverse source problem Eq (1.1) is ill-posed. Without loss of
generality, we take a final data gk(x) = φk(x)

√
λk

in Eq (1.1) and then know ∥gk∥ =
1
√
λk
→ 0, as k → ∞.

The corresponding source terms are fk(x) = φk(x)
Qk(T )

√
λk

, and we have ∥ fk∥ =
1

Qk(T )
√
λk

. By Lemma 2.7, we
have

Qk(T ) ≤ ∥p∥C[0,T ]Tα1 E(k)
α′,1+α1

(T ) ≤
∥p∥C[0,T ]

λk
. (4.5)

Hence ∥ fk∥ ≥
√
λk

∥q∥C[0,T ]
→ ∞ , as k → ∞ . Then we know the inverse source problem Eq (1.1) is

ill-posed.

5. Numerical algorithm

For the sake of argument, we just talk about the one-dimensional case.

5.1. The Galerkin spectral method

First, let LM(x) denotes the Legendre polynomial of degree M. ξ j, j = 1, 2, · · · ,M, are the
Legendre-Gauss-Lobatto points, and these points satisfy (1 − x2)L′M(x) = 0. we consider the follow
equation 

(un
M, νM) +

1
ω1

(
a
∂un

M

∂x
,
∂νM

∂x

)
−

1
ω1

(cun
M, νM) =

n−1∑
k=1

ωk − ωk+1

ω1
(un−k

M , νM)

+
ωn

ω1
(u0

M, νM) +
pn

ω1
( fM, νM),

(uN
M, νM) = (gM, νM).

(5.1)

We set

un
M(x) = uM(x, n∆t) =

M∑
i=0

δn
i hi(x), (5.2)

Networks and Heterogeneous Media Volume 18, Issue 1, 212–243.



225

Here, hi is the Lagrangian polynomial defined in Ω i.e. hi ∈ V M, hi(ξ j) = εi j, with εi j : the Krinecker-
delta symbol. Since first equation in Eq (1.1) satisfies Dirichlet boundary condition, therefore, we have
δn

0 = δ
n
M = 0. Take νM = h j(x), j = 1, 2, · · · ,M − 1, we can obtain



M−1∑
i=1

δn
i hi, h j

 + 1
ω1

a M−1∑
i=1

δn
i
∂hi

∂x
,
∂h j

∂x

 − 1
ω1

c M−1∑
i=1

δn
i hi, h j

 = n−1∑
k=1

ωk − ωk+1

ω1

M−1∑
i=1

δn−k
i hi, h j


+
ωn

ω1

M−1∑
i=1

δ0
i hi, h j

 + pn

ω1
( fM, h j)M−1∑

i=1

δN
i hi, h j

 = (gM, h j).

Denote
F = (( fM, h1), · · · , ( fM, hM−1))T , G = ((gM, h1), · · · , (gM, hM−1))T ,

and set
δn = (δn

1, · · · , δ
n
M−1)T ,

By above equation, we have 
Kδn =

1
ω1

pnF +
n−1∑
k=1

ωk − ωk+1

ω1
K̂δn−k

K̂δN = G,

(5.3)

where i, j = 1, 2, · · · ,M − 1, and

(K)i j = (hi, h j) +
1
ω1

(a
∂hi

∂x
,
∂h j

∂x
) −

1
ω1

(chi, h j), (K̂)i j = (hi, h j). (5.4)

Here, we use the Legendre Gauss-type quadratures to approximate Eq (5.4), and by the first equation
in Eq (5.3) and Eq (5.2), we can solve the forward problem.

For the inverse problem, by Eq (5.3), we have

δ1 = K−1 1
ω1

p1F = A1F n = 1

δ2 = K−1(
1
ω1

p2F + (1 −
ω2

ω1
)K̂δ1) = A2F n = 2

...

δN−1 = AN−1F n = N − 1.

(5.5)

For n = N, we have 
KδN =

1
ω1

pN F +
N−1∑
k=1

ωk − ωk+1

ω1
K̂δN−k

K̂δN = G,

(5.6)
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By Eq (5.5), Eq (5.6), we have
AF = G. (5.7)

And then by solving linear equation Eq (5.7), we can obtain F. Further, we recover fM as an
approximation of the source term by using a suitable integration rule.

In order to prove the ill-posedness of equation Eq (5.7), an upper bound of ∥A−1∥2 in Eq (5.7) is
given below.

Theorem 5.1. Let the orthogonal basis function {h j}
M−1
j=1 satisfy h j(x) ∈ H1(Ω). Then the inverse matrix

of the coefficient matrix A in Eq (5.7) have

∥A−1∥2 ≤ C(M − 1)2
max

1≤ j≤M−1
∥h j∥

2
H1(Ω)

min
1≤ j≤M−1

∥h j∥
2
H1(Ω)

(5.8)

Proof. From the first equation of Eq (5.6), we can get

δN =
pN

ω1
K−1F +

N−1∑
k=1

ωk − ωk+1

ω1
K−1K̂δN−k. (5.9)

Combining the second equation of Eq (5.6), we have

pN

ω1
K̂K−1F +

N−1∑
k=1

ωk − ωk+1

ω1
K̂K−1K̂δN−k = G. (5.10)

Let k
′

= N − k (also denote k), we have

pN

ω1
K̂K−1F +

N−1∑
k=1

ωN−k − ωN−k+1

ω1
K̂K−1K̂δk = G. (5.11)

On the other hand, by Eq (5.5) we have

δk = (
pk

ω1
K−1 +

k−1∑
m=1

ωm − ωm+1

ω1
K−1K̂Ak−m)F =: AkF, k = 1, 2, · · · ,N − 1. (5.12)

By substituting Eq (5.12) into Eq (5.11), the equation AF = G is obtained, where

A =
pN

ω1
K̂K−1 +

N−1∑
k=1

ωN−k − ωN−k+1

ω1
K̂K−1K̂Ak. (5.13)

Since ωk is non-negative and decreasing with respect to k, therefore we have

ωN−k − ωN−k+1

ω1
< 1. (5.14)

The definition of Ak tells us that the second part of A is the higher order term of the first part. Therefore,
we only need to estimate the matrix

A ≈ Ã :=
pN

ω1
K̂K−1. (5.15)

Networks and Heterogeneous Media Volume 18, Issue 1, 212–243.



227

Due to F ≈ Ã−1G, we only have to estimate the upper bound of ∥Ã−1∥2. According to Eq (5.4), K̂ is a
diagonal matrix, and

(KK̂−1)i j =
(hi, h j)
∥h j∥

2 +
1

ω1∥h j∥
2 (a

∂hi

∂x
,
∂h j

∂x
) −

1
ω1∥h j∥

2 (chi, h j). (5.16)

Therefore, we have

∥Ã−1∥2 =
ω1

pN ∥KK̂−1∥2 ≤
ω1

pN ∥KK̂−1∥F =
ω1

pN

M−1∑
i, j=1

(KK̂−1)2
i j


1
2

=
ω1

pN

M−1∑
i, j=1

1
∥h j∥

4

(
(hi, h j)
∥h j∥

2 +
1
ω1

(a
∂hi

∂x
,
∂h j

∂x
) −

1
ω1

(chi, h j)
)2


1
2

≤

√
3ω1

min
1≤ j≤M−1

∥h j∥
2
H1(Ω) p

N

M−1∑
i, j=1

(hi, h j)2 +
1
ω2

1

(a
∂hi

∂x
,
∂h j

∂x
)2 +

1
ω2

1

(chi, h j)2


1
2

≤ C(M − 1)2
max

1≤ j≤M−1
∥h j∥

2
H1(Ω)

min
1≤ j≤M−1

∥h j∥
2
H1(Ω)

,

(5.17)

where C is dependent on a, c, M, α, q j. □

Remark 1. It can be seen from Theorem 5.1 that ∥A−1∥2 is completely determined by the projection
dimension M − 1 of the spectral method and the maximum and minimum norm of the basis function
h j(x). It can be seen from Eq (5.8) that as the projection dimension increases, the numerator increases
with respect to j, while the denominator decreases with respect to j. Therefore, the projection
dimension M − 1 can be used as regularization parameter. When the appropriate M is selected, the
minimum value of ∥A−1∥2 can be guaranteed, thus reducing the ill-posedness of the inverse problem.

Remark 2. Here we emphasize that the Galerkin spectral method is a projection method. In the
projection method, as long as the appropriate dimension of the projection space is selected, the
regularization effect can be effectively generated for the linear ill-posed problem, and it is no longer
necessary to adopt other regularization techniques for the problem. This phenomenon is sometimes
called self-regularization or regularization by projection. A series of descriptions and proofs of this
phenomenon can be found in the literature [44].

5.2. The finite difference method

In order to compare the finite difference method the and Galerkin spectral method in application
of the multi-term time-fractional diffusion equation. We derive follow the scheme similar to reference
[45].

In the finite difference algorithm, we can denote un
i ≈ u(xi, tn), where xi = i∆x, i = 1, ...,C. and

tn = n∆t, n = 0, 1, ...,N.
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The space has the following discrete form:

Lu(xi, tn) ≈
1

(∆x)2 (ai+ 1
2
un

i+1) − ((ai+ 1
2
+ ai− 1

2
)un

i + ai− 1
2
un

i−1) + c(xi)un
i ,

for i = 1, ...,C − 1, n = 1, ...,N where ai+ 1
2
= a(xi +

1
2 ) with xi +

1
2 = (xi + xi+1)/2. In problem

Eq (1.1), according to initial condition and boundary condition, we can get a numerical solution for
forward problem Eq (1.1) from the finite difference scheme

n∑
k=1

ωk(un−k+1 − un−k)

=
1

(∆x)2 (ai+ 1
2
un

i+1) − ((ai+ 1
2
+ ai− 1

2
)un

i + ai− 1
2
un

i−1) + c(xi)un
i + f (xi)p(tn).

(5.18)

Denote Un = (un
1, u

n
2, ..., u

n
C−1)T , Y = ( f (x1), f (x2), ..., f (xC−1))T , then the scheme Eq (5.18) leads to

the following iterative scheme

BU1 = U0 +
1
ω1

p(t1)Y,

BUn = c1Un−1 + c2Un−2 + ... + cn−1U1 +
ωn

ω1
U0 +

1
ω1

p(tn)Y,
(5.19)

where cn = (ωn − ωn+1)/ω1 and B is a tridiagonal matrix given by Bii =
ai+ 1

2
+ai− 1

2
(∆x)2ω1

+ 1 − c(xi)
ω1

for

i = 1, 2, · · · ,C−1 and Bi,i−1 = −
ai− 1

2
(∆x)2ω1

for i = 2, 3, · · · ,C−1 and Bi,i+1 = −
ai+ 1

2
(∆x)2ω1

for i = 1, 3, · · · ,C−2.
Inverse source problem based on finite difference. Similar to Section 5.1, we can derive a linear

equation.

ZY = D, (5.20)

where D = (g(x1), g(x2), ..., g(xC−1))T , and Z is a matrix.

6. Numerical results

In this section, first, we verify the stability and validity of the proposed numerical methods. Without
lose of generality, let the maximum time is T = 1. The noisy data are generated by adding random
perturbations, i.e,

gδ(x) = g(x) + εg(x)(2rand(size(g(x)) − 1), (6.1)

where ε is relative noise level and rand(·) generate random numbers uniformly distributed on [0, 1].
The corresponding noise level is calculated by δ = ∥g − gδ∥. To show the accuracy of numerical
solution, we compute the approximate L2-norm error denoted by

e( f , ε) = ∥ f − f δ∥, (6.2)

and the approximate L2-norm relative error as

er( f , ε) = ∥ f − f δ∥/∥ f ∥, (6.3)
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Figure 1. The result of the forward problem for Example 1.
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where f δ is term reconstructed and f is the exact solution.

In addition, for the convenience of writing, we will abbreviate the Galerkin spectral method as GSM
and the finite difference method as FDM.

Example 1. In this example, we firstly consider a three-term time fractional diffusion equation
with a exact solution. Let ΩT = (−1, 1) × (0,T ) and T = 1, q j ≡ 1. Take a source function p(t) =

2
Γ(3−α1) t

2−α1 + 2
Γ(3−α2) t

2−α2 + 2
Γ(3−α3) t

2−α3 + 4π2t2, and f (x) = sin(2πx). Further more, we have exact
analytical solution

u(x, t) = t2 sin(2πx). (6.4)

In the first three graphs of Figure 1, namely (a), (b) and (c), we show the errors in L2-norm and L∞-
norm for different time step in case of α1 = (0.9, 0.8, 0.7), α2 = (0.6, 0.5, 0.3), and α3 = (0.3, 0.2, 0.1).
Here fix the polynomial degree M = 24. In the same case, the graphs (d), (e) and (f) from Figure 1
show the the errors in L2-norm and L∞-norm for different polynomial degree M. Here we also take
time step ∆t = 1e − 4. From Figure 1, we can find that the theoretical convergence accuracy (see
Theorem 3.3) is in good agreement with the numerical results.

In Table 1 and Figure 2, we make a comparison with FDM in terms of the forward problem by using
the scheme Eq (5.1). Clearly, we observe that the scheme Eq (5.1) has higher accuracy than FDM on
the forward problem. As a further step, we choose ∆t = 1e−4 to obtain satisfactory results in time and
accuracy.

Table 1. Error of two approximation methods of Example 1 for α = (0.3, 0.2, 0.1) .

time step approximation method L2 error L∞ error run time
∆t = 1e − 1 GSM 0.002121690 2.121690e-04 88.254s

FDM 0.010039748 0.001419834 1.341s
∆t = 1e − 2 GSM 4.382322e-05 4.382322e-06 90.043s

FDM 0.0085668512 0.001211535 10.076s
∆t = 1e − 3 GSM 8.535546e-07 8.535546e-08 90.622s

FDM 0.008536392 0.001207228 96.931s
∆t = 1e − 4 GSM 1.913459e-08 1.913459e-09 198.829s

FDM 0.008535798 0.001207144 1348.549s
∆t = 1e − 5 GSM 1.007804e-08 1.007804e-9 10834.238s

FDM 0.008535787 0.001207142 33733.606s
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Figure 2. Error of two approximation methods of Example 1 for α = (0.3, 0.2, 0.1) .

Table 2. Relative error of the GSM for Example 1 for different α with ε =

5%, 1%, 0.5%, 0.1%.

ϵ α er( f , ε)
ε = 5% (0.3, 0.2, 0.1) 0.082339

(0.9, 0.8, 0.7) 0.074294
(0.6, 0.5, 0.3) 0.059221

ε = 1% (0.3, 0.2, 0.1) 0.030306
(0.9, 0.6, 0.3) 0.034862
(0.6, 0.5, 0.3) 0.049156

ε = 0.5% (0.3, 0.2, 0.1) 0.014814
(0.9, 0.8, 0.7) 0.043858
(0.6, 0.5, 0.3) 0.043187

ε = 0.1% (0.3, 0.2, 0.1) 0.013495
(0.9, 0.8, 0.7) 0.010624
(0.6, 0.5, 0.3) 0.013953

On the inverse source problem aspect. In order to avoid the impact of ‘inverse crime’. We take M =
20,∆t = 1e − 4 to solve the direct problem by using the GSM Eq (5.1), and take M = 20,∆t = 1e − 3
to solve the inverse source problem by the scheme Eq (5.7). The related results are shown in (e), (f) of
Figure 3 and Table 2. For the inverse source problem based on FDM. We take C = 100,∆t = 5e − 3.
Numerical result for α2 = (0.3, 0.2, 0.1) with various noise levels ε = 5%, 1%, 0.5%, 0.1% are shown
in (c), (d) of Figure 3 .
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Figure 3. Result of Example 1 with α = (0.3, 0.2, 0.1).
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Figure 4. Result of Example 2 with α = (0.3, 0.2, 0.1).
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Example 2. In this example, let ΩT = (0, 1) × (0,T ), s = 3, q j ≡ 1, a(x) = 1, c(x) = 0. Take a
exact source function p(t) = 1 and f (x) = x(x− 0.4)(x− 0.6)(x− 0.8)(x− 1). We first solve the direct
problem by using the GSM Eq (5.1) to obtain the additional data g(x). Then we use the scheme Eq
(5.7) to solve inverse source problem. Numerical result for α1 = (0.9, 0.8, 0.7), α2 = (0.3, 0.2, 0.1), and
α3 = (0.6, 0.5, 0.3), with various noise levels ε = 1%, 0.5%, 0.1%, 0.01% are presented in (e), (f) of
Figure 4 and Table 3. For the inverse source problem based on FDM. We take C = 100,∆t = 5e − 3.
Numerical result for α2 = (0.3, 0.2, 0.1) with various noise levels ε = 1%, 0.5%, 0.1%, 0.01% are
shown in (c), (d) of Figure 4.

Table 3. Relative error of the GSM for Example 2 for different α with ε =

1%, 0.5%, 0.1%, 0.01%.

ε α er( f , ε)
ε = 1% (0.3, 0.2, 0.1) 0.085368

(0.9, 0.8, 0.7) 0.092676
(0.6, 0.5, 0.3) 0.088179

ε = 0.5% (0.3, 0.2, 0.1) 0.076024
(0.9, 0.8, 0.7) 0.082049
(0.6, 0.5, 0.3) 0.079423

ε = 0.1% (0.3, 0.2, 0.1) 0.073424
(0.9, 0.8, 0.7) 0.0800324
(0.6, 0.5, 0.3) 0.077136

ε = 0.01% (0.3, 0.2, 0.1) 0.0652520
(0.9, 0.8, 0.7) 0.066370
(0.6, 0.5, 0.3) 0.066352

Table 4. Relative error of the GSM for Example 3 for different α with ε =

1%, 0.5%, 0.1%, 0.01%.

ε α er( f , ε)
ε = 1% (0.3, 0.2, 0.1) 0.045909

(0.9, 0.8, 0.7) 0.058139
(0.6, 0.5, 0.3) 0.058454

ε = 0.5% (0.3, 0.2, 0.1) 0.042321
(0.9, 0.8, 0.7) 0.048615
(0.6, 0.5, 0.3) 0.047175

ε = 0.1% (0.3, 0.2, 0.1) 0.040261
(0.9, 0.8, 0.7) 0.048302
(0.6, 0.5, 0.3) 0.046372

ε = 0.01% (0.3, 0.2, 0.1) 0.012787
(0.9, 0.8, 0.7) 0.011516
(0.6, 0.5, 0.3) 0.011305
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Figure 5. Result of Example 3 with α = (0.3, 0.2, 0.1).
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Example 3. In this example, let ΩT = (0, 1) × (0,T ), s = 3, q j ≡ 1, a(x) = 1, c(x) = 0. We
consider a continuous piecewise smooth function.

f (x) =

2x, 0 ≤ x ≤ 0.5,
− 2x + 2, 0.5 ≤ x < 1.

(6.5)

We first solve the direct problem by using the GSM Eq (5.1) to obtain the additional data g(x).
Then we use the scheme Eq (5.7) to solve inverse source problem. Numerical result for
α1 = (0.9, 0.8, 0.7), α2 = (0.3, 0.2, 0.1), and α3 = (0.6, 0.5, 0.3), with various noise levels
ε = 1%, 0.5%, 0.1%, 0.01% are presented in (e), (f) of Figure 5 and Table 4. For the inverse source
problem based on FDM. We take C = 100,∆t = 5e − 3. Numerical result for α2 = (0.3, 0.2, 0.1) with
various noise levels ε = 1%, 0.5%, 0.1%, 0.01% are shown in (c), (d) of Figure 5.

Example 4. Let ΩT = (0, 1) × (0,T ), s = 3, q j ≡ 1, a(x) = x2 + 1, c(x) = −1. Take a exact
source function p(t) = 1 and f (x) = e−x sin(7πx). We first solve the direct problem by using the
GSM Eq (5.1) to obtain the additional data g(x). Then we use the scheme Eq (5.7) to solve inverse
source problem. Numerical result for α1 = (0.9, 0.8, 0.7), α2 = (0.3, 0.2, 0.1), and α3 = (0.6, 0.5, 0.3),
with various noise levels ε = 10%, 5%, 1%, 0.1% are presented in (e), (f) of Figure 6 and Table 5.
For the inverse source problem based on FDM. We take C = 100,∆t = 5e − 3. Numerical result
for α2 = (0.3, 0.2, 0.1) with various noise levels ε = 1%, 0.5%, 0.1%, 0.01% are shown in (c), (d) of
Figure. 6.

Table 5. Relative error of the GSM for Example 4 for different α with ε =

10%, 5%, 1%, 0.1%.

ε α er( f , ε)
ε = 10% (0.3, 0.2, 0.1) 0.100485

(0.9, 0.8, 0.7) 0.111043
(0.6, 0.5, 0.3) 0.107902

ε = 5% (0.3, 0.2, 0.1) 0.093797
(0.9, 0.8, 0.7) 0.068835
(0.6, 0.5, 0.3) 0.064510

ε = 1% (0.3, 0.2, 0.1) 0.072740
(0.9, 0.8, 0.7) 0.073513
(0.6, 0.5, 0.3) 0.072786

ε = 0.1% (0.3, 0.2, 0.1) 0.034704
(0.9, 0.8, 0.7) 0.037078
(0.6, 0.5, 0.3) 0.035328

By observing Figures 3–6, we can see that (a) denotes the graph of the numerical solution of
the forward problem, namely the input data. (b) is the numerical approximation of the inverse source
problem without noisy data. (c) and (d) are results of the inverse source problem based on the FDM
with and without regularization method, and (e) and ( f ) are results of the inverse source problem based
on the GSM under the same case.
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Figure 6. Result of Example 4 with α = (0.3, 0.2, 0.1).
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From Tables 6–9, we show the error levels of two numerical reconstruction method with and without
regularization method. We can find that the numerical results of the inverse problem based on FDM
with regularization method are obviously better than those without regularization method. However,
the numerical results of the inverse problem based on the GSM with and without regularization method
do not show a big difference compared with the numerical results of the FDM. There may even be cases
where regularization method is not required to get a better result. Hence, we can conclude that scheme
Eq (5.7) itself has regularization function compared to the FDM in the inverse source problem. Next,
we explain why scheme Eq (5.7) is not sensitive to noise level.

Table 6. Comparison of relative error of numerical results for Example 1 for α =

(0.3, 0.2, 0.1) with ε = 5%, 1%, 0.5%, 0.1%.

method ε = 5% ε = 1% ε = 0.5% ε = 0.1%
GSM (no regularization) 0.2501 0.0832 0.0290 0.0079
GSM (regularization) 0.0823 0.0303 0.0134 0.0148
FDM (no regularization) 4.3792 0.7871 0.4036 0.0965
FDM (regularization) 0.0301 0.0052 0.0025 6.273e-4

Table 7. Comparison of relative error of numerical results for Example 2 for α =

(0.3, 0.2, 0.1) with ε = 1%, 0.5%, 0.1%, 0.01%.

method ε = 1% ε = 0.5% ε = 0.1% ε = 0.01%
GSM (no regularization) 0.0944 0.0635 0.0119 0.0010
GSM (regularization) 0.0853 0.0760 0.0734 0.0652
FDM (no regularization) 2.6407 1.220 0.2478 0.027
FDM (regularization) 0.2043 0.0520 0.0208 0.0164

Table 8. Comparison of relative error of numerical results for Example 3 for α =

(0.3, 0.2, 0.1) with ε = 1%, 0.5%, 0.1%, 0.01%.

method ε = 1% ε = 0.5% ε = 0.1% ε = 0.01%
GSM (no regularization) 0.4327 0.2868 0.0365 0.0126
GSM (regularization) 0.0459 0.0423 0.0402 0.0127
FDM (no regularization) 11.808 5.0791 1.4387 0.1025
FDM (regularization) 0.0353 0.0239 0.0116 0.0102
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Table 9. Comparison of relative error of numerical results for Example 4 for α =

(0.3, 0.2, 0.1) with ε = 10%, 5%, 1%, 0.1%.

method ε = 10% ε = 5% ε = 1% ε = 0.1%
GSM (no regularization) 0.2924 0.0878 0.0425 0.0233
GSM (regularization) 0.1004 0.0937 0.0727 0.0347
FDM (no regularization) 2.79904 1.1476 0.2951 0.1435
FDM (regularization) 0.1435 0.0846 0.0181 0.0014

In Table 10, we show norm of matrices G, A−1 and A−1G for Example 1. Obviously, ∥A−1G∥2 is
small and ∥A−1∥2 has a reasonable size. Therefore numerical solutions are not sensitive with respect to
the perturbation in the initial data. But, In Table 11, The numerical format of FDM is sensitive to the
perturbation in the initial datal. Therefore, GSM has better anti-interference than FDM. On the other
hand, in Tables 12 and 13, We can find that although GSM has better anti-interference than FMD, it
can not completely get rid of the regularization method when the unknown source has less regularity
and the meased data has a high noise level.

Table 10. GSM of ill-posedness for Example 1 for different ε.

ε ∥G∥2 ∥A−1∥2 ∥A−1G∥2
0.05 0.356708 86.11457 0.369712
0.01 0.360401 86.11457 0.360933
0.005 0.360111 86.11457 0.360085
0.001 0.360341 86.11457 0.360345
0.0001 0.360348 86.11457 0.360348

Table 11. FDM of ill-posedness for Example 1 for different ε.

ε ∥D∥2 ∥Z−1∥2 ∥Z−1D∥2
0.05 7.0881 2.322e+02 27.8227
0.01 7.0743 2.322e+02 8.8667
0.005 7.0809 2.322e+02 7.5734
0.001 7.0804 2.322e+02 7.0929
0.0001 7.0796 2.322e+02 7.0712

Table 12. GSM of ill-posedness for Example 3 for different ε.

ε ∥G∥2 ∥A−1∥2 ∥A−1G∥2
0.01 0.013187 1.5104e+04 0.161897
0.005 0.013226 1.5104e+04 0.164711
0.001 0.013227 1.5104e+04 0.159407
0.0001 0.013228 1.5104e+04 0.159405
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Table 13. FDM of ill-posedness for Example 3 for different ε.

ε ∥D∥2 ∥Z−1∥2 ∥Z−1D∥2
0.01 0.459280 3.9992e+04 76.739424
0.005 0.459857 3.9992e+04 27.761398
0.001 0.459380 3.9992e+04 7.957420
0.0001 0.459332 3.9992e+04 5.798087

7. Conclusions

In this paper, we first obtain a high accuracy numerical solution by using the GSM, and give the error
estimates between exact solution and semi-discrete solution as well as full-discrete one, and compare
with the FDM. It is indicate that our method has a better accuracy. Secondly, the GSM is extended to
solve the inverse source problem. Moreover, we find that this method can effectively reduce the ill-
posednes of inverse source problem compared with the traditional FDM. Thus the spectral method itself
can play a regularization role. It should be mentioned that the estimates given in the paper are also valid
in two and three dimensional cases. In the following work, we will continue to try to optimize the GSM
numerical scheme so that it can better play the role of regularization method. For example, replacing
the original basis functions with smooth periodic functions or equidistant trigonometric functions to
avoid Runge phenomenon.

Acknowledgments

This work is supported by the NSF of China (grant no. 12201502), the Youth Science and
Technology Fund of Gansu Province (grant no. 20JR10RA099), the Innovation Capacity
Improvement Project for Colleges and Universities of Gansu Province (grant no. 2020B-088) and the
Innovation star of Gansu Province (grant no. 2022CXZX-324).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics
approach, Phys. Rev. E, 61 (2000), 6308–6311. https://doi.org/10.1016/s0370-1573(00)00070-3

2. B. Berkowitz, H. Scher, S. Silliman Anomalous transport in laboratory-scale,heterogeneous porous
media, Water Resour. Res., 36 (2000), 149–158. https://doi.org/10.1029/2000wr900026

3. F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to
mathematical models, Singapore: World Scientific, 2010. https://doi.org/10.1142/p614

4. Y. Hatano, N. Hatano, Dispersive transport of ions in colum experiments: an explanation of long-
tailed profiles, Water Resour. Res., 34 (1998), 1027–1033. https://doi.org/10.1029/98WR00214

Networks and Heterogeneous Media Volume 18, Issue 1, 212–243.

http://dx.doi.org/https://doi.org/10.1016/s0370-1573(00)00070-3
http://dx.doi.org/https://doi.org/10.1029/2000wr900026
http://dx.doi.org/https://doi.org/10.1142/p614
http://dx.doi.org/https://doi.org/10.1029/98WR00214


241

5. S. Benson, M. B. Meerschaert, Fracral mobile/immobile solute transport, Water Resour. Res., 39
(2003), 1–12. https://doi.org/2003WR002141

6. S. Rina, D. A. Benson, M. M. Mark, B. Boris, Fractal mobile/immobile solute transport, Water
Resour. Res., 39 (2003), 1296. https://doi.org/10.1029/2003WR002141

7. R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal
geometry, Phys. Stat. Sol. B, 133 (1986), 425–430. https://doi.org/10.1002/pssb.2221330150

8. A. H. Bhrawy, M. A. Zaky, Highly accurate numerical schemes for multi-dimensional space
variable-order fractional Schrödinger equations, Comput. Math. Appl., 73 (2017), 1100–1117.
https://doi.org/10.1016/j.camwa.2016.11.019

9. Z. Y. Li, Y. K. Liu, M. Yamamoto, Initial-boundary value problems for multi-term time-fractional
diffusion equations with positive constant coefficients, Appl. Math. Comput., 257 (2015), 381–397.
https://doi.org/10.1016/j.amc.2014.11.073

10. Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-
fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538–548.
https://doi.org/10.1016/j.jmaa.2010.08.048

11. X. L. Ding, J. J. Nieto, Analytical solutions for multi-term time-space fractional partial
differential equations with nonlocal damping terms, Fract. Calc. Appl. Anal., 21 (2018), 312–335.
https://doi.org/10.1016/j.cnsns.2018.05.022

12. C. S. Sin, G. I. Ri, M. C. Kim, Analytical solutions to multi-term time-space Caputo-Riesz
fractional diffusion equations on an infinite domain, Adv. Difference Equ., 1 (2017), 306.
https://doi.org/10.1186/s13662-017-1369-x

13. G. S. Li, C. L. Sun, X. Z. Jia, D. H. Du, Numerical solution to the multi-term time fractional
diffusion equation in a finite domain, Numer. Math. Theory Methods Appl., 9 (2016), 337–357.
https://doi.org/10.4208/nmtma.2016.y13024

14. M. R. Cui, Finite difference schemes for the two-dimensional multi-term time-fractional
diffusion equations with variable coefficients, Comput. Appl. Math., 40 (2021), 167.
https://doi.org/10.1007/s40314-021-01551-11

15. Y. L. Zhao, P. Zhu, X. M. Gu, A second-order accurate implicit difference scheme for time
fractional reaction-diffusion equation with variable coefficients and time drift term, East Asian
J. Appl. Math., 9 (2019), 723–754. https://doi.org/10.4208/eajam.200618.250319

16. Z. Y. Li, O. Y. Imanuvilov, M. Yamamoto, Uniqueness in inverse boundary value problems for
fractional diffusion equations, Inverse Problems, 32 (2016), 015004. https://doi.org/10.1088/0266-
5611/32/1/015004

17. W. P. Bu, S. Shu, X. Q. Yue, A. G. Xiao, W. Zeng, Space-time finite element method for the multi-
term time-space fractional diffusion equation on a two-dimensional domain, Comput. Math. Appl.,
75 (2019), 1367–1379. https://doi.org/10.1016/j.camwa.2018.11.033

18. J. Zhou, D. Xu, H. B. Chen, A weak Galerkin finite element method for multi-
term time-fractional diffusion equations, East Asian J. Appl. Math., 8 (2018), 181–193.
https://doi.org/10.4208/eajam.260617.151117a

Networks and Heterogeneous Media Volume 18, Issue 1, 212–243.

http://dx.doi.org/https://doi.org/2003WR002141
http://dx.doi.org/https://doi.org/10.1029/2003WR002141
http://dx.doi.org/https://doi.org/10.1002/pssb.2221330150
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2016.11.019
http://dx.doi.org/https://doi.org/10.1016/j.amc.2014.11.073
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2010.08.048
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2018.05.022
http://dx.doi.org/https://doi.org/10.1186/s13662-017-1369-x
http://dx.doi.org/https://doi.org/10.4208/nmtma.2016.y13024
http://dx.doi.org/https://doi.org/10.1007/s40314-021-01551-11
http://dx.doi.org/https://doi.org/10.4208/eajam.200618.250319
http://dx.doi.org/https://doi.org/10.1088/0266-5611/32/1/015004
http://dx.doi.org/https://doi.org/10.1088/0266-5611/32/1/015004
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2018.11.033
http://dx.doi.org/https://doi.org/10.4208/eajam.260617.151117a


242

19. L. L. Wei, Stability and convergence of a fully discrete local discontinuous Galerkin method
for multi-term time fractional diffusion equations, Numer. Algorithms, 76 (2017), 695–707.
https://doi.org/10.1007/s11075-017-0277-1

20. S. M. Guo, L. Q. Mei, Z. Q. Zhang, Y. T. Jiang, Finite difference/spectral-Galerkin method for a
two-dimensional distributed-order time-space fractional reaction-diffusion equation, Appl. Math.
Lett., 85 (2018), 157–163. https://doi.org/10.1016/j.aml.2018.06.005

21. R. M. Zheng, F. W. Liu, X. Y. Jiang, A Legendre spectral method on graded meshes for the two-
dimensional multi-term time-fractional diffusion equation with non-smooth solutions, Appl. Math.
Lett., 104 (2020), 106247. https://doi.org/10.1016/j.aml.2020.106247

22. Y. Q. Liu, X. L. Yin, F. W. Liu, X. Y. Xin, Y. F. Shen, L. B. Feng, An alternating
direction implicit Legendre spectral method for simulating a 2D multi-term time-fractional
Oldroyd-B fluid type diffusion equation, Comput. Math. Appl., 113 (2022), 160–173.
https://doi.org/10.1016/j.camwa.2022.03.020

23. M. Zheng, F. Liu, V. Anh, I. Turner, A high-order spectral method for the multi-
term time-fractional diffusion equations, Appl. Math. Model., 40 (2016), 4970–4985.
https://doi.org/10.1016/j.apm.2015.12.011

24. M. A. Zaky, A Legendre spectral quadrature tau method for the multi-term time-fractional
diffusion equations, Comput. Appl. Math., 37 (2018), 3525–3538. https://doi.org/10.1007/S40314-
017-0530-1

25. Y. Zhang, X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Probl, 27
(2011), 538–548. https://doi.org/10.1088/0266-5611/27/3/035010

26. T. Wei, L. L. Sun, Y. S. Li, Uniqueness for an inverse space-dependent source term in a
multi-dimensional time-fractional diffusion equation, Appl. Math. Lett., 61 (2016), 108–113.
https://doi.org/10.1016/j.aml.2016.05.004

27. X. B. Yan, T. Wei, Determine a space-dependent source term in a time fractional diffusion-wave
equation, Acta Appl. Math., 165 (2020), 163–181. https://doi.org/10.1007/s10440-019-00248-2

28. L. L. Sun, X. B. Yan, K. Liao, Simultaneous inversion of a fractional order and a space
source term in an anomalous diffusion model, J Inverse Ill Posed Probl, 30 (2022), 791–805.
https://doi.org/10.1515/jiip-2021-0027

29. S. Yeganeh, R. Mokhtari, J. S. Hesthaven, Space-dependent source determination in a time-
fractional diffusion equation using a local discontinuous Galerkin method, BIT Numer. Math., 57
(2017), 685–707. https://doi.org/10.1007/s10543-017-0648-y

30. D. J. Jiang, Z. Y. Li, Y. K. Liu, M. Yamamoto, Weak unique continuation property and a related
inverse source problem for time-fractional diffusion-advection equations, Inverse Problems, 33
(2017), 055013. https://doi.org/10.1088/1361-6420/aa58d1

31. Y. S. Li, L. L. Sun, Z. Q. Zhang, T. Wei, Identification of the time-dependent source term
in a multi-term time-fractional diffusion equation, Numer. Algorithms, 82 (2019), 1279–1301.
https://doi.org/10.1007/s11075-019-00654-5

32. L. L. Sun, X. B. Yan, An inverse source problem for distributed order time-fractional diffusion
equation, Adv. Math. Phys., 2020 (2020), 1825235. https://doi.org/10.1155/2020/1825235

Networks and Heterogeneous Media Volume 18, Issue 1, 212–243.

http://dx.doi.org/https://doi.org/10.1007/s11075-017-0277-1
http://dx.doi.org/https://doi.org/10.1016/j.aml.2018.06.005
http://dx.doi.org/https://doi.org/10.1016/j.aml.2020.106247
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2022.03.020
http://dx.doi.org/https://doi.org/10.1016/j.apm.2015.12.011
http://dx.doi.org/https://doi.org/10.1007/S40314-017-0530-1
http://dx.doi.org/https://doi.org/10.1007/S40314-017-0530-1
http://dx.doi.org/https://doi.org/10.1088/0266-5611/27/3/035010
http://dx.doi.org/https://doi.org/10.1016/j.aml.2016.05.004
http://dx.doi.org/https://doi.org/10.1007/s10440-019-00248-2
http://dx.doi.org/https://doi.org/10.1515/jiip-2021-0027
http://dx.doi.org/https://doi.org/10.1007/s10543-017-0648-y
http://dx.doi.org/https://doi.org/10.1088/1361-6420/aa58d1
http://dx.doi.org/https://doi.org/10.1007/s11075-019-00654-5
http://dx.doi.org/https://doi.org/10.1155/2020/1825235


243

33. S. A. Malik, A. Ilyas, A. Samreen, Simultaneous determination of a source term and diffusion
concentration for a multi-term space-time fractional diffusion equation, Math. Model. Anal., 26
(2021), 411–431. https://doi.org/10.3846/mma.2021.11911

34. L. L. Sun, Y. S. Li, Y. Zhang, Simultaneous inversion of the potential term and the fractional
orders in a multi-term time-fractional diffusion equation, Inverse Probl, 37 (2021), 055007.
https://doi.org/10.1088/1361-6420/abf162

35. Y. H. Lin, H. Y. Liu, X. Liu, S. Zhang, Simultaneous recoveries for semilinear parabolic systems,
Inverse Probl, 38 (2022), 115006. https://doi.org/10.1088/1361-6420/ac91ee

36. H. Y. Liu, G. Uhlmann, Determining both sound speed and internal source in thermo-and
photo-acoustic tomography, Inverse Probl, 31 (2015), 105005. https://doi.org/10.1088/0266-
5611/31/10/105005

37. X. L. Cao, H. Y. Liu, Determining a fractional Helmholtz equation with unknown
source and scattering potential, Commun. Math. Sci., 17 (2019), 1861–1876.
https://doi.org/110.4310/CMS.2019.v17.n7.a5

38. L. L. Sun, Y. Zhang, T. Wei, Recovering the time-dependent potential function in a
multi-term time-fractional diffusion equation, Appl. Numer. Math., 135 (2019), 228–245.
https://doi.org/10.1016/j.apnum.2018.09.001

39. E. Bazhlekova, Properties of the fundamental and the impulse-response solutions of multi-term
fractional differential equations, Complex Analysis and Applications, 2 (2013), 55–64.

40. C. L. Sun, G. S. Li, X. Z. Jia, Numerical inversion for the initial distribution in the multi-term time-
fractional diffusion equation using final observations, Adv. Appl. Math. Mech., 9 (2017), 1525–
1546. https://doi.org/10.4208/aamm.OA-2016-0170

41. Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion
equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001

42. C. Bernardi, Y. Maday, Approximations spectrales de problèmes Aux Limites Elliptiques, Paris:
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