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Abstract: A triangular system of conservation laws with discontinuous flux that models the one-
dimensional flow of two disperse phases through a continuous one is formulated. The triangularity
arises from the distinction between a primary and a secondary disperse phase, where the movement
of the primary disperse phase does not depend on the local volume fraction of the secondary one. A
particular application is the movement of aggregate bubbles and solid particles in flotation columns
under feed and discharge operations. This model is formulated under the assumption of a variable
cross-sectional area. A monotone numerical scheme to approximate solutions to this model is
presented. The scheme is supported by three partial theoretical arguments. Firstly, it is proved that
it satisfies an invariant-region property, i.e., the approximate volume fractions of the three phases,
and their sum, stay between zero and one. Secondly, under the assumption of flow in a column with
constant cross-sectional area it is shown that the scheme for the primary disperse phase converges
to a suitably defined entropy solution. Thirdly, under the additional assumption of absence of flux
discontinuities it is further demonstrated, by invoking arguments of compensated compactness, that
the scheme for the secondary disperse phase converges to a weak solution of the corresponding
conservation law. Numerical examples along with estimations of numerical error and convergence
rates are presented for counter-current and co-current flows of the two disperse phases.

Keywords: Conservation law; discontinuous flux; triangular hyperbolic system; three-phase flow;
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1. Introduction

1.1. Scope

It is the purpose of this work to introduce, and in part analyze, a numerical scheme for a system of
conservation laws with source terms of the type

¢ Jg.z0 |\~ ¢F,k(t>) B
9, (A(z) ( ¢))+61 (A(z) (F( bt t))) = ;Qm(t) ( iy 96~ a0 (1.1)

where ¢ is time, z is spatial position, and ¢ and ¢ are the volume fractions of the primary and secondary
disperse phases, respectively. Both disperse phases move within the continuous phase of the one-
dimensional flow. We let A(z) denote a variable cross-sectional area. The flux functions J and F are
discontinuous across the positions z = zy < zg; < -+ < Zrg < Zg, and due to constitutive assumptions
of the model, are nonlinear functions of ¢ and ¢. The right-hand side of Eq (1.1) describes singular
sources located at z = zgx, K = 1,...,K, and is composed of given functions. It is assumed that
QOrx(?) 1s the volumetric bulk flow of the mixture (of the continuous and two disperse phases) injected
at 7 = Zpy, and that ¢p(7) and Yg,(f) are the volume fractions of the primary and secondary disperse
phases in the feed flow, respectively. The system Eq (1.1) is posed on Iy := R X (0, T) together with
initial conditions

$(z,0) = go(z) forall z € R, (1.2a)
W(z,0) = Yo(z) forallz€R, (1.2b)
where we assume that
0<¢ox) <1, 0<iyop(z)<1—¢o(z) forallzeR (1.3)
along with
TV(gy) < 00, TV(Who) < . (1.4)

Likewise, we assume that ¢g; and g are piecewise continuous functions of bounded variation with a
finite number of discontinuities and that they satisfy the bounds

0<ri®) <1, O<ypp(t)<1—¢pu(t) forallk=1,...,Kandtel[0,T]. (1.5)

(In later parts of the analysis we will assume that these functions and the bulk flows Qg are constants.)
If 6 denotes the volume fraction of the continuous phase, then we assume that

0<pu,0<1; ¢p+y+6=1, (1.6)

which motivates assumptions Eq (1.3) and Eq (1.5). (Of course, satisfaction of Eq (1.6) by exact or
numerical solutions of Eq (1.1), Eq (1.2) on I1; needs to be proved.)
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Figure 1. Schematic of a one-dimensional column with K = 3 inlets and K + 1 = 4 zones,
where Qy is the downwards volumetric outflow, O ; is the volumetric flow at the inlet zg j, for
each j = 1,..., K, and Qk is the upwards volumetric outflow. Note that the distances between
the inlets/outlets are arbitrary and the cross-sectional area A = A(z) may vary piecewise
continuously (although the figure shows a piecewise constant example).

A specific application that gives rise to the system Eq (1.1) is a model of a flotation column [8, 9],
where ¢ denotes the volume fraction of bubbles and y that of solid particles (Figure 1). The bottom of
the column has the coordinate zy (the underflow) and the top zg (the effluent). The primary disperse
phase of bubbles — specifically, aggregate bubbles, to which hydrophobic valuable particles (minerals)
are attached — is assumed to flow through the suspension of solid particles and liquid independently
of the volume fraction of solids. The secondary disperse phase consists of solid hydrophilic particles
(ore) that move in the remaining space outside the bubbles. If the solid particles of the secondary
disperse phase have a density larger than that of the fluid, the two disperse phases undergo counter-
current, and otherwise, co-current flow. The distinction between primary and secondary disperse phase
also becomes evident in the flux functions: the flux J of the primary disperse phase depends on ¢
only (besides z and ), while that of the secondary disperse phase, ¥, depends both on ¢ and . Thus,
the system Eq (1.1) is triangular; however, it is generally non-strictly hyperbolic; see [9], where a
counter-current model of the form Eq (1.1) is studied.

The main contribution of this work is an easily implemented explicit monotone numerical scheme
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for Eq (1.1). To properly address the theoretical support we are able to provide for this scheme, we
refer to the complete model Eq (1.1), with all assumptions stated so far in effect, as “Model 17, and the
corresponding scheme (that handles Model 1) as “Scheme 1”. Additional properties of Scheme 1 can
be established for two successively simplified versions of Model 1, named “Model 2” and “Model 37,
for which the corresponding versions of Scheme 1 are addressed as “Scheme 2” and “Scheme 37,
respectively.

The scheme is supported by three partial theoretical arguments. Firstly, it is proved that Scheme 1
satisfies an invariant-region property, i.e., the approximate volume fractions satisfy a discrete analogue
of Eq (1.6) at every point. Secondly, the assumption of a constant cross-sectional area, i.e.,

A = constant, A >0, (1.7)

and time-independent feed and volume rates defines Model 2, and it is shown that the corresponding
scheme for the primary disperse phase (the “¢-scheme” of Scheme 2; in short, “¢-Scheme 2”)
converges to a suitably defined entropy solution. Thirdly, we additionally assume that there are no flux
discontinuities, so that Model 2 is reduced to the triangular system of conservation laws (“Model 3”)

o¢ +0.J(¢) =0, (1.8a)
oW +0.F(p, ) =0, (2,1 €lly, (1.8b)

where J and F are z- and t-independent versions of the fluxes arising in Eq (1.1) and Eq (1.8) is
equipped with the initial conditions Eq (1.2), where assumptions Eq (1.3) remain in effect. The
corresponding reduced version of Scheme 2 that handles Model 3 is called “Scheme 3.” Under these
additional assumptions, we may invoke arguments of compensated compactness to prove that the
scheme for the secondary disperse phase (the “y-Scheme 37) converges to a weak solution of the
corresponding conservation law Eq (1.8b). Summarizing all arguments, we prove that Scheme 3
converges to a weak solution of the system Eq (1.8) in the sense of the following definition.

Definition 1.1. The pair (¢, V) is called a weak solution of the initial value problem Eq (1.8), Eq (1.2)
if
(1) The functions ¢ and ¥ belong to L™ (I17).
(i1) The functions ¢ and ¢ satisfy Eq (1.8), Eq (1.2) in the sense of distributions on Iy, that is, for
each smooth test function { with compact support in Iy, the following identities hold:

f (0, + J($)0.{) dzdt + f ¢o(z)dz =0, (1.9)
Iy R

f WL + F(e,w)d.0)dzdr + f Yo(2)dz = 0. (1.10)
117 R

(i11) The function ¢ is an entropy solution of the single conservation law Eq (1.8a), that is, for each

smooth and nonnegative test function { with compact support in Iy, the following inequality
holds for all c € R:

f f (16 — cldnd + sgn(d — (I (@) - J(k)3.) dzdr + f |#o(2) — ¢| dz > 0. (1.11)
IIy R

Numerical experiments illustrate that Scheme 1 for the full model Eq (1.1) (Model 1), approximates
expected solution behaviour for counter-current and co-current flows and that approximate numerical
errors tend to zero as the mesh is refined.
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1.2. Related work

The system Eq (1.1) models the evolution of the primary unknown ¢ independently of the secondary
unknown . One application of such triangular systems is the process of column flotation, which is
a solid-liquid separation process used in mineral processing, environmental and chemical engineering
[10, 11, 27, 28, 42, 45]. The model Eq (1.1) restricted to three-phase counter-current flow in a flotation
column was originally proposed in [9]. Its nonlinear constitutive assumptions come from the drift-
flux theory (used to analyze the bubbly and froth regions [41, 50, 51]) and the solids-flux theory (for
particles in a liquid [24, 25, 38]). In [9], the construction of steady-state solutions is detailed, where
conservation laws with discontinuous flux are a key ingredient with a specific entropy condition [2, 22,
29]. The most interesting desired steady states are classified in [9] and visualized in graphical so-called
operating charts that show how the control variables Qu, Or := Qg (feed mixture of gas, solids and
water) and Ow := Or, (feed washwater) should be chosen.

The mathematical and numerical difficulties associated with Eq (1.1) are twofold; namely, one has
to deal with discontinuities of the fluxes with respect to z, as well as with the definition of the
governing model by a (triangular) system of conservation laws (in contrast to otherwise similar,
known scalar two-phase models arising in flotation or sedimentation [8, 13, 22, 23]). The well-known
difficulty of conservation laws with discontinuous flux lies in the appropriate formulation of
admissibility conditions of jumps of the solution across discontinuities of the flux such that the
resulting concept of weak (discontinuous) solutions supplied with an entropy condition would admit a
uniqueness result. There exist many criteria for selecting unique solutions (e.g., [1, 22]), each of
which corresponds to a particular physical reality and relies on specific assumptions on the fluxes
adjacent to a discontinuity. A unified treatment of this problem is advanced in [2]. While scalar
conservation laws with discontinuous flux have been studied widely, only a few analyses of systems
with discontinuous flux are available (e.g., [16, 47]). That said, its triangular nature makes Eq (1.1)
potentially easier to treat than a full 2 x 2 system of conservation laws (where the flux of each
component would depend on both unknowns).

The triangular system with discontinuous flux studied in [9] was solved numerically with a
staggered-grid scheme that utilizes the triangular structure of Eq (1.1). Such a semi-Godunov scheme
for general triangular hyperbolic systems is one of the two suggested schemes by Karlsen et
al. [32, 33], who proved convergence of the numerical solutions under certain assumptions on the flux
functions. We here propose a simpler numerical scheme (on a single grid) that is easier to implement
and analyze. The analysis (of the scheme proposed under simplifying assumptions) relies on the
aligned version of the scheme introduced in [33] and in particular on the convergence analysis of an
Engquist-Osher scheme for multi-dimensional triangular system of conservation laws by Coclite et al.
[18]. (The proof of convergence done in [18] is motivated by the more easily proven convergence of a
vanishing viscosity approximation for the same model, see [17].) These analyses, and the present
treatment for the reduced model Eq (1.8), rely on compactness techniques that use discrete entropy
inequalities and the compensated compactness framework.

Further applications and results on the analysis of triangular systems include two-component
chromatography [3]. Furthermore, polymer flooding in oil recovery is modelled by a 2 X 2 system
[31], which can be converted to a triangular system in Lagrange coordinates [49]. In [20, 40, 48], the
authors study the delta shock wave formation in solutions of triangular system of conservation laws
from the so-called generalized pressureless gas dynamics model. Bressan et al. [5] established the
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existence and uniqueness of vanishing viscosity solutions for scalar conservation laws for a Cauchy
problem and their results can be applied to a triangular system under suitable assumptions. The
results of Karlsen et al. [32, 33] for general triangular systems can be applied to models of
three-phase flows in porous media, for example, in oil recovery.

1.3. Outline of the paper

The remainder of this paper is organized as follows. In Section 2, the model of [9] of
gas-solid-liquid three-phase flow in a flotation column from is written in a slightly more general form.
Starting from the balance equations of the three phases we outline the derivation of the algebraic
forms of the fluxes J(¢,z,t) and F(¢,y,z,1) arising in the governing PDE system Eq (1.1). In
Section 3 the numerical method (Scheme 1) proposed for the approximation of solutions to the initial
value problem Eq (1.1), Eq (1.2) (Model 1) is detailed, where computational effort is essentially
reduced to the interior of the vessel (cf. Figure 1). After outlining the discretization in Section 3.1, we
specify the numerical fluxes and update formulas for the primary and secondary disperse phases in
Sections 3.2 and 3.3, respectively. Both formulas are adapted to the particular algebraic form of the
fluxes J(¢,z,t) and F(¢,¥,z,¢) and involve upwind discretizations, a particular monotone
discretization for “concentration times velocity” fluxes from [6], and the Engquist-Osher numerical
flux [26]. We then prove in Section 3.4 that Scheme 1 is monotone and that the numerical solutions
satisfy a so-called invariant-region property (Theorems 3.1 and 3.2), that is, a discrete analogue of Eq
(1.6), provided, of course, that the initial data satisfy Eq (1.3) and the time step and spatial meshwidth
satisfy a CFL condition. Section 4 provides further partial results of the convergence analysis of the
numerical scheme based on additional simplifying assumptions, namely those of a constant
cross-sectional area A and constant bulk and feed flows Qu, Ogx, ¢rx and Ygyi (K = 1,...,K). Thus,
the scheme under discussion is Scheme 2. We can then prove convergence of the ¢-Scheme 2 (the one
that discretizes the ¢-component of the governing PDE; Section 4.1) and L' Lipschitz continuity of
the y-Scheme 2 (Section 4.2). If in addition all z-dependent flux discontinuities are removed, so that
the governing PDE system is Eq (1.8) (Model 3) and the scheme reduces to Scheme 3, we may apply
compensated compactness techniques to prove convergence of the y-scheme (Section 5). For the
simplified problems, the initial conditions Eq (1.2) and assumptions Eq (1.3) and Eq (1.5) are
imposed, so Theorems 3.1 and 3.2 remain in effect. While in that case the convergence of (the
monotone) ¢-Scheme 3 to an entropy solution of Eq (1.8a) follows by standard arguments (for
monotone schemes), the principal result of Section 5 is convergence of -Scheme 3 to a weak
solution of Eq (1.8b) (Lemma 5.5 and Theorem 5.1). Estimations of errors and convergence order of
the numerical method can be found in Section 6.1. Some numerical examples are presented in
Section 6, starting with preliminaries (Section 6.1). First, in Section 6.3, we use a smooth solution to
estimate the order of convergence. Later on, we present two numerical examples that illustrate the
model predictions for counter-current (Section 6.4) and co-current flows (Sections 6.5 and 6.6).
Finally, some conclusions are drawn in Section 7, and Appendix A contains the proofs of Lemma 5.5
and Theorem 5.1.
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2. Three-phase flow model

The density of each phase is assumed constant, so the conservation of mass can be expressed by the
balance equations (v4, v, and v, are the phase velocities)

K

(A@)P) + 0(AQDPvs) = )| OrsDPra()5( = 21), @.1)
k=1
K

(A@W) + 0(A@vy) = D | OrsDrrs(D(z = 251, (2.2)
k=1
K

0/(A(2)0) + 0.(A(2)0ve) = Z Or (D1 = Prr(®) — Yra())(z = zr 1), (2.3)
k=1

where the right-hand sides contain Dirac symbols, the feed volume fractions ¢g; and Y of the disperse
phases, and the corresponding volume fraction 1 — ¢g(#) — Y (?) of the continuous phase, at the inlet
located at z = zpx, k= 1,..., K.

We define the volume-average velocity, or bulk velocity, of the mixture by

q = vy + vy + Ovy,

and replace Eq (2.3) by the sum of Eqgs (2.1)—(2.3), which is

K
3(A@)q) = ) OrsD0(z — 254, (2.4)
k=1

hence ¢ varies with z due to the K inlets and the variable cross-sectional area. We define Q(z, ) :=
A(z)q(z, t) and integrate Eq (2.4) from any point zy < zy to obtain

K
0(z,1) = Q0 1) + ) QraltYH(z = zr),
k=1

where H(-) is the Heaviside function. If the volumetric underflow Qu(?) is given, then Q(z,t) = —Qu(?)
for z < zy, and

K
0@ 1) = =Qu() + ) OrsHE — 26) = —QuD) + > Oral0).
k=1

kizp >z

This continuity equation of the mixture replaces Eq (2.3). Next, Eq (2.1) and Eq (2.2) are rewritten in
terms of ¢ and two constitutive functions. We refer to the continuous phase and the secondary disperse
phase as “secondary mixture”, and define the volume fraction of the secondary disperse phase within
the secondary mixture as

4

. _ ¥
(p'_w+0_—1—¢ (when ¢ < 1),
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where 0 < ¢ < 1 by Eq (1.6). The volume-average velocity of the secondary mixture is

._wv¢+9v9_ 1-¢—y
1-¢

==yt
qs w Iy PVy
It is then assumed that within [zy, zg), the relative velocity vy := vy — g, of the primary disperse
phase with respect to the secondary mixture is a given constitutive function ¥4,(¢), while outside that
interval, both phases move at the same velocity, so their velocity difference is zero. Thus, in terms of
the characteristic function

Ve = @vy + (1 — @)ve.

1 for z € [zu, z8),
0 forz ¢ [zu,zr),

Y(Z) ::X[ZU,ZE)(Z) = {

this assumption can be expressed as vy = Y(2)Vys(¢p). Within [zy,zg), the relative velocity of the
secondary disperse phase with respect to the continuous phase v,y := v, — vy is supposed to be a given
function ¥y of ¢, that is, vy = Y(2)Vye(e).

The definitions of all velocities imply the identities

dvy = ¢q + v(2)P(1 — P)Vys(d),
Yvy =Yg + y@QU((1 — @)Vye(p) — digs(¢))

for the (unweighted) fluxes ¢v, and yv, arising in Eq (2.1) and Eq (2.2), respectively. It is then useful
to introduce the velocity and flux functions

(2.5)

W(@) := (1 - d)gs(d),  V(p) := ol — @)Vyele), (2.6)

J(@) == oW (), (@) = ¢V(p),
where o = =1 is chosen depending on the application such that V(¢), f(¢) > 0 (for standard
convenience, e.g., when plotting their graphs); o = 1 for co-current flows (upwards) and o = —1 for

counter-current flows. The velocity and flux of the secondary disperse phase with respect to z are
therefore oV (¢) and o f(¢), respectively. We assume that W', V' < 0 and V(1) = W(1) = 0, as well as
that

f has one local maximum w and one inflection point ®, 0<w < ® < 1. 2.7)

Combining Eq (2.5) and Eq (2.6) we obtain the expressions
Pvy = ¢q + y(2)pW(P) =: J(,2,1), (2.8)
Yvy = (1 = d)pg + y(((1 = P V(p) — ppW(¢)) =: F(¢, ¢, 2, 1)
for the total fluxes of Eq (2.1) and Eq (2.2). For ¢ < 1, we define the final flux function
v ) YW (@)
1-¢ 1-¢ )’

whereas for ¢ = 1, we set F(1,,z,1) := 0 (since F(1,¢,z,t) = 0 for all ¢ € [0, 1]). Substituting Eq
(2.8) and Eq (2.9) into Eq (2.1) and Eq (2.2), respectively, we obtain the final governing PDE system Eq
(1.1).

F(p,y,z2,1) = F(qb, %,z, t) =Yg+ 7(Z)(¢/0’V( (2.9)
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[lustrations and numerical examples are based on the expressions

W(@) = Viemp(1 =) for0 < ¢ <1,n, > 1, (2.10)
V(P) = Vierms(1 =) for0 < <1,n,>1 (2.11)

(see [46]), where Vi p and viems are the terminal velocities of a single particle of the primary and
secondary disperse phases, respectively, in an unbounded fluid. We set n, = 3.2, viemp = 2.7cm/s,
ng = 2.5, and v = 0.5cm/s along with o = —1. These values are used in Applications 1 and 2 in
Section 6. The resulting nonlinearities of J(¢, z, ) and F (¢, ¥, 7, t) in the different zones of the column
are illustrated in [52, Figure 3.2].

3. Numerical method

3.1. Discretization and CFL condition

The discretization of the model is based on the triangularity of the system of conservation laws Eq
(1.1). The numerical fluxes for ¢ are based on the particular treatment of conservation laws with fluxes
having an explicit “concentration times velocity” structure [6]. In each time step, an approximate
solution ¢ of the first PDE of Eq (1.1) is obtained and used as a given piecewise constant function in
space and time in the second PDE of Eq (1.1), which is updated accordingly.

P
P ; TZN = Zend
N—1/2
effluent - - - -~ - 5 1zn_1
level zg N-3/2 1
P Zi414 ,
b "%;+1)~;-1/2
feed level zp o _ | - | __ __ | i
oo : Giy1j2
H i i 4 +1/ <"‘7,_m+5[2
feed level zpo | _ ,;I_\ Ormss2
! : T, 2L Foms1/2
: : : 1 Dim—1/2
Pim—3y:
feed level zpy | || =
' : 1 Gi1yp L
: : : Pli—Dym+5/2
6 T “"E_,—l)m+:</2
underflow | 3/2 1z | [Fitms/2
level z b1/2 '
U / L zo = 0

Figure 2. (Left) Discretization of ¢ and ¢ in the application to flotation, where the height of
the vessel is H = zg — zy, there are K inlets, and the cross-sectional area A(z) has two values
separated by a discontinuity at z = zgy; cf. the examples in Sections 6.4 and 6.5, (right)
enlarged view illustrating cell division for error computations when Al is the discretization
of the reference solution (see Section 6.1).

We define a computational domain [0, ze,q) (to be used for the error calculation; see Section 6.1)
consisting of N cells by covering the vessel with N — 2 cells and placing one cell each below and
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above; see Figure 2 (left). This setup, with a finite spatial domain, is introduced for practical reasons
and is the minimal spatial domain that captures the interior of the tank and the concentrations in the
underflow and effluent zones. The formulation of the scheme (i.e., Scheme 1) and subsequent proof of
invariant region property are referred to this computational domain, but for the convergence analysis
the model is specified as the initial value problem Eq (1.1), Eq (1.2) with the initial data posed on the
real line. This distinction is merely a formal one since on (—oo,0) and (Zng, o) the model reduces to
linear advection equations describing that matter is transported away from the unit at constant velocity
(if no changes in A in these zones arise).

Given the column height H, we define Az := H/(N —-2), the cell boundaries z; := iAz,i =0,1,...,N,
and the cells (intervals) I;_; > := [z;-1,2;) and I; := [z;_1,2, Zi+1/2). We place the column between zy :=
Az = zyand zg = zy + H = (N — 1)Az = zy_;. Then the length of the interval of error calculation is
Zend = H + 2Az = NAz. Each injection point zgy is assumed to belong to one cell /;_;» and we define
the dimensionless quantity

{1 if zex € Iizy )2, G.1)

0 otherwise.

Oki-12 1= f 0z, (2)dz 1=

Iioip2

The cross-sectional area A = A(z) is allowed to have a finite number of discontinuities and it is
discretized by

1 1
A= — | A(pdgz, A; ::—f A(z)dz.
Azfl,- (2) +/2 7= 2 o ()

We simulate Ny time steps up to the final time 7 := Ny At, with the fixed time step Az satisfying the
Courant-Friedrichs-Lewy (CFL) condition

o 21 Q0 , ,
4 — + M(max {V(0), [[V'll} + [Wllw + IWll) | < Az, (3.2)
where
Ai A, .
M = max 1 , , Apin 1= min Ag,
i=12,.N |Aiz12 Aici2 k=0,1/2,1,3/2,...N

K
10l = max >~ Qra(), W ll := max W' (@)
0<t<T = 0<¢<1

Finally, we set t* := nAtforn =0,1,...,Ny.
The time-dependent feed functions are discretized as

1 tn+l 1 t"“
L= — 1) dt, = — 1) dt,
QF,k At . QF,k( ) ¢F,k At " ¢F,k( )
fork =1,..., K, and the same is made for Y.
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3.2. Update of ¢-Scheme 1

The first equation of Eq (1.1) is discretized by combining upwind discretizations of g¢ with the
particular scheme proposed in [6] for models with a “concentration times velocity” flux, as is the case
for the term ¢W(¢).

The initial data are discretized by

1
By = ——— f #(z,0)A(z) dz.
2 AiphAz L,

To advance from 7" to "*! from given values ¢i 11 =1,...,N, we define the numerical flux at z = z;
by

P10 fori =0,
Tl =300, @+ G 0+ Vi WP, ) fori=1,.. . N—1, (3.3)
¢r1<]_1/2qu+ fori = N,

where the notation
a’ :=max{a,0}, a :=minfa,0}, 7y :=y(z), and ¢ :=(g(z;,1")"
is used. Since the bulk fluxes above and below the tank are directed away from it,
¢" 1240 =0 and @y, ,qy =0 forany values of ¢", , and ¢y, ,.
To simplify the presentation, we use the middle line of Eq (3.3) as the definition of J}' together with

9", =0 and ¢y, , := 0. With the notation 1 := Ar/Az and Q" = Aiq!" etc., the conservation law
on /;_;, implies the update formula

K
A
1
¢ilip =it —(Ai—ljl-"-l AT+ ) Qﬁ,kfﬁﬁ,@k,i—l/z)
k=1

Aicip (3.4)
= Hi (B30 8105 Blerp)s i=1,...,N.
Then we define the piecewise constant approximate solution ¢** on R x [0, T) by
¢AZ(Z’ t) = ZXIi_l/z(Z)X[I”,t"“)(t)(p?_]/z’ (35)

where y denotes the characteristic function of the set Q.

3.3. Update of y-Scheme 1
We discretize the initial data by
Ui 1

2 Ai_1pAz

i-1/2

Y(z,0)A(2) dz.
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The well-known Engquist-Osher numerical flux [26] for a given continuous, piecewise differentiable
flux function g and real values a and b on the left/right is given by

a b
G(g;a,b) := g(0) + f max{0, g’(s)}ds + f min{0, g’(s)} ds. (3.6)
0 0
Then a consistent numerical flux corresponding to Eq (2.9) is
n . n n+ n n— ne n n n l’[l:l"'l/z n .
Fi' =0 H¥iapd Vil G 0 Wi ) — ¢i—1/21_—nW(¢i+1/2) , 1=0,...,N,
i+1/2
where we set y", , := 0 and ¥, , := 0 with the same motivation as for ¢ above (these values are
irrelevant). Here
G?(‘ﬁ?—l/z, W?ﬂ/z) =G(of i1 'ﬁ?ﬂ/z) (3.7
is the Engquist-Osher numerical flux associated with the function
. - - Vu) foru<1,
i) = mpv( ¥ ) V() = (3.8)
Y iaxi 0 foru>1,

where (a A b := min{a, b}, a V b := max{a, b})

w:lnax,i =(1- ¢?—1/2) AL - ¢?+1/2) =1- (‘/5?—1/2 v ¢?+1/2)'

The function ¢ — o f!"(¢) is unimodal. Let 1/77 denote the maximum point of f. For a given function 1%
the values :ﬁ:’ and ¢ . are related by the following lemma.

max,i

|
I "
~ n

i
1 1
wwrrrlmx,iw wngax,i w 1/)max,i 1

Figure 3. Illustration of Lemma 3.1.

Lemma 3.1. Assume that 0 < w < @ < 1 are the unique local maximum and inflection point,
respectively, of f(¢) = ¢V(¢) (cf. Eq (2.7)). Then if/:’ = Wy .. Jor all i and n and all possible values
0 < Y. < 1. Moreover, the unique inflection point Y, ; € (g@?, Yinaxs) Of f1' satisfies Yy . = QY

max,i infl,i
for all i and n and all possible values 0 < y" . < 1. (See Figure 3.)

max,i
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Proof. Assume that 0 < y” . < 1. Since i is the unique solution J’ <

n
max,i — i i l//max,i

w(‘”v(w:’ix,i))zo = V(w';ix,,-)+wﬁix,iv’(w?ix,i)zo’

it follows that w is the unique solution in (0, 1) of V(w) + wV’(w) = 0 (cf. Eq (2.7)). By a similar
argument, @ is the unique solution of 2V (@) + oV (@) = 0. O

The Engquist-Osher numerical flux Eq (3.7), which in this form appears in Scheme 1 as well as in its
reduced versions, Schemes 2 and 3, can now be computed as follows, where we recall that f"(0) =
For o = 1 we get

i fn(lﬁn 1 ) if lﬁ =
O,( in)/( ) i-1/2 i— 1/2
ﬁ maX{ f s } {fl"(lﬂ,) if wz—l/2 > IMT’

y : (3.9)
i+1/2 0 if Y <
min{0, (f")’(s)} ds 172 =
L {f"(lﬂm/z) f (lﬁ" if W,-H/z > lﬂi ,
hence
F W) ifyl ), < wn and ¥, | , <
n. on n F W)+ F W) — fray ity 12 S < ¢} and Wi > ‘ﬁ
G i) = N (3.10)
S WA (70 if gy, > gt andyr, , < d,
F' Wi ) ity , > ‘/’i and ¥, | , > wi'
By analogous reasoning we obtain for oo = —1
f"(lﬁ,ﬂ/z if (//z 1/2 = wn and w,+1/2 - n
. o0 n _fin('vl’? ifyl,, < 'ﬁ and y', |, > ¥,
G5 Wi ) = A (3.1
v W) = [ 0) = W) L, > g7 and g 12 S i,
W) ity , > g7 and Wi > wi’

We define the difference operators A_a; := a; — a;,-1 and A,a; := a;;; — a;. Then the marching formula
for -Scheme 1 is

K

A

1

Vil =Yl + An (Ai—lf'fl - AT+ Z Q;,kl//;,k(sk,i—l/z)
"~ k=1

n /l n 1 n n—
=i~ y (A—(‘/’i—l/zQi+ + i p Qi
i-1/2
1/2 -
n =+ n noon .
+ (Ay); (G (Y- 1/2° z+1/2) ¢ 1/21—W(¢i+1/z))) - Z QF,klﬁF,kék,i—lﬂ)’ i=1,...,N
i+1/2 k=1
(3.12)
Then we define the piecewise constant approximate solution % on R x [0, T') by
wAZ(Z’ l) = ZXI;‘-]/Z(Z)XU”J"H)(t)w?—]/2' (3.13)
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3.4. Monotonicity and invariant-region principle

We prove that Scheme 1, defined by the update formulas Eq (3.4) and Eq (3.12), is monotone, a
property which then is used to prove the invariant-region property that the approximate solutions are
positive and bounded.

Theorem 3.1. If the CFL condition Eq (3.2) is satisfied, then the update formula for ¢, Eq (3.4) (that
is, ¢-Scheme 1) is monotone and 0 < ¢ | , < 1fori=1,....,Nandn=1,...,Nr.

Proof. We recall the assumption Eq (1.3). We first prove monotonicity of the three-point scheme for
¢ Eq (3.4), i.e, that d¢"" 1/2/6‘¢k p20foralli=1,...,Nandk=i-1,ii+ 1. Wehave

‘9‘1’;'”11/2 A .

= L+ (AY) i W(P, ) =
0l 5,  Aiip (Q ! Vi Widiy2 )
8¢?+11/2 A

= —0! = (At , W (1)) 2
0¢z+1/2 Aisip ( 1/2 +1/2 )
8¢n+1

o=l (O + AV g3, W @By ) = OFF = (AW (@1 1)
011> Ai1p
2(1Qlleo
>1 - /1( ”Q”. L+ MWl + ||W||Oo)) >0,

where we have used the CFL condition Eq (3.2).

We now prove that if 0 < ¢} | , <1 forall i, then 0 < ¢” 12 < 1 forall i. Clearly, Eq (1.3) implies
that 0 < ¢0 12 S <1 for all i. Since the scheme Eq (3.4) is monotone, H_;, is non- decreasmg in each
argument. Since by assumption W(1) = 0, we get the following estimation (where we use a* +a~ = a):

O<

Z O Bt kOkic1 2 = Hiz12(0,0,0) < ¢ )
= i—1/2(¢,-_3/2, G1/2 Pirrp) < Himip(1,1,1)

/1 K
" A1 ((Q?—l —0)+ Z Q;,k‘l’;,kfsk,i—l/z)

<1 (Z( OF 1)0r.i- 1/2+ZQFk5kz 1/2} =1.

AiZip =

=1

Lemma 3.2. The function f!" (cf. Eq (3.8)) satisfies ||(f") |l < max{V(0),[|V’|lc}.

Proof. By Eq (2.7), the function f(¢) = ¢V(¢) has a single inflection point ® € (0,1) and by
Lemma 3.1, f" has the inflection point WY i € (0, l//’éw) We have (f")'(0) = V(0), (f") (¢) = 0 for
Yraxi < ¢ < 1 and the lowest (and negative) value of (f")’ is obtained at its only critical point &y
for which

(1Y (@) = V(@) + 0V (@) 2 = V||
This concludes the proof. O
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Lemma 3.3. There holds G}(1 - — ¢i,12) = 0foralliandn.

i- 1/2’

Proof. Assume that 0 < Yiaxi = (1- [_1/2) Al - ?+1/2) < 1. By Lemma 3.1, W’ < Yraxio hence Eq

(3.10), Eq (3.11), and

V((l - ¢?—1/2)/l//nmax,i) = V((l - ¢?+1/2)/¢’:lnax,i) =0
imply that
n n f;n(l_¢? ):0 ifO'Zl,
Gi(1-¢. 1/2, 1- ¢i+1/2) = - +i,/2 _ . _
-f' _¢i—1/2) =0 ifoc=-1.

O

Theorem 3.2. Under the assumptions of Theorem 3.1, the update formula for ¥, Eq (3.12) (i.e.,
W-Scheme 1) is monotone and along with Eq (3.4) produces approximate solutions that satisfy
0<yi,,<1-9¢.,,foralliandn.

Proof. Assumptions Eq (1.3) and Eq (1.5) imply that 0 < y? | , <1-¢_  , foralliand
Vg, < 1—¢g, foralln. (3.14)
To prove that the scheme Eq (3.12) is monotone, we write it as
9/’?—+11/2 = 7(1'”—1/2(‘#?—3/2’ ‘ﬁ?—l/z’ '»[’?+1/2) (3.15)

and show that this expression is non-decreasing in each of its arguments.

Since 0 < ¢} |, < 1 for a given n and all i, and appealing to Eq (3.6), we have
oyl A AG"
HE =S+ Ay ) 20,
awi—3/2 Aic1p2 89{’; 3/2
a’ﬂ7+11/2 A ( oG’ b1
- ~01 - (Ay) AP WS 12)) 2 0,
61,//l+1/2 Ai—1/2 a‘/’m/z 1 - i+1/2 e
ﬁw, 1 oG, i3,V ) aG"
B P K TS ) R
awl 1/2 Ai—1/2 89”1 1/2 1- i-1/2 a‘/’z 12
2/10lleo oG" oG" W(¢', )
S —/l( 1Qlloo,7 +M( n,_l N n1/2 ))
Amin 8'701 1/2 a’v”i—l/z 1- i-1/2

By Eq (3.6) and Lemma 3.2 we also obtain
oG! oG
Ny ) ‘M i-1/2

= (Y W) = Y W) = Y W) < 1Y Nl < max (V(O), [IV]leo}

and for the remaining term, we use that W(1) = 0 to get

W(¢n 1/2) W(¢n 1/2) W(l)

1- i— 1/2 1 - ?—1/2

=-W(& <||W|w forsomeé e (¢, ).
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Hence, the CFL condition Eq (3.2) implies

! 2
12 —/l( 1Qlloo,7

= M V(0),IV'[leo W’m)zo.
50, o M(max (VO IV + W)

The inequalities proved imply that K, 1 18 non-decreasing in each of its arguments. Now we use that
O0<yl,,<1-¢,,foralliand Lemma 3.3 to obtain

0<

K

A

1 Z OF k¥ 40ki172 = Hii12(0,0,0) < l//?fllﬂ
i-1/2 =

= i—1/2(1ﬁ7_3/2’ ‘ﬁ?—l/z’ w?+1/2) < 7{i—l/Z(l - ¢?—3/2’ 1- ¢?_1/2, 1- ¢?+1/2)

n /l n n n
=1-¢ip+ 14—(Ai—17-i—1(1 =@ 30 1 =9 10)

i-1/2

K
- Aigjin(l - ¢?_1/2, I- ¢?+1/2) + Z Q;,kw;,kék,i—l/z)
k=1

71 ﬂ n 71 71 n— 71 n
=1-¢ )+ m((l = $i3) 0 + (1= 9L, )05 — (AY)in18i 3, WP )

K
- (1 - ¢?_1/2)Q?+ - (1 - ¢?+1/2)Q?_ + (AY)i‘p?_]/zW((p?H/z) + Z Qg,kwg,kék,i—lﬂ)-

k=1

Appealing to Eq (3.14) and the update formula for ¢ Eq (3.4), we get

A
+1 +1
Vilip <1 =000+ Y

i—1/2

K
(Q?jl +05 -0 -0 + Z Q;,kdk,i—l/z)
k=1

K
n /1 7 U U n
=1- ¢i—+11/2 + A 1/Z{Qi—l -0t Z QF,kak,i—l/Z} =1- ¢i—+11/2-
k=1

i—

The last equality holds since {...} = 0 irrespective of whether there is a source in the cell; Q7 | — O +
O = 0, ornot; Q7 , — QF = 0. O

4. Partial convergence analysis of Scheme 2

For ease of the argument, let us focus on the case of a constant interior cross-sectional area A, i.e.,
assume that Eq (1.7) is in effect. In addition, we assume that Q;,k, ¢§,k, and ‘ﬂ;,k k=1,...,K) are
constant and therefore do not depend on n. The same is assumed for the underflow volumetric flow Qy.
(That is, we now study Scheme 2 suitable for Model 2.) Then Eq (3.4) and Eq (3.12) take the forms

K
¢?—+11/2 = @1 — AD(BL10q7 + Ghi i + VP pW(B1)0)) + 2 Z GF kP kOk,i-1/25 4.1)
k=1
n n n - nen n n "07+1/2W(¢?+1/2)
‘/’i—+11/2 = %'—1/2 - AA- wi—l/Zq;— t¥ipd + %’(Gi (‘/’i—l/z»lﬂm/z) ~ i1 14" ))
i+1/2
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K
+4 Z qF JYFkOk,i-1/2,
=1

(4.2)

where gg; := Orx/A. To embed the treatment into available analyses of schemes for conservation laws
with discontinuous flux, we absorb the feed terms into the numerical flux. That is, we define i; := i if

Ori-12 = 1 (see Eq (3.1)). Then

—qu ifi<i -1,
qi: _qU+qF,1+"'+qu ifi]SiSi[+]_1,l:1,...,K_1,

_CIU+qF,l +"'+qF,K foriZiK.
Furthermore, we define the feed flux

0 ifi<i—-1,
hei =3grip1 + -+ qeipp; i <i<igy-1,1=1,...,K-1,

qriPr1 + -+ grxPrx  fori > ik,

such that

K
hg; — hg;i- = Z qF kD kOki-1/2-

k=1

Consequently, we may write the scheme (i.e., ¢-Scheme 2) as

¢?—+11/2 = @710 — AP 09 + ¢?—1/2q1~+ + Y p WP 0) + h)-
For later use we define the piecewise constant functions

q(z) :=qx and hgp(2) = hgy forzpp <z < zZpar1, k=0,..., K,
where zgo := —09, Zp g4 1= 00, and we define the function

h(z,v,u) := g (2v + ¢ (Qu + y(QuW () + hp(z)
that allows us to write Eq (4.5) as
¢?—+11/2 = ¢’?—1/2 — AA_h(z;, ¢?+1/2» ¢?—1/2)-

4.1. Convergence of ¢p-Scheme 2

4.3)

(4.4)

4.5)

(4.6)

4.7)

The PDE for ¢ within Model 2, that is when the simplification Eq (1.7) is applied to Model 1, is the

conservation law

0.0 +0.J(¢,2) =0, (z,0) €Il

4.8)
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with discontinuous flux

K
q(2)¢ — Z qr Pk for z > zg,
=1

K
q(2)¢ — Z qridrx + j(@) for zpx <z < zg,
=1

J($.2) = 1 (4.9)
9@~ Y qradrs+ J@) forze, <z<zpral=1...K-1,
k=1
—qu + j(¢) forzy <z < zg1,
—qu¢ for z < zy.

posed along with the initial condition Eq (1.2a).

The choice of the appropriate solution concept for weak solutions, and the ways we may relate the
model to the available theory of conservation laws with discontinuous flux, requires verifying whether
J(¢, z) as given by Eq (4.9) satisfies the so-called “crossing condition” across each discontinuity

7€ := {ZU,ZF,l, e ,ZF,K,ZE}- (4.10)

Certain early well-posedness (existence, stability, and uniqueness) results for conservation laws with
discontinuous flux (and related equations) rely on satisfaction of this condition [35], although later
developments advance solution concepts that do not rely on satisfaction of the crossing condition [4,
36, 39]. In the present context this condition is satisfied for a particular discontinuity at z if the adjacent
fluxes to the right and the left, J(¢,z") and J(¢, z7), satisfy

V1,02 € [0,11: J(¢1,27) = J($1,27) <0 < J(¢2,27) = J(¢2,27) = ¢1 < ¢, (4.11)

which means either the graphs of J(-,z7) and J(-, z") do not intersect, or if they do, there is at most one
flux crossing ¢, and the graph of J(-,z7) lies above that of J(-, z") to the left of ¢, . For J(¢, z) as given
by Eq (4.9) this condition is clearly satisfied for z € {zg, zy} (considering that j(¢) > 0 for0 < ¢ < 1
implies that J(-,z7) and J(-, z") do not intersect in this case), while

J(p,zg) = J(b,25) = qri(dp — @) forl=1,....K.

Thus, the crossing condition is satisfied also for z = zg;, [ = 1,..., K, since either ¢p; = 0 and the
adjacent fluxes do not intersect in (0, 1), or the intersection takes place at ¢, = ¢g; and Eq (4.11) holds
since gg; > O for all /. The preceding consideration is analogous to the one for the simpler clarifier-
thickener model (equivalent to K = 1 in the present notation) studied e.g. in [13, 14]. With the present
analysis it is clear that the crossing condition is satisfied at each flux discontinuity z € Z.

Some of the available analyses refer to initial-value problems of the type

ou+90,F(u,x)=0 for(x,t) €lly,
u(x,0) = up(x) for x € R, 4.12)
where  F (u, x) := H(—x)g(u) + H(x)f(u)
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where f and g are Lipschitz continuous functions of u# denoting the “right” and “left” flux adjacent to
a flux discontinuity across x = 0 and H denotes the Heavyside function. The model problem Eq (4.12)
features, of course, only one flux discontinuity (sitting at x = 0), while Eq (4.9), Eq (1.2a) includes
several of them at separate spatial locations. The study of Eq (4.12) is, however, sufficient for the
analysis of each single flux discontinuity.

Here we start from the concept of entropy solutions of type V introduced by Karlsen and Towers
[36]. This concept does not appeal to the existence of traces of the unknown with respect to the
interfaces z € Z across which J(¢, z) is discontinuous. To state its adaptation to the situation at hand,
we define the sets

T2 2= (zg, 00) X (0, T),
H(TK+]/2) = (zrk.28) X (0,7),
I = e ze) X (0,T), k=2, K,
My 2= (zu, 2e1) X (0, T),
I 2= (=00,20) % (0, ).

Definition 4.1. A measurable function ¢ = ¢(z,t) € L'(Ily) is an entropy solution of type V of the
initial-value problem Eq (4.8), Eq (1.2a) if it satisfies the following conditions:

(1) The function ¢ belongs to L>(Ily); for a.e. (z,t) € Il there holds ¢(z,t) € [0, 1].
(i1) The function ¢ is a weak solution of Eq (4.8), i.e., for all smooth test functions { with compact
support in Iz,

f (90, + J(¢,2)0.¢)dzdt = 0. (4.13)
IIr

_ . . . Jp——_
(iii) Foralll =0,...,K +2, for any nonnegative smooth test function {’ with compact support in IT;
and all ¢ € [0, 1] there holds

f f (1 = clo.L” + sgn(¢ — )(J(¢.2) = J(c. 2))3-4") dz dt + f o — c1 {P(z,0)dr > 0. (4.14)
IIr R

(iv) The following KruZkov-type [37] entropy inequality holds for all nonnnegative smooth test
functions { with compact support in Iy and all constants ¢ € R:

[ (19 clog+ sgn@ - 1062 - ste.290.0) azar
i (4.15)
J(c,75) = J(c, 7~ ,Hdr > 0.
+f0 D M) = Je. )| ¢ nde >

€Z

Note that the entropy inequality Eq (4.15) does not imply the weak formulation Eq (4.13). The
standard derivation of the weak formulation from the Kruzkov entropy inequality (e.g., [30,
Section 2.1]) does not apply here since some of the flux differences |J(c,z*) — J(c,z7)| are not
compactly supported with respect to ¢, cf. [13, Rem. 1.1].
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Lemma 4.1. Consider ¢-Scheme 2 applied to Eq (4.8), Eq (1.2a). There exists a constant Cj,
depending on TV (¢y), such that

AZZ il = Ol < AZZ|¢’3—1/2 — ¢, < Cie.

i€Z i€Z

Proof. Subtracting from Eq (4.1) its version from the previous time step, we get

Bl = Oin = (Blspn = B3 p)ABL o + (D1 — G = ABL )y + ACL o)
+ (¢?+1/2 l+1/2) Aclnﬂ/z}

where we define

B, = gy + YiaW( )
W(¢?+1/2) W(¢l+1/2)

R R/ 1/2 p ] if ¢,y # ¢ 1/2’
Ci+1/2 = ¢i+1/2 - ‘/’i+1/2 ’ +
0 otherwise.
Clearly B} |, 2 0, C,, , <0, and due to the CFL condition,

hence taking absolute values and summing over i € Z we get, by appealing to standard arguments, that

+1 -1 1 0
¢?—1/2 - ¢7—1/2| <Az Z|¢7—1/2 - ¢?—1/2| <Az Z|¢i—l/2 - ¢i—1/2|-

i€Z i€Z i€Z

Furthermore, following the lines e.g. of the proof of [13, Lemma 3.2], we get that there exists a constant
C, that is independent of (At, Az) such that

Dok = ¢ < CoATV(") + TV(g) + TV (),
i€Z

which completes the proof. O

A straightforward calculation yields that we can write the scheme in the form

+1
i = G+ CIADL )y — DAL — 07,
where we define

A_W (&3, /2)
i1
-Aq; otherwise,

1

D? 1= Ag] + Ay IW(¢,+1/2)
0 = AP pA-g; + ¢i-3/2A—‘Ii+ + 1 Wl Ay — Ahr).

—/l(]l— - /l')’i—1¢;1_3/2 if A+¢, 1/2

C} =
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The incremental coeflicients satisfy C? > 0 and D? > 0; furthermore, the CFL condition ensures that
C! + D! < 1 (in all cases for all i and n). Notice that §7 = 0 with the possible exception for those
indices i at which A_g; # 0, A_g] # 0, or A_y; # 0. According to the definition of y; and that of g;,

see Eq (4.3), this may occur at most at a finite number of indices. Precisely, we may assert that (see Eq
(4.10))

H:l:() ifZi—l?Zii-Z’

hence for all indices i with the exception of finitely many indices i such that |z; — {| < Az for some
{ € Z, the scheme is given by the incremental form

+1
Gl = G+ CIAP ) — DL AP

with incremental coefficients C? > 0, D! > 0, and C! + D! < 1. This property, in conjunction with
Lemma 4.1, shows that we may apply [15, Lemma 5.3] (which is essentially Lemma 4.2 of [6], where
a proof can be found) to the situation at hand. From [15, Lemma 5.3] we deduce the following lemma,
where V?(g) denotes the total variation of a function z - g(z) over the interval (a, b).

Lemma 4.2. Consider ¢-Scheme 2 applied to Eq (4.8), Eq (1.2a). For any interval [a,b] such that
la,b) N Z = @ and any t € [0, T] there exists a total variation bound

VE(¢™(-, 1) < C(a, b),
where C(a, b) is independent of (Ax, At) and t for t € [0, T].

Finally, we have shown in Theorem 3.1 that ¢-Scheme 1 Eq (3.4) is monotone. This applies, in
particular, to the reduced ¢-Scheme 2 Eq (4.1) or equivalently, Eq (4.5) or Eq (4.7). Thus, ¢-Scheme 2
satisfies a discrete entropy inequality. The proof of the following lemma is identical to that of [36,
Lemma 5.2], and is therefore omitted.

Lemma 4.3. The scheme Eq (4.7) (¢-Scheme 2) satisfies the following entropy inequality for any
Ci=3/2, Ci-1/2> Cix12 € [0, 1]:

1 1
¢?—+1/2 - Ci—1/2| < |¢?—1/2 - Ci—1/2| - AA_H! -2 sgn(qﬁff]/z = cic12)A_h(z;, ¢?+1/2’ ¢,'~l_1/2),

where h is defined in Eq (4.6) and the numerical entropy flux H!' is defined by

H} = Wz, 810 V Cistas @y V Cimiga) = 2o @1 o A Civis By A Cimif2)-

We now may appeal to the results of [36] and argue as follows. Theorem 3.1 and Lemmas 4.1-4.3
ensure convergence of the functions ¢** to a weak solution of Eq (4.8), Eq (1.2a) that satisfies items (i),
(1) and (ii1) of Definition 4.1. It also satisfies the entropy inquality Eq (4.15) arising in part (iv) of that
definition by utilizing the discrete entropy inequality stated in Lemma 4.3. Thus, we have proved the
following theorem.

Theorem 4.1. Suppose that assumptions Eq (1.3) to Eq (1.5) are in effect and that $** is defined by Eq
(3.5), where the values ¢!, j are defined by the scheme Eq (4.5) (that is, ¢-Scheme 2). Let At,Az — 0
with 1 = At/Az = const. such that the CFL condition Eq (3.2) is satisfied. Then ¢** converges in
Llloc(HT) and a.e. in Iy to an entropy solution of type V of the initial-value problem Eq (4.8), Eq
(1.2a).
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4.2. L' Lipschitz continuity in time of y-Scheme 2

Next, we deal with the marching formula Eq (4.2). To this end, we define a feed flux fzp,,- exactly
as in Eq (4.4) but with ¢g; replaced by yg; for i = 1,...,K. Furthermore, we recall that 74(¢) =
W(#)/(1 — ¢). Thus, the scheme can be written as

‘//?—Jrll/z =i~ AA—(EFJ YL pdi Wi pd +YGIWL 0 i) — ¢?—1/2‘7¢s(¢?+1/2)¢?+1/2))~
(4.16)

Lemma 4.4 (Crandall and Tartar [19]). Assume that (Q,u) is some measure space and that D is a
subset of L'(Q) with the property that ifu,v € D, then (uV v) = max{u, v} € D. Assume that T is a map
T :D>3uw— T(u) € D such that

fT(u)d,u:fud,u forallu € D.
Q Q

Then the following statements, valid for all u,v € D, are equivalent:

(1) Ifu <v, thenT(u) < T).
(i) [,(Tw)—-TW)VO0)du< [[(u—v)VO0)du
(i) [, 17) = TWldu < [} lu - v|dp.

Following, for instance, [18], we utilize Lemma 4.4 for the following mapping. Assume that D C
L'(R) is the set of piecewise constant functions and that are constant on the intervals /;_, ppfori € Z, and
that with the marching formula Eq (3.15) we associate an operator K" : D — D such that if (-, )
is the piecewise constant function defined by Eq (3.13) for 7 = t,, we may write /-Scheme 2 as

wAZ(', tn+l) = q(n(l//AZ(', tn))
Clearly, the monotonicity of the scheme implies that if u,v € D, then
u<v=K"wm<KWw).

Thus, Lemma 4.4 (i) holds. For u = (-, t,) and v = ¢**(-, t,_,), Lemma 4.4 (iii) implies that

AZZ

i€Z

l/’,r'l:rll/z - lﬂ?-1/2| = LL#AZ(Z’ fni1) — lﬂAZ(Z, ty,)|dz

= f|lr//AZ(Z’ In) — wAZ(Z, tn—l)| dz = Az Z|lr//?—1/2 - w?__ll/z
R

i€Z

and therefore

+1 1 0
AZZ Wit =Wl < Az Z|‘/’i—1/z A

i€Z i€Z

However, we may assert that there exists a constant C5, which is independent of (Az, Ax), such that

Z|¢;‘1—1/2 - w?—1/2|

i€Z
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1//?+1/2W(¢?+1/2) ))

0
1 - i+1/2

-3

i€Z

o 0
F.k
-4 kZ_; Tl/’g,k5k,i—1/2

0 o - 0(,,0 0 n
A—(‘ﬁi—l/zqzr T Wiapd + Vi(Gi W12 Win12) = Piipa

< Cs.

Since Eq (1.4) is a sufficient condition for this bound on the initial discrete divergence to hold, we get

AZZ

i€Z

At
Wi = Wi | < A2Cs = 7C3'

Consequently, we have proved the following lemma.

Lemma 4.5. There exists a constant Cy4 that is independent of (At,Az) such that the numerical
approximations produced by y-Scheme 2 satisfy

AzY

i€Z,

+1
‘ﬁ?—l/z - 9/’?—1/2| < C4Ar.

5. Convergence analysis of Scheme 3

To write down Scheme 1 in the simplest setting possible, we consider the model and numerical
scheme under the assumptions before, and additionally assume a constant bulk velocity ¢, that the feed
terms (giving rise to the singular source) are zero, and set the parameter y = 1. Thus, the model reduces
to the triangular system of conservation laws Eq (1.8) with the initial conditions Eq (1.2) (Model 3),
where we recall that assumptions Eq (1.3) are in effect, and Scheme 2, which in turn is a reduced form
of Scheme 1, now is further reduced to Scheme 3.

Assume now that n = n(y¥) is a smooth convex entropy function and Q = Q(¢,¥) is the
corresponding compatible entropy flux compatible with Eq (1.8b), i.e.,

8,0(,¥) = 1 WD, E (¢, ). (5.1)

In what follows, we refer to (17, Q) as an entropy pair for Eq (1.8b). In particular we denote by (170, Qo)
the Kruzkov entropy pair [37], that is

noW) = —cl,  Qo(®,¥) = sgn — o)(F(¢,¥) — F(,0)), (5.2)

where ¢ € R is a constant.
The convergence proof is based on the following lemma, slightly adapted from [18, Lemma 2.2],
which in turn is an adaptation of [43, Theorem 5] (see also [44]).

Lemma 5.1. Let ¢ be the unique entropy solution of the initial-value problem Eq (1.8a), Eq (1.2a),
and assume that {Y"},-o is a family of functions defined on ly. If {y"} is bounded in L*(I17) and
{0mo(W”) + 0,Q0(p,¥")}ys0 lies in a compact set of le)i(HT) for all constants c, then there exists a
sequence {V,},en such that v, — 0 as n — oo and a function € L*(Ily) such that

" — ¢ ae.andin L] (Tly), 1 < p < co.
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Consistently with Eq (4.6), Eq (4.7) we assume that the scheme employed to approximate entropy
solutions of Eq (1.8a) is ¢-Scheme 3, that is,

¢?—+11/2 = @i = AP0 1), WOV, W) =g v+ g U+ uW ).

Clearly, under a suitable CFL condition, the ¢-Scheme 3 converges to the unique entropy solution
of Eq (1.8a), Eq (1.2a). Our goal is to establish convergence of the corresponding scheme for (-
Scheme 3). We here write the scheme as

lel/z = Ui_1p = AT (B2 Blr s Vi1 oo Wi 2) = Wila o — ADF (747, (5.3)
where we define the four-argument numerical flux
F(a,b,u,v) :=q u+q v+ (Gla,b,u,v) — avg)v), (5.4)
denote pairs of neighboring ¢- and -values by

B = e Ohap) and = WU )

and replace the arguments “¢; , ,, ¢/, ,” by @’ (analogously for ¢). In Eq (5.4) a and b play the roles

of ¢}, , and ¢}, ,, and u and v those of ¥} | , and ¥, ,, respectively, and we define G(a, b, u,v) as

follows (cf. Eq (3.7), Eq (3.8)). Let
L E v
fla,b.y) = w(—l i b)),

then G(a, b, -, -) is the Engquist-Osher numerical flux [26] associated with f(a, b, ).
The compensated compactness approach strongly depends on entropy inequalities satisfied by the
scheme Eq (5.3). To prepare for the derivation of suitable uniform estimates, we multiply the scheme

Eq (5.3) by n’(:/t?_*ll/z), where 77 is a smooth convex entropy function, and utilize the Taylor expansion

’ n n n n 1 ’’ YA n n
n (%_Jﬁl/z)( i_+11/2 - Wi—l/z) = 77(%—+11/2) - ’7(1/’5—1/2) + 577 (f,-:r11//22)(%_+11/2 - lﬁi—1/2)2,

n+1/2

where &7} " is an intermediate value between 7' | , and wl’.‘_*f/z. This yields

ML)~ 1) + 5 €W~ V)
= —ﬂn’(‘/’?jll/z)A—T@?’ ¥i) (5.5)
=~ W AT (@7 = A0 W) =1 Wy ) A-F (87,97

We now define the functions f and f as the partial derivatives

f(a,b,u) = 8,F (a,b,u,v) = ¢* + 8,G(a, b,u,v) 2 0,
f(a,b,v) == 8,F (a,b,u,v) = g~ +(8,G(a, b, u,v) - aviy,(h) < 0.

The dependence of d,F (a, b, u,v) and 0,F (a, b, u,v) on u and v only, respectively, is crucial for the
subsequent analysis. We define the functions

F(a,b,u) := f ' fa,b,s)ds, F(a,b,v):= f ' f(a,b,s)ds
0 0

Networks and Heterogeneous Media Volume 18, Issue 1, 140-190.



164

and note that
F(a,b,u,v) = F(a,b,u) + F(a,b,v). (5.6)

Next, we define

Qa,b,y) := f n'(w)f(a,b,u)du, Qa,b,y) = f n'(v)f(a,b,v)dv,
Jo 5 0 (5.7)
Qa,b,y1,¥2) = Qa,b,y) + Qa, b, y).

The function Q is a consistent numerical entropy flux for the scheme Eq (5.3) for the entropy function n
since

w A v
Qas a0, ) = f 7 @, a,u) + Fa, a, ) du

0

W W
= f n' (o, F (a,a,u,u)du = f 7' (w)F(a,u)du = Q(a, ).
0 0

Furthermore, integration by parts yields

~ A ~ A A ~ w A A ~
Q(a7 b’ lﬁ) - Q(a9 ba lﬁ) = n,(w)(?(a’ b, w) - 7:((1’ ba lﬁ)) - f n//(u)(¢(aa b9 M) - ¢(a9 ba lﬁ)) dl/l, (58)
1

v v ~ v 4 ~ l/I v v ~
Q(a, b’ lﬁ) - Q(a’ b’ lﬁ) = n/(w)(¢(a’ b, w) - ?d(a’ ba lﬁ)) - \fj 77”(1/!)(7:(61, b, l/l) - /(-:(a’ b’ w)) dl/l (59)
1
v v ~ l/I v v
= n,(&)(?d(a’ b’ '70) - ?(a’ b’ l//)) - f: U//(u)(¢(a, b’ l/t) - T(a’ b’ lﬁ)) du.
1
(5.10)

Now, denoting by A? and A? difference operators that act on both ¢- and y-arguments only, respectively
(leaving the two others unchanged), we observe that

A-F (B} y7) = ALF (), 90) + AT (B W) (5.11)
In light of Eq (5.8) and Eq (5.10),
N W )ALF (B 97) = QB UL ) — QUL W) + QS U ) — QBT W )
- (n'w;’_l/z)(f‘(ab?, Vi) = F @05 0)

n
i-3/2

P R ~
- [ e - e du)
v
- (U'(lﬂ?—l/z)(ﬁ(#’ ‘ﬁ?ﬂ/z) - 7}(¢?’ l//?—l/z))

Vi . .
. f / 0 W)(F (P}, uw) — F (b}, ¥ 112) du)
%

n
i+1/2
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+ 77,(‘%[—1/2)(7}(#!’ Wiipn) - ¢(¢?’ Wisn) + Tv(‘p?’ Wiiin) — Tv(¢?’ Uii)
= Q(¢7, Wn 1/2° :l+1/z) - Q((b?’ ‘/’?—3/2, ‘Ml—m) + ®?—1/2
= N'Q#!,Y) + O 5, (5.12)

where the notation for evaluations and differences for Q is the same as for ¥ and ©_ , : =0, +0,
where

N Vi
o, = L oW F @) — F @0 s,)) dut

n
i-3/2

) i . §
&y = - L 0O B 1) = F @y ) du

n
i+1/2

Since ¥ is increasing and F is decreasing in the respective third argument, there holds (:);’_1, (:);1 >0
and therefore ®;' | , > 0. Furthermore, we notice that

U’(lﬂ?—l/z)Af?‘-@?—l’ Yy = Af(n'(w—l/z)T(WA’ ¥ii)))- (5.13)
From Eq (5.11) we obtain by taking into account Eq (5.12) and Eq (5.13)

WL )AF (BP0 = NQL Y + 1 (W, AT (@1 W) + O,
= A Q¥ — MLQ@L W) + 1 (W AT (S, W) + OF
= A Q. ¥ + ALGr WL )F (P ) — QP ) + O,

Consequently, Eq (5.5) can be written as

ML) = W) + 5 €W~ W) + 20
= ~AA-QW. ) = A0 (W) = 1f (W1 p)) AT (@797 ©-19
= AL WL )T B Y1) = QUL ).
Multiplying Eq (5.14) by Az and summing over (n, i) € 1, where
Iy ={(n,i))|n=0,...,Nr =k, i € Z},

we get

AZ 7 n n n n
AZZ U(‘ﬁﬁuz) - Az Z Tl(l/’?—l/z) + > Z n (f,-:rll/zz)(%jll/z - lﬁi—uz)z + AAz Z ®i—1/2

i€Z i€Z I

= —AAZZA QY1) - AAzZ(n (W’*ﬂ/z) 1 W) AT (@ 9)
—AAzZA 0 W1 )T @ W) — QL UL)),

which implies the inequality

Az Z (Y )t 5 Z U,l(‘f?jll/zz)(‘ﬁﬂll/z - '/’?—1/2)2 + AAz Z O,

i€Z I] Il
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1
<Az ) MWL) + 2 Azt Y AT (@0

i€Z ]1

1
+ CAZAI Z A—Z|Af(7],((ﬁ:’_]/2)7_~(¢?—l ’ ‘p?—l) - Q(¢:l—1 ’ ‘ﬁf—1))|
I,

The last term on the right-hand side is uniformly bounded since ¢ has bounded variation. Now let us
choose 17(v) = v? and take into account [34] that there exists a constant C# such that
2

O > (ST @), Oz (W @v)

1
Cr
Noticing that Lemma 4.5, applied to the present scheme (y-Scheme 3), implies the bound on the
discrete divergence of the numerical flux

1
Az) A—Z|Aff,-(¢", Y| < C, (5.15)

i€Z

we obtain from Eq (5.14)

A A .
Az D Wik o) + 82 ) JWin = W) + o8 ) (AT b)) + (AT @0 )))
I

i€Z ]]
<Az Z(lﬂ?—l/z)z +Cr.
i€Z

(5.16)

Inequality Eq (5.16) implies the following estimate.

Lemma 5.2. Consider numerical approximations produced by Scheme 3. There exists a constant C;
that is independent of (Az, At) such that

Nr—1

AtAz Z Z(lﬁ?jll/z — Y1) < Gz, (5.17)

n=0 i€Z

Proof. The estimate for the “time variation” of ¥*%, Eq (5.17), follows immediately from Eq (5.16) if
we consider that its right-hand side is uniformly bounded. m|

Before proceeding, we prove the following lemma that is crucial for the subsequent analysis. For
ease of notation we define the difference operators AY and A that only act on the third or fourth
argument of a function, respectively.

Lemma 5.3. Consider numerical approximations produced by Scheme 3. There exist constants Cg and
Cy that are independent of (Az, At) such that for all i,

|A_Q@}. y1)| < Cs|(AP + ADYF (@], )

+ Co(|A-¢iy o + |A ])- (5.18)

Networks and Heterogeneous Media Volume 18, Issue 1, 140-190.



167

Proof. We note that
A-Q@}.¥)) = ALQ(#T ) + ALQL W) (5.19)
We first discuss
N Q@ W) = APQPL L ) + ACQP L )
From Eq (5.8) we get

LRy

|A(—3)é(¢?’ ‘/’?—1/2)| = 77,(‘/’?—1/2)A(—3)7:(¢?’ ¥ - fw” 77”(”)(98((5?, u) - 7}((’5?’ ‘/’?—1/2)) du
i-3/2

i
n” (u)du
wn

i-3/2

+

< | @, || ADF @2 v AP F (7, 9

< 317 Nl | AV F (@7, 9))

and analogously

|APQ#2, w1 )| < 3107 N0 | AP F (87, 97

b

hence

|A?Q! w)| < 31 =0 |(A + ADYF (o7, )

. (5.20)
On the other hand, we take into account that
NLQPL ) = NPT W) + AL WL )

Now

R Wisn . R
NQB W) = f " PP 1) — F @) du

:‘Ml—s/z
=0

Vs n R
- fo S @(F @ w) — F (P, w)) du
(5.21)

= [ @(F @} w) - F (@, 0)],

and analogously

. i . .
AP ) = f " W@ ) - F @) dy

s - V=Y Vi ’” P U (AT
= [HOF @) - F@Lm)| ™ - fo 0 ONT @), v) — F (@, v) dv.
Consequently,
[ASQUOL 1 )] < 3l N0y max |7(9 1) = 7 (91, ), (522)
—T=7i=3/2
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and by analogous reasoning for Q,
|Afé(¢f’_1, l//?_1/2)| < 3117 lz=0,1y 0<m¢21}3( |7r~(¢:l’ v) - 7}(¢?—1’ V)| (5.23)
<v< i-1/2

To estimate the right-hand side of Eq (5.22), we recall that

F (P, u) - F ($,,u) = fo () () = (fr)) () ds =2 D .

We now assume that o = 1 and use Eq (3.9). To estimate f);’_ 172> We will appeal to the trivial but useful
inequality |(@ V x) — (B V y)| < | — B| + |x — y|. We proceed by discussing all possible cases of the

location of u in relation to the extrema zﬁ:’ and zﬁ?_l of f" and f" |, respectively, and assume that o = 1.
1. Assume that u < 1@1” A 1}?_1. Since (&:‘ < w?nax,i and tﬁ;’_l < Wnax,i—p in this case ZA);’_l n = 0 if
Ui =Y and otherwise

max,i—1
i) = £ )] = ulV(u/yha) = V)|

A _
Z)i—l/2| -
2 ~ ~
HV’”OOl'?b:lnax,i - ¢?nax,i—l| = ”V’”‘X’ '//nmax,i - lr//?nax,i—l :

< -
- l/,n n
max,i 7 max,i—1

Noticing that

n n _
'Jlmax,i - "//max,i—l -

we conclude that

iV P — biap Vv ‘/’?—1/2| S |A—¢?—1/z| + |A+¢?—1/2 ) (5.24)
|ZA)?—1/2| < ||‘7I||oo(|A—¢?—1/2| + |A+¢?—1/2|)~

2. If " <u <" then

|@?—1/2| =

A f;"il(u)| < |6 - fﬁl(‘?’?—lﬂ +
Since fl."(z,/A/;?) = xﬂ:’mx’iwf/(w) for all 7, we conclude that

R = FL@)] < @Vl [ = Vianict] < MWV (|A-BLy o] +[A01, ). (5.25)
On the other hand, in the present case

f;'ril(l%l—l) - firil(u)| = firil(‘%l—l) - fLiw) < firil(‘%l—l) - fzril(‘%l)

Since for s € [0, lﬁ?_l] there holds (f7",)'(s) < (f,)'(0) = V(0), we get

fL@) = @),

Iy Vi ~ A R
W) - fLw)] = f (f) (s)ds < f (f" ) (s)ds < V(O), — 7).
u wl’,’
Lemma 3.1 (a) implies that
0 = 01| = oW~ Vil (5.26)

hence

|ZA)?—1/2| < 2||\7||00(|A_¢;’_1/2| + |A+¢?—1/2|)-

The same estimate holds for ! | <u < y/.
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3. lfu> zﬁf \Y 1,7/;?_1 then utilizing Eq (5.25) we get

|@?—1/2| =

D) = S G| < WV (A= o] + (A o))
Combining all possible cases we deduce that
D210 < (Voo + 2VIl) (A o] + [Astly o)) (5.27)
Next, we deal with Eq (5.23), recalling that (see Eq (5.4))
F (@) = F @) = DLy + 8Ly,

where we define
Zv)?—l/z = L () () = (F2)) (D) ds,  ELypp = (D10 Vs(Bl11/2) = Dz o Vas(By )V

The discussion of all possible cases of the location of v in relation to aﬁ? and tﬁ?_l gives rise to the

following cases for the estimation of Zv);’_l 1

L Ifv<yf Agi oty zyp Vi th(fn D =0.

2. To handle the case 12/? A l/A/f_l <v< l/A/:’ V| we assume that 1&:’ < 1/7?_1 and t/A/f <v< tﬁ?_l. Then

|j)?—1/2| =

QRN A7 W=y
< |Gy @)

By Lemma 3.1 (ii),

= ‘ f () (s)ds
i
Ul -

< max () 7(s)|
sy,

Y W) = 1 (@he) = V(@) + oV (@),

so (f") (¥ ) does not depend on ¢ . and we conclude that

infl,i max,i

1D, o] < (Ve +1V1L)

Ui =i
Applying the argument of Eq (5.24) and Eq (5.26) yields
1D o] < (Voo + 1V ) (A= o] + Al )

The same inequality is al§0 ValAid if @:’_ , < 1&:’ and 1/7;’_1 <v< 12/7
3. Finally, assume that v > 7 V ! |. In this case

|1v)?—1/2| =

') = [ 0) = A + 00| < | F0) = L0 + @) = £

Taking into account that fl."(;lA/:?) = l//’élax’l.wf/(w), we get

FHO0) = f )| = V() [V = Viasiet] < WV(A-Bl o] + |Acb1 0] (528)
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Itv>yr.. VY it then f'(v) = f,(v) = 0, hence Eq (5.28) means that
|ZV):'1—1/2| < ||\7||00(|A_¢:7_1/2| + |A+¢?-1/2|)-
Suppose now that
lz? v lz?—l < w:lndxz Svs w?nax,i—l' (529)

+1/2 < 1 -

w:lnax,i =(- ‘p?—l/z) A= ¢1+1/2) =1- ¢z 1/2-

Since we know that v = 7.1 »> the inequality g

max, i

< v can only be satisfied if

On the other hand,

Umaxi-1 = (L =@ ) AL =@ 5) < T =By )5,

so Eq (5.29) is only possible when y - =v =y . =1-4¢",,, which means Z) "1 =0.
If instead of Eq (5.29) we have

'72’? v ’727 wmaxz 1 = Sv=s wnmax,i’ (530)
then 1/lfl/maX1 <1/ (wl//:’nd“) implies

- i’il(v)| = V|V(V/l//nmax,i) - V(V/w?na)u 1)|
|l?[/nmax,i - wﬁlax,i—ll

wn n
max,i” max,i—1

- wmdxz 1|

< VIV leo

The remainder of the estimate is based on Eq (5.24). Since w < 1, we conclude that if Eq (5.29)
holds, then

IIV lloo

- firil(v)| |A ¢i 1/2| + |A+¢ 1/2|)

In combination with Eq (5.28) we obtain in this case

IV Il

Dol = (17 + == A2 o]+ 8] (531)

Next, suppose that instead of Eq (5.29) or Eq (5.30) there holds

n n n n
l//i < l//max,i < wi—l <v< wmax,i—l’

then the discussion of Eq (5.29) can be applied again and we get that this ordering is only feasible
if all terms are equal and zero, and therefore ZV):’_l n= 0. On the other hand, let us assume that

w?—l < lpnmax,i—l < '707 <v< wfnax,i'

In this case,

Ib:’_l/2|=‘ fo ((f) (s)ds| = f ((f) (s)ds| < f (1Y) (s)] ds
v i
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wznax,i ~ ~
< f 1|5 < (1Pl + 177 10) W — W 1)

wmax,i— 1

< (Wlleo + 1V ) (A= | + AL o))

It remains to treat the case Yf V ¢ < v <y Ayr. .. We then have v/ WhaxictVYma) < 1

max,i max,i

and analogously to the derivation of Eq (5.31) we get

|ZV)?—1/2| < (IVlle + ||‘7’||w)(|A_¢;’_1/2| + |A+¢?—1/2|)-
Collecting all estimates for Zv)l’.'_l 12> We see that
DL o] < GlIVIe + (1 + VIV o)Ay o] + [Artly o). (5.32)
Furthermore, we obtain

121 0| < IWelleo| Audtly o] + sl A=l |- (5.33)

Combining the estimates Eq (5.27), Eq (5.32) and Eq (5.33), we obtain from Eq (5.22) and Eq (5.23)
the bounds

|7 (2, u) = F (B w)|, |F (@) = F (B v)| < Cro(|Agy o] + [Asgl o)) (5.34)

b

and therefore

A% Qg )| < Cual(A g o] + A8 o))

with constants Cyy and Cy;. Combining the last inequality with Eq (5.19) and Eq (5.20) we arrive at
the desired estimate Eq (5.18). O

From Eq (5.18), and considering that 0 < ¢7 | , < 1 for all i and n, we obtain

(A-Q@!,¥))* < 2C3((AS + AYF (@7, y)) + 2C3(|A-1, o] + A o))
< 4C((AVF @) + ADF @ WD)) +4C3(AGL | + [Auti o))
< Co(APF (@ 1)) + (ALF @) +A-d o] + |Arers o))
Summing over (i, n) € I, we get

(A0 ¥ < Cio Y (ACF @ wD) + QDT @YD) +2C0 Y AL,
I

Iy o

N
< Co Y ((AOF @) + AOF @) +2C0 D TV@).
n=0

Iy

Multiplying this inequality by ArAz and taking into account Eq (5.16) and the uniform bound on TV(¢")
we have proved the following lemma.
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Lemma 5.4. Consider numerical approximations produced by Scheme 3. There exists a constant
C = C(T) that is independent of At and Az such that the following estimate holds:

Nt
ArAz )" > (A-Q@)L Y)Y < C(T)Az

n=0 i€z

In part following the proofs of Lemmas 5.5 and 5.9 in [33] and in particular that of Lemma 3.4 in
[18] we now prove the H;.! compactness result.

Lemma 5.5. Assume that y*° is generated by the scheme Eq (5.3) (y-Scheme 3), and that ¢ is the
unique entropy solution of Eq (1.8a), Eq (1.2a) on Il;. Furthermore, we denote by (g, Qo) the Kruzkov
entropy pair Eq (5.2), and the distribution

= 8™ + 9,Q0(¢™, ¥™).
Then the sequence {u"*}x.~o belongs to a compact subset of ngi(HT).

The proof of Lemma 5.5 essentially follows the proof of [18, Lemma 3.4], with some slight
modifications due the particular definition of the numerical flux in the present case. The proof is
presented in Appendix A.

Since ¢** — ¢ strongly in L?, we obtain that there exists a constant C such that

[€0.(0(6%, ™) — 0, ™)), ) < ClIP™ = Bllzaup I,y = 0 as Az — 0,

hence the sequence {fi**}.-0, where we define

F = 0mo™) + 8.0, Y™,

is compact in Hlj)l(HT). Now, by Lemma 5.1 there exists a subsequence {/**} (which we do not relabel)
and a function ¥ € L*(I17) such that

Yy = as Az — 0,ae. and in L’ (I;) for any p € [1, o). (5.35)

loc

Theorem 5.1. Assume that the maps ¢ and  are the limit functions of ¢** and of y** as Az — 0 (the
latter one being defined by Eq (5.35), that is, we consider Scheme 3). Then (¢,¥) is a weak solution of
the initial-value problem Eq (1.8), Eq (1.2) in the sense of Definition 1.1.

The proof follows that of [18, Lemma 3.5], again with slight modifications. We refer to Appendix A
for details.

6. Numerical results

6.1. Computation of numerical error

To simplify error estimations we utilize a grid with the property that the boundaries of the tank
agree with the boundaries of a cell (see Figure 2 (left)). Since an exact solution is frequently difficult
to obtain, we use an approximate reference solution obtained with a large number N, cells against
which the error of other simulated solutions with N < N, is measured. The error is estimated on a
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fixed interval [0, z.nq) slightly larger than the column of height H so that the outflow volume fractions
are included. We define the coarsest grid of N, cells with Azy := H/(Ny — 2) and place the column
between zy := Az and zg := zy + H = (Ny — 1)Azy. This corresponds to Figure 2 (left) with N = N,.
We define the length of the interval of error estimation as ze,q := H + 2Az9 = NoAzp.

To estimate the convergence order, we simulate with N, = 2kNy cells, k = 0, ..., ker — 1, where the
integer k¢ defines the number of cells Ny := Ny, = 2kt N, of the reference solution. Then we define
Azp = Zend/Ni, AZ" = Az, 1= Zend/Ni, = Azo/ 2kt and the factor of refinement from N, cells to Nyt
as my := Azy /A7 = Ny /N, = 2k=7F 'We note that z, := NyAzi = Zena for all k.

We will now measure the error between the piecewise constant numerical solution obtained by
N = N; cells (we skip the index k for a moment) and the reference solution obtained with N cells
on the grid refined by a factor m = Az/Az". The refined grid satisfies z; := zp = 0 and we have
zi = iAz = imAZ" =: z;,. The corresponding numerical solutions on the refined grids are denoted by
(skipping the time index n) ¢, », ¥}, ,, etc., where A, , are defined by Az". The refined cells are
numbered such that the first cell for ¢ above z; = 0 contains the value ¢} s Then ze,qg = NmAZ". This
means that the cells within [0, z¢,q) contain the values ¢} PIEE s BNt /25 and analogously for ¢; see
Figure 2 (right).

Note that the location of the spatial discontinuities zy and zg will coincide with a cell boundary for
any mesh considered in the refinement process while the locations of the inlets zg ;, etc. will be chosen
in such a way that each of them lies inside a cell for the finest grid; hence, they do this for all the
coarser meshes. In this way, the numerical fluxes at cell boundaries are well defined.

We compute the estimated error at a time point # = 7" and define

6. T)|| := fo " AQ[%. T)|dz.

The L'-difference between two numerical solutions computed on grids with cell sizes Az and AZ" is
calculated as follows for ¢:

N-1
EYA2AZLT) 1= 6500 — o5 (. T = 3 18, (D)
i=0

with the summands defined by

Zi+1 X m—1 st |
I, ,(T):= f A@|¢*( T) - 6" (2, T)|dz = f A@|Bi1/2 = G124 42
i k=0

! im+k
m—1
— r r r
= Az Z Aim+1/2+k|¢i+1/2 - ¢im+1/2+k|-
k=0

The approximate relative error for ¢ in the interval [0, z.,q) 1s then defined as

E*(Az, AL\ T) _ 1974, T) = ¢ (. )|
12 ¢ Tl Il ¢, )

We define e%(t) analogously and hence, the total relative error can be defined as

ey, (T) :=

e (T) := e}y (T) + ey, (T)

Networks and Heterogeneous Media Volume 18, Issue 1, 140-190.



174

and the observed convergence order between two discretizations Ny_; and N; as

log(ey, ,(T)/ey,(T))

R T A

k=1,... ket — 1.

For smooth solutions and a constant A (see Eq (1.7)), we also use an alternative way [7] of
calculating approximate errors and convergence orders in which a reference solution is not needed.
One can use cubic mterpolatlon to compute the quantities ¢ i+1/2 from a grid with Ny, = 2 Ny cells,
k =0,...,k with k an integer, taking into consideration that z*,, n= =@, + 1 o3 1»)/2. Then, P n
is given by

&Az,( _ %(¢A?k+l A2k+1 ) _ (¢A2k+l A;ku )’ i = 1, e, Nk-

i+1/2 21+3/2 2[+1/2 21+5/2 2i-1/2

The alternative approximate relative L'-error for ¢ can then be calculated as
&, (T) := Z|¢,Aff/2(-, T) - ¢5% (. 7).

We can define ™t 12
convergence order

and é%k(T) analogously along with the alternative total approximate L'-error and

e (T) := &y (T) + &y (T), Tw(T) :=log,(ey(T)/ey. (T)) fork=0,....k.

6.2. Preliminaries for numerical tests

For the first example, in Section 6.3, we use a smooth solution away from spatial discontinuities,
to estimate the order of convergence of the numerical scheme. For this example, we use Ny = 500,
Ny = 25Ny fork =0,1,...,5 and ks = 8; hence, N5 = 16 000 and N,s = 128 000.

In Sections 6.4 and 6.5, we exemplify counter- and co-current flows of the primary and secondary
disperse phases, respectively. For these two examples, we use Ny = 100, and k.. = 7. We set three
inlets zg 1, zp» and zp3 dividing the tank into four equal parts each with the height H/4, where H = 1m
is used. These three inlets are defined so that they lie inside a cell for any mesh size considered. A
fixed quantity of the is introduced through inlet zg, a fixed quantity of the secondary disperse phase
through inlet zg, and some wash water through inlet zg 3.

Tables 1 and 2 show the estimated errors and convergence orders for the three scenarios studied. In
the calculations of the alternative approximate error A““(T) and convergence order V(7)) in Table 1,
we use k = 6.

6.3. Simulation of a smooth solution

We consider a vessel with a constant cross-sectional area of A(z) = 83.65 cm?, and we set all inlet
and outlet volumetric flows to zero, i.e, Or; = Qs = Qps = Qu = Qg = 0cm?/s. (Under these
assumptions, the scheme reduces to Scheme 3 for Model 3.) For the velocity functions W and V, given
by Eq (2.10) and Eq (2.11), respectively, we use the parameters n, = 2.2, Viermp = 1.5cm/s, ng = 2.2
and Vs = 1.5cm/s, and consider o = —1 (counter-current flow). The initial datum is a sinusoidal
function for both phases with support in the interval (zy, zg).
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Figure 4. Simulation of a smooth solution (Section 6.3). First row: Time evolution of the
volume fractions of the primary disperse phase ¢ (left) and the secondary disperse phase
(right) from t = Os to ¢ = 95s. Second row: Approximate solutions at time t = 9 s computed

with N = 500 (left) and N = 8000 (right).

Table 1. Simulation of a smooth solution (Section 6.3). Total estimated relative L'-
error e?f}k‘(T), alternative relative L'-error é}f}kt(T), estimated convergence order Y (7T'), and
its alternative counterpart ‘Y‘k(T), calculated with N, = 128000 and T = 9s.

A e (T) T(T) &N (T) Tu(T)
500 3.7212x102 —— 1.3041x107% 0.9513

1000  1.8985x 1072 0.9709 6.7443 x 10™* 0.9657
2000 9.5710x 10 0.9881 3.4533x 10™* 0.9781
4000 4.7582x 107 1.0083 1.7531x 10™* 0.9870
8000 2.3174x107° 1.0379 8.8448 x 107 0.9927
16000 1.0867 x 107 1.0926 4.4447x 1075 ——

We simulate a short time, until # = 9's, before the first discontinuity appears; see the first row in
Figure 4 where N = 1000 is used. In the second row, we compare two approximate solutions obtained
with a coarse mesh with N = 500 and a finer one with N = 8000. Table 1 shows the estimated
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errors and convergence orders. Both Tx(7T) and 'Y'Nk(T) assume values close to one as N, increases, as
expected, confirming that the scheme is first-order accurate for smooth solution.

6.4. Illustration of the crossing condition.

The remainder of examples refer to Model 1 discretized by Scheme 1. We first illustrate that the
“crossing condition” is satisfied as mentioned in Section 4.1. For this we use the constant
A = 83.65 cm? and simulate a tank that initially contains only water, i.e., ¢(z, 0) = ¥(z,0) = 0 for all z.
At t = 0 we start pumping aggregates, solids, fluid and wash water with ¢p; = 0.9, Yy, = 0,
¢ro = 02, Ypp = 04, ¢g3 = 0.1 and Y3 = 0. We choose the volumetric flows
(Qu, OF.1, OF2, Or3) = (15,20,25,15) cm?/s, so that the volumetric flows in the tank are positive in
all zones but not in zone 1. Three inlets zg;, zp» and zg3 divide the tank into four zones of equal
height.

0.2 0.2 1
01}/ 1 e
or I/ T
of !
02l |
-0.1 0 : J(,zp
; _ +
-0.2 o4l J(9:255)
0 00.1 1
@
J(d),zE)
1
®

Figure 5. Illustration of the crossing condition (Section 6.4). The crossing condition is
satisfied at each of the five spatial discontinuities.
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Figure 6. Simulation of the example in Section 6.4 during 7" = 200 s.
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Figure 5 shows the graphs of the flux functions on both sides of each discontinuity in z, for this case
three inlets (zg 1, Zr2, 2Zr3) and two outlets (zy, zg). We see that the fluxes J(¢, z*) (defined in Eq (4.9))
intersect when ¢p; = 0.9, ¢r, = 0.2 and ¢r3 = 0.1, and do not intersect in (0, 1) at neither zy nor zg.
Figure 6 shows the simulation results during 200 s.

6.5. Application 2: Counter-current fluxes

We consider now a complete tank with o = —1; hence, the primary disperse phase will move
upwards and the secondary disperse phase downwards with respect to the volume average velocity ¢
of the mixture. A straightforward interpretation of this scenario is the flotation process used in the
mineral industry to recover valuable minerals from crushed ore; see the model in [8, 9]. In that model,
the primary disperse phase consists of aggregates, which are air bubbles fully loaded with hydrophobic
minerals, and the secondary disperse phase is the tailings, consisting of hydrophilic particles suspended
in the fluid that do not attach to air bubbles. We consider three inlets zp;, zr, and zg3, dividing the
tank into four regions with equal height. At zg;, only gas is fed, at zg3 only wash water, while at zg, a
slurry of solids and water is fed into the column.

The cross-sectional area is discontinuous (cf. Figure 2) due to a centered pipe from the top down
to zp, that introduces material into the tank. It is given by

72.25cm?  for z > zg,,
AG) = )
83.65cm” for z < zpp.

These values correspond to the reflux flotation cell studied in [21].

We consider that the column is initially filled only with fluid, hence ¢(z,0) = ¥(z,0) = O for
all z, when we start pumping aggregates and solids with concentrations ¢g; = 1.0, Yg; = 0, ¢pr = 0,
Yry = 0.4, ¢r3 = 0and Y3 = 0, along with fluid and/or wash water. We choose (Qu, Of.1, Qr2, Or3) =
(5,15,25,10)cm?/s, so that the mixture flows in zones 2 and 3 are positive, i.e., directed upwards:
Qr.1 — Qu = 10cm?/s in zone 2 and Qr, + Qr1 — Qu = 35cm?/s in zone 3.

Figure 7 shows the time evolution of the volume fractions of ¢ and . It can be seen that the
aggregates rise fast to the top, while the solids are travelling both up and down the vessel, leaving
through the effluent and the underflow.

At time t = 350s, we change the volumetric flow from Qr, = 25cm®/s to Qp, = 7cm?/s. After
this change, the solids settle and we obtain a steady state. We mention that this is not a desired steady
state in the mining industry (the capacity of the device is not fully used); see [9] for more examples.
Table 2 (a) shows the estimated errors and convergence orders for this simulation. As in the smooth
example in Section 6.3, the convergence orders tend to one as N, increases.
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Figure 7. Application 1: Counter-current flows. Time evolution of the volume fraction
profiles of the primary disperse phase ¢ (left) and secondary disperse phase ¢ (right) from
time ¢ = Os to t = 1800 s seen from two different angles (first and second rows).

Table 2. Approximate total relative L!-errors e

tot
Ni

(T) and convergence orders Y (T) calculated

between consecutive values of N;, with Ns = 12800 (a) for Application 1 (counter-current
flow) at simulated time 7" = 350, (b) for Application 2 (co-current flow) at simulated time

T =500s.
(a) (b)
N en(T) T(T) Nk en(T) T(T)
100 4.2032x 107! - 100 2.7733 x 107! -
200  2.5992 x 107" 0.6934 200 1.7102 x 107" 0.6974
400 1.5820x 107! 0.7163 400 1.0504 x 107! 0.7032
800 9.4139x 1072 0.7489 800 6.2422 x 1072 0.7508
1600 5.3953 x 1072 0.8031 1600 3.4649 x 1072 0.8492
3200 2.8018 x 1072 0.9453 3200 1.6926 x 1072 1.0336
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6.6. Application 2: Co-current fluxes

For the last example, we consider o = 1, i.e., both the primary and secondary disperse phases have a
density smaller than that of the fluid and therefore move upwards relative to the mixture. This scenario
could be a flotation process with two buoyant phases differing in density and possibly also in size. We
consider here the same flotation column as in Application 1 and choose n, = 3.2, viemp = 2.5cm/s,
ns = 2.5, and Ve = 1.5 cm/s so that we have two buoyant phases with different (upwards-directed)
velocities relative to the mixture. As in the previous example, only the primary disperse phase is fed
into the tank at zg; and only the secondary at zg,. The column is initially filled with only fluid at time
t = 0s, hence ¢(z,0) = Y(z,0) = 0 for all z, when we start pumping both phases with the following
volume fractions: ¢r; = 1.0, Yp; = 0.0, ¢ppr = 0.0, Y, = 0.6, ¢r3 = 0 and Y3 = 0. We choose the
volumetric flows (Qu, Or.1, Or.2, Or3) = (15, 30,20, 10) cm?/s, so that the volumetric flows in the tank
are positive in all zones with the exception of zone 1.
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Figure 8. Application 2: Co-current flow. Time evolution of the volume fraction profiles of
primary disperse phase ¢ (left) and secondary disperse phase ¥(right) from time t = Os to
t = 1500 s seen from two different angles (first and second rows).

Figure 8 shows the time evolution of the volume fractions of both phases. It can be seen that, for
times ¢t < 350s, the primary disperse phase leaves the tank through both the underflow and effluent
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outlets, while the secondary disperse phase quickly rises to the top part of the tank and leaves it just
through the effluent outlet.

At t = 350s, we change the volumetric flow of the inlet zg; from Qp; = 30 to Qp; = 20cm’/s,
maintaining the other volumetric flows. As a consequence we can see that the primary disperse phase
¢ rises and leaves zone 1, exiting the tank only through the effluent while the secondary disperse phase
maintains the same behaviour as before and is present only above the feed level zg,. Table 2 (b) shows
the estimated errors and convergence orders for this simulation, which have the same behaviour as the
ones in the numerical examples in Sections 6.3 and 6.4.

7. Conclusions

The present study outlines a numerical method for a triangular system of two PDEs, whose flux
functions have several spatial discontinuities due to in- and outflows of a one-dimensional tank with
possibly varying cross-sectional area. The triangular structure is utilized in the following way in the
numerical scheme. The numerical update formula corresponding to the first scalar equation contains,
for the nonlinear term, a numerical flux where the the volume fraction in the left cell is multiplied
with the velocity computed in the right cell; see [6]. The update formula for the second equation uses
the Engquist-Osher numerical flux for the term modelling the nonlinear relative flux of the secondary
disperse phase, chosen in a particular way since this flux also depends on the primary disperse phase
volume fraction. The other terms of the second update formula are also chosen in such a way that
the entire scheme is proved to be monotone under the CFL condition Eq (3.2). We prove that the
numerically obtained volume fractions satisfy the invariant-region property that they stay between
zero and one, as is physically expected.

The numerical scheme is applied to simulate the hydrodynamic movement of simultaneously
rising aggregates (air bubbles with attached hydrophobic particles) and settling hydrophilic particles
in the fluid under in- and outflows of a flotation column. As a demonstration of the capabilities of the
numerical method, three different settings are simulated. The convergence order of the numerical
method is estimated. As expected, in regions where the solution is smooth, the order is one. The
first-order scheme proposed in this paper could be improved to achieve second-order accuracy, for
instance, by techniques of variable extrapolation [6, 14].

In [9], the authors proposed a staggered scheme to compute numerical solutions for a flotation
column, following the approach of Karlsen et al. [32, 33]. Although the staggered scheme worked for
a single inlet for a mixture of aggregates and solids, we have, in the case of several feed inlets, found
it difficult to get consistent numerical solutions with respect to different mesh sizes.

We are currently [12] extending the model and numerical scheme to the explicit description of
drainage of liquid from the foam forming at the top of a flotation column. This phenomenon gives
rise to a model similar to Eq (1.1) but with an additional degenerating diffusion term. The numerical
solution of the resulting system of non-linear convection-diffusion equations calls for semi-implicit
discretizations to alleviate the severe restrictions in the CFL condition due to the diffusion term.
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Appendix A: Proofs of Lemma 5.5 and Theorem 5.1.
Proof of Lemma 5.5. Following [18], we work with smooth entropies instead of 779, so we denote by 7a,

a smooth convex approximation to 7y, so that 775,(0) = 0 and || < 1, and ||ga,—1oll.~ < Az. Moreover,

if Q,. is the entropy flux associated with 77,., then there also holds ||Qx. — Qoll;= — 0 as Az — 0. Then

we split u as p = pf + pd*, where we define

w1 = 0 (mo(W™) — ma (™), 157 = Oma (W™ + 0,00(¢™, ™).

Ifl e C(l) (I17) denotes a test function with compact support, then as in [18], one verifies that

|<ﬂ1AZ’§>| S ff |77Az(l//AZ) - Uo(lﬁAZ)“éﬂ dzdr < Collgillz2qupylina: — molle> — 0 as Az — 0,
Iy
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hence {,u?Z }az>0 1S compact in ngi(HT). By an integration by parts we get

(Uy* 0y = = f . (a0 ) + Qo(¢™, ¥)L) dz dt
Nr-1 ' Insl Nr=1 g
-2 fR ft MW drdz = ) f, fR Qo(#™,y")L: dzds
]\’;T_l] =1
== Z fR N8z @ )2 tnet) = £(z0 1)) dz
n=0

Nr—l1 1
- Z Zf QO(¢?_1/2s w?_uz)(g(zi, 1) — g(zi—l, t)) dzdr,
n=1 iz v

so we may finally write

§> = Z Z(’?Az(l/’ 1/2) Na:(Y- 1/2))f {(z, tye1) dz

n=0 ieZ i1y (Al)
In+1
+ Z Z(A QO(¢, 1/2’ i 1/2)) {(Z,,l‘)dl‘
n=1 i€Z
We define the cell average
1
L= —— ,t)dzdr. A2
4—1/2 AZAtfljl/z {(z,1)dz ( )

Replacing the integral in the first term of the right-hand side of Eq (A.1) by Az{}!, , produces the
following error, where we follow the derivation of Eq (3.27) in [18]:

Z(nw, D)= W) f et bz~ g )

Iisip2
LAY

’vb?jll/z ]/2|At ff |§(Z, thi1) — (2, f)|dZdt
I,

< Z w?fll/z - $?_1/2|K ff f |§,(z, s)| dsdzdr
ni tJ ., Ji
1 Tn+1 T ) 1/2
< Z Wi, - ‘/’?—1/2|K ff f (tpa1 — t)l/z(f |§t(z, S)| ds) dzdt
4 Lisipp Yy I
1 12 In+1 ) 1/2
i, — ?—1/2|AZ/ f (f |{z(Z, s)| ds) dz
Licip Wiy

12
7+11/2 Vi 1/2|AZ1/2AI1/2 f (&(z, S)) dz dt)

I,
I, z 1/2

Z
(AzAzZ(w]‘/Z—tﬁ?_]ﬂ)) (Z f f Lz 9)) dzdt)

l 1/2
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< Z(C1AD 21k gy

Wl N

(see Eq (5.17)). By similar arguments we obtain the bound

Tnt1

~ 1/2
< CrAZ 211w -

§(Z,-+1/2, t) dr - Atg;l_l/z)

Z(A+ QO((b;l_]/z’ ’a[f?_uz)) (
I

In

Consequently, and further following [18], we have shown that

z ﬂAz(W?be - UAz(lﬁ?_l/Q A+Q0(¢?_1/2’ lM’l_]/g) n
w7, ) = Ache ;{ At ’ Az }4‘—1/2

+ terms which are compact in H;_\(TIy).

We now utilize the “scheme for n”, Eq (5.14), to rewrite the term in curled brackets as
{...}= ﬂ?_l/z + B?_l/z + C?_l/z + Z)?_l/z, where we define

n 1 1 en+1/2 n+1 n 2 1 n
i-1/2 = _EUAZ(@:/Z )(Wi:rl/z — Vi) — =0l

Az
By =~ 0 W) — 1 WL DA T @90,
i = —AizAi’(n’(w:’_l/z)ﬂcb?_l,«/f,’-’_o — Q@) Y1),
DL ys =~ (B QUL ~ D, Qo6 ¥y (A3
Thus, (U, &) = (A, &) +(B,L) +(C, ) + (D, {) + compact terms, where

(A, Q) = AZAlZﬂ?—uzfin—l/z
and (8B, ), (C, ), and (D, ¢) are defined analogously. In view of Lemma 5.2, we get
AZ 24 1 n n n
|<ﬂ, §>| < ||§||L°°(Hr)(7 Z nAz(é:ijll/zz)(l//ijll/Z - lﬂi—l/z)z + AIZ ®i—1/2) < Crlldllzqr),
]1 Il

and therefore A € M,..(Il7). Appealing to the divergence bound of the numerical flux Eq (5.15) and
taking into account the BV bound on ¢ it also follows that (B + C, )| < Cr||Z]| L=1,), and therefore
B+Ce MIOC(HT)-

Finally, to deal with (D, ) we consider first &€ > 0 and let Q., Q: and Q. denote the entropy and
numerical entropy fluxes calculated from Eq (5.1) and Eq (5.7), respectively, where n = n,.. Since Q,
is consistent with Q,,

Qs(¢’ ¢’ wla lpZ) - Qs(¢’ lﬁz)
U4 .
= Q8(¢’ ¢’ wb '702) - Qs(¢’ ¢’ '702’ '702) = f U;(S)f((f’, ¢’ S) ds

%)
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= 1. (T (¢, b, 01) — F (6, 6, 002)) — ﬁ (T (B, ¢, 5) = F (b, ¢,41)) ds
V23

(cf. Eq (5.9)). By using the monotonicity of ¥ with respect to its Y-argument we get

W2) = Quld, 12)| < 3l |F (b, ¢, 002) = F (. b, y1)| <

so in the limit & — 0,

Q8. 6, w1, ¥2) = Qo ¥2)| < 3|F (b, b, 002) — F (¢, b, 41))- (A.4)

Noticing that

A-Q(¢7.¥)) - A+Q0(¢?—1/2’ ‘ﬁ?—l/z) = A(Q(¢], w?—]/2’ ‘ﬁ?ﬂ/z) - Q0(¢?+1/2’ W?ﬂ/z))
= A—(Q(¢?+l/2’ ¢?+1/2’ yi) - Q0(¢?+1/2’ ‘/’?+1/2))
+ A(Q(S]. ¥7) — QP10 Blrr s ¥7))

we get from Eq (A.3)

1
AzA Z A_ZA‘(Q(¢?+1/2’ ¢?+1/2’ 'Ml) - Q0(¢?+1/2’ '7[’:‘[+1/2)){;l—1/2

AzAt Z D}, /24'"_1 /2
I,

AZAIZ _A Q@ ¢7) — QP12 Pt jos W1 2| = ISHT+ 1S
By a summation by parts and applying Eq (A.4) we get
S| = AZAIZ(Q(fl’M/z» G100 W) — Q0@ z+1/2)) - 1/2‘
< 3AzAIZ|A(%)7'~(¢I+1/z, P12 ¥ 1/2)|w (A.5)

We now write
©Fs _ A
AW T(¢?+1/2’ ¢?+1/2, ‘ﬁ?—l/z) = ATF (97, W?—uz) + «y?u/z - y?—uzs
where

yl+1/2 —¢(¢z+1/2a i+1/25 z+1/2) 77(¢,, z+1/2)

From Eq (5.34), and considering ¢} ; , = ¢, , in that bound, we deduce there exists a constant C such
that |Y",, /2| < ClA, ¢!, /2| therefore there exists (another) constant C such that

|~y?+1/2 - J/?—1/2| < C|A+¢?—1/2|- (A.6)

Consequently, from Eq (A.5) we deduce that

. |A gln— | n |A gln_ |
1] < 3A2A1 ;|Af>ﬂ¢:tw;’_m>l% + ;'AM"‘”Z'%
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1/2

v 1/2 |A+§?_ | 5
< 3(AzAt(Z(A(j)¢ (@120 120 ‘/’?—1/2))2 L C Z TV(¢”))) (AzAtZ (A—Z”z) )
n T

I

From Eq (5.16) we infer that there exists a constant C7 such that

ALY (AT (B B oo Wia ) < Cr.

I

Noticing that also

At ) TV@) < C,,

we conclude that there exists a constant C,, such that

(S1.0)| < Cry 82 9Lz,
Next, we deal with S,. Applying again a summation by parts, we get

A*’é;in—l/2

S| =
S| Az

AL ) QYD) = Q10 B oY1)

The definition of Q (see Eq (5.7)) yields

Q2. ¥7) — QL1 s Bt oo W] < Q@I WL 1) = QB 0 Bt 0 W1 )]
+ |Q(¢?’ W?ﬂ/z) - Q(¢?+1/27 ¢?+1/2’ W?—1/2)|~

By a computation similar to Eq (5.21) we get

QB2 W1 0) = QBT o Bl o W 0| < 317 1| Xy o

where
X1 = F(B7010) = F (D1 B oo Ui 2)-
The discussion of X7 | , is similar to that of Yy, 1, above, and appealing to Eq (5.34) we see that
|X?—1/2| = C|A+¢?—1/2|~
On the other hand, Eq (A.6) implies that

Q! 1 2) = QL os By Wi )|
< 3||77/||oo|7:(¢?’ Uiin) = F (B0 B oo ‘/’?—1/2)| < C|A+¢?—1/2|-

Thus

< C|A+¢?—1/z

QST 1)~ QL1 2 B0 ¥7)

2
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and we deduce that S, can be bounded in a similar way as S;. In particular,

S| < S(AzAtCZ TV(¢”))) (AzAtZ(|A+§n U 2') ) :

and we conclude that also

(82, O)| < CrAZ"2110.8ll2@exes,s

so D is compact in H,_ i(HT). Thus, the sequence {,uﬁz}ADO, and therefore also the sequence {1*}a.-0
belong to a compact subset of H, IC(HT). O

Proof of Theorem 5.1. We only need to verify that i is a weak solution of Eq (1.8b), that is, that Eq
(1.10) holds. To this end, we choose a test function £ € C(Ilr), recall the definition Eq (A.2) of cell
averages ¢ | ,, multiply the y-scheme Eq (5.3) by Az} | ,, sum over i and n, and apply a summation
by parts to obtain an identity Jo + 91 + 9> = 0, where

Jo —AZZ'/’ 1/2(01/2, Ji -—Azzzw 1/2(4 12— 4 1/2)

i€Z, i€Z n=1

Vg —AzAtZ D F@h—

n=0 iezZ

A We 1/2

By exactly following the estimates of terms /, and /; in the proof of [18, Lemma 3.5] and appealing to
the bounded convergence theorem we may prove that

lim J, = f Vo) (z,0)dz,  lim J, = f f W, dz dt. (A.7)
Az—0 R Az—0 e

The treatment of , differs from that of the term /, in [18, Lemma 3.5] since here the numerical flux
depends on four arguments (not three, as in [18]). We here get

I = ff F(‘/’AZ’ i,DAZ)(')Z{dzdt+jz,1 + 22+ T3,
My

where we define

8 0.0(z, 1) — 0. t
o1 = ZF(¢ _120 ¥ ,1/2)ff f f@) AZ((Z+§ )dfd dz,

i-1/2
n
+§1 1/2

NERRS —AzAtZ(F(¢, 2 ¥ie) = F @Y Ui )

1 1/2

o3 = —AzAtZ(ff«bl,w Vi) - F g, )

1/2

= AZAt Z A(3)T(¢l 5 1/2)

I
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The term 7, can be estimated by choosing a constant M such that {(z,#) = O for |z| > M and noting
that

T2l < A= NF (@ ™o o aranpory— O as Az — 0. (A.8)

Furthermore, in light of Eq (5.6) the difference arising in />, can be written as

F(¢?—1/2’ ‘ﬁ?—l/z) - T(¢?’ ‘ﬁ?—uz’ ‘ﬁ?—l/z) = ¢(¢7—1/2’ ¢?—1/2’ W—l/z’ W?—uz) - T(‘f’?—uz’ ¢?+1/2’ ‘ﬁ?—l/z’ ‘ﬁ?—uz)
= 7:(@1—1/2, ¢?-1/2’ ‘ﬁ?-uz) - 7:(‘??-1/2’ ¢?+1/2’ l/’?-l/z)
+ 7:((]5?—1/2’ ¢?—1/2’ 50?—1/2) - 77(915?_1/2, ¢?+1/2’ W—l/z)

Utilizing the estimate Eq (5.34) with ¢ ; , = ¢/, , yields that there exists a constant C, such that

|F(¢7—1/2’ lﬂ?—l/z) - ?(tﬁ?, %’1—1/2’ W?—1/2)| < C12|A+¢?—1/2|’

hence
~ Al
|J22|<cquArZTV<¢> T2 < CAZfoLllle > 0as Az — 0. (A9)
To estimate /3, we utilize Eq (5.16). Then
12 12
<|azae S (ADF (g, yr AzAt ( ‘”2)
NEX] [ z [Zl( L (8 %01_1/2)) 2 Z (A.10)

= C;/ZAZ]/ZHaz{”LZ(HT) — 0as Az — 0.

From Eq (A.8), Eq (A.9) and Eq (A.10) and appealing to the strong convergence of ¢ and ¢ we
deduce that

hm J> = ff F(¢,¥)0.¢ dz dt. (A.11)
The limits Eq (A.7) and Eq (A.11) imply that the limit ¢ is a weak solution. O
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