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Abstract: A triangular system of conservation laws with discontinuous flux that models the one-
dimensional flow of two disperse phases through a continuous one is formulated. The triangularity
arises from the distinction between a primary and a secondary disperse phase, where the movement
of the primary disperse phase does not depend on the local volume fraction of the secondary one. A
particular application is the movement of aggregate bubbles and solid particles in flotation columns
under feed and discharge operations. This model is formulated under the assumption of a variable
cross-sectional area. A monotone numerical scheme to approximate solutions to this model is
presented. The scheme is supported by three partial theoretical arguments. Firstly, it is proved that
it satisfies an invariant-region property, i.e., the approximate volume fractions of the three phases,
and their sum, stay between zero and one. Secondly, under the assumption of flow in a column with
constant cross-sectional area it is shown that the scheme for the primary disperse phase converges
to a suitably defined entropy solution. Thirdly, under the additional assumption of absence of flux
discontinuities it is further demonstrated, by invoking arguments of compensated compactness, that
the scheme for the secondary disperse phase converges to a weak solution of the corresponding
conservation law. Numerical examples along with estimations of numerical error and convergence
rates are presented for counter-current and co-current flows of the two disperse phases.
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1. Introduction

1.1. Scope

It is the purpose of this work to introduce, and in part analyze, a numerical scheme for a system of
conservation laws with source terms of the type

∂t

(
A(z)

(
ϕ

ψ

))
+ ∂z

(
A(z)

(
J(ϕ, z, t)

F̃(ϕ, ψ, z, t)

))
=

K∑
k=1

QF,k(t)
(
ϕF,k(t)
ψF,k(t)

)
δ(z − zF,k), (1.1)

where t is time, z is spatial position, and ϕ and ψ are the volume fractions of the primary and secondary
disperse phases, respectively. Both disperse phases move within the continuous phase of the one-
dimensional flow. We let A(z) denote a variable cross-sectional area. The flux functions J and F̃ are
discontinuous across the positions z = zU < zF,1 < · · · < zF,K < zE, and due to constitutive assumptions
of the model, are nonlinear functions of ϕ and ψ. The right-hand side of Eq (1.1) describes singular
sources located at z = zF,k, k = 1, . . . ,K, and is composed of given functions. It is assumed that
QF,k(t) is the volumetric bulk flow of the mixture (of the continuous and two disperse phases) injected
at z = zF,k, and that ϕF,k(t) and ψF,k(t) are the volume fractions of the primary and secondary disperse
phases in the feed flow, respectively. The system Eq (1.1) is posed on ΠT := R × (0,T ) together with
initial conditions

ϕ(z, 0) = ϕ0(z) for all z ∈ R, (1.2a)
ψ(z, 0) = ψ0(z) for all z ∈ R, (1.2b)

where we assume that

0 ≤ ϕ0(z) ≤ 1, 0 ≤ ψ0(z) ≤ 1 − ϕ0(z) for all z ∈ R (1.3)

along with

TV(ϕ0) < ∞, TV(ψ0) < ∞. (1.4)

Likewise, we assume that ϕF,k and ψF,k are piecewise continuous functions of bounded variation with a
finite number of discontinuities and that they satisfy the bounds

0 ≤ ϕF,k(t) ≤ 1, 0 ≤ ψF,k(t) ≤ 1 − ϕF,k(t) for all k = 1, . . . ,K and t ∈ [0,T ]. (1.5)

(In later parts of the analysis we will assume that these functions and the bulk flows QF,k are constants.)
If θ denotes the volume fraction of the continuous phase, then we assume that

0 ≤ ϕ, ψ, θ ≤ 1; ϕ + ψ + θ = 1, (1.6)

which motivates assumptions Eq (1.3) and Eq (1.5). (Of course, satisfaction of Eq (1.6) by exact or
numerical solutions of Eq (1.1), Eq (1.2) on ΠT needs to be proved.)
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Figure 1. Schematic of a one-dimensional column with K = 3 inlets and K + 1 = 4 zones,
where QU is the downwards volumetric outflow, QF, j is the volumetric flow at the inlet zF, j, for
each j = 1, . . . ,K, and QE is the upwards volumetric outflow. Note that the distances between
the inlets/outlets are arbitrary and the cross-sectional area A = A(z) may vary piecewise
continuously (although the figure shows a piecewise constant example).

A specific application that gives rise to the system Eq (1.1) is a model of a flotation column [8, 9],
where ϕ denotes the volume fraction of bubbles and ψ that of solid particles (Figure 1). The bottom of
the column has the coordinate zU (the underflow) and the top zE (the effluent). The primary disperse
phase of bubbles – specifically, aggregate bubbles, to which hydrophobic valuable particles (minerals)
are attached – is assumed to flow through the suspension of solid particles and liquid independently
of the volume fraction of solids. The secondary disperse phase consists of solid hydrophilic particles
(ore) that move in the remaining space outside the bubbles. If the solid particles of the secondary
disperse phase have a density larger than that of the fluid, the two disperse phases undergo counter-
current, and otherwise, co-current flow. The distinction between primary and secondary disperse phase
also becomes evident in the flux functions: the flux J of the primary disperse phase depends on ϕ

only (besides z and t), while that of the secondary disperse phase, F̃, depends both on ϕ and ψ. Thus,
the system Eq (1.1) is triangular; however, it is generally non-strictly hyperbolic; see [9], where a
counter-current model of the form Eq (1.1) is studied.

The main contribution of this work is an easily implemented explicit monotone numerical scheme
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for Eq (1.1). To properly address the theoretical support we are able to provide for this scheme, we
refer to the complete model Eq (1.1), with all assumptions stated so far in effect, as “Model 1”, and the
corresponding scheme (that handles Model 1) as “Scheme 1”. Additional properties of Scheme 1 can
be established for two successively simplified versions of Model 1, named “Model 2” and “Model 3”,
for which the corresponding versions of Scheme 1 are addressed as “Scheme 2” and “Scheme 3”,
respectively.

The scheme is supported by three partial theoretical arguments. Firstly, it is proved that Scheme 1
satisfies an invariant-region property, i.e., the approximate volume fractions satisfy a discrete analogue
of Eq (1.6) at every point. Secondly, the assumption of a constant cross-sectional area, i.e.,

A ≡ constant, A > 0, (1.7)

and time-independent feed and volume rates defines Model 2, and it is shown that the corresponding
scheme for the primary disperse phase (the “ϕ-scheme” of Scheme 2; in short, “ϕ-Scheme 2”)
converges to a suitably defined entropy solution. Thirdly, we additionally assume that there are no flux
discontinuities, so that Model 2 is reduced to the triangular system of conservation laws (“Model 3”)

∂tϕ + ∂zJ(ϕ) = 0, (1.8a)
∂tψ + ∂zF̃(ϕ, ψ) = 0, (z, t) ∈ ΠT , (1.8b)

where J and F̃ are z- and t-independent versions of the fluxes arising in Eq (1.1) and Eq (1.8) is
equipped with the initial conditions Eq (1.2), where assumptions Eq (1.3) remain in effect. The
corresponding reduced version of Scheme 2 that handles Model 3 is called “Scheme 3.” Under these
additional assumptions, we may invoke arguments of compensated compactness to prove that the
scheme for the secondary disperse phase (the “ψ-Scheme 3”) converges to a weak solution of the
corresponding conservation law Eq (1.8b). Summarizing all arguments, we prove that Scheme 3
converges to a weak solution of the system Eq (1.8) in the sense of the following definition.

Definition 1.1. The pair (ϕ, ψ) is called a weak solution of the initial value problem Eq (1.8), Eq (1.2)
if

(i) The functions ϕ and ψ belong to L∞(ΠT ).
(ii) The functions ϕ and ψ satisfy Eq (1.8), Eq (1.2) in the sense of distributions on ΠT , that is, for

each smooth test function ζ with compact support in ΠT , the following identities hold:"
ΠT

(
ϕ∂tζ + J(ϕ)∂zζ

)
dz dt +

∫
R

ϕ0(z) dz = 0, (1.9)"
ΠT

(
ψ∂tζ + F̃(ϕ, ψ)∂zζ

)
dz dt +

∫
R

ψ0(z) dz = 0. (1.10)

(iii) The function ϕ is an entropy solution of the single conservation law Eq (1.8a), that is, for each
smooth and nonnegative test function ζ with compact support in ΠT , the following inequality
holds for all c ∈ R:"

ΠT

(
|ϕ − c|∂tζ + sgn(ϕ − c)

(
J(ϕ) − J(k)

)
∂zζ

)
dz dt +

∫
R

∣∣∣ϕ0(z) − c
∣∣∣ dz ≥ 0. (1.11)

Numerical experiments illustrate that Scheme 1 for the full model Eq (1.1) (Model 1), approximates
expected solution behaviour for counter-current and co-current flows and that approximate numerical
errors tend to zero as the mesh is refined.
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1.2. Related work

The system Eq (1.1) models the evolution of the primary unknown ϕ independently of the secondary
unknown ψ. One application of such triangular systems is the process of column flotation, which is
a solid-liquid separation process used in mineral processing, environmental and chemical engineering
[10, 11, 27, 28, 42, 45]. The model Eq (1.1) restricted to three-phase counter-current flow in a flotation
column was originally proposed in [9]. Its nonlinear constitutive assumptions come from the drift-
flux theory (used to analyze the bubbly and froth regions [41, 50, 51]) and the solids-flux theory (for
particles in a liquid [24, 25, 38]). In [9], the construction of steady-state solutions is detailed, where
conservation laws with discontinuous flux are a key ingredient with a specific entropy condition [2, 22,
29]. The most interesting desired steady states are classified in [9] and visualized in graphical so-called
operating charts that show how the control variables QU, QF := QF,1 (feed mixture of gas, solids and
water) and QW := QF2 (feed washwater) should be chosen.

The mathematical and numerical difficulties associated with Eq (1.1) are twofold; namely, one has
to deal with discontinuities of the fluxes with respect to z, as well as with the definition of the
governing model by a (triangular) system of conservation laws (in contrast to otherwise similar,
known scalar two-phase models arising in flotation or sedimentation [8, 13, 22, 23]). The well-known
difficulty of conservation laws with discontinuous flux lies in the appropriate formulation of
admissibility conditions of jumps of the solution across discontinuities of the flux such that the
resulting concept of weak (discontinuous) solutions supplied with an entropy condition would admit a
uniqueness result. There exist many criteria for selecting unique solutions (e.g., [1, 22]), each of
which corresponds to a particular physical reality and relies on specific assumptions on the fluxes
adjacent to a discontinuity. A unified treatment of this problem is advanced in [2]. While scalar
conservation laws with discontinuous flux have been studied widely, only a few analyses of systems
with discontinuous flux are available (e.g., [16, 47]). That said, its triangular nature makes Eq (1.1)
potentially easier to treat than a full 2 × 2 system of conservation laws (where the flux of each
component would depend on both unknowns).

The triangular system with discontinuous flux studied in [9] was solved numerically with a
staggered-grid scheme that utilizes the triangular structure of Eq (1.1). Such a semi-Godunov scheme
for general triangular hyperbolic systems is one of the two suggested schemes by Karlsen et
al. [32, 33], who proved convergence of the numerical solutions under certain assumptions on the flux
functions. We here propose a simpler numerical scheme (on a single grid) that is easier to implement
and analyze. The analysis (of the scheme proposed under simplifying assumptions) relies on the
aligned version of the scheme introduced in [33] and in particular on the convergence analysis of an
Engquist-Osher scheme for multi-dimensional triangular system of conservation laws by Coclite et al.
[18]. (The proof of convergence done in [18] is motivated by the more easily proven convergence of a
vanishing viscosity approximation for the same model, see [17].) These analyses, and the present
treatment for the reduced model Eq (1.8), rely on compactness techniques that use discrete entropy
inequalities and the compensated compactness framework.

Further applications and results on the analysis of triangular systems include two-component
chromatography [3]. Furthermore, polymer flooding in oil recovery is modelled by a 2 × 2 system
[31], which can be converted to a triangular system in Lagrange coordinates [49]. In [20, 40, 48], the
authors study the delta shock wave formation in solutions of triangular system of conservation laws
from the so-called generalized pressureless gas dynamics model. Bressan et al. [5] established the
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existence and uniqueness of vanishing viscosity solutions for scalar conservation laws for a Cauchy
problem and their results can be applied to a triangular system under suitable assumptions. The
results of Karlsen et al. [32, 33] for general triangular systems can be applied to models of
three-phase flows in porous media, for example, in oil recovery.

1.3. Outline of the paper

The remainder of this paper is organized as follows. In Section 2, the model of [9] of
gas-solid-liquid three-phase flow in a flotation column from is written in a slightly more general form.
Starting from the balance equations of the three phases we outline the derivation of the algebraic
forms of the fluxes J(ϕ, z, t) and F̃(ϕ, ψ, z, t) arising in the governing PDE system Eq (1.1). In
Section 3 the numerical method (Scheme 1) proposed for the approximation of solutions to the initial
value problem Eq (1.1), Eq (1.2) (Model 1) is detailed, where computational effort is essentially
reduced to the interior of the vessel (cf. Figure 1). After outlining the discretization in Section 3.1, we
specify the numerical fluxes and update formulas for the primary and secondary disperse phases in
Sections 3.2 and 3.3, respectively. Both formulas are adapted to the particular algebraic form of the
fluxes J(ϕ, z, t) and F̃(ϕ, ψ, z, t) and involve upwind discretizations, a particular monotone
discretization for “concentration times velocity” fluxes from [6], and the Engquist-Osher numerical
flux [26]. We then prove in Section 3.4 that Scheme 1 is monotone and that the numerical solutions
satisfy a so-called invariant-region property (Theorems 3.1 and 3.2), that is, a discrete analogue of Eq
(1.6), provided, of course, that the initial data satisfy Eq (1.3) and the time step and spatial meshwidth
satisfy a CFL condition. Section 4 provides further partial results of the convergence analysis of the
numerical scheme based on additional simplifying assumptions, namely those of a constant
cross-sectional area A and constant bulk and feed flows QU, QF,k, ϕF,k and ψF,k (k = 1, . . . ,K). Thus,
the scheme under discussion is Scheme 2. We can then prove convergence of the ϕ-Scheme 2 (the one
that discretizes the ϕ-component of the governing PDE; Section 4.1) and L1 Lipschitz continuity of
the ψ-Scheme 2 (Section 4.2). If in addition all z-dependent flux discontinuities are removed, so that
the governing PDE system is Eq (1.8) (Model 3) and the scheme reduces to Scheme 3, we may apply
compensated compactness techniques to prove convergence of the ψ-scheme (Section 5). For the
simplified problems, the initial conditions Eq (1.2) and assumptions Eq (1.3) and Eq (1.5) are
imposed, so Theorems 3.1 and 3.2 remain in effect. While in that case the convergence of (the
monotone) ϕ-Scheme 3 to an entropy solution of Eq (1.8a) follows by standard arguments (for
monotone schemes), the principal result of Section 5 is convergence of ψ-Scheme 3 to a weak
solution of Eq (1.8b) (Lemma 5.5 and Theorem 5.1). Estimations of errors and convergence order of
the numerical method can be found in Section 6.1. Some numerical examples are presented in
Section 6, starting with preliminaries (Section 6.1). First, in Section 6.3, we use a smooth solution to
estimate the order of convergence. Later on, we present two numerical examples that illustrate the
model predictions for counter-current (Section 6.4) and co-current flows (Sections 6.5 and 6.6).
Finally, some conclusions are drawn in Section 7, and Appendix A contains the proofs of Lemma 5.5
and Theorem 5.1.
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2. Three-phase flow model

The density of each phase is assumed constant, so the conservation of mass can be expressed by the
balance equations (vϕ, vψ, and vθ are the phase velocities)

∂t
(
A(z)ϕ

)
+ ∂z

(
A(z)ϕvϕ

)
=

K∑
k=1

QF,k(t)ϕF,k(t)δ(z − zF,k), (2.1)

∂t
(
A(z)ψ

)
+ ∂z

(
A(z)ψvψ

)
=

K∑
k=1

QF,k(t)ψF,k(t)δ(z − zF,k), (2.2)

∂t
(
A(z)θ

)
+ ∂z

(
A(z)θvθ

)
=

K∑
k=1

QF,k(t)
(
1 − ϕF,k(t) − ψF,k(t)

)
δ(z − zF,k), (2.3)

where the right-hand sides contain Dirac symbols, the feed volume fractions ϕF,k and ψF,k of the disperse
phases, and the corresponding volume fraction 1 − ϕF,k(t) − ψF,k(t) of the continuous phase, at the inlet
located at z = zF,k, k = 1, . . . ,K.

We define the volume-average velocity, or bulk velocity, of the mixture by

q := ϕvϕ + ψvψ + θvθ,

and replace Eq (2.3) by the sum of Eqs (2.1)–(2.3), which is

∂z
(
A(z)q

)
=

K∑
k=1

QF,k(t)δ(z − zF,k), (2.4)

hence q varies with z due to the K inlets and the variable cross-sectional area. We define Q(z, t) :=
A(z)q(z, t) and integrate Eq (2.4) from any point z0 < zU to obtain

Q(z, t) = Q(z0, t) +
K∑

k=1

QF,k(t)H(z − zF,k),

whereH(·) is the Heaviside function. If the volumetric underflow QU(t) is given, then Q(z, t) = −QU(t)
for z < zU, and

Q(z, t) = −QU(t) +
K∑

k=1

QF,k(t)H(z − zF,k) = −QU(t) +
∑

k:zF,k≥z

QF,k(t).

This continuity equation of the mixture replaces Eq (2.3). Next, Eq (2.1) and Eq (2.2) are rewritten in
terms of q and two constitutive functions. We refer to the continuous phase and the secondary disperse
phase as “secondary mixture”, and define the volume fraction of the secondary disperse phase within
the secondary mixture as

φ :=
ψ

ψ + θ
=

ψ

1 − ϕ
(when ϕ < 1),
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where 0 ≤ φ ≤ 1 by Eq (1.6). The volume-average velocity of the secondary mixture is

qs :=
ψvψ + θvθ
ψ + θ

= φvψ +
1 − ϕ − ψ

1 − ϕ
vθ = φvψ + (1 − φ)vθ.

It is then assumed that within [zU, zE), the relative velocity vϕs := vϕ − qs of the primary disperse
phase with respect to the secondary mixture is a given constitutive function ṽϕs(ϕ), while outside that
interval, both phases move at the same velocity, so their velocity difference is zero. Thus, in terms of
the characteristic function

γ(z) := χ[zU,zE)(z) :=

1 for z ∈ [zU, zE),
0 for z < [zU, zE),

this assumption can be expressed as vϕs = γ(z)ṽϕs(ϕ). Within [zU, zE), the relative velocity of the
secondary disperse phase with respect to the continuous phase vψθ := vψ − vθ is supposed to be a given
function ṽψθ of φ, that is, vψθ = γ(z)ṽψθ(φ).

The definitions of all velocities imply the identities

ϕvϕ = ϕq + γ(z)ϕ(1 − ϕ)ṽϕs(ϕ),
ψvψ = ψq + γ(z)ψ

(
(1 − φ)ṽψθ(φ) − ϕṽϕs(ϕ)

) (2.5)

for the (unweighted) fluxes ϕvϕ and ψvψ arising in Eq (2.1) and Eq (2.2), respectively. It is then useful
to introduce the velocity and flux functions

W(ϕ) := (1 − ϕ)ṽϕs(ϕ), V(φ) := σ(1 − φ)ṽψθ(φ), (2.6)
j(ϕ) := ϕW(ϕ), f (φ) := φV(φ),

where σ = ±1 is chosen depending on the application such that V(φ), f (φ) ≥ 0 (for standard
convenience, e.g., when plotting their graphs); σ = 1 for co-current flows (upwards) and σ = −1 for
counter-current flows. The velocity and flux of the secondary disperse phase with respect to z are
therefore σV(φ) and σ f (φ), respectively. We assume that W ′,V ′ ≤ 0 and V(1) = W(1) = 0, as well as
that

f has one local maximum ω and one inflection point ω̃, 0 < ω < ω̃ < 1. (2.7)

Combining Eq (2.5) and Eq (2.6) we obtain the expressions

ϕvϕ = ϕq + γ(z)ϕW(ϕ) =: J(ϕ, z, t), (2.8)
ψvψ = (1 − ϕ)φq + γ(z)

(
(1 − ϕ)φσV(φ) − φϕW(ϕ)

)
=: F(ϕ, φ, z, t)

for the total fluxes of Eq (2.1) and Eq (2.2). For ϕ < 1, we define the final flux function

F̃(ϕ, ψ, z, t) := F
(
ϕ,

ψ

1 − ϕ
, z, t

)
= ψq + γ(z)

(
ψσV

(
ψ

1 − ϕ

)
−
ψϕW(ϕ)

1 − ϕ

)
, (2.9)

whereas for ϕ = 1, we set F̃(1, ψ, z, t) := 0 (since F(1, φ, z, t) = 0 for all φ ∈ [0, 1]). Substituting Eq
(2.8) and Eq (2.9) into Eq (2.1) and Eq (2.2), respectively, we obtain the final governing PDE system Eq
(1.1).
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Illustrations and numerical examples are based on the expressions

W(ϕ) = vterm,p(1 − ϕ)np for 0 ≤ ϕ ≤ 1, np > 1, (2.10)
V(φ) = vterm,s(1 − φ)ns for 0 ≤ φ ≤ 1, ns > 1 (2.11)

(see [46]), where vterm,p and vterm,s are the terminal velocities of a single particle of the primary and
secondary disperse phases, respectively, in an unbounded fluid. We set np = 3.2, vterm,p = 2.7 cm/s,
ns = 2.5, and vterm,s = 0.5 cm/s along with σ = −1. These values are used in Applications 1 and 2 in
Section 6. The resulting nonlinearities of J(ϕ, z, t) and F̃(ϕ, ψ, z, t) in the different zones of the column
are illustrated in [52, Figure 3.2].

3. Numerical method

3.1. Discretization and CFL condition

The discretization of the model is based on the triangularity of the system of conservation laws Eq
(1.1). The numerical fluxes for ϕ are based on the particular treatment of conservation laws with fluxes
having an explicit “concentration times velocity” structure [6]. In each time step, an approximate
solution ϕ of the first PDE of Eq (1.1) is obtained and used as a given piecewise constant function in
space and time in the second PDE of Eq (1.1), which is updated accordingly.

...

...

...

...

...

...

...

...

...

...

Figure 2. (Left) Discretization of ϕ and ψ in the application to flotation, where the height of
the vessel is H = zE − zU, there are K inlets, and the cross-sectional area A(z) has two values
separated by a discontinuity at z = zF,2; cf. the examples in Sections 6.4 and 6.5, (right)
enlarged view illustrating cell division for error computations when ∆r

z is the discretization
of the reference solution (see Section 6.1).

We define a computational domain [0, zend) (to be used for the error calculation; see Section 6.1)
consisting of N cells by covering the vessel with N − 2 cells and placing one cell each below and
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above; see Figure 2 (left). This setup, with a finite spatial domain, is introduced for practical reasons
and is the minimal spatial domain that captures the interior of the tank and the concentrations in the
underflow and effluent zones. The formulation of the scheme (i.e., Scheme 1) and subsequent proof of
invariant region property are referred to this computational domain, but for the convergence analysis
the model is specified as the initial value problem Eq (1.1), Eq (1.2) with the initial data posed on the
real line. This distinction is merely a formal one since on (−∞, 0) and (zend,∞) the model reduces to
linear advection equations describing that matter is transported away from the unit at constant velocity
(if no changes in A in these zones arise).

Given the column height H, we define ∆z := H/(N−2), the cell boundaries zi := i∆z, i = 0, 1, . . . ,N,
and the cells (intervals) Ii−1/2 := [zi−1, zi) and Ii := [zi−1/2, zi+1/2). We place the column between zU :=
∆z = z1 and zE := zU + H = (N − 1)∆z = zN−1. Then the length of the interval of error calculation is
zend := H + 2∆z = N∆z. Each injection point zF,k is assumed to belong to one cell Ii−1/2 and we define
the dimensionless quantity

δk,i−1/2 :=
∫

Ii−1/2

δzF,k(z) dz :=

1 if zF,k ∈ Ii−1/2,
0 otherwise.

(3.1)

The cross-sectional area A = A(z) is allowed to have a finite number of discontinuities and it is
discretized by

Ai :=
1
∆z

∫
Ii

A(z) dz, Ai+1/2 :=
1
∆z

∫
Ii+1/2

A(z) dz.

We simulate NT time steps up to the final time T := NT∆t, with the fixed time step ∆t satisfying the
Courant-Friedrichs-Lewy (CFL) condition

∆t
(2∥Q∥∞,T

Amin
+ M

(
max {V(0), ∥V ′∥∞} + ∥W∥∞ + ∥W ′∥∞

))
≤ ∆z, (3.2)

where

M := max
i=1,2,...,N

{
Ai−1

Ai−1/2
,

Ai

Ai−1/2

}
, Amin := min

k=0,1/2,1,3/2,...,N
Ak,

∥Q∥∞,T := max
0≤t≤T

K∑
k=1

QF,k(t), ∥W ′∥∞ := max
0≤ϕ≤1

|W ′(ϕ)|.

Finally, we set tn := n∆t for n = 0, 1, . . . ,NT .
The time-dependent feed functions are discretized as

Qn
F,k :=

1
∆t

∫ tn+1

tn
QF,k(t) dt, ϕn

F,k :=
1
∆t

∫ tn+1

tn
ϕF,k(t) dt,

for k = 1, . . . ,K, and the same is made for ψF,k.
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3.2. Update of ϕ-Scheme 1

The first equation of Eq (1.1) is discretized by combining upwind discretizations of qϕ with the
particular scheme proposed in [6] for models with a “concentration times velocity” flux, as is the case
for the term ϕW(ϕ).

The initial data are discretized by

ϕ0
i−1/2 :=

1
Ai−1/2∆z

∫
Ii−1/2

ϕ(z, 0)A(z) dz.

To advance from tn to tn+1 from given values ϕn
i−1/2, i = 1, . . . ,N, we define the numerical flux at z = zi

by

Jn
i :=


ϕn

1/2qn−
0 for i = 0,

ϕn
i−1/2qn+

i + ϕ
n
i+1/2qn−

i + γiϕ
n
i−1/2W(ϕn

i+1/2) for i = 1, . . . ,N − 1,
ϕn

N−1/2qn+
N for i = N,

(3.3)

where the notation

a+ := max{a, 0}, a− := min{a, 0}, γi := γ(zi), and qn+
i := (q(zi, tn))+

is used. Since the bulk fluxes above and below the tank are directed away from it,

ϕn
−1/2qn+

0 = 0 and ϕn
N+1/2qn−

N = 0 for any values of ϕn
−1/2 and ϕn

N+1/2.

To simplify the presentation, we use the middle line of Eq (3.3) as the definition of Jn
i together with

ϕn
−1/2 := 0 and ϕn

N+1/2 := 0. With the notation λ := ∆t/∆z and Qn+
i := Aiqn+

i etc., the conservation law
on Ii−1/2 implies the update formula

ϕn+1
i−1/2 = ϕ

n
i−1/2 +

λ

Ai−1/2

(
Ai−1J

n
i−1 − AiJ

n
i +

K∑
k=1

Qn
F,kϕ

n
F,kδk,i−1/2

)
=: Hi−1/2

(
ϕn

i−3/2, ϕ
n
i−1/2, ϕ

n
i+1/2

)
, i = 1, . . . ,N.

(3.4)

Then we define the piecewise constant approximate solution ϕ∆z on R × [0,T ) by

ϕ∆z(z, t) :=
∑
i,n

χIi−1/2(z)χ[tn,tn+1)(t)ϕn
i−1/2, (3.5)

where χΩ denotes the characteristic function of the set Ω.

3.3. Update of ψ-Scheme 1

We discretize the initial data by

ψ0
i−1/2 :=

1
Ai−1/2∆z

∫
Ii−1/2

ψ(z, 0)A(z) dz.

Networks and Heterogeneous Media Volume 18, Issue 1, 140–190.



151

The well-known Engquist-Osher numerical flux [26] for a given continuous, piecewise differentiable
flux function g and real values a and b on the left/right is given by

G(g; a, b) := g(0) +
∫ a

0
max

{
0, g′(s)

}
ds +

∫ b

0
min

{
0, g′(s)

}
ds. (3.6)

Then a consistent numerical flux corresponding to Eq (2.9) is

F n
i := ψn

i−1/2qn+
i + ψ

n
i+1/2qn−

i + γi

(
Gn

i
(
ψn

i−1/2, ψ
n
i+1/2

)
− ϕn

i−1/2

ψn
i+1/2

1 − ϕn
i+1/2

W(ϕn
i+1/2)

)
, i = 0, . . . ,N,

where we set ψn
−1/2 := 0 and ψn

N+1/2 := 0 with the same motivation as for ϕ above (these values are
irrelevant). Here

Gn
i
(
ψn

i−1/2, ψ
n
i+1/2

)
:= G

(
σ f n

i ;ψn
i−1/2, ψ

n
i+1/2

)
(3.7)

is the Engquist-Osher numerical flux associated with the function

σ f n
i (ψ) := σψṼ

(
ψ

ψn
max,i

)
, Ṽ(u) :=

V(u) for u < 1,
0 for u ≥ 1,

(3.8)

where (a ∧ b := min{a, b}, a ∨ b := max{a, b})

ψn
max,i := (1 − ϕn

i−1/2) ∧ (1 − ϕn
i+1/2) = 1 − (ϕn

i−1/2 ∨ ϕ
n
i+1/2).

The function ψ 7→ σ f n
i (ψ) is unimodal. Let ψ̂n

i denote the maximum point of f n
i . For a given function Ṽ

the values ψ̂n
i and ψn

max,i are related by the following lemma.

Figure 3. Illustration of Lemma 3.1.

Lemma 3.1. Assume that 0 < ω < ω̃ < 1 are the unique local maximum and inflection point,
respectively, of f (φ) = φV(φ) (cf. Eq (2.7)). Then ψ̂n

i = ωψ
n
max,i for all i and n and all possible values

0 ≤ ψn
max,i ≤ 1. Moreover, the unique inflection point ψn

infl,i ∈ (ψ̂n
i , ψ

n
max,i) of f n

i satisfies ψn
infl,i = ω̃ψ

n
max,i

for all i and n and all possible values 0 ≤ ψn
max,i ≤ 1. (See Figure 3.)
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Proof. Assume that 0 < ψn
max,i ≤ 1. Since ψ̂n

i is the unique solution ψ̂n
i < ψ

n
max,i of

d
dψ

(
ψṼ

(
ψ

ψn
max,i

))
= 0 ⇔ Ṽ

(
ψ

ψn
max,i

)
+

ψ

ψn
max,i

Ṽ ′
(

ψ

ψn
max,i

)
= 0,

it follows that ω is the unique solution in (0, 1) of Ṽ(ω) + ωṼ ′(ω) = 0 (cf. Eq (2.7)). By a similar
argument, ω̃ is the unique solution of 2Ṽ ′(ω̃) + ω̃Ṽ ′′(ω̃) = 0. □

The Engquist-Osher numerical flux Eq (3.7), which in this form appears in Scheme 1 as well as in its
reduced versions, Schemes 2 and 3, can now be computed as follows, where we recall that f n

i (0) = 0.
For σ = 1 we get ∫ ψn

i−1/2

0
max

{
0, ( f n

i )′(s)
}
ds =

 f n
i (ψn

i−1/2) if ψn
i−1/2 ≤ ψ̂

n
i ,

f n
i (ψ̂n

i ) if ψn
i−1/2 > ψ̂

n
i ,∫ ψn

i+1/2

0
min

{
0, ( f n

i )′(s)
}
ds =

0 if ψn
i+1/2 ≤ ψ̂

n
i ,

f n
i (ψn

i+1/2) − f n
i (ψ̂n

i ) if ψn
i+1/2 > ψ̂

n
i ,

(3.9)

hence

G( f n
i ;ψn

i−1/2, ψ
n
i+1/2) =


f n
i (ψn

i−1/2) if ψn
i−1/2 ≤ ψ̂

n
i and ψn

i+1/2 ≤ ψ̂
n
i ,

f n
i (ψn

i−1/2) + f n
i (ψn

i+1/2) − f n
i (ψ̂n

i ) if ψn
i−1/2 ≤ ψ̂

n
i and ψn

i+1/2 > ψ̂
n
i ,

f n
i (ψ̂n

i ) if ψn
i−1/2 > ψ̂

n
i and ψn

i+1/2 ≤ ψ̂
n
i ,

f n
i (ψn

i+1/2) if ψn
i−1/2 > ψ̂

n
i and ψn

i+1/2 > ψ̂
n
i .

(3.10)

By analogous reasoning we obtain for σ = −1

G(− f n
i ;ψn

i−1/2, ψ
n
i+1/2) =


− f n

i (ψn
i+1/2) if ψn

i−1/2 ≤ ψ̂
n
i and ψn

i+1/2 ≤ ψ̂
n
i ,

− f n
i (ψ̂n

i ) if ψn
i−1/2 ≤ ψ̂

n
i and ψn

i+1/2 > ψ̂
n
i ,

f n
i (ψ̂n

i ) − f n
i (ψn

i−1/2) − f n
i (ψn

i+1/2) if ψn
i−1/2 > ψ̂

n
i and ψn

i+1/2 ≤ ψ̂
n
i ,

− f n
i (ψn

i−1/2) if ψn
i−1/2 > ψ̂

n
i and ψn

i+1/2 > ψ̂
n
i .

(3.11)

We define the difference operators ∆−ai := ai − ai−1 and ∆+ai := ai+1 − ai. Then the marching formula
for ψ-Scheme 1 is

ψn+1
i−1/2 = ψ

n
i−1/2 +

λ

Ai−1/2

(
Ai−1F

n
i−1 − AiF

n
i +

K∑
k=1

Qn
F,kψ

n
F,kδk,i−1/2

)
= ψn

i−1/2 −
λ

Ai−1/2

(
∆−

(
ψn

i−1/2Qn+
i + ψ

n
i+1/2Qn−

i

+ (Aγ)i

(
Gn

i
(
ψn

i−1/2, ψ
n
i+1/2

)
− ϕn

i−1/2

ψn
i+1/2

1 − ϕn
i+1/2

W(ϕn
i+1/2)

))
−

K∑
k=1

Qn
F,kψ

n
F,kδk,i−1/2

)
, i = 1, . . . ,N.

(3.12)

Then we define the piecewise constant approximate solution ψ∆z on R × [0,T ) by

ψ∆z(z, t) :=
∑
i,n

χIi−1/2(z)χ[tn,tn+1)(t)ψn
i−1/2. (3.13)
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3.4. Monotonicity and invariant-region principle

We prove that Scheme 1, defined by the update formulas Eq (3.4) and Eq (3.12), is monotone, a
property which then is used to prove the invariant-region property that the approximate solutions are
positive and bounded.

Theorem 3.1. If the CFL condition Eq (3.2) is satisfied, then the update formula for ϕ, Eq (3.4) (that
is, ϕ-Scheme 1) is monotone and 0 ≤ ϕn

i−1/2 ≤ 1 for i = 1, . . . ,N and n = 1, . . . ,NT .

Proof. We recall the assumption Eq (1.3). We first prove monotonicity of the three-point scheme for
ϕ Eq (3.4), i.e, that ∂ϕn+1

i−1/2/∂ϕ
n
k−1/2 ≥ 0 for all i = 1, . . . ,N and k = i − 1, i, i + 1. We have

∂ϕn+1
i−1/2

∂ϕn
i−3/2

=
λ

Ai−1/2

(
Qn+

i−1 + (Aγ)i−1W(ϕn
i−1/2)

)
≥ 0,

∂ϕn+1
i−1/2

∂ϕn
i+1/2

=
λ

Ai−1/2

(
−Qn−

i − (Aγ)iϕ
n
i−1/2W ′(ϕn

i+1/2)
)
≥ 0,

∂ϕn+1
i−1/2

∂ϕn
i−1/2

= 1 +
λ

Ai−1/2

(
Qn−

i−1 + (Aγ)i−1ϕ
n
i−3/2W ′(ϕn

i−1/2) − Qn+
i − (Aγ)iW(ϕn

i+1/2)
)

≥ 1 − λ
(
2∥Q∥∞,T

Amin
+ M

(
∥W ′∥∞ + ∥W∥∞

))
≥ 0,

where we have used the CFL condition Eq (3.2).
We now prove that if 0 ≤ ϕn

i−1/2 ≤ 1 for all i, then 0 ≤ ϕn+1
i−1/2 ≤ 1 for all i. Clearly, Eq (1.3) implies

that 0 ≤ ϕ0
i−1/2 ≤ 1 for all i. Since the scheme Eq (3.4) is monotone, Hi−1/2 is non-decreasing in each

argument. Since by assumption W(1) = 0, we get the following estimation (where we use a++a− = a):

0 ≤
λ

Ai−1/2

K∑
k=1

Qn
F,kϕ

n
F,kδk,i−1/2 = Hi−1/2(0, 0, 0) ≤ ϕn+1

i−1/2

= Hi−1/2
(
ϕn

i−3/2, ϕ
n
i−1/2, ϕ

n
i+1/2

)
≤ Hi−1/2(1, 1, 1)

= 1 +
λ

Ai−1/2

(Qn
i−1 − Qn

i
)
+

K∑
k=1

Qn
F,kϕ

n
F,kδk,i−1/2


≤ 1 +

λ

Ai−1/2

 K∑
k=1

(
− Qn

F,k
)
δk,i−1/2 +

K∑
k=1

Qn
F,kδk,i−1/2

 = 1.

□

Lemma 3.2. The function f n
i (cf. Eq (3.8)) satisfies ∥( f n

i )′∥∞ ≤ max{V(0), ∥V ′∥∞}.

Proof. By Eq (2.7), the function f (φ) = φV(φ) has a single inflection point ω̃ ∈ (0, 1) and by
Lemma 3.1, f n

i has the inflection point ω̃ψn
max,i ∈ (0, ψn

max,i). We have ( f n
i )′(0) = V(0), ( f n

i )′(φ) = 0 for
ψn

max,i ≤ φ ≤ 1 and the lowest (and negative) value of ( f n
i )′ is obtained at its only critical point ω̃ψn

max,i,
for which

( f n
i )′(ω̃ψn

max,i) = Ṽ(ω̃) + ω̃Ṽ ′(ω̃) ≥ − ∥V ′∥∞ .

This concludes the proof. □
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Lemma 3.3. There holds Gn
i (1 − ϕn

i−1/2, 1 − ϕ
n
i+1/2) = 0 for all i and n.

Proof. Assume that 0 < ψn
max,i = (1 − ϕn

i−1/2) ∧ (1 − ϕn
i+1/2) ≤ 1. By Lemma 3.1, ψ̂n

i < ψn
max,i, hence Eq

(3.10), Eq (3.11), and

Ṽ
(
(1 − ϕn

i−1/2)/ψn
max,i

)
= Ṽ

(
(1 − ϕn

i+1/2)/ψn
max,i

)
= 0

imply that

Gn
i
(
1 − ϕn

i−1/2, 1 − ϕ
n
i+1/2

)
=

 f n
i (1 − ϕn

i+1/2) = 0 if σ = 1,
− f n

i (1 − ϕn
i−1/2) = 0 if σ = −1.

□

Theorem 3.2. Under the assumptions of Theorem 3.1, the update formula for ψ, Eq (3.12) (i.e.,
ψ-Scheme 1) is monotone and along with Eq (3.4) produces approximate solutions that satisfy
0 ≤ ψn

i−1/2 ≤ 1 − ϕn
i−1/2 for all i and n.

Proof. Assumptions Eq (1.3) and Eq (1.5) imply that 0 ≤ ψ0
i−1/2 ≤ 1 − ϕ0

i−1/2 for all i and

ψn
F,k ≤ 1 − ϕn

F,k for all n. (3.14)

To prove that the scheme Eq (3.12) is monotone, we write it as

ψn+1
i−1/2 = K

n
i−1/2

(
ψn

i−3/2, ψ
n
i−1/2, ψ

n
i+1/2

)
(3.15)

and show that this expression is non-decreasing in each of its arguments.
Since 0 ≤ ϕn

i−1/2 ≤ 1 for a given n and all i, and appealing to Eq (3.6), we have

∂ψn+1
i−1/2

∂ψn
i−3/2

=
λ

Ai−1/2

(
Qn+

i−1 + (Aγ)i−1
∂Gn

i−1

∂ψn
i−3/2

)
≥ 0,

∂ψn+1
i−1/2

∂ψn
i+1/2

=
λ

Ai−1/2

(
−Qn−

i − (Aγ)i
∂Gn

i

∂ψn
i+1/2

+ (Aγ)i

ϕn
i−1/2

1 − ϕn
i+1/2

W(ϕn
i+1/2)

)
≥ 0,

∂ψn+1
i−1/2

∂ψn
i−1/2

= 1 +
λ

Ai−1/2

(
Qn−

i−1 − Qn+
i + (Aγ)i−1

( ∂Gn
i−1

∂ψn
i−1/2

−
ϕn

i−3/2W(ϕn
i−1/2)

1 − ϕn
i−1/2

)
− (Aγ)i

∂Gn
i

∂ψn
i−1/2

)
≥ 1 − λ

(2∥Q∥∞,T
Amin

+ M
( ∂Gn

i

∂ψn
i−1/2

−
∂Gn

i−1

∂ψn
i−1/2

+
W(ϕn

i−1/2)

1 − ϕn
i−1/2

))
.

By Eq (3.6) and Lemma 3.2 we also obtain

∂Gn
i

∂ψn
i−1/2

−
∂Gn

i−1

∂ψn
i−1/2

= ( f n
i )′

(
ψn

i−1/2
)+
− ( f n

i )′
(
ψn

i−1/2
)−
=

∣∣∣( f n
i )′

(
ψn

i−1/2
)∣∣∣ ≤ ∥( f n

i )′∥∞ ≤ max {V(0), ∥V ′∥∞} ,

and for the remaining term, we use that W(1) = 0 to get

W(ϕn
i−1/2)

1 − ϕn
i−1/2

=
W(ϕn

i−1/2) −W(1)

1 − ϕn
i−1/2

= −W ′(ξ) ≤ ∥W ′∥∞ for some ξ ∈ (ϕn
i−1/2, 1).
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Hence, the CFL condition Eq (3.2) implies

∂ψn+1
i−1/2

∂ψn
i−1/2

≥ 1 − λ
(2∥Q∥∞,T

Amin
+ M

(
max {V(0), ∥V ′∥∞} + ∥W ′∥∞

))
≥ 0.

The inequalities proved imply that Kn
i−1/2 is non-decreasing in each of its arguments. Now we use that

0 ≤ ψn
i−1/2 ≤ 1 − ϕn

i−1/2 for all i and Lemma 3.3 to obtain

0 ≤
λ

Ai−1/2

K∑
k=1

Qn
F,kψ

n
F,kδk,i−1/2 = Hi−1/2(0, 0, 0) ≤ ψn+1

i−1/2

= Hi−1/2(ψn
i−3/2, ψ

n
i−1/2, ψ

n
i+1/2) ≤ Hi−1/2(1 − ϕn

i−3/2, 1 − ϕ
n
i−1/2, 1 − ϕ

n
i+1/2)

= 1 − ϕn
i−1/2 +

λ

Ai−1/2

(
Ai−1F

n
i−1(1 − ϕn

i−3/2, 1 − ϕ
n
i−1/2)

− AiF
n

i (1 − ϕn
i−1/2, 1 − ϕ

n
i+1/2) +

K∑
k=1

Qn
F,kψ

n
F,kδk,i−1/2

)
= 1 − ϕn

i−1/2 +
λ

Ai−1/2

(
(1 − ϕn

i−3/2)Qn+
i−1 + (1 − ϕn

i−1/2)Qn−
i−1 − (Aγ)i−1ϕ

n
i−3/2W(ϕn

i−1/2)

− (1 − ϕn
i−1/2)Qn+

i − (1 − ϕn
i+1/2)Qn−

i + (Aγ)iϕ
n
i−1/2W(ϕn

i+1/2) +
K∑

k=1

Qn
F,kψ

n
F,kδk,i−1/2

)
.

Appealing to Eq (3.14) and the update formula for ϕ Eq (3.4), we get

ψn+1
i−1/2 ≤ 1 − ϕn+1

i−1/2 +
λ

Ai−1/2

(
Qn+

i−1 + Qn−
i−1 − Qn+

i − Qn−
i +

K∑
k=1

Qn
F,kδk,i−1/2

)

= 1 − ϕn+1
i−1/2 +

λ

Ai−1/2

{
Qn

i−1 − Qn
i +

K∑
k=1

Qn
F,kδk,i−1/2

}
= 1 − ϕn+1

i−1/2.

The last equality holds since {. . . } = 0 irrespective of whether there is a source in the cell; Qn
i−1 − Qn

i +

Qn
F,k = 0, or not; Qn

i−1 − Qn
i = 0. □

4. Partial convergence analysis of Scheme 2

For ease of the argument, let us focus on the case of a constant interior cross-sectional area A, i.e.,
assume that Eq (1.7) is in effect. In addition, we assume that Qn

F,k, ϕ
n
F,k, and ψn

F,k (k = 1, . . . ,K) are
constant and therefore do not depend on n. The same is assumed for the underflow volumetric flow QU.
(That is, we now study Scheme 2 suitable for Model 2.) Then Eq (3.4) and Eq (3.12) take the forms

ϕn+1
i−1/2 = ϕ

n
i−1/2 − λ∆−

(
ϕn

i−1/2q+i + ϕ
n
i+1/2q−i + γiϕ

n
i−1/2W

(
ϕn

i+1/2
))
+ λ

K∑
k=1

qF,kϕF,kδk,i−1/2, (4.1)

ψn+1
i−1/2 = ψ

n
i−1/2 − λ∆−

(
ψn

i−1/2q+i + ψ
n
i+1/2q−i + γi

(
Gn

i
(
ψn

i−1/2, ψ
n
i+1/2

)
− ϕn

i−1/2

ψn
i+1/2W(ϕn

i+1/2)

1 − ϕn
i+1/2

))
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+ λ

K∑
k=1

qF,kψF,kδk,i−1/2, (4.2)

where qF,k := QF,k/A. To embed the treatment into available analyses of schemes for conservation laws
with discontinuous flux, we absorb the feed terms into the numerical flux. That is, we define ik := i if
δk,i−1/2 = 1 (see Eq (3.1)). Then

qi =


−qU if i ≤ i1 − 1,
−qU + qF,1 + · · · + qF,l if il ≤ i ≤ il+1 − 1, l = 1, . . . ,K − 1,
−qU + qF,1 + · · · + qF,K for i ≥ iK .

(4.3)

Furthermore, we define the feed flux

hF,i :=


0 if i ≤ i1 − 1,
qF,1ϕF,1 + · · · + qF,lϕF,l if il ≤ i ≤ il+1 − 1, l = 1, . . . ,K − 1,
qF,1ϕF,1 + · · · + qF,KϕF,K for i ≥ iK ,

(4.4)

such that

hF,i − hF,i−1 =

K∑
k=1

qF,kϕF,kδk,i−1/2.

Consequently, we may write the scheme (i.e., ϕ-Scheme 2) as

ϕn+1
i−1/2 = ϕ

n
i−1/2 − λ∆−

(
ϕn

i+1/2q−i + ϕ
n
i−1/2q+i + γiϕ

n
i−1/2W(ϕn

i+1/2) + hF,i
)
. (4.5)

For later use we define the piecewise constant functions

q(z) := qk and hF(z) := hF,k for zF,k < z < zF,k+1, k = 0, . . . ,K,

where zF,0 := −∞, zF,K+1 := ∞, and we define the function

h(z, v, u) := q−(z)v + q+(z)u + γ(z)uW(v) + hF(z) (4.6)

that allows us to write Eq (4.5) as

ϕn+1
i−1/2 = ϕ

n
i−1/2 − λ∆−h

(
zi, ϕ

n
i+1/2, ϕ

n
i−1/2

)
. (4.7)

4.1. Convergence of ϕ-Scheme 2

The PDE for ϕ within Model 2, that is when the simplification Eq (1.7) is applied to Model 1, is the
conservation law

∂tϕ + ∂zJ(ϕ, z) = 0, (z, t) ∈ ΠT (4.8)
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with discontinuous flux

J(ϕ, z) =



q(z)ϕ −
K∑

k=1

qF,kϕF,k for z > zE,

q(z)ϕ −
K∑

k=1

qF,kϕF,k + j(ϕ) for zF,K < z < zE,

q(z)ϕ −
l∑

k=1

qF,kϕF,k + j(ϕ) for zF,l < z < zF,l+1, l = 1, . . . ,K − 1,

−qUϕ + j(ϕ) for zU < z < zF,1,
−qUϕ for z < zU.

(4.9)

posed along with the initial condition Eq (1.2a).
The choice of the appropriate solution concept for weak solutions, and the ways we may relate the

model to the available theory of conservation laws with discontinuous flux, requires verifying whether
J(ϕ, z) as given by Eq (4.9) satisfies the so-called “crossing condition” across each discontinuity

z ∈ Z := {zU, zF,1, . . . , zF,K , zE}. (4.10)

Certain early well-posedness (existence, stability, and uniqueness) results for conservation laws with
discontinuous flux (and related equations) rely on satisfaction of this condition [35], although later
developments advance solution concepts that do not rely on satisfaction of the crossing condition [4,
36, 39]. In the present context this condition is satisfied for a particular discontinuity at z if the adjacent
fluxes to the right and the left, J(ϕ, z+) and J(ϕ, z−), satisfy

∀ϕ1, ϕ2 ∈ [0, 1] : J(ϕ1, z+) − J(ϕ1, z−) < 0 < J(ϕ2, z+) − J(ϕ2, z−)⇒ ϕ1 < ϕ2, (4.11)

which means either the graphs of J(·, z−) and J(·, z+) do not intersect, or if they do, there is at most one
flux crossing ϕχ and the graph of J(·, z−) lies above that of J(·, z+) to the left of ϕχ. For J(ϕ, z) as given
by Eq (4.9) this condition is clearly satisfied for z ∈ {zE, zU} (considering that j(ϕ) > 0 for 0 < ϕ < 1
implies that J(·, z−) and J(·, z+) do not intersect in this case), while

J(ϕ, z+F,l) − J(ϕ, z−F,l) = qF,l(ϕ − ϕF,l) for l = 1, . . . ,K.

Thus, the crossing condition is satisfied also for z = zF,l, l = 1, . . . ,K, since either ϕF,l = 0 and the
adjacent fluxes do not intersect in (0, 1), or the intersection takes place at ϕχ = ϕF,l and Eq (4.11) holds
since qF,l > 0 for all l. The preceding consideration is analogous to the one for the simpler clarifier-
thickener model (equivalent to K = 1 in the present notation) studied e.g. in [13, 14]. With the present
analysis it is clear that the crossing condition is satisfied at each flux discontinuity z ∈ Z.

Some of the available analyses refer to initial-value problems of the type

∂tu + ∂xF (u, x) = 0 for (x, t) ∈ ΠT ,
u(x, 0) = u0(x) for x ∈ R,

where F (u, x) := H(−x)g(u) +H(x) f (u)
(4.12)
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where f and g are Lipschitz continuous functions of u denoting the “right” and “left” flux adjacent to
a flux discontinuity across x = 0 and H denotes the Heavyside function. The model problem Eq (4.12)
features, of course, only one flux discontinuity (sitting at x = 0), while Eq (4.9), Eq (1.2a) includes
several of them at separate spatial locations. The study of Eq (4.12) is, however, sufficient for the
analysis of each single flux discontinuity.

Here we start from the concept of entropy solutions of type V introduced by Karlsen and Towers
[36]. This concept does not appeal to the existence of traces of the unknown with respect to the
interfaces z ∈ Z across which J(ϕ, z) is discontinuous. To state its adaptation to the situation at hand,
we define the sets

Π
(K+3/2)
T := (zE,∞) × (0,T ),

Π
(K+1/2)
T := (zF,K , zE) × (0,T ),

Π
(k−1/2)
T := (zF,k−1, zF,k) × (0,T ), k = 2, . . . ,K,

Π
(1/2)
T := (zU, zF,1) × (0,T ),

Π
(−1/2)
T := (−∞, zU) × (0,T ).

Definition 4.1. A measurable function ϕ = ϕ(z, t) ∈ L1(ΠT ) is an entropy solution of type V of the
initial-value problem Eq (4.8), Eq (1.2a) if it satisfies the following conditions:

(i) The function ϕ belongs to L∞(ΠT ); for a.e. (z, t) ∈ ΠT there holds ϕ(z, t) ∈ [0, 1].
(ii) The function ϕ is a weak solution of Eq (4.8), i.e., for all smooth test functions ζ with compact

support in ΠT , "
ΠT

(
ϕ∂tζ + J(ϕ, z)∂zζ

)
dz dt = 0. (4.13)

(iii) For all l = 0, . . . ,K + 2, for any nonnegative smooth test function ζ(l) with compact support in Π(l)
T

and all c ∈ [0, 1] there holds"
ΠT

(
|ϕ − c|∂tζ

(l) + sgn(ϕ − c)
(
J(ϕ, z) − J(c, z)

)
∂zζ

(l)
)

dz dt +
∫
R

|ϕ0 − c| ζ(l)(z, 0) dt ≥ 0. (4.14)

(iv) The following Kružkov-type [37] entropy inequality holds for all nonnnegative smooth test
functions ζ with compact support in ΠT and all constants c ∈ R:"

ΠT

(
|ϕ − c|∂tζ + sgn(ϕ − c)

(
J(ϕ, z) − J(c, z)

)
∂zζ

)
dz dt

+

∫ T

0

∑
z∈Z

∣∣∣J(c, z+) − J(c, z−)
∣∣∣ ζ(z, t) dt ≥ 0.

(4.15)

Note that the entropy inequality Eq (4.15) does not imply the weak formulation Eq (4.13). The
standard derivation of the weak formulation from the Kružkov entropy inequality (e.g., [30,
Section 2.1]) does not apply here since some of the flux differences |J(c, z+) − J(c, z−)| are not
compactly supported with respect to c, cf. [13, Rem. 1.1].

Networks and Heterogeneous Media Volume 18, Issue 1, 140–190.



159

Lemma 4.1. Consider ϕ-Scheme 2 applied to Eq (4.8), Eq (1.2a). There exists a constant C1,
depending on TV(ϕ0), such that

∆z
∑
i∈Z

∣∣∣ϕn+1
i−1/2 − ϕ

n
i−1/2

∣∣∣ ≤ ∆z
∑
i∈Z

∣∣∣ϕ1
i−1/2 − ϕ

0
i−1/2

∣∣∣ ≤ C1∆t.

Proof. Subtracting from Eq (4.1) its version from the previous time step, we get

ϕn+1
i−1/2 − ϕ

n
i−1/2 =

(
ϕn

i−3/2 − ϕ
n−1
i−3/2

)
λBn

i−1/2 +
(
ϕn

i−1/2 − ϕ
n−1
i−1/2

){
1 − λBn

i+1/2 + λCn
i−1/2

}
+

(
ϕn

i+1/2 − ϕ
n−1
i+1/2

)
{−λCn

i+1/2},

where we define

Bn
i−1/2 := q+i−1 + γi−1W

(
ϕn

i−1/2
)
,

Cn
i+1/2 :=


q−i + γiϕ

n−1
i−1/2

W(ϕn
i+1/2) −W(ϕn−1

i+1/2)

ϕn
i+1/2 − ϕ

n−1
i+1/2

if ϕn
i+1/2 , ϕ

n−1
i+1/2,

0 otherwise.

Clearly Bn
i−1/2 ≥ 0, Cn

i+1/2 ≤ 0, and due to the CFL condition,

1 − λBn
i+1/2 + λCn

i−1/2 ≥ 0,

hence taking absolute values and summing over i ∈ Z we get, by appealing to standard arguments, that

∆z
∑
i∈Z

∣∣∣ϕn+1
i−1/2 − ϕ

n
i−1/2

∣∣∣ ≤ ∆z
∑
i∈Z

∣∣∣ϕn
i−1/2 − ϕ

n−1
i−1/2

∣∣∣ ≤ ∆z
∑
i∈Z

∣∣∣ϕ1
i−1/2 − ϕ

0
i−1/2

∣∣∣.
Furthermore, following the lines e.g. of the proof of [13, Lemma 3.2], we get that there exists a constant
C2 that is independent of (∆t,∆z) such that∑

i∈Z

∣∣∣ϕ1
i−1/2 − ϕ

0
i−1/2

∣∣∣ ≤ C2
(
TV(ϕ0) + TV(q) + TV(γ)

)
,

which completes the proof. □

A straightforward calculation yields that we can write the scheme in the form

ϕn+1
i−1/2 = ϕ

n
i−1/2 +Cn

i ∆+ϕ
n
i−1/2 − Dn

i−1∆−ϕ
n
i−1/2 − θ

n
i ,

where we define

Cn
i :=

−λq−i − λγi−1ϕ
n
i−3/2

∆−W(ϕn
i+1/2)

∆+ϕ
n
i−1/2

if ∆+ϕn
i−1/2 , 0,

−λq−i otherwise,

Dn
i−1 := λq+i + λγi−1W(ϕn

i+1/2),
θn

i := λ
(
ϕn

i−1/2∆−q
−
i + ϕ

n
i−3/2∆−q

+
i + ϕ

n
i−1/2W(ϕn

i+1/2)∆−γi − ∆−hF,i
)
.
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The incremental coefficients satisfy Cn
i ≥ 0 and Dn

i ≥ 0; furthermore, the CFL condition ensures that
Cn

i + Dn
i ≤ 1 (in all cases for all i and n). Notice that θn

i = 0 with the possible exception for those
indices i at which ∆−q−i , 0, ∆−q+i , 0, or ∆−γi , 0. According to the definition of γi and that of qi,
see Eq (4.3), this may occur at most at a finite number of indices. Precisely, we may assert that (see Eq
(4.10))

θn
i = 0 if zi−1, zi < Z,

hence for all indices i with the exception of finitely many indices i such that |z j − ζ | ≤ ∆z for some
ζ ∈ Z, the scheme is given by the incremental form

ϕn+1
i−1/2 = ϕ

n
i−1/2 +Cn

i ∆+ϕ
n
i−1/2 − Dn

i−1∆−ϕ
n
i−1/2

with incremental coefficients Cn
i ≥ 0, Dn

i ≥ 0, and Cn
i + Dn

i ≤ 1. This property, in conjunction with
Lemma 4.1, shows that we may apply [15, Lemma 5.3] (which is essentially Lemma 4.2 of [6], where
a proof can be found) to the situation at hand. From [15, Lemma 5.3] we deduce the following lemma,
where Vb

a (g) denotes the total variation of a function z 7→ g(z) over the interval (a, b).

Lemma 4.2. Consider ϕ-Scheme 2 applied to Eq (4.8), Eq (1.2a). For any interval [a, b] such that
[a, b] ∩Z = ∅ and any t ∈ [0,T ] there exists a total variation bound

Vb
a
(
ϕ∆z(·, t)

)
≤ C(a, b),

where C(a, b) is independent of (∆x,∆t) and t for t ∈ [0,T ].

Finally, we have shown in Theorem 3.1 that ϕ-Scheme 1 Eq (3.4) is monotone. This applies, in
particular, to the reduced ϕ-Scheme 2 Eq (4.1) or equivalently, Eq (4.5) or Eq (4.7). Thus, ϕ-Scheme 2
satisfies a discrete entropy inequality. The proof of the following lemma is identical to that of [36,
Lemma 5.2], and is therefore omitted.

Lemma 4.3. The scheme Eq (4.7) (ϕ-Scheme 2) satisfies the following entropy inequality for any
ci−3/2, ci−1/2, ci+1/2 ∈ [0, 1]:∣∣∣ϕn+1

i−1/2 − ci−1/2

∣∣∣ ≤ ∣∣∣ϕn
i−1/2 − ci−1/2

∣∣∣ − λ∆−Hn
i − λ sgn

(
ϕn+1

i−1/2 − ci−1/2
)
∆−h

(
zi, ϕ

n
i+1/2, ϕ

n
i−1/2

)
,

where h is defined in Eq (4.6) and the numerical entropy flux Hn
i is defined by

Hn
i := h

(
zi, ϕ

n
i+1/2 ∨ ci+1/2, ϕ

n
i−1/2 ∨ ci−1/2

)
− h

(
zi, ϕ

n
i+1/2 ∧ ci+1/2, ϕ

n
i−1/2 ∧ ci−1/2

)
.

We now may appeal to the results of [36] and argue as follows. Theorem 3.1 and Lemmas 4.1–4.3
ensure convergence of the functions ϕ∆z to a weak solution of Eq (4.8), Eq (1.2a) that satisfies items (i),
(ii) and (iii) of Definition 4.1. It also satisfies the entropy inquality Eq (4.15) arising in part (iv) of that
definition by utilizing the discrete entropy inequality stated in Lemma 4.3. Thus, we have proved the
following theorem.

Theorem 4.1. Suppose that assumptions Eq (1.3) to Eq (1.5) are in effect and that ϕ∆z is defined by Eq
(3.5), where the values ϕn

i−1/2 are defined by the scheme Eq (4.5) (that is, ϕ-Scheme 2). Let ∆t,∆z → 0
with λ = ∆t/∆z = const. such that the CFL condition Eq (3.2) is satisfied. Then ϕ∆z converges in
L1

loc(ΠT ) and a.e. in ΠT to an entropy solution of type V of the initial-value problem Eq (4.8), Eq
(1.2a).
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4.2. L1 Lipschitz continuity in time of ψ-Scheme 2

Next, we deal with the marching formula Eq (4.2). To this end, we define a feed flux h̃F,i exactly
as in Eq (4.4) but with ϕF,i replaced by ψF,i for i = 1, . . . ,K. Furthermore, we recall that ṽϕs(ϕ) =
W(ϕ)/(1 − ϕ). Thus, the scheme can be written as

ψn+1
i−1/2 = ψ

n
i−1/2 − λ∆−

(
h̃F,i + ψ

n
i−1/2q+i + ψ

n
i+1/2q−i + γi

(
Gn

i
(
ψn

i−1/2, ψ
n
i+1/2

)
− ϕn

i−1/2ṽϕs
(
ϕn

i+1/2
)
ψn

i+1/2
))
.

(4.16)

Lemma 4.4 (Crandall and Tartar [19]). Assume that (Ω, µ) is some measure space and that D is a
subset of L1(Ω) with the property that if u, v ∈ D, then (u∨ v) = max{u, v} ∈ D. Assume that T is a map
T : D ∋ u 7→ T (u) ∈ D such that∫

Ω

T (u) dµ =
∫
Ω

u dµ for all u ∈ D.

Then the following statements, valid for all u, v ∈ D, are equivalent:

(i) If u ≤ v, then T (u) ≤ T (v).
(ii)

∫
Ω

((T (u) − T (v)) ∨ 0) dµ ≤
∫
Ω

((u − v) ∨ 0) dµ.
(iii)

∫
Ω
|T (u) − T (v)| dµ ≤

∫
Ω
|u − v| dµ.

Following, for instance, [18], we utilize Lemma 4.4 for the following mapping. Assume that D ⊂
L1(R) is the set of piecewise constant functions and that are constant on the intervals Ii−1/2 for i ∈ Z, and
that with the marching formula Eq (3.15) we associate an operator Kn : D → D such that if ψ∆z(·, tn)
is the piecewise constant function defined by Eq (3.13) for t = tn, we may write ψ-Scheme 2 as

ψ∆z(·, tn+1) = Kn(ψ∆z(·, tn)
)
.

Clearly, the monotonicity of the scheme implies that if u, v ∈ D, then

u ≤ v⇒ Kn(u) ≤ Kn(v).

Thus, Lemma 4.4 (i) holds. For u = ψ∆z(·, tn) and v = ψ∆z(·, tn−1), Lemma 4.4 (iii) implies that

∆z
∑
i∈Z

∣∣∣ψn+1
i−1/2 − ψ

n
i−1/2

∣∣∣ = ∫
R

∣∣∣ψ∆z(z, tn+1) − ψ∆z(z, tn)
∣∣∣ dz

≤

∫
R

∣∣∣ψ∆z(z, tn) − ψ∆z(z, tn−1)
∣∣∣ dz = ∆z

∑
i∈Z

∣∣∣ψn
i−1/2 − ψ

n−1
i−1/2

∣∣∣
and therefore

∆z
∑
i∈Z

∣∣∣ψn+1
i−1/2 − ψ

n
i−1/2

∣∣∣ ≤ ∆z
∑
i∈Z

∣∣∣ψ1
i−1/2 − ψ

0
i−1/2

∣∣∣.
However, we may assert that there exists a constant C3, which is independent of (∆t,∆x), such that∑

i∈Z

∣∣∣ψ1
i−1/2 − ψ

0
i−1/2

∣∣∣
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=
∑
i∈Z

∣∣∣∣∣∆−(ψ0
i−1/2q+i + ψ

0
i+1/2q−i + γi

(
G0

i
(
ψ0

i−1/2, ψ
0
i+1/2

)
− ϕn

i−1/2

ψ0
i+1/2W(ϕ0

i+1/2)

1 − ϕ0
i+1/2

))
− λ

K∑
k=1

QF,k

A
ψ0

F,kδk,i−1/2

∣∣∣∣∣ ≤ C3.

Since Eq (1.4) is a sufficient condition for this bound on the initial discrete divergence to hold, we get

∆z
∑
i∈Z

∣∣∣ψn+1
i−1/2 − ψ

n
i−1/2

∣∣∣ ≤ ∆zC3 =
∆t
λ

C3.

Consequently, we have proved the following lemma.

Lemma 4.5. There exists a constant C4 that is independent of (∆t,∆z) such that the numerical
approximations produced by ψ-Scheme 2 satisfy

∆z
∑
i∈Z

∣∣∣ψn+1
i−1/2 − ψ

n
i−1/2

∣∣∣ ≤ C4∆t.

5. Convergence analysis of Scheme 3

To write down Scheme 1 in the simplest setting possible, we consider the model and numerical
scheme under the assumptions before, and additionally assume a constant bulk velocity q, that the feed
terms (giving rise to the singular source) are zero, and set the parameter γ = 1. Thus, the model reduces
to the triangular system of conservation laws Eq (1.8) with the initial conditions Eq (1.2) (Model 3),
where we recall that assumptions Eq (1.3) are in effect, and Scheme 2, which in turn is a reduced form
of Scheme 1, now is further reduced to Scheme 3.

Assume now that η = η(ψ) is a smooth convex entropy function and Q = Q(ϕ, ψ) is the
corresponding compatible entropy flux compatible with Eq (1.8b), i.e.,

∂ψQ(ϕ, ψ) = η′(ψ)∂ψF̃(ϕ, ψ). (5.1)

In what follows, we refer to (η,Q) as an entropy pair for Eq (1.8b). In particular we denote by (η0,Q0)
the Kružkov entropy pair [37], that is

η0(ψ) = |ψ − c|, Q0(ϕ, ψ) = sgn(ψ − c)
(
F̃(ϕ, ψ) − F̃(ϕ, c)

)
, (5.2)

where c ∈ R is a constant.
The convergence proof is based on the following lemma, slightly adapted from [18, Lemma 2.2],

which in turn is an adaptation of [43, Theorem 5] (see also [44]).

Lemma 5.1. Let ϕ be the unique entropy solution of the initial-value problem Eq (1.8a), Eq (1.2a),
and assume that {ψν}ν>0 is a family of functions defined on ΠT . If {ψν} is bounded in L∞(ΠT ) and
{∂tη0(ψν) + ∂zQ0(ϕ, ψν)}ν>0 lies in a compact set of H−1

loc(ΠT ) for all constants c, then there exists a
sequence {νn}n∈N such that νn → 0 as n→ ∞ and a function ψ ∈ L∞(ΠT ) such that

ψνn → ψ a.e. and in Lp
loc(ΠT ), 1 ≤ p < ∞.
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Consistently with Eq (4.6), Eq (4.7) we assume that the scheme employed to approximate entropy
solutions of Eq (1.8a) is ϕ-Scheme 3, that is,

ϕn+1
i−1/2 = ϕ

n
i−1/2 − λ∆−h

(
ϕn

i+1/2, ϕ
n
i−1/2

)
, h(v, u) := q−v + q+u + uW(v).

Clearly, under a suitable CFL condition, the ϕ-Scheme 3 converges to the unique entropy solution
of Eq (1.8a), Eq (1.2a). Our goal is to establish convergence of the corresponding scheme for ψ (ψ-
Scheme 3). We here write the scheme as

ψn+1
i−1/2 = ψ

n
i−1/2 − λ∆−F

(
ϕn

i−1/2, ϕ
n
i+1/2, ψ

n
i−1/2, ψ

n
i+1/2

)
≡ ψn

i−1/2 − λ∆−F (ϕn
i ,ψ

n
i ), (5.3)

where we define the four-argument numerical flux

F (a, b, u, v) := q+u + q−v +
(
G(a, b, u, v) − aṽϕs(b)v

)
, (5.4)

denote pairs of neighboring ϕ- and ψ-values by

ϕn
i :=

(
ϕn

i−1/2, ϕ
n
i+1/2

)
and ψn

i :=
(
ψn

i−1/2, ψ
n
i+1/2

)
,

and replace the arguments “ϕn
i−1/2, ϕ

n
i+1/2” by ϕn

i (analogously for ψ). In Eq (5.4) a and b play the roles
of ϕn

i−1/2 and ϕn
i+1/2, and u and v those of ψn

i−1/2 and ψn
i+1/2, respectively, and we define G(a, b, u, v) as

follows (cf. Eq (3.7), Eq (3.8)). Let

f (a, b, ψ) := ψṼ
(

ψ

1 − (a ∨ b)

)
,

then G(a, b, ·, ·) is the Engquist-Osher numerical flux [26] associated with f (a, b, ·).
The compensated compactness approach strongly depends on entropy inequalities satisfied by the

scheme Eq (5.3). To prepare for the derivation of suitable uniform estimates, we multiply the scheme
Eq (5.3) by η′(ψn+1

i−1/2), where η is a smooth convex entropy function, and utilize the Taylor expansion

η′
(
ψn+1

i−1/2
)(
ψn+1

i−1/2 − ψ
n
i−1/2

)
= η

(
ψn+1

i−1/2
)
− η

(
ψn

i−1/2
)
+

1
2
η′′

(
ξn+1/2

i−1/2

)(
ψn+1

i−1/2 − ψ
n
i−1/2

)2
,

where ξn+1/2
i−1/2 is an intermediate value between ψn

i−1/2 and ψn+1
i−1/2. This yields

η
(
ψn+1

i−1/2
)
− η

(
ψn

i−1/2
)
+

1
2
η′′

(
ξn+1/2

i−1/2

)(
ψn+1

i−1/2 − ψ
n
i−1/2

)2

= −λη′
(
ψn+1

i−1/2
)
∆−F (ϕn

i ,ψ
n
i )

= −λη′
(
ψn

i−1/2
)
∆−F (ϕn

i ,ψ
n
i ) − λ

(
η′

(
ψn+1

i−1/2
)
− η′

(
ψn

i−1/2
))
∆−F (ϕn

i ,ψ
n
i ).

(5.5)

We now define the functions f̂ and f̌ as the partial derivatives

f̂ (a, b, u) := ∂uF (a, b, u, v) = q+ + ∂uG(a, b, u, v) ≥ 0,

f̌ (a, b, v) := ∂vF (a, b, u, v) = q− +
(
∂vG(a, b, u, v) − aṽϕs(b) ≤ 0.

The dependence of ∂uF (a, b, u, v) and ∂vF (a, b, u, v) on u and v only, respectively, is crucial for the
subsequent analysis. We define the functions

F̂ (a, b, u) :=
∫ u

0
f̂ (a, b, s) ds, F̌ (a, b, v) :=

∫ v

0
f̌ (a, b, s) ds
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and note that

F (a, b, u, v) = F̂ (a, b, u) + F̌ (a, b, v). (5.6)

Next, we define

Q̂(a, b, ψ) :=
∫ ψ

0
η′(u) f̂ (a, b, u) du, Q̌(a, b, ψ) :=

∫ ψ

0
η′(v) f̌ (a, b, v) dv,

Q(a, b, ψ1, ψ2) := Q̂(a, b, ψ1) + Q̌(a, b, ψ2).
(5.7)

The function Q is a consistent numerical entropy flux for the scheme Eq (5.3) for the entropy function η
since

Q(a, a, ψ, ψ) =
∫ ψ

0
η′(u)

(
f̂ (a, a, u) + f̌ (a, a, u)

)
du

=

∫ ψ

0
η′(u)∂uF (a, a, u, u) du =

∫ ψ

0
η′(u)F̃(a, u) du = Q(a, ψ).

Furthermore, integration by parts yields

Q̂(a, b, ψ) − Q̂(a, b, ψ̃) = η′(ψ)
(
F̂ (a, b, ψ) − F̂ (a, b, ψ̃)

)
−

∫ ψ

ψ̃

η′′(u)
(
F̂ (a, b, u) − F̂ (a, b, ψ̃)

)
du, (5.8)

Q̌(a, b, ψ) − Q̌(a, b, ψ̃) = η′(ψ)
(
F̌ (a, b, ψ) − F̌ (a, b, ψ̃)

)
−

∫ ψ

ψ̃

η′′(u)
(
F̌ (a, b, u) − F̌ (a, b, ψ̃)

)
du (5.9)

= η′(ψ̃)
(
F̌ (a, b, ψ) − F̌ (a, b, ψ̃)

)
−

∫ ψ

ψ̃

η′′(u)
(
F̌ (a, b, u) − F̌ (a, b, ψ)

)
du.

(5.10)

Now, denoting by ∆ϕ− and ∆ψ− difference operators that act on both ϕ- and ψ-arguments only, respectively
(leaving the two others unchanged), we observe that

∆−F (ϕn
i ,ψ

n
i ) = ∆ψ−F (ϕn

i ,ψ
n
i ) + ∆ϕ+F (ϕn

i−1,ψ
n
i−1). (5.11)

In light of Eq (5.8) and Eq (5.10),

η′
(
ψn

i−1/2
)
∆
ψ
−F (ϕn

i ,ψ
n
i
)
= Q̂

(
ϕn

i , ψ
n
i−1/2

)
− Q̂

(
ϕn

i , ψ
n
i−3/2

)
+ Q̌

(
ϕn

i , ψ
n
i+1/2

)
− Q̌

(
ϕn

i , ψ
n
i−1/2

)
−

(
η′(ψn

i−1/2)
(
F̂ (ϕn

i , ψ
n
i−1/2) − F̂ (ϕn

i , ψ
n
i−3/2)

)
−

∫ ψn
i−1/2

ψn
i−3/2

η′′(u)
(
F̂ (ϕn

i , u) − F̂ (ϕn
i , ψ

n
i−3/2)

)
du

)
−

(
η′(ψn

i−1/2)
(
F̌ (ϕn

i , ψ
n
i+1/2) − F̌ (ϕn

i , ψ
n
i−1/2)

)
+

∫ ψn
i−1/2

ψn
i+1/2

η′′(u)
(
F̌ (ϕn

i , u) − F̌ (ϕn
i , ψ

n
i+1/2)

)
du

)
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+ η′
(
ψn

i−1/2
)(
F̂

(
ϕn

i , ψ
n
i−1/2

)
− F̂

(
ϕn

i , ψ
n
i−3/2

)
+ F̌

(
ϕn

i , ψ
n
i+1/2

)
− F̌

(
ϕn

i , ψ
n
i−1/2

))
= Q

(
ϕn

i , ψ
n
i−1/2, ψ

n
i+1/2

)
− Q

(
ϕn

i , ψ
n
i−3/2, ψ

n
i−1/2

)
+ Θn

i−1/2

= ∆
ψ
−Q(ϕn

i ,ψ
n
i ) + Θn

i−1/2, (5.12)

where the notation for evaluations and differences for Q is the same as for F and Θn
i−1/2 := Θ̂n

i−1 + Θ̌
n
i ,

where

Θ̂n
i−1 :=

∫ ψn
i−1/2

ψn
i−3/2

η′′(u)
(
F̂

(
ϕn

i , u
)
− F̂

(
ϕn

i , ψ
n
i−3/2

))
du,

Θ̌n
i := −

∫ ψn
i−1/2

ψn
i+1/2

η′′(u)
(
F̌

(
ϕn

i , u
)
− F̌

(
ϕn

i , ψ
n
i+1/2

))
du.

Since F̂ is increasing and F̌ is decreasing in the respective third argument, there holds Θ̂n
i−1, Θ̌

n
i ≥ 0

and therefore Θn
i−1/2 ≥ 0. Furthermore, we notice that

η′
(
ψn

i−1/2
)
∆
ϕ
+F (ϕn

i−1,ψ
n
i−1) = ∆ϕ+

(
η′

(
ψn

i−1/2
)
F (ϕn

i−1,ψ
n
i−1)

)
. (5.13)

From Eq (5.11) we obtain by taking into account Eq (5.12) and Eq (5.13)

η′
(
ψn

i−1/2
)
∆−F (ϕn

i ,ψ
n
i ) = ∆ψ−Q(ϕn

i ,ψ
n
i ) + η′

(
ψn

i−1/2
)
∆
ϕ
+F (ϕn

i−1,ψ
n
i−1) + Θn

i−1/2

= ∆−Q(ϕn
i ,ψ

n
i ) − ∆ϕ+Q(ϕn

i−1,ψ
n
i−1) + η′

(
ψn

i−1/2
)
∆
ϕ
+F (ϕn

i−1,ψ
n
i−1) + Θn

i−1/2

= ∆−Q(ϕn
i ,ψ

n
i ) + ∆ϕ+

(
η′

(
ψn

i−1/2
)
F (ϕn

i−1,ψ
n
i−1) − Q(ϕn

i−1,ψ
n
i−1)

)
+ Θn

i−1/2.

Consequently, Eq (5.5) can be written as

η
(
ψn+1

i−1/2
)
− η

(
ψn

i−1/2
)
+

1
2
η′′

(
ξn+1/2

i−1/2

)(
ψn+1

i−1/2 − ψ
n
i−1/2

)2
+ λΘn

i−1/2

= −λ∆−Q(ϕn
i ,ψ

n
i ) − λ

(
η′

(
ψn+1

i−1/2
)
− η′

(
ψn

i−1/2
))
∆−F (ϕn

i ,ψ
n
i )

− λ∆
ϕ
+

(
η′

(
ψn

i−1/2
)
F (ϕn

i−1,ψ
n
i−1) − Q(ϕn

i−1,ψ
n
i−1)

)
.

(5.14)

Multiplying Eq (5.14) by ∆z and summing over (n, i) ∈ I1, where

Ik := {(n, i) | n = 0, . . . ,NT − k, i ∈ Z},

we get

∆z
∑
i∈Z

η
(
ψN

i−1/2
)
− ∆z

∑
i∈Z

η
(
ψ0

i−1/2
)
+
∆z
2

∑
I1

η′′
(
ξn+1/2

i−1/2

)(
ψn+1

i−1/2 − ψ
n
i−1/2

)2
+ λ∆z

∑
I1

Θn
i−1/2

= −λ∆z
∑
I1

∆−Q(ϕn
i ,ψ

n
i ) − λ∆z

∑
I1

(
η′

(
ψn+1

i−1/2
)
− η′

(
ψn

i−1/2
))
∆−F (ϕn

i ,ψ
n
i )

− λ∆z
∑
I1

∆
ϕ
+

(
η′

(
ψn

i−1/2
)
F (ϕn

i−1,ψ
n
i−1) − Q(ϕn

i−1,ψ
n
i−1)

)
,

which implies the inequality

∆z
∑
i∈Z

η
(
ψN

i−1/2
)
+
∆z
2

∑
I1

η′′
(
ξn+1/2

i−1/2

)(
ψn+1

i−1/2 − ψ
n
i−1/2

)2
+ λ∆z

∑
I1

Θn
i−1/2
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≤ ∆z
∑
i∈Z

η
(
ψ0

i−1/2
)
+ 2∥η′∥L∞∆z∆t

∑
I1

1
∆z

∣∣∣∆−F (ϕn
i ,ψ

n
i )
∣∣∣

+C∆z∆t
∑
I1

1
∆z

∣∣∣∆ϕ+(η′(ψn
i−1/2

)
F (ϕn

i−1,ψ
n
i−1) − Q(ϕn

i−1,ψ
n
i−1)

)∣∣∣.
The last term on the right-hand side is uniformly bounded since ϕ∆z has bounded variation. Now let us
choose η(v) = v2 and take into account [34] that there exists a constant CF such that

Θ̂n
i−1 ≥

1
CF

(
∆
ψ
−F̂

(
ϕn

i , ψi−1/2
))2
, Θ̌n

i ≥
1

CF

(
∆
ψ
+F̌

(
ϕn

i , ψi−1/2
))2
.

Noticing that Lemma 4.5, applied to the present scheme (ψ-Scheme 3), implies the bound on the
discrete divergence of the numerical flux

∆z
∑
i∈Z

1
∆z

∣∣∣∆−Fi(ϕn,ψn)
∣∣∣ ≤ C, (5.15)

we obtain from Eq (5.14)

∆z
∑
i∈Z

η
(
ψN

i−1/2
)
+ ∆z

∑
I1

(
ψn+1

i−1/2 − ψ
n
i−1/2

)2
+

λ

CF
∆z

∑
I1

((
∆
ψ
−F̂

(
ϕn

i , ψi−1/2
))2
+

(
∆
ψ
+F̌

(
ϕn

i , ψ
n
i−1/2

))2
)

≤ ∆z
∑
i∈Z

(
ψ0

i−1/2
)2
+CT .

(5.16)

Inequality Eq (5.16) implies the following estimate.

Lemma 5.2. Consider numerical approximations produced by Scheme 3. There exists a constant C7

that is independent of (∆z,∆t) such that

∆t∆z
NT−1∑
n=0

∑
i∈Z

(
ψn+1

i−1/2 − ψ
n
i−1/2

)2
≤ C7∆z. (5.17)

Proof. The estimate for the “time variation” of ψ∆z, Eq (5.17), follows immediately from Eq (5.16) if
we consider that its right-hand side is uniformly bounded. □

Before proceeding, we prove the following lemma that is crucial for the subsequent analysis. For
ease of notation we define the difference operators ∆(3)

± and ∆(4)
± that only act on the third or fourth

argument of a function, respectively.

Lemma 5.3. Consider numerical approximations produced by Scheme 3. There exist constants C8 and
C9 that are independent of (∆z,∆t) such that for all i,∣∣∣∆−Q(ϕn

i ,ψ
n
i )
∣∣∣ ≤ C8

∣∣∣(∆(3)
− + ∆

(4)
− )F (ϕn

i ,ψ
n
i )
∣∣∣ +C9

(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣). (5.18)
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Proof. We note that

∆−Q(ϕn
i ,ψ

n
i ) = ∆ψ−Q(ϕn

i ,ψ
n
i ) + ∆ϕ+Q(ϕn

i−1,ψ
n
i−1). (5.19)

We first discuss

∆
ψ
−Q(ϕn

i ,ψ
n
i ) = ∆(3)

− Q̂
(
ϕn

i , ψ
n
i−1/2

)
+ ∆

(3)
− Q̌

(
ϕn

i , ψ
n
i+1/2

)
.

From Eq (5.8) we get

∣∣∣∆(3)
− Q̂

(
ϕn

i , ψ
n
i−1/2

)∣∣∣ = ∣∣∣∣∣∣η′(ψn
i−1/2

)
∆

(3)
− F (ϕn

i ,ψ
n
i ) −

∫ ψn
i−1/2

ψn
i−3/2

η′′(u)
(
F̂

(
ϕn

i , u
)
− F̂

(
ϕn

i , ψ
n
i−1/2

))
du

∣∣∣∣∣∣
≤

∣∣∣η′(ψn
i−1/2

)∣∣∣∣∣∣∆(3)
− F (ϕn

i ,ψ
n
i )
∣∣∣ + ∣∣∣∣∣∣

∫ ψn
i−1/2

ψn
i−3/2

η′′(u) du

∣∣∣∣∣∣∣∣∣∆(3)
− F (ϕn

i ,ψ
n
i )
∣∣∣

≤ 3∥η′∥L∞(0,1)

∣∣∣∆(3)
− F (ϕn

i ,ψ
n
i )
∣∣∣

and analogously ∣∣∣∆(3)
− Q̌

(
ϕn

i , ψ
n
i+1/2

)∣∣∣ ≤ 3∥η′∥L∞(0,1)

∣∣∣∆(4)
− F (ϕn

i ,ψ
n
i )
∣∣∣,

hence ∣∣∣∆ψ−Q(ϕn
i ,ψ

n
i )
∣∣∣ ≤ 3∥η′∥L∞(0,1)

∣∣∣(∆(3)
− + ∆

(4)
−

)
F (ϕn

i ,ψ
n
i )
∣∣∣. (5.20)

On the other hand, we take into account that

∆
ϕ
+Q(ϕn

i−1,ψ
n
i−1) = ∆ϕ+Q̂

(
ϕn

i−1, ψ
n
i−3/2

)
+ ∆

ϕ
+Q̌

(
ϕn

i−1, ψ
n
i−1/2

)
.

Now

∆
ϕ
+Q̂

(
ϕn

i−1, ψ
n
i−3/2

)
=

∫ ψn
i−3/2

0
η′(u)

(
f̂
(
ϕn

i , u
)
− f̂

(
ϕn

i−1, u
))

du

=
[
η′(u)

(
F̂

(
ϕn

i , u
)
− F̂

(
ϕn

i−1, u
))]u=ψn

i−3/2

u=0
−

∫ ψn
i−3/2

0
η′′(u)

(
F̂ (ϕn

i , u) − F̂
(
ϕn

i−1, u)
)

du

(5.21)

and analogously

∆
ϕ
+Q̌

(
ϕn

i−1, ψ
n
i−1/2

)
=

∫ ψn
i−1/2

0
η′(u)

(
f̌
(
ϕn

i , v
)
− f̌

(
ϕn

i−1, v
))

dv

=
[
η′(v)

(
F̌

(
ϕn

i , v
)
− F̌

(
ϕn

i−1, v
))]v=ψn

i−1/2

v=0
−

∫ ψn
i−1/2

0
η′′(v)

(
F̌ (ϕn

i , v) − F̌ (ϕn
i−1, v)

)
dv.

Consequently, ∣∣∣∆ϕ+Q̂(ϕn
i−1, ψ

n
i−3/2

)∣∣∣ ≤ 3∥η′∥L∞(0,1) max
0≤u≤ψn

i−3/2

∣∣∣F̂ (
ϕn

i , u
)
− F̂

(
ϕn

i−1, u
)∣∣∣, (5.22)
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and by analogous reasoning for Q̌,∣∣∣∆ϕ+Q̌(ϕn
i−1, ψ

n
i−1/2

)∣∣∣ ≤ 3∥η′∥L∞(0,1) max
0≤v≤ψn

i−1/2

∣∣∣F̌ (
ϕn

i , v
)
− F̌

(
ϕn

i−1, v
)∣∣∣. (5.23)

To estimate the right-hand side of Eq (5.22), we recall that

F̂
(
ϕn

i , u
)
− F̂

(
ϕn

i−1, u
)
=

∫ u

0

(
(( f n

i )′)+(s) − (( f n
i−1)′)+(s)

)
ds =: D̂n

i−1/2.

We now assume that σ = 1 and use Eq (3.9). To estimate D̂n
i−1/2, we will appeal to the trivial but useful

inequality |(α ∨ x) − (β ∨ y)| ≤ |α − β| + |x − y|. We proceed by discussing all possible cases of the
location of u in relation to the extrema ψ̂n

i and ψ̂n
i−1 of f n

i and f n
i−1, respectively, and assume that σ = 1.

1. Assume that u ≤ ψ̂n
i ∧ ψ̂

n
i−1. Since ψ̂n

i ≤ ψ
n
max,i and ψ̂n

i−1 ≤ ψ
n
max,i−1, in this case D̂n

i−1/2 = 0 if
ψn

max,i = ψ
n
max,i−1 and otherwise∣∣∣D̂n

i−1/2

∣∣∣ = ∣∣∣ f n
i (u) − f n

i−1(u)
∣∣∣ = u

∣∣∣Ṽ(
u/ψn

max,i
)
− Ṽ

(
u/ψn

max,i−1
)∣∣∣

≤
u2

ψn
max,iψ

n
max,i−1

∥Ṽ ′∥∞|ψn
max,i − ψ

n
max,i−1| ≤ ∥Ṽ

′∥∞

∣∣∣ψn
max,i − ψ

n
max,i−1

∣∣∣.
Noticing that∣∣∣ψn

max,i − ψ
n
max,i−1

∣∣∣ = ∣∣∣ϕn
i−1/2 ∨ ϕ

n
i+1/2 − ϕ

n
i−3/2 ∨ ϕ

n
i−1/2

∣∣∣ ≤ ∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣, (5.24)

we conclude that ∣∣∣D̂n
i−1/2

∣∣∣ ≤ ∥Ṽ ′∥∞(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣).
2. If ψ̂n

i < u < ψ̂n
i−1 then∣∣∣D̂n

i−1/2

∣∣∣ = ∣∣∣ f n
i
(
ψ̂n

i ) − f n
i−1(u)

∣∣∣ ≤ ∣∣∣ f n
i
(
ψ̂n

i
)
− f n

i−1
(
ψ̂n

i−1
)∣∣∣ + ∣∣∣ f n

i−1
(
ψ̂n

i−1
)
− f n

i−1(u)
∣∣∣.

Since f n
i (ψ̂n

i ) = ψn
max,iωṼ(ω) for all i, we conclude that∣∣∣ f n

i
(
ψ̂n

i
)
− f n

i−1
(
ψ̂n

i−1
)∣∣∣ ≤ ω∥Ṽ∥∞ ∣∣∣ψn

max,i − ψ
n
max,i−1

∣∣∣ ≤ ∥Ṽ∥∞(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣). (5.25)

On the other hand, in the present case∣∣∣ f n
i−1

(
ψ̂n

i−1
)
− f n

i−1(u)
∣∣∣ = f n

i−1
(
ψ̂n

i−1
)
− f n

i−1(u) ≤ f n
i−1

(
ψ̂n

i−1
)
− f n

i−1
(
ψ̂n

i
)
.

Since for s ∈ [0, ψ̂n
i−1] there holds ( f n

i−1)′(s) ≤ ( f n
i−1)′(0) = Ṽ(0), we get∣∣∣ f n

i−1
(
ψ̂n

i−1
)
− f n

i−1(u)
∣∣∣ = ∫ ψ̂n

i−1

u
( f n

i−1)′(s) ds ≤
∫ ψ̂n

i−1

ψ̂n
i

( f n
i−1)′(s) ds ≤ Ṽ(0)

(
ψ̂n

i−1 − ψ̂
n
i
)
.

Lemma 3.1 (a) implies that ∣∣∣ψ̂n
i − ψ̂

n
i−1

∣∣∣ = ω∣∣∣ψn
max,i − ψ

n
max,i−1

∣∣∣, (5.26)

hence ∣∣∣D̂n
i−1/2

∣∣∣ ≤ 2∥Ṽ∥∞
(∣∣∣∆−ϕn

i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣).
The same estimate holds for ψ̂n

i−1 < u < ψ̂n
i .
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3. If u ≥ ψ̂n
i ∨ ψ̂

n
i−1 then utilizing Eq (5.25) we get∣∣∣D̂n

i−1/2

∣∣∣ = ∣∣∣ f n
i
(
ψ̂n

i
)
− f n

i−1
(
ψ̂n

i−1
)∣∣∣ ≤ ∥Ṽ∥∞(∣∣∣∆−ϕn

i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣).
Combining all possible cases we deduce that∣∣∣D̂n

i−1/2

∣∣∣ ≤ (
∥Ṽ ′∥∞ + 2∥Ṽ∥∞

)(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣). (5.27)

Next, we deal with Eq (5.23), recalling that (see Eq (5.4))

F̌ (ϕn
i , v) − F̌ (ϕn

i−1, v) = Ďn
i−1/2 + E

n
i−1/2,

where we define

Ďn
i−1/2 :=

∫ v

0

(
(( f n

i )′)−(s) − (( f n
i−1)′)−(s)

)
ds, En

i−1/2 :=
(
ϕn

i−1/2ṽϕs(ϕn
i+1/2) − ϕn

i−3/2ṽϕs(ϕn
i−1/2)

)
v.

The discussion of all possible cases of the location of v in relation to ψ̂n
i and ψ̂n

i−1 gives rise to the
following cases for the estimation of Ďn

i−1/2.

1. If v ≤ ψ̂n
i ∧ ψ̂

n
i−1 or v ≥ ψn

max,i ∨ ψ
n
max,i−1 then Ďn

i−1/2 = 0.
2. To handle the case ψ̂n

i ∧ ψ̂
n
i−1 ≤ v ≤ ψ̂n

i ∨ ψ̂
n
i−1 we assume that ψ̂n

i < ψ̂
n
i−1 and ψ̂n

i ≤ v ≤ ψ̂n
i−1. Then∣∣∣Ďn

i−1/2

∣∣∣ = ∣∣∣ f n
i (v) − f n

i
(
ψ̂n

i
)∣∣∣ = ∣∣∣∣∣∣

∫ v

ψ̂n
i

(( f n
i )′)−(s) ds

∣∣∣∣∣∣ ≤ max
ψ̂n

i ≤s≤ψ̂n
i−1

∣∣∣(( f n
i )′)−(s)

∣∣∣∣∣∣ψ̂n
i − ψ̂

n
i−1

∣∣∣
≤

∣∣∣( f n
i )′(ψn

infl,i)
∣∣∣∣∣∣ψ̂n

i − ψ̂
n
i−1

∣∣∣.
By Lemma 3.1 (ii),

( f n
i )′(ψn

infl,i) = ( f n
i )′(ω̃ϕn

max,i) = Ṽ(ω̃) + ω̃Ṽ ′(ω̃),

so ( f n
i )′(ψn

infl,i) does not depend on ϕn
max,i and we conclude that∣∣∣Ďn

i−1/2

∣∣∣ ≤ (
∥Ṽ∥∞ + ∥Ṽ ′∥∞

)∣∣∣ψ̂n
i − ψ̂

n
i−1

∣∣∣.
Applying the argument of Eq (5.24) and Eq (5.26) yields∣∣∣Ďn

i−1/2

∣∣∣ ≤ (
∥Ṽ∥∞ + ∥Ṽ ′∥∞

)(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣).
The same inequality is also valid if ψ̂n

i−1 < ψ̂
n
i and ψ̂n

i−1 ≤ v ≤ ψ̂n
i .

3. Finally, assume that v > ψ̂n
i ∨ ψ̂

n
i−1. In this case∣∣∣Ďn

i−1/2

∣∣∣ = ∣∣∣ f n
i (v) − f n

i−1(v) − f n
i
(
ψ̂n

i
)
+ f n

i−1
(
ψ̂n

i−1
)∣∣∣ ≤ ∣∣∣ f n

i (v) − f n
i−1(v)

∣∣∣ + ∣∣∣ f n
i
(
ψ̂n

i
)
− f n

i−1
(
ψ̂n

i−1
)∣∣∣.

Taking into account that f n
i (ψ̂n

i ) = ψn
max,iωṼ(ω), we get∣∣∣ f n

i
(
ψ̂n

i
)
− f n

i−1
(
ψ̂n

i−1
)∣∣∣ = ωṼ(ω)

∣∣∣ψn
max,i − ψ

n
max,i−1

∣∣∣ ≤ ∥Ṽ∥∞(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣). (5.28)
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If v > ψn
max,i ∨ ψ

n
max,i−1, then f n

i (v) = f n
i−1(v) = 0, hence Eq (5.28) means that∣∣∣Ďn

i−1/2

∣∣∣ ≤ ∥Ṽ∥∞(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣).
Suppose now that

ψ̂n
i ∨ ψ̂

n
i−1 ≤ ψ

n
max,i ≤ v ≤ ψn

max,i−1. (5.29)

Since we know that v = ψn
i+1/2 ≤ 1 − ϕn

i+1/2, the inequality ψn
max,i ≤ v can only be satisfied if

ψn
max,i = (1 − ϕn

i−1/2) ∧ (1 − ϕn
i+1/2) = 1 − ϕn

i−1/2.

On the other hand,

ψn
max,i−1 = (1 − ϕn

i−1/2) ∧ (1 − ϕn
i−3/2) ≤ 1 − ϕn

i−1/2,

so Eq (5.29) is only possible when ψn
max,i = v = ψn

max,i−1 = 1 − ϕn
i−1/2, which means Ďn

i−1/2 = 0.
If instead of Eq (5.29) we have

ψ̂n
i ∨ ψ̂

n
i−1 ≤ ψ

n
max,i−1 ≤ v ≤ ψn

max,i, (5.30)

then 1/ψn
max,i−1 ≤ 1/(ωψn

max,i) implies∣∣∣ f n
i (v) − f n

i−1(v)
∣∣∣ = v

∣∣∣Ṽ(
v/ψn

max,i
)
− Ṽ

(
v/ψn

max,i−1
)∣∣∣

≤ v2∥Ṽ ′∥∞
|ψn

max,i − ψ
n
max,i−1|

ψn
max,iψ

n
max,i−1

≤
∥Ṽ ′∥∞
ω

∣∣∣ψn
max,i − ψ

n
max,i−1

∣∣∣.
The remainder of the estimate is based on Eq (5.24). Since ω < 1, we conclude that if Eq (5.29)
holds, then ∣∣∣ f n

i (v) − f n
i−1(v)

∣∣∣ ≤ ∥Ṽ ′∥∞
ω

(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣).
In combination with Eq (5.28) we obtain in this case∣∣∣Ďn

i−1/2

∣∣∣ ≤ (
∥Ṽ∥∞ +

∥Ṽ ′∥∞
ω

)(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣). (5.31)

Next, suppose that instead of Eq (5.29) or Eq (5.30) there holds

ψ̂n
i ≤ ψ

n
max,i ≤ ψ̂

n
i−1 ≤ v ≤ ψn

max,i−1,

then the discussion of Eq (5.29) can be applied again and we get that this ordering is only feasible
if all terms are equal and zero, and therefore Ďn

i−1/2 = 0. On the other hand, let us assume that

ψ̂n
i−1 ≤ ψ

n
max,i−1 ≤ ψ̂

n
i ≤ v ≤ ψn

max,i.

In this case, ∣∣∣Ďn
i−1/2

∣∣∣ = ∣∣∣∣∣∫ v

0
(( f n

i )′)−(s) ds
∣∣∣∣∣ =

∣∣∣∣∣∣
∫ v

ψ̂n
i

(( f n
i )′)−(s) ds

∣∣∣∣∣∣ ≤
∫ v

ψ̂n
i

∣∣∣(( f n
i )′)−(s)

∣∣∣ ds
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≤

∫ ψn
max,i

ψn
max,i−1

∣∣∣( f n
i )′

∣∣∣ ds ≤
(
∥Ṽ∥∞ + ∥Ṽ ′∥∞

)(
ψn

max,i − ψ
n
max,i−1

)
≤

(
∥Ṽ∥∞ + ∥Ṽ ′∥∞

)(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣).
It remains to treat the case ψ̂n

i ∨ ψ̂
n
i−1 ≤ v ≤ ψn

max,i ∧ ψ
n
max,i−1. We then have v2/(ψn

max,i−1ψ
n
max,i) ≤ 1,

and analogously to the derivation of Eq (5.31) we get∣∣∣Ďn
i−1/2

∣∣∣ ≤ (
∥Ṽ∥∞ + ∥Ṽ ′∥∞

)(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣).
Collecting all estimates for Ďn

i−1/2, we see that∣∣∣Ďn
i−1/2

∣∣∣ ≤ (
3∥Ṽ∥∞ + (1 + 1/ω)∥Ṽ ′∥∞

)(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣). (5.32)

Furthermore, we obtain ∣∣∣En
i−1/2

∣∣∣ ≤ ∥ṽ′ϕs∥∞

∣∣∣∆+ϕn
i−1/2

∣∣∣ + ∥ṽϕs∥∞

∣∣∣∆−ϕn
i−1/2

∣∣∣. (5.33)

Combining the estimates Eq (5.27), Eq (5.32) and Eq (5.33), we obtain from Eq (5.22) and Eq (5.23)
the bounds ∣∣∣F̂ (

ϕn
i , u

)
− F̂

(
ϕn

i−1, u
)∣∣∣, ∣∣∣F̌ (

ϕn
i , v

)
− F̌

(
ϕn

i−1, v
)∣∣∣ ≤ C10

(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣) (5.34)

and therefore ∣∣∣∆ϕ−Q(ϕn
i ,ψ

n
i )
∣∣∣ ≤ C11

(∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣)
with constants C10 and C11. Combining the last inequality with Eq (5.19) and Eq (5.20) we arrive at
the desired estimate Eq (5.18). □

From Eq (5.18), and considering that 0 ≤ ϕn
i−1/2 ≤ 1 for all i and n, we obtain(

∆−Q(ϕn
i ,ψ

n
i )
)2
≤ 2C2

8
((
∆

(3)
− + ∆

(4)
−

)
F (ϕn

i ,ψ
n
i
))2
+ 2C2

9
(∣∣∣∆−ϕn

i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣)2

≤ 4C2
8

((
∆

(3)
− F (ϕn

i ,ψ
n
i )
)2
+

(
∆

(4)
− F (ϕn

i ,ψ
n
i )
)2
)
+ 4C2

9
(∣∣∣∆−ϕn

i−1/2

∣∣∣2 + ∣∣∣∆+ϕn
i−1/2

∣∣∣2)
≤ C12

((
∆

(3)
− F (ϕn

i ,ψ
n
i
))2
+

(
∆

(4)
− F (ϕn

i ,ψ
n
i
))2
+

∣∣∣∆−ϕn
i−1/2

∣∣∣ + ∣∣∣∆+ϕn
i−1/2

∣∣∣).
Summing over (i, n) ∈ I0 we get∑

I0

(
∆−Q(ϕn

i ,ψ
n
i )
)2
≤ C12

∑
I0

((
∆

(3)
− F (ϕn

i ,ψ
n
i )
)2
+

(
∆

(4)
− F (ϕn

i ,ψ
n
i )
))2
+ 2C12

∑
I1

∣∣∣∆+ϕn
i−1/2

∣∣∣
≤ C12

∑
I0

((
∆

(3)
− F (ϕn

i ,ψ
n
i
))2
+

(
∆

(4)
− F (ϕn

i ,ψ
n
i
))2
+ 2C12

N∑
n=0

TV(ϕn).

Multiplying this inequality by ∆t∆z and taking into account Eq (5.16) and the uniform bound on TV(ϕn)
we have proved the following lemma.
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Lemma 5.4. Consider numerical approximations produced by Scheme 3. There exists a constant
C = C(T ) that is independent of ∆t and ∆z such that the following estimate holds:

∆t∆z
NT∑
n=0

∑
i∈Z

(
∆−Q(ϕn

i ,ψ
n
i )
)2
≤ C(T )∆z.

In part following the proofs of Lemmas 5.5 and 5.9 in [33] and in particular that of Lemma 3.4 in
[18] we now prove the H−1

loc compactness result.

Lemma 5.5. Assume that ψ∆z is generated by the scheme Eq (5.3) (ψ-Scheme 3), and that ϕ is the
unique entropy solution of Eq (1.8a), Eq (1.2a) on ΠT . Furthermore, we denote by (η0,Q0) the Kružkov
entropy pair Eq (5.2), and the distribution

µ∆z := ∂tη0(ψ∆z) + ∂zQ0(ϕ∆z, ψ∆z).

Then the sequence {µ∆z}∆z>0 belongs to a compact subset of H−1
loc(ΠT ).

The proof of Lemma 5.5 essentially follows the proof of [18, Lemma 3.4], with some slight
modifications due the particular definition of the numerical flux in the present case. The proof is
presented in Appendix A.

Since ϕ∆z → ϕ strongly in Lp, we obtain that there exists a constant C such that∣∣∣〈∂z
(
Q(ϕ∆z, ψ∆z) − Q(ϕ, ψ∆z)

)
, ζ

〉∣∣∣ ≤ C∥ϕ∆z − ϕ∥L2(ΠT )∥ζ∥H1(ΠT ) → 0 as ∆z→ 0,

hence the sequence {µ̃∆z}∆z>0, where we define

µ̃∆z := ∂tη0(ψ∆z) + ∂zQ(ϕ, ψ∆z),

is compact in H−1
loc(ΠT ). Now, by Lemma 5.1 there exists a subsequence {ψ∆z} (which we do not relabel)

and a function ψ ∈ L∞(ΠT ) such that

ψ∆z → ψ as ∆z→ 0, a.e. and in Lp
loc(ΠT ) for any p ∈ [1,∞). (5.35)

Theorem 5.1. Assume that the maps ϕ and ψ are the limit functions of ϕ∆z and of ψ∆z as ∆z → 0 (the
latter one being defined by Eq (5.35), that is, we consider Scheme 3). Then (ϕ, ψ) is a weak solution of
the initial-value problem Eq (1.8), Eq (1.2) in the sense of Definition 1.1.

The proof follows that of [18, Lemma 3.5], again with slight modifications. We refer to Appendix A
for details.

6. Numerical results

6.1. Computation of numerical error

To simplify error estimations we utilize a grid with the property that the boundaries of the tank
agree with the boundaries of a cell (see Figure 2 (left)). Since an exact solution is frequently difficult
to obtain, we use an approximate reference solution obtained with a large number Nref cells against
which the error of other simulated solutions with N < Nref is measured. The error is estimated on a
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fixed interval [0, zend) slightly larger than the column of height H so that the outflow volume fractions
are included. We define the coarsest grid of N0 cells with ∆z0 := H/(N0 − 2) and place the column
between zU := ∆z0 and zE := zU + H = (N0 − 1)∆z0. This corresponds to Figure 2 (left) with N = N0.
We define the length of the interval of error estimation as zend := H + 2∆z0 = N0∆z0.

To estimate the convergence order, we simulate with Nk = 2kN0 cells, k = 0, . . . , kref − 1, where the
integer kref defines the number of cells Nref := Nkref := 2kref N0 of the reference solution. Then we define
∆zk := zend/Nk, ∆zr := ∆zkref := zend/Nkref = ∆z0/2kref and the factor of refinement from Nk cells to Nref

as mk := ∆zk/∆zr = Nkref/Nk = 2kref−k. We note that zNk := Nk∆zk = zend for all k.
We will now measure the error between the piecewise constant numerical solution obtained by

N = Nk cells (we skip the index k for a moment) and the reference solution obtained with Nref cells
on the grid refined by a factor m = ∆z/∆zr. The refined grid satisfies zr

0 := z0 = 0 and we have
zi = i∆z = im∆zr =: zr

im. The corresponding numerical solutions on the refined grids are denoted by
(skipping the time index n) ϕr

i+1/2, ψr
i+1/2, etc., where Ar

i+1/2 are defined by ∆zr. The refined cells are
numbered such that the first cell for ϕ above zr

0 = 0 contains the value ϕr
1/2. Then zend = Nm∆zr. This

means that the cells within [0, zend) contain the values ϕr
1/2, . . . , ϕ

r
Nm−1/2, and analogously for ψ; see

Figure 2 (right).
Note that the location of the spatial discontinuities zU and zE will coincide with a cell boundary for

any mesh considered in the refinement process while the locations of the inlets zF,1, etc. will be chosen
in such a way that each of them lies inside a cell for the finest grid; hence, they do this for all the
coarser meshes. In this way, the numerical fluxes at cell boundaries are well defined.

We compute the estimated error at a time point t = T and define∥∥∥ϕ∆z(·,T )
∥∥∥ :=

∫ zend

0
A(z)

∣∣∣ϕ∆z(z,T )
∣∣∣ dz.

The L1-difference between two numerical solutions computed on grids with cell sizes ∆z and ∆zr is
calculated as follows for ϕ:

Eϕ(∆z,∆zr,T ) :=
∥∥∥ϕ∆z(·, t) − ϕ∆zr

(·,T )
∥∥∥ = N−1∑

i=0

Iϕi+1/2(T )

with the summands defined by

Iϕi+1/2(T ) :=
∫ zi+1

zi

A(z)
∣∣∣ϕ∆z(z,T ) − ϕ∆zr

(z,T )
∣∣∣ dz =

m−1∑
k=0

∫ zr
im+k+1

zr
im+k

A(z)
∣∣∣ϕi+1/2 − ϕ

r
im+1/2+k

∣∣∣ dz

= ∆zr
m−1∑
k=0

Ar
im+1/2+k

∣∣∣ϕi+1/2 − ϕ
r
im+1/2+k

∣∣∣.
The approximate relative error for ϕ in the interval [0, zend) is then defined as

eϕNk
(T ) :=

Eϕ(∆zk,∆zr,T )
∥ϕ∆zr(·,T )∥

=
∥ϕ∆zk(·,T ) − ϕ∆zr

(·,T )∥
∥ϕ∆zr(·,T )∥

.

We define eψN(t) analogously and hence, the total relative error can be defined as

etot
Nk

(T ) := eϕNk
(T ) + eψNk

(T )
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and the observed convergence order between two discretizations Nk−1 and Nk as

Υk(T ) := −
log(etot

Nk−1
(T )/etot

Nk
(T ))

log(Nk−1/Nk)
, k = 1, . . . , kref − 1.

For smooth solutions and a constant A (see Eq (1.7)), we also use an alternative way [7] of
calculating approximate errors and convergence orders in which a reference solution is not needed.
One can use cubic interpolation to compute the quantities ϕ̃∆zk

i+1/2 from a grid with Nk+1 = 2 Nk cells,
k = 0, . . . , k̂, with k̂ an integer, taking into consideration that zk

i+1/2 = (zk+1
2i+1/2 + zk+1

2i+3/2)/2. Then, ϕ̃∆zk
i+1/2

is given by

ϕ̃∆zk
i+1/2 =

9
16

(
ϕ∆zk+1

2i+3/2 + ϕ
∆zk+1
2i+1/2

)
−

1
16

(
ϕ∆zk+1

2i+5/2 + ϕ
∆zk+1
2i−1/2

)
, i = 1, . . . ,Nk.

The alternative approximate relative L1-error for ϕ can then be calculated as

êϕNk
(T ) :=

1
Nk

Nk∑
i=1

∣∣∣ϕ̃∆zk
i+1/2(·,T ) − ϕ∆zk

i+1/2(·,T )
∣∣∣.

We can define ψ̃Nk
i+1/2 and êψNk

(T ) analogously along with the alternative total approximate L1-error and
convergence order

êtot
Nk

(T ) := êϕNk
(T ) + êψNk

(T ), Υ̂k(T ) := log2(êtot
Nk

(T )/êtot
Nk+1

(T )) for k = 0, . . . , k̂.

6.2. Preliminaries for numerical tests

For the first example, in Section 6.3, we use a smooth solution away from spatial discontinuities,
to estimate the order of convergence of the numerical scheme. For this example, we use N0 = 500,
Nk = 2kN0 for k = 0, 1, . . . , 5 and kref = 8; hence, N5 = 16 000 and Nref = 128 000.

In Sections 6.4 and 6.5, we exemplify counter- and co-current flows of the primary and secondary
disperse phases, respectively. For these two examples, we use N0 = 100, and kref = 7. We set three
inlets zF,1, zF,2 and zF,3 dividing the tank into four equal parts each with the height H/4, where H = 1 m
is used. These three inlets are defined so that they lie inside a cell for any mesh size considered. A
fixed quantity of the is introduced through inlet zF,1, a fixed quantity of the secondary disperse phase
through inlet zF,2 and some wash water through inlet zF,3.

Tables 1 and 2 show the estimated errors and convergence orders for the three scenarios studied. In
the calculations of the alternative approximate error êtot

Nk
(T ) and convergence order Υ̂k(T ) in Table 1,

we use k̂ = 6.

6.3. Simulation of a smooth solution

We consider a vessel with a constant cross-sectional area of A(z) = 83.65 cm2, and we set all inlet
and outlet volumetric flows to zero, i.e, QF,1 = QF,2 = QF,3 = QU = QE = 0 cm3/s. (Under these
assumptions, the scheme reduces to Scheme 3 for Model 3.) For the velocity functions W and V , given
by Eq (2.10) and Eq (2.11), respectively, we use the parameters np = 2.2, vterm,p = 1.5 cm/s, ns = 2.2
and vterm,s = 1.5 cm/s, and consider σ = −1 (counter-current flow). The initial datum is a sinusoidal
function for both phases with support in the interval (zU, zE).
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Figure 4. Simulation of a smooth solution (Section 6.3). First row: Time evolution of the
volume fractions of the primary disperse phase ϕ (left) and the secondary disperse phase ψ
(right) from t = 0 s to t = 9 s. Second row: Approximate solutions at time t = 9 s computed
with N = 500 (left) and N = 8000 (right).

Table 1. Simulation of a smooth solution (Section 6.3). Total estimated relative L1-
error etot

Nk
(T ), alternative relative L1-error êtot

Nk
(T ), estimated convergence order Υk(T ), and

its alternative counterpart Υ̂k(T ), calculated with Nref = 128 000 and T = 9 s.

Nk etot
Nk

(T ) Υk(T ) êtot
Nk

(T ) Υ̂k(T )

500 3.7212 × 10−2 —— 1.3041 × 10−3 0.9513
1000 1.8985 × 10−2 0.9709 6.7443 × 10−4 0.9657
2000 9.5710 × 10−3 0.9881 3.4533 × 10−4 0.9781
4000 4.7582 × 10−3 1.0083 1.7531 × 10−4 0.9870
8000 2.3174 × 10−3 1.0379 8.8448 × 10−5 0.9927

16000 1.0867 × 10−3 1.0926 4.4447 × 10−5 ——

We simulate a short time, until t = 9 s, before the first discontinuity appears; see the first row in
Figure 4 where N = 1000 is used. In the second row, we compare two approximate solutions obtained
with a coarse mesh with N = 500 and a finer one with N = 8000. Table 1 shows the estimated
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errors and convergence orders. Both Υk(T ) and Υ̂Nk(T ) assume values close to one as Nk increases, as
expected, confirming that the scheme is first-order accurate for smooth solution.

6.4. Illustration of the crossing condition.

The remainder of examples refer to Model 1 discretized by Scheme 1. We first illustrate that the
“crossing condition” is satisfied as mentioned in Section 4.1. For this we use the constant
A ≡ 83.65 cm2 and simulate a tank that initially contains only water, i.e., ϕ(z, 0) = ψ(z, 0) = 0 for all z.
At t = 0 we start pumping aggregates, solids, fluid and wash water with ϕF,1 = 0.9, ψF,1 = 0,
ϕF,2 = 0.2, ψF,2 = 0.4, ϕF,3 = 0.1 and ψF,3 = 0. We choose the volumetric flows
(QU,QF,1,QF,2,QF,3) = (15, 20, 25, 15) cm3/s, so that the volumetric flows in the tank are positive in
all zones but not in zone 1. Three inlets zF,1, zF,2 and zF,3 divide the tank into four zones of equal
height.

Figure 5. Illustration of the crossing condition (Section 6.4). The crossing condition is
satisfied at each of the five spatial discontinuities.

Figure 6. Simulation of the example in Section 6.4 during T = 200 s.
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Figure 5 shows the graphs of the flux functions on both sides of each discontinuity in z, for this case
three inlets (zF,1, zF,2, zF,3) and two outlets (zU, zE). We see that the fluxes J(ϕ, z±) (defined in Eq (4.9))
intersect when ϕF,1 = 0.9, ϕF,2 = 0.2 and ϕF,3 = 0.1, and do not intersect in (0, 1) at neither zU nor zE.
Figure 6 shows the simulation results during 200 s.

6.5. Application 2: Counter-current fluxes

We consider now a complete tank with σ = −1; hence, the primary disperse phase will move
upwards and the secondary disperse phase downwards with respect to the volume average velocity q
of the mixture. A straightforward interpretation of this scenario is the flotation process used in the
mineral industry to recover valuable minerals from crushed ore; see the model in [8, 9]. In that model,
the primary disperse phase consists of aggregates, which are air bubbles fully loaded with hydrophobic
minerals, and the secondary disperse phase is the tailings, consisting of hydrophilic particles suspended
in the fluid that do not attach to air bubbles. We consider three inlets zF,1, zF,2 and zF,3, dividing the
tank into four regions with equal height. At zF,1, only gas is fed, at zF,3 only wash water, while at zF,2 a
slurry of solids and water is fed into the column.

The cross-sectional area is discontinuous (cf. Figure 2) due to a centered pipe from the top down
to zF,2 that introduces material into the tank. It is given by

A(z) =

72.25 cm2 for z ≥ zF,2,

83.65 cm2 for z < zF,2.

These values correspond to the reflux flotation cell studied in [21].

We consider that the column is initially filled only with fluid, hence ϕ(z, 0) = ψ(z, 0) = 0 for
all z, when we start pumping aggregates and solids with concentrations ϕF,1 = 1.0, ψF,1 = 0, ϕF,2 = 0,
ψF,2 = 0.4, ϕF,3 = 0 and ψF,3 = 0, along with fluid and/or wash water. We choose (QU,QF,1,QF,2,QF,3) =
(5, 15, 25, 10) cm3/s, so that the mixture flows in zones 2 and 3 are positive, i.e., directed upwards:
QF,1 − QU = 10 cm3/s in zone 2 and QF,2 + QF,1 − QU = 35 cm3/s in zone 3.

Figure 7 shows the time evolution of the volume fractions of ϕ and ψ. It can be seen that the
aggregates rise fast to the top, while the solids are travelling both up and down the vessel, leaving
through the effluent and the underflow.

At time t = 350 s, we change the volumetric flow from QF,2 = 25 cm3/s to QF,2 = 7 cm3/s. After
this change, the solids settle and we obtain a steady state. We mention that this is not a desired steady
state in the mining industry (the capacity of the device is not fully used); see [9] for more examples.
Table 2 (a) shows the estimated errors and convergence orders for this simulation. As in the smooth
example in Section 6.3, the convergence orders tend to one as Nk increases.
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Figure 7. Application 1: Counter-current flows. Time evolution of the volume fraction
profiles of the primary disperse phase ϕ (left) and secondary disperse phase ψ (right) from
time t = 0 s to t = 1800 s seen from two different angles (first and second rows).

Table 2. Approximate total relative L1-errors etot
Nk

(T ) and convergence ordersΥk(T ) calculated
between consecutive values of Nk, with Nref = 12 800 (a) for Application 1 (counter-current
flow) at simulated time T = 350 s, (b) for Application 2 (co-current flow) at simulated time
T = 500 s.

(a) (b)

Nk etot
Nk

(T ) Υk(T )

100 4.2032 × 10−1 −

200 2.5992 × 10−1 0.6934
400 1.5820 × 10−1 0.7163
800 9.4139 × 10−2 0.7489

1600 5.3953 × 10−2 0.8031
3200 2.8018 × 10−2 0.9453

Nk etot
Nk

(T ) Υk(T )

100 2.7733 × 10−1 −

200 1.7102 × 10−1 0.6974
400 1.0504 × 10−1 0.7032
800 6.2422 × 10−2 0.7508

1600 3.4649 × 10−2 0.8492
3200 1.6926 × 10−2 1.0336
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6.6. Application 2: Co-current fluxes

For the last example, we consider σ = 1, i.e., both the primary and secondary disperse phases have a
density smaller than that of the fluid and therefore move upwards relative to the mixture. This scenario
could be a flotation process with two buoyant phases differing in density and possibly also in size. We
consider here the same flotation column as in Application 1 and choose np = 3.2, vterm,p = 2.5 cm/s,
ns = 2.5, and vterm,s = 1.5 cm/s so that we have two buoyant phases with different (upwards-directed)
velocities relative to the mixture. As in the previous example, only the primary disperse phase is fed
into the tank at zF,1 and only the secondary at zF,2. The column is initially filled with only fluid at time
t = 0 s, hence ϕ(z, 0) = ψ(z, 0) = 0 for all z, when we start pumping both phases with the following
volume fractions: ϕF,1 = 1.0, ψF,1 = 0.0, ϕF,2 = 0.0, ψF,2 = 0.6, ϕF,3 = 0 and ψF,3 = 0. We choose the
volumetric flows (QU,QF,1,QF,2,QF,3) = (15, 30, 20, 10) cm3/s, so that the volumetric flows in the tank
are positive in all zones with the exception of zone 1.

Figure 8. Application 2: Co-current flow. Time evolution of the volume fraction profiles of
primary disperse phase ϕ (left) and secondary disperse phase ψ(right) from time t = 0 s to
t = 1500 s seen from two different angles (first and second rows).

Figure 8 shows the time evolution of the volume fractions of both phases. It can be seen that, for
times t < 350 s, the primary disperse phase leaves the tank through both the underflow and effluent
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outlets, while the secondary disperse phase quickly rises to the top part of the tank and leaves it just
through the effluent outlet.

At t = 350 s, we change the volumetric flow of the inlet zF,1 from QF,1 = 30 to QF,1 = 20 cm3/s,
maintaining the other volumetric flows. As a consequence we can see that the primary disperse phase
ϕ rises and leaves zone 1, exiting the tank only through the effluent while the secondary disperse phase
maintains the same behaviour as before and is present only above the feed level zF,2. Table 2 (b) shows
the estimated errors and convergence orders for this simulation, which have the same behaviour as the
ones in the numerical examples in Sections 6.3 and 6.4.

7. Conclusions

The present study outlines a numerical method for a triangular system of two PDEs, whose flux
functions have several spatial discontinuities due to in- and outflows of a one-dimensional tank with
possibly varying cross-sectional area. The triangular structure is utilized in the following way in the
numerical scheme. The numerical update formula corresponding to the first scalar equation contains,
for the nonlinear term, a numerical flux where the the volume fraction in the left cell is multiplied
with the velocity computed in the right cell; see [6]. The update formula for the second equation uses
the Engquist-Osher numerical flux for the term modelling the nonlinear relative flux of the secondary
disperse phase, chosen in a particular way since this flux also depends on the primary disperse phase
volume fraction. The other terms of the second update formula are also chosen in such a way that
the entire scheme is proved to be monotone under the CFL condition Eq (3.2). We prove that the
numerically obtained volume fractions satisfy the invariant-region property that they stay between
zero and one, as is physically expected.

The numerical scheme is applied to simulate the hydrodynamic movement of simultaneously
rising aggregates (air bubbles with attached hydrophobic particles) and settling hydrophilic particles
in the fluid under in- and outflows of a flotation column. As a demonstration of the capabilities of the
numerical method, three different settings are simulated. The convergence order of the numerical
method is estimated. As expected, in regions where the solution is smooth, the order is one. The
first-order scheme proposed in this paper could be improved to achieve second-order accuracy, for
instance, by techniques of variable extrapolation [6, 14].

In [9], the authors proposed a staggered scheme to compute numerical solutions for a flotation
column, following the approach of Karlsen et al. [32, 33]. Although the staggered scheme worked for
a single inlet for a mixture of aggregates and solids, we have, in the case of several feed inlets, found
it difficult to get consistent numerical solutions with respect to different mesh sizes.

We are currently [12] extending the model and numerical scheme to the explicit description of
drainage of liquid from the foam forming at the top of a flotation column. This phenomenon gives
rise to a model similar to Eq (1.1) but with an additional degenerating diffusion term. The numerical
solution of the resulting system of non-linear convection-diffusion equations calls for semi-implicit
discretizations to alleviate the severe restrictions in the CFL condition due to the diffusion term.
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Appendix A: Proofs of Lemma 5.5 and Theorem 5.1.

Proof of Lemma 5.5. Following [18], we work with smooth entropies instead of η0, so we denote by η∆z

a smooth convex approximation to η0, so that η∆z(0) = 0 and |η∆z| ≤ 1, and ∥η∆z−η0∥L∞ ≤ ∆z. Moreover,
if Q∆z is the entropy flux associated with η∆z, then there also holds ∥Q∆z −Q0∥L∞ → 0 as ∆z→ 0. Then
we split µ∆z as µ∆z = µ∆z

1 + µ
∆z
2 , where we define

µ∆z
1 := ∂t

(
η0(ψ∆z) − η∆z(ψ∆z)

)
, µ∆z

2 := ∂tη∆z(ψ∆z) + ∂zQ0(ϕ∆z, ψ∆z).

If ζ ∈ C1
0(ΠT ) denotes a test function with compact support, then as in [18], one verifies that

∣∣∣⟨µ∆z
1 , ζ⟩

∣∣∣ ≤"
ΠT

∣∣∣η∆z(ψ∆z) − η0(ψ∆z)
∣∣∣|ζt| dz dt ≤ C21∥ζt∥L2(ΠT )∥η∆z − η0∥L∞ → 0 as ∆z→ 0,
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hence {µ∆z
1 }∆z>0 is compact in H−1

loc(ΠT ). By an integration by parts we get

⟨µ∆z
2 , ζ⟩ = −

"
ΠT

(
η∆z(ψ∆z)ζt + Q0(ϕ∆z, ψ∆z)ζz

)
dz dt

= −

NT−1∑
n=1

∫
R

∫ tn+1

tn
η∆z(ψ∆z)ζt dt dz −

NT−1∑
n=1

∫ tn+1

tn

∫
R

Q0(ϕ∆z, ψ∆z)ζz dz dt

= −

NT−1∑
n=0

∫
R

η∆z
(
ψ∆z(z, tn)

)(
ζ(z, tn+1) − ζ(z, tn)

)
dz

−

NT−1∑
n=1

∑
i∈Z

∫ tn+1

tn
Q0

(
ϕn

i−1/2, ψ
n
i−1/2)

(
ζ(zi, t) − ζ(zi−1, t)

)
dz dt,

so we may finally write

⟨µ∆z
2 , ζ⟩ =

NT−2∑
n=0

∑
i∈Z

(
η∆z(ψn+1

i−1/2) − η∆z(ψn
i−1/2)

) ∫
Ii−1/2

ζ(z, tn+1) dz

+

NT−1∑
n=1

∑
i∈Z

(
∆+Q0(ϕn

i−1/2, ψ
n
i−1/2)

) ∫ tn+1

tn
ζ(zi, t) dt.

(A.1)

We define the cell average

ζn
i−1/2 :=

1
∆z∆t

"
In

j−1/2

ζ(z, t) dz dt. (A.2)

Replacing the integral in the first term of the right-hand side of Eq (A.1) by ∆zζn
i−1/2 produces the

following error, where we follow the derivation of Eq (3.27) in [18]:∣∣∣∣∣∣∣∑
I2

(
η∆z(ψn+1

i−1/2) − η∆z(ψn
i−1/2)

)(∫
Ii−1/2

ζ(z, tn+1) dz − ∆zζn
i−1/2

)∣∣∣∣∣∣∣
≤ ∥η′∆z∥L∞

∑
I2

∣∣∣ψn+1
i−1/2 − ψ

n
i−1/2

∣∣∣ 1
∆t

"
In

j−1/2

∣∣∣ζ(z, tn+1) − ζ(z, t)
∣∣∣ dz dt

≤
∑
n,i

∣∣∣ψn+1
i−1/2 − ψ

n
i−1/2

∣∣∣ 1
∆t

"
In

j−1/2

∫ tn+1

t

∣∣∣ζt(z, s)
∣∣∣ ds dz dt

≤
∑
I2

∣∣∣ψn+1
i−1/2 − ψ

n
i−1/2

∣∣∣ 1
∆t

"
I j−1/2

∫ tn+1

tn
(tn+1 − t)1/2

(∫ tn+1

tn

∣∣∣ζt(z, s)
∣∣∣2 ds

)1/2

dz dt

≤
2
3

∑
I2

∣∣∣ψn+1
i−1/2 − ψ

n
i−1/2

∣∣∣∆t1/2
∫

Ii−1/2

(∫ tn+1

tn

∣∣∣ζt(z, s)
∣∣∣2 ds

)1/2

dz

≤
2
3

∑
I2

∣∣∣ψn+1
i−1/2 − ψ

n
i−1/2

∣∣∣∆z1/2∆t1/2
("

In
i−1/2

(
ζt(z, s)

)2 dz dt
)1/2

≤
2
3

(
∆z∆t

∑
n,i

(
ψn+1

i−1/2 − ψ
n
i−1/2

)2
)1/2(∑

I2

"
In
i−1/2

(
ζt(z, s)

)2 dz dt
)1/2
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≤
2
3

(C7∆z)1/2∥ζ∥H1(ΠT )

(see Eq (5.17)). By similar arguments we obtain the bound∣∣∣∣∣∣∑
I1

(
∆+Q0(ϕn

i−1/2, ψ
n
i−1/2)

) (∫ tn+1

tn
ζ(zi+1/2, t) dt − ∆tζn

i−1/2

)∣∣∣∣∣∣ ≤ C̃T∆z1/2∥ζ∥H1(ΠT ).

Consequently, and further following [18], we have shown that

⟨µ∆z
2 , ζ⟩ = ∆z∆t

∑
I1

{η∆z(ψn+1
i−1/2) − η∆z(ψn

i−1/2)

∆t
+
∆+Q0(ϕn

i−1/2, ψ
n
i−1/2)

∆z

}
ζn

i−1/2

+ terms which are compact in H−1
loc(ΠT ).

We now utilize the “scheme for η”, Eq (5.14), to rewrite the term in curled brackets as
{. . . } = An

i−1/2 + B
n
i−1/2 + C

n
i−1/2 +D

n
i−1/2, where we define

An
i−1/2 := −

1
2∆t

η′′∆z
(
ξn+1/2

i−1/2

)(
ψn+1

i−1/2 − ψ
n
i−1/2

)2
−

1
∆z
Θn

i−1/2,

Bn
i−1/2 := −

1
∆z

(
η′

(
ψn+1

i−1/2
)
− η′

(
ψn

i−1/2
))
∆−F (ϕn

i ,ψ
n
i ),

Cn
i−1/2 := −

1
∆z
∆
ϕ
+

(
η′

(
ψn

i−1/2
)
F (ϕn

i−1,ψ
n
i−1) − Q(ϕn

i−1,ψ
n
i−1)

)
,

Dn
i−1/2 := −

1
∆z

(
∆−Q(ϕn

i ,ψ
n
i ) − ∆+Q0

(
ϕn

i−1/2, ψ
n
i−1/2

))
. (A.3)

Thus, ⟨µ∆z
2 , ζ⟩ = ⟨A, ζ⟩ + ⟨B, ζ⟩ + ⟨C, ζ⟩ + ⟨D, ζ⟩ + compact terms, where

⟨A, ζ⟩ = ∆z∆t
∑
n,i

An
i−1/2ζ

n
i−1/2

and ⟨B, ζ⟩, ⟨C, ζ⟩, and ⟨D, ζ⟩ are defined analogously. In view of Lemma 5.2, we get∣∣∣⟨A, ζ⟩∣∣∣ ≤ ∥ζ∥L∞(ΠT )

(
∆z
2

∑
I1

η′′∆z
(
ξn+1/2

i−1/2

)(
ψn+1

i−1/2 − ψ
n
i−1/2

)2
+ ∆t

∑
I1

Θn
i−1/2

)
≤ CT ∥ζ∥L∞(ΠT ),

and therefore A ∈ Mloc(ΠT ). Appealing to the divergence bound of the numerical flux Eq (5.15) and
taking into account the BV bound on ϕ∆z it also follows that |⟨B + C, ζ⟩| ≤ CT ∥ζ∥L∞(ΠT ), and therefore
B + C ∈ Mloc(ΠT ).

Finally, to deal with ⟨D, ζ⟩ we consider first ε > 0 and let Qε, Q±ε and Qε denote the entropy and
numerical entropy fluxes calculated from Eq (5.1) and Eq (5.7), respectively, where η = ηε. Since Qε
is consistent with Qε,

Qε(ϕ, ϕ, ψ1, ψ2) − Qε(ϕ, ψ2)

= Qε(ϕ, ϕ, ψ1, ψ2) − Qε(ϕ, ϕ, ψ2, ψ2) =
∫ ψ1

ψ2

η′ε(s) f̌ (ϕ, ϕ, s) ds
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= η′ε(ψ1)
(
F̌ (ϕ, ϕ, ψ1) − F̌ (ϕ, ϕ, ψ2)

)
−

∫ ψ1

ψ2

η′′ε (s)
(
F̌ (ϕ, ϕ, s) − F̌ (ϕ, ϕ, ψ1)

)
ds

(cf. Eq (5.9)). By using the monotonicity of F̌ with respect to its ψ-argument we get∣∣∣Qε(ϕ, ϕ, ψ1, ψ2) − Qε(ϕ, ψ2)
∣∣∣ ≤ 3∥η′ε∥L∞

∣∣∣F̌ (ϕ, ϕ, ψ2) − F̌ (ϕ, ϕ, ψ1)
∣∣∣ ≤ 3

∣∣∣F̌ (ϕ, ϕ, ψ2) − F̌ (ϕ, ϕ, ψ1)
∣∣∣,

so in the limit ε→ 0, ∣∣∣Q(ϕ, ϕ, ψ1, ψ2) − Q0(ϕ, ψ2)
∣∣∣ ≤ 3

∣∣∣F̌ (ϕ, ϕ, ψ2) − F̌ (ϕ, ϕ, ψ1)
∣∣∣. (A.4)

Noticing that

∆−Q(ϕn
i ,ψ

n
i ) − ∆+Q0

(
ϕn

i−1/2, ψ
n
i−1/2

)
= ∆−

(
Q
(
ϕn

i , ψ
n
i−1/2, ψ

n
i+1/2

)
− Q0(ϕn

i+1/2, ψ
n
i+1/2

))
= ∆−

(
Q
(
ϕn

i+1/2, ϕ
n
i+1/2,ψ

n
i
)
− Q0(ϕn

i+1/2, ψ
n
i+1/2

))
+ ∆−

(
Q
(
ϕn

i ,ψ
n
i
)
− Q

(
ϕn

i+1/2, ϕ
n
i+1/2,ψ

n
i
))

we get from Eq (A.3)∣∣∣∣∣∣∆z∆t
∑
I1

Dn
i−1/2ζ

n
i−1/2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∆z∆t

∑
I1

1
∆z
∆−

(
Q
(
ϕn

i+1/2, ϕ
n
i+1/2,ψ

n
i
)
− Q0(ϕn

i+1/2, ψ
n
i+1/2

))
ζn

i−1/2

∣∣∣∣∣∣
+

∣∣∣∣∣∣∆z∆t
∑
I1

1
∆z
∆−

(
Q
(
ϕn

i ,ψ
n
i
)
− Q

(
ϕn

i+1/2, ϕ
n
i+1/2,ψ

n
i
))
ζn

i−1/2

∣∣∣∣∣∣ =: |S1| + |S2|.

By a summation by parts and applying Eq (A.4) we get

|S1| =

∣∣∣∣∣∣∆z∆t
∑
I1

(
Q
(
ϕn

i+1/2, ϕ
n
i+1/2,ψ

n
i
)
− Q0(ϕn

i+1/2, ψ
n
i+1/2

))∆+ζn
i−1/2

∆z

∣∣∣∣∣∣
≤ 3∆z∆t

∑
I1

∣∣∣∆(3)
+ F̌

(
ϕn

i+1/2, ϕ
n
i+1/2, ψ

n
i−1/2

)∣∣∣ |∆+ζn
i−1/2|

∆z
. (A.5)

We now write

∆
(3)
+ F̌

(
ϕn

i+1/2, ϕ
n
i+1/2, ψ

n
i−1/2

)
= ∆

(3)
+ F̌

(
ϕn

i , ψ
n
i−1/2

)
+Yn

i+1/2 − Y
n
i−1/2,

where

Yn
i±1/2 := F̌

(
ϕn

i+1/2, ϕ
n
i+1/2, ψ

n
i±1/2

)
− F̌

(
ϕn

i , ψ
n
i±1/2

)
.

From Eq (5.34), and considering ϕn
i−3/2 = ϕ

n
i−1/2 in that bound, we deduce there exists a constant C such

that |Yn
i±1/2| ≤ C|∆+ϕn

i−1/2|, therefore there exists (another) constant C such that∣∣∣Yn
i+1/2 − Y

n
i−1/2

∣∣∣ ≤ C
∣∣∣∆+ϕn

i−1/2

∣∣∣. (A.6)

Consequently, from Eq (A.5) we deduce that

|S1| ≤ 3∆z∆t

∑
I1

∣∣∣∆(3)
+ F̌

(
ϕn

i , ψ
n
i−1/2

)∣∣∣ |∆+ζn
i−1/2|

∆z
+

∑
I1

∣∣∣∆+ϕn
i−1/2

∣∣∣ |∆+ζn
i−1/2|

∆z
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≤ 3
(
∆z∆t

(∑
I1

(
∆

(3)
+ F̌

(
ϕn

i+1/2, ϕ
n
i+1/2, ψ

n
i−1/2

))2
+C

∑
n

TV(ϕn)
))1/2(

∆z∆t
∑
I1

( |∆+ζn
i−1/2|

∆z

)2)1/2

.

From Eq (5.16) we infer that there exists a constant CT such that

∆t
∑
I1

(
∆

(3)
+ F̌

(
ϕn

i+1/2, ϕ
n
i+1/2, ψ

n
i−1/2

))2
≤ CT .

Noticing that also

∆t
∑

n

TV(ϕn) ≤ CtN ,

we conclude that there exists a constant CtN such that∣∣∣⟨S1, ζ⟩
∣∣∣ ≤ CTN∆z1/2∥∂zζ∥L2(ΠT ).

Next, we deal with S2. Applying again a summation by parts, we get

|S2| =

∣∣∣∣∣∣∆z∆t
∑
n,i

(
Q
(
ϕn

i ,ψ
n
i
)
− Q

(
ϕn

i+1/2, ϕ
n
i+1/2,ψ

n
i
))∆+ζn

i−1/2

∆z

∣∣∣∣∣∣.
The definition of Q (see Eq (5.7)) yields∣∣∣Q(ϕn

i ,ψ
n
i
)
− Q

(
ϕn

i+1/2, ϕ
n
i+1/2,ψ

n
i
)∣∣∣ ≤ ∣∣∣Q̂(ϕn

i , ψ
n
i−1/2) − Q̂(ϕn

i+1/2, ϕ
n
i+1/2, ψ

n
i−1/2)

∣∣∣
+

∣∣∣Q̌(ϕn
i , ψ

n
i+1/2) − Q̌(ϕn

i+1/2, ϕ
n
i+1/2, ψ

n
i−1/2)

∣∣∣.
By a computation similar to Eq (5.21) we get∣∣∣Q̂(ϕn

i , ψ
n
i−1/2

)
− Q̂

(
ϕn

i+1/2, ϕ
n
i+1/2, ψ

n
i−1/2

)∣∣∣ ≤ 3∥η′∥∞
∣∣∣Xn

i−1/2

∣∣∣,
where

Xn
i−1/2 := F̂

(
ϕn

i , ψ
n
i−1/2

)
− F̂

(
ϕn

i+1/2, ϕ
n
i+1/2, ψ

n
i−1/2

)
.

The discussion of Xn
i−1/2 is similar to that of Yn

i−1/2 above, and appealing to Eq (5.34) we see that∣∣∣Xn
i−1/2

∣∣∣ ≤ C
∣∣∣∆+ϕn

i−1/2

∣∣∣.
On the other hand, Eq (A.6) implies that∣∣∣Q̌(ϕn

i , ψ
n
i−1/2

)
− Q̌

(
ϕn

i+1/2, ϕ
n
i+1/2, ψ

n
i−1/2

)∣∣∣
≤ 3∥η′∥∞

∣∣∣F̌ (
ϕn

i , ψ
n
i−1/2

)
− F̌

(
ϕn

i+1/2, ϕ
n
i+1/2, ψ

n
i−1/2

)∣∣∣ ≤ C
∣∣∣∆+ϕn

i−1/2

∣∣∣.
Thus ∣∣∣Q(ϕn

i ,ψ
n
i
)
− Q

(
ϕn

i+1/2, ϕ
n
i+1/2,ψ

n
i
)∣∣∣ ≤ C

∣∣∣∆+ϕn
i−1/2

∣∣∣,
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and we deduce that S2 can be bounded in a similar way as S1. In particular,

|S2| ≤ 3
(
∆z∆tC

∑
n

TV(ϕn)
))1/2(

∆z∆t
∑
n,i

( |∆+ζn
i−1/2|

∆z

)2)1/2

,

and we conclude that also ∣∣∣⟨S2, ζ⟩
∣∣∣ ≤ CT∆z1/2∥∂zζ∥L2(R2×R+),

so D is compact in H−1
loc(ΠT ). Thus, the sequence {µ∆z

2 }∆z>0, and therefore also the sequence {µ∆z}∆z>0

belong to a compact subset of H−1
loc(ΠT ). □

Proof of Theorem 5.1. We only need to verify that ψ is a weak solution of Eq (1.8b), that is, that Eq
(1.10) holds. To this end, we choose a test function ζ ∈ C∞0 (ΠT ), recall the definition Eq (A.2) of cell
averages ζn

i−1/2, multiply the ψ-scheme Eq (5.3) by ∆zζn
i−1/2, sum over i and n, and apply a summation

by parts to obtain an identity J0 +J1 +J2 = 0, where

J0 := ∆z
∑
i∈Z

ψ0
i−1/2ζ

0
i−1/2, J1 := ∆z

∑
i∈Z

NT∑
n=1

ψn
i−1/2

(
ζn

i−1/2 − ζ
n−1
i−1/2

)
,

J2 := ∆z∆t
NT−1∑
n=0

∑
i∈Z

F (ϕn
i ,ψ

n
i )
∆+ζ

n
i−1/2

∆z
.

By exactly following the estimates of terms I0 and I1 in the proof of [18, Lemma 3.5] and appealing to
the bounded convergence theorem we may prove that

lim
∆z→0
J0 =

∫
R

ψ0(z)ζ(z, 0) dz, lim
∆z→0
J1 =

"
ΠT

ψ∂tζ dz dt. (A.7)

The treatment of J2 differs from that of the term I2 in [18, Lemma 3.5] since here the numerical flux
depends on four arguments (not three, as in [18]). We here get

J2 =

"
ΠT

F̃(ϕ∆z, ψ∆z)∂zζ dz dt +J2,1 +J2,2 +J2,3,

where we define

J2,1 := −
∑
I1

F̃
(
ϕn

i−1/2, ψ
n
i−1/2

)"
In
i−1/2

∫ ∆z

0

∂zζ(z, t) − ∂zζ(z + ξ, t)
∆z

dξ dz dt,

J2,2 := −∆z∆t
∑
I1

(
F̃
(
ϕn

i−1/2, ψ
n
i−1/2

)
− F

(
ϕn

i , ψ
n
i−1/2, ψ

n
i−1/2

))∆+ζn
i−1/2

∆z
,

J2,3 := −∆z∆t
∑
I1

(
F

(
ϕn

i , ψ
n
i−1/2, ψ

n
i−1/2

)
− F

(
ϕn

i ,ψ
n
i
))∆+ζn

i−1/2

∆z

= ∆z∆t
∑
I1

∆
(3)
+ F̌

(
ϕn

i , ψ
n
i−1/2

)∆+ζn
i−1/2

∆z
.
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The term J2,1 can be estimated by choosing a constant M such that ζ(z, t) = 0 for |z| > M and noting
that

|J2,1| ≤ ∆z∥∂2
zζ∥L∞∥F̃(ϕ∆z, ψ∆z)∥L1([−M,M]×[0,T ])→ 0 as ∆z→ 0. (A.8)

Furthermore, in light of Eq (5.6) the difference arising in J2,2 can be written as

F̃
(
ϕn

i−1/2, ψ
n
i−1/2

)
− F

(
ϕn

i , ψ
n
i−1/2, ψ

n
i−1/2

)
= F

(
ϕn

i−1/2, ϕ
n
i−1/2, ψ

n
i−1/2, ψ

n
i−1/2

)
− F

(
ϕn

i−1/2, ϕ
n
i+1/2, ψ

n
i−1/2, ψ

n
i−1/2

)
= F̂

(
ϕn

i−1/2, ϕ
n
i−1/2, ψ

n
i−1/2

)
− F̂

(
ϕn

i−1/2, ϕ
n
i+1/2, ψ

n
i−1/2

)
+ F̌

(
ϕn

i−1/2, ϕ
n
i−1/2, ψ

n
i−1/2

)
− F̌

(
ϕn

i−1/2, ϕ
n
i+1/2, ψ

n
i−1/2

)
.

Utilizing the estimate Eq (5.34) with ϕn
i−3/2 = ϕ

n
i−1/2 yields that there exists a constant C12 such that∣∣∣F̃(

ϕn
i−1/2, ψ

n
i−1/2

)
− F

(
ϕn

i , ψ
n
i−1/2, ψ

n
i−1/2

)∣∣∣ ≤ C12

∣∣∣∆+ϕn
i−1/2

∣∣∣,
hence

∣∣∣J2,2

∣∣∣ ≤ C12∆z∆t
NT−1∑
n=0

TV(ϕn)
∆+ζ

n
i−1/2

∆z
≤ C∆z∥∂zζ∥L∞ → 0 as ∆z→ 0. (A.9)

To estimate J2,3, we utilize Eq (5.16). Then

|J2,3| ≤

∆z∆t
∑
I1

(
∆

(3)
+ F̌

(
ϕn

i , ψ
n
i−1/2

))2


1/2 ∆z∆t

∑
I1

(∆+ζn
i−1/2

∆z

)2


1/2

≤ C1/2
T ∆z1/2∥∂zζ∥L2(ΠT ) → 0 as ∆z→ 0.

(A.10)

From Eq (A.8), Eq (A.9) and Eq (A.10) and appealing to the strong convergence of ϕ∆z and ψ∆z we
deduce that

lim
∆z→0
J2 =

"
ΠT

F̃(ϕ, ψ)∂zζ dz dt. (A.11)

The limits Eq (A.7) and Eq (A.11) imply that the limit ψ is a weak solution. □
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