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Abstract: We consider a one-dimensional free boundary problem describing the migration of
diffusants into rubber. In our setting, the free boundary represents the position of the front delimitating
the diffusant region. The growth rate of this region is described by an ordinary differential equation
that includes the effect of breaking the growth of the diffusant region. In this specific context,
the breaking mechanism is should be perceived as a non-dissipative way of describing eventual
hyperelastic response to a too fast diffusion penetration. In recent works, we considered a similar
class of free boundary problems modeling diffusants penetration in rubbers, but without attempting
to deal with the possibility of breaking or accelerating the occurring free boundaries. For simplified
settings, we were able to show the global existence and uniqueness as well as the large time behavior of
the corresponding solutions to our formulations. Since here the breaking effect is contained in the free
boundary condition, our previous results are not anymore applicable. The main mathematical obstacle
in ensuring the existence of a solution is the non-monotonic structure of the free boundary.
In this paper, we establish the existence and uniqueness of a weak solution to the free boundary problem
with breaking effect and give explicitly the maximum value that the free boundary can reach.

Keywords: migration into rubber; free boundary problem; nonlinear initial-boundary value problem
for nonlinear parabolic equations; existence of solutions; Flux boundary condition

1. Introduction

Both natural rubber and synthetic elastomers are widely used in engineering applications, such
as connecting components for offshore wind farms that are nowadays intensively used to harvesting
energy. Due to the growing importance of good theoretical estimations of durability properties of
elastomeric parts, a well-trusted modelling of the material behaviour is an essential prerequisite so
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that numerical prediction is available for large times. Rubber-like materials exhibit a strongly non-
linear behaviour characterized by a joint large strain and a non-linear stress-strain response [3]. In the
presence of aggressive environments (like those where large bodies of water are present), the nonlinear
behavior of elastomers, which can be in fact studied in controlled laboratory conditions, alters non-
intuitively [2]. The main reason for this situation is that the porous structure of rubber-like materials
allows small particles to diffuse inside. Ingressing particles, often ionically charged, accumulate and
interact with the internal solid fabric. Such interactions lead to unwanted alterations of the originally
designed mechanical behavior; see e.g., [8] for more context on this physical problem. From the
modeling and mathematical upscaling point of view, the derivation of the correct model equations for
such a problem setting is open.

In our recent works [1,5], and [6], we considered a class of one-dimensional free boundary problems
to model the diffusants penetration in dense and foam rubbers. The use of kinetic-type free boundary
conditions is meant to avoid the explicit description of the mechanics of the involved materials and
how the constitutive laws (in particular, the stress tensor) are affected by the presence of diffusants.
One can use such free boundary formulations to derive theoretically-grounded practical estimations of
the position of the diffusants penetration front and compare them with laboratory experiments; e.g., [7]
where a parameter identification exercise has been performed in this context.

The main novelty introduced in the present paper is that the growth rate of the region filled with
diffusants is described by an ordinary differential equation that includes the effect of breaking its
growth. The breaking mechanism should be seen here as the hyperelastic response to a too fast
diffusion penetration. Such a mechanism introduces non-monotonicity in our problem formulation.
This makes us wonder whether this type of problems has a chance to be well-posed and, if true, in
which sense?

To address the question, we consider the following one-dimensional free boundary problem show
in Eqs (1.1)–(1.5). Let t ∈ [0,T ] be the time variable for T > 0. The problem is to find a curve z = s(t)
on [0,T ] and a function u defined on the set Qs(T ) := {(t, z)|0 < t < T, 0 < z < s(t)} such that the
following system of equations is satisfied:

ut − uzz = 0 for (t, z) ∈ Qs(T ), (1.1)
− uz(t, 0) = β(b(t) − γu(t, 0)) for t ∈ (0,T ), (1.2)
− uz(t, s(t)) = σ(u(t, s(t)))st(t) for t ∈ (0,T ), (1.3)
st(t) = a0(σ(u(t, s(t))) − αs(t)) for t ∈ (0,T ), (1.4)
s(0) = s0, u(0, z) = u0(z) for z ∈ [0, s0], (1.5)

where β, γ, a0 and α are given positive constants, b is a given function on [0,T ] and s0 and u0 are the
initial data. In Eq (1.3) and Eq (1.4), σ is the function on R called the positive part, i.e. it is given by
Eq (1.6),

σ(r) =

r if r ≥ 0,
0 if r < 0.

(1.6)

The problem in Eqs (1.1)–(1.5), which is denoted here by (P)(u0, s0, b), was proposed by Nepal S et
al., in [7] as a mathematical model describing the migration of diffusants into rubber. The set [0, s(t)]
represents the region occupied by a solvent occupying the one-dimensional pore [0,∞), where s = s(t)

Networks and Heterogeneous Media Volume 18, Issue 1, 80–108.



82

is the position of moving interface of the region and u = u(t, z) represents the content of the diffusant
at the place z ∈ [0, s(t)] at time t > 0.

From the mathematical point of view, (P)(u0, s0, b) is a one-phase free boundary problem with
Robin-type boundary conditions at both boundaries. Such kind of problem structure has been
considered in [5, 6], and [1]. In our recent work [1], as a simplified setting for (P)(u0, s0, b), we
consider the case α = 0 and prove the existence and uniqueness of a globally-in-time solution.
Furthermore, what concerns the large time behavior of a solution, we show that the free boundary s
goes to infinity as time elapses.

In this paper, we consider the case α > 0. As already anticipated, the difficulty in this case is
the lack of the monotonicity of the boundary condition imposed on the moving boundary. Indeed,
similarly to the proof of the existence result in [1], by introducing a variable ũ(t, y) = u(t, ys(t)) for
(t, y) ∈ Q(T ) := (0,T )× (0, 1) we transform (P)(u0, s0, b) into a problem on the fixed domain Q(T ). Let
denote this problem by (PC)(ũ0, s0, b), where ũ0(y) = u0(s0y) for y ∈ [0, 1]. Moreover, to find a solution
(PC)(ũ0, s0, b) we first consider the following auxiliary problem (AP)(ũ0, s, b): For a given function s(t)
on [0,T ], find ũ(t, y) satisfying:

ũt(t, y) −
1

s2(t)
ũyy(t, y) =

yst(t)
s(t)

ũy(t, y) for (t, y) ∈ Q(T ),

−
1

s(t)
ũy(t, 0) = β(b(t) − γũ(t, 0)) for t ∈ (0,T ),

−
1

s(t)
ũy(t, 1) = a0σ(ũ(t, 1))(σ(ũ(t, 1)) − αs(t)) for t ∈ (0,T ),

ũ(0, y) = ũ0(y) for y ∈ [0, 1].

Here, we set gα(r) = a0σ(r)(σ(r) − αs(t)) for r ∈ R and t ∈ (0,T ). In the case α = 0, due to
the function σ, g0(r) = a0(σ(r))2 is monotonically increasing with respect to r. Due to this fact, we
can use the theory of evolution equations governed by subdifferentials of convex functions (cf. [4] and
references therein) and find a solution ũ of (AP)(ũ0, s, b) in the case α = 0. However, looking now at
the case α > 0, since gα(r) is not monotonic anymore with respect to r, we cannot apply the theory of
evolution equations directly. Hence, the existence of a solution to (AP)(ũ0, s, b) in the case α > 0 is not
at all clear. As far as we are aware, the type of free boundary problems is novel. We refer the reader
to [9] (and related references) for explanations of how and why free-boundary problems can be used
to model fast transitions in materials.

The purpose of this paper is to establish a methodology to deal with the existence of locally-in-
time solutions to (PC)(u0, s0, b) in the case α > 0. For this to happen, we consider weak solutions to
(PC)(ũ0, s0, b). The definition of our concept of weak solutions is explained in Section 2. As next step,
we proceed in the following way: For a given function η on Q(T ) and ε > 0, we consider in Section
3 a smooth approximation ηε of η and construct a solution ũ to the following auxiliary problem: For
given s on [0,T ], find ũ(t, y) such that it holds

ũt(t, y) −
1

s2(t)
ũyy(t, y) =

yst(t)
s(t)

ηy(t, y) for (t, y) ∈ Q(T ),

−
1

s(t)
ũy(t, 0) = β(b(t) − γũ(t, 0)) for t ∈ (0,T ),

Networks and Heterogeneous Media Volume 18, Issue 1, 80–108.



83

−
1

s(t)
ũy(t, 1) = a0(σ(ũ(t, 1)))2 − ασ(ηε(t))s(t)) for t ∈ (0,T ),

ũ(0, y) = ũ0(y) for y ∈ [0, 1].

The plan is to obtain uniform estimates of solutions with respect to ε. After that, by the limiting
process ε → 0 and benefitting of Banach’s fixed point theorem, we wish to construct a weak solution
ũ of (AP)(ũ0, s, b). In Section 4, we define a solution mapping ΓT between s and the weak solution
ũ of (AP)(ũ0, s, b). We show that, for some T ′ ≤ T , the mapping ΓT ′ is a contraction mapping on
a suitable function space. Finally, using Banach’s fixed point theorem, we prove the existence and
uniqueness of a weak solution to the coupled problem (s, ũ) of (PC)(ũ0, s0, b) on [0,T ′]. Additionally,
we show that the maximal length of the free boundary s is a priori determined by given parameters,
the time derivative of the function b, and initial data s0. Moreover, we guarantee that the solution ũ is
non-negative and bounded on Q(T ).

2. Notation, assumptions and results

In this paper, we use the following notations. We denote by | · |X the norm for a Banach space
X. The norm and the inner product of a Hilbert space H are denoted by | · |H and (·, ·)H, respectively.
Particularly, for Ω ⊂ R, we use the notation of the usual Hilbert spaces L2(Ω), H1(Ω), and H2(Ω).
Throughout this paper, we assume the following parameters and functions:

(A1) a0, α, γ, β and T are positive constants.
(A2) s0 > 0 and u0 ∈ L∞(0, s0) such that u0 ≥ 0 on [0, s0].
(A3) b ∈ W1,2(0,T ) with b ≥ 0 on (0,T ). Also, we set

b∗ = max
{
max
0≤t≤T

b(t), γ|u0|L∞(0,s0)

}
.

It is convenient to consider (P)(u0, s0, b) transformed into a non-cylindrical domain. Let T > 0. For
given s ∈ W1,2(0,T ) with s(t) > 0 on [0,T ], we introduce the following new function obtained by the
change of variables and fix the moving domain:

ũ(t, y) = u(t, ys(t)) for (t, y) ∈ Q(T ) := (0,T ) × (0, 1). (2.1)

By using the function ũ, (P)(u0, s0, b) becomes the following problem (PC)(ũ0, s0, b) posed on the non-
cylindrical domain Q(T ):

ũt(t, y) −
1

s2(t)
ũyy(t, y) =

yst(t)
s(t)

ũy(t, y) for (t, y) ∈ Q(T ), (2.2)

−
1

s(t)
ũy(t, 0) = β(b(t) − γũ(t, 0)) for t ∈ (0,T ), (2.3)

−
1

s(t)
ũy(t, 1) = σ(ũ(t, 1))st(t) for t ∈ (0,T ), (2.4)

st(t) = a0(σ(ũ(t, 1)) − αs(t)) for t ∈ (0,T ), (2.5)
s(0) = s0, (2.6)
ũ(0, y) = u0(ys(0))(:= ũ0(y)) for y ∈ [0, 1]. (2.7)
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Here, we introduce the following function space: For T > 0, we put H = L2(0, 1), X = H1(0, 1),
V(T ) = L∞(0,T ; H) ∩ L2(0,T ; X) and |z|V(T ) = |z|L∞(0,T ;H) + |zy|L2(0,T ;H) for z ∈ V(T ). Note that V(T ) is
a Banach space with the norm | · |V(T ). Also, we denote by X∗ and 〈·, ·〉X the dual space of X and the
duality pairing between X and X∗, respectively.

We define now our concept of solutions to (PC)(ũ0, s0, b) on [0,T ] in the following way:

Definition 2.1. For T > 0, let s be a function on [0,T ] and ũ be a function on Q(T ), respectively. We
call that a pair (s, ũ) is a solution of (P)(ũ0, s0, b) on [0,T ] if the next conditions (S1)–(S4) hold:

(S1) s ∈ W1,∞(0,T ), s > 0 on [0,T ], ũ ∈ W1,2(0,T ; X∗) ∩ V(T ).
(S2) ∫ T

0
〈ũt(t), z(t)〉Xdt +

∫
Q(T )

1
s2(t)

ũy(t)zy(t)dydt +

∫ T

0

1
s(t)

σ(ũ(t, 1))st(t)z(t, 1)dt

−

∫ T

0

1
s(t)

β(b(t) − γũ(t, 0))z(t, 0)dt =

∫
Q(T )

yst(t)
s(t)

ũy(t)z(t)dydt for z ∈ V(T ).

(S3) st(t) = a0(σ(ũ(t, 1)) − αs(t)) for a.e. t ∈ (0,T ).
(S4) s(0) = s0 and ũ(0, y) = ũ0(y) for a.e. y ∈ [0, 1].

The main result of this paper is the existence and uniqueness of a locally-in-time solution of
(PC)(ũ0, s0, b). We state this result in the next theorem.

Theorem 2.2. Let T > 0. If (A1)–(A3) hold, then there exists T ∗ ≤ T such that (PC)(ũ0, s0, b) has a
unique solution (s, ũ) on [0,T ∗]. Moreover, the function ũ is non-negative and bounded on Q(T ).

3. Auxiliary problems

In this section, we consider the following auxiliary problem (AP1)(ũ0, s, b): For T > 0 and s ∈
W1,2(0,T ) with s > 0 on [0,T ]

ũt(t, y) −
1

s2(t)
ũyy(t, y) =

yst(t)
s(t)

ũy(t, y) for (t, y) ∈ Q(T ), (3.1)

−
1

s(t)
ũy(t, 0) = β(b(t) − γũ(t, 0)) for t ∈ (0,T ), (3.2)

−
1

s(t)
ũy(t, 1) = a0σ(ũ(t, 1))(σ(ũ(t, 1)) − αs(t)) for t ∈ (0,T ), (3.3)

ũ(0, y) = ũ0(y) for y ∈ [0, 1], (3.4)

where σ is the same function as in Eq (1.6).

Definition 3.1. For T > 0, let ũ be a function on Q(T ), respectively. We call that a function ũ is a
solution of (AP1)(ũ0, s, b) on [0,T ] if the conditions (S’1)–(S’3) hold:

(S’1) ũ ∈ W1,2(0,T ; X∗) ∩ V(T ).
(S’2) ∫ T

0
〈ũt(t), z(t)〉Xdt +

∫
Q(T )

1
s2(t)

ũy(t)zy(t)dydt
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+

∫ T

0

a0

s(t)
σ(ũ(t, 1))(σ(ũ(t, 1)) − αs(t))z(t, 1)dt

−

∫ T

0

1
s(t)

β(b(t) − γũ(t, 0))z(t, 0)dt =

∫
Q(T )

yst(t)
s(t)

ũy(t)z(t)dydt for z ∈ V(T ).

(S’3) ũ(0, y) = ũ0(y) for y ∈ [0, 1].

Now, we introduce the following problem (AP2)(ũ0, s, η, b): For s ∈ W1,∞(0,T ) with s > 0 on [0,T ]
and η ∈ V(T )

ũt(t, y) −
1

s2(t)
ũyy(t, y) =

yst(t)
s(t)

ηy(t, y) for (t, y) ∈ Q(T ), (3.5)

−
1

s(t)
ũy(t, 0) = β(b(t) − γũ(t, 0)) for t ∈ (0,T ), (3.6)

−
1

s(t)
ũy(t, 1) = a0((σ(ũ(t, 1))2 − ασ(η(t, 1))s(t)) for t ∈ (0,T ), (3.7)

ũ(0, y) = ũ0(y) for y ∈ [0, 1], (3.8)

The definition of solutions of (AP2)(ũ0, s, η, b) is Definition 3.1 with (S’2) replaced by (S”2), which
now reads
(S”2): ∫ T

0
〈ũt(t), z(t)〉Xdt +

∫
Q(T )

1
s2(t)

ũy(t)zy(t)dydt

+

∫ T

0

a0

s(t)
((σ(ũ(t, 1))2 − ασ(η(t, 1))s(t))z(t, 1)dt

−

∫ T

0

1
s(t)

β(b(t) − γũ(t, 0))z(t, 0)dt =

∫
Q(T )

yst(t)
s(t)

ηy(t)z(t)dydt for z ∈ V(T ).

First, we construct a solution ũ of (AP2)(ũ0, s, η, b) on [0,T ]. To do so, for each ε > 0 we solve the
following problem (AP2)ε(ũ0ε, s, η, b):

ũt(t, y) −
1

s2(t)
ũyy(t, y) =

yst(t)
s(t)

ηy(t, y) for (t, y) ∈ Q(T ),

−
1

s(t)
ũy(t, 0) = β(b(t) − γũ(t, 0)) for t ∈ (0,T ),

−
1

s(t)
ũy(t, 1) = a0((σ(ũ(t, 1))2 − ασ((ρε ∗ η)(t, 1))s(t)) for t ∈ (0,T ),

ũ(0, y) = ũ0ε(y) for y ∈ [0, 1].

Here ρε is a mollifier with support [−ε, ε] in time and ρε ∗ η is the convolution of ρε with η:

(ρε ∗ η)(t, 1) =

∫ ∞

−∞

ρε(t − s)η(s, 1)ds for t ∈ [0,T ], (3.9)

where η(t, 1) = η(t, 1) for t ∈ (0,T ) and vanishes otherwise. Also, ũ0ε is an approximation function of
ũ0 such that {ũ0ε} ⊂ X, |ũ0ε|H ≤ |ũ0|H + 1 and ũ0ε → ũ0 in H as ε→ 0.
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Now, we define a family {ψt}t∈[0,T ] of time-dependent functionals ψt : H → R ∪ {+∞} for t ∈ [0,T ]
as follows:

ψt(u) :=



1
2s2(t)

∫ 1

0
|uy(y)|2dy +

1
s(t)

∫ u(1)

0
a0((σ(ξ))2dξ − a0αu(1)σ((ρε ∗ η)(t, 1))

−
1

s(t)

∫ u(0)

0
β(b(t) − γξ)dξ if u ∈ D(ψt),

+∞ otherwise,

where D(ψt) = X for t ∈ [0,T ]. Here, we show the property of ψt.

Lemma 3.2. Let s ∈ W1,2(0,T ) with s > 0 on [0,T ], η ∈ V(T ) and assume (A1)–(A3). Then the
following statements hold:

(1) There exists positive constants C′0, C′1 and C
′′

such that the following inequalities hold:

(i) |u(y)|2 ≤ C′y(ψ
t(u) + 1) for u ∈ D(ψt) and y = 0, 1,

(ii)
1

2s2(t)
|uy|

2
H ≤ C

′′

(ψt(u) + 1) for u ∈ D(ψt),

(2) For t ∈ [0,T ], the functional ψt is proper, lower semi-continuous, and convex on H.

Proof. We fix ε > 0 and let t ∈ [0,T ], u ∈ D(ψt) and put l = max
0≤t≤T

|s(t)| and ηε(t) = (ρε ∗ η)(t, 1) for

t ∈ [0,T ]. If u(1) < 0, 1
s(t)

∫ u(1)

0
a0(σ(ξ))2dξ = 0. If u(1) ≥ 0, then it holds

1
s(t)

∫ u(1)

0
a0(σ(ξ))2dξ − a0αu(1)σ(ηε(t)) =

a0

s(t)
1
3

u3(1) − a0αu(1)σ(ηε(t))

≥
a0

3s(t)
u3(1) −

1
3
δ3u3(1) −

2
3δ3/2 (a0ασ(ηε(t)))

3
2 ,

where δ is an arbitrary positive number. By using the fact that σ(r) ≤ |r| for r ∈ R and taking a suitable
δ = δ0 we have

1
s(t)

∫ u(1)

0
a0(σ(ξ))2dξ − a0αu(1)ηε(t) ≥ −

2

3δ3/2
0

(a0αη
∗
ε)

3
2 , (3.10)

where η∗ε = max
0≤t≤T

|ηε(t)|. Moreover, for both cases u(0) < 0 and u(0) ≥ 0, we observe that

−
1

s(t)

∫ u(0)

0
β(b(t) − γξ)dξ =

β

s(t)

[
γ

2
u2(0) − b(t)u(0)

]
≥
βγ

2l
u2(0) −

βb∗

a
u(0) ≥

βγ

4l
u2(0) −

βl
γ

(
b∗

a

)2

. (3.11)

Accordingly, if u(1) < 0, then we have that,

ψt(u) ≥
1

2s2(t)

∫ 1

0
|uy(y)|2dy +

βγ

4l
u2(0) −

βl
γ

(
b∗

a

)2

. (3.12)
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If u(1) ≥ 0, then, by Eq (3.10) and Eq (3.11) we also have that:

ψt(u) ≥
1

2s2(t)

∫ 1

0
|uy(y)|2dy −

2

3δ3/2
0

(a0αη
∗
ε)

3
2 +

βγ

4l
u2(0) −

βl
γ

(
b∗

a

)2

. (3.13)

In Eq (3.12) and Eq (3.13), since the first term in the right-hand side is non-negative we can find a
positive constant C′0 that (i) of Lemma 3.2 for y = 0 holds. In addition, by βγ

4l u2(0) ≥ 0 we also see that
(ii) of Lemma 3.2 holds. Moreover, it holds that:

|u(1)|2 =

∣∣∣∣∣∫ 1

0
uy(y)dy + u(0)

∣∣∣∣∣2 ≤ 2
(∫ 1

0
|uy(y)|2dy + |u(0)|2

)
≤ 2

(
2l2

2s2(t)

∫ 1

0
|uy(y)|2dy + |u(0)|2

)
. (3.14)

Therefore, by Eq (3.14) and the result for |u(0)|2 and |uy|
2
H we see that there exists a positive constant

C′1 such that (i) of Lemma 3.2 hold for y = 1.
Next, we prove statement (2). For t ∈ [0,T ] and r ∈ R, put

g1(s(t), ηε(t), r) =
1

s(t)

∫ r

0
a0(σ(ξ))2dξ − a0αrσ(ηε(t)),

g2(s(t), b(t), r) = −
1

s(t)

∫ r

0
β(b(t) − γξ)dξ.

Then, by g1(s(t), ηε(t), r) = −a0αrσ(ηε(t)) for r ≤ 0, g1(s(t), ηε(t), r) is a linear decreasing function for
r ≤ 0. Also, by s(t) > 0 we see that,

∂2

∂r2 g1(s(t), ηε(t), r) =
2a0

s(t)
r > 0 for r > 0,

∂2

∂r2 g2(s(t), b(t), r) =
βγ

s(t)
> 0 for r ∈ R.

This means that ψt is convex on H. By using (i) and (ii) of Lemma 3.2 together with Sobolev’s
embedding X ↪→ C([0, 1]) in one dimensional case, it is easy to prove that the level set of ψt is closed
in H, fact which ensures to the lower semi-continuity of ψt. Thus, we see that statement (2) holds. �

Lemma 3.3 guarantees the existence of a solution to (AP2)ε(ũ0ε, s, η, b).

Lemma 3.3. Let T > 0 and ε > 0. If (A1)–(A3) hold, then, for given s ∈ W1,∞(0,T ) with s > 0 on
[0,T ] and η ∈ V(T ), the problem (AP2)ε(ũ0ε, s, η, b) admits a unique solution ũ on [0,T ] such that
ũ ∈ W1,2(0,T ; H)∩ L∞(0,T ; X). Moreover, the function t → ψt(ũ(t)) is absolutely continuous on [0,T ].

Proof. Let ε > 0 be arbitrarily fixed. By Lemma 3.2, for t ∈ [0,T ] ψt is a proper lower semi-continuous
convex function on H. From the definition of the subdifferential of ψt, for t ∈ [0,T ], z∗ ∈ ∂ψt(u) is
characterized by u, z∗ ∈ H,

z∗ = −
1

s2(t)
uyy on (0, 1),
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−
1

s(t)
uy(0) = β(b(t) − γu(0)), −

1
s(t)

uy(1) = a0((σ(u(1))2 − ασ((ρε ∗ η)(t, 1))s(t)).

Namely, ∂ψt is single-valued. Also, we see that there exists a positive constant C such that for each t1,
t2 ∈ [0,T ] with t1 ≤ t2, and for any u ∈ D(ψt1), there exists ū ∈ D(ψt2) satisfying the inequality

|ψt2(ū) − ψt1(u)|
≤C(|s(t1) − s(t2)| + |b(t1) − b(t2)| + |ηε(t1) − ηε(t2)|(1 + |ψt1(u)|), (3.15)

where ηε(t) = (ρε ∗ η)(t). Indeed, we take ū := u. Then, ū ∈ D(ψt2), and by the definition of ψt, it holds

ψt2(ū) − ψt1(u)

=

(
1

2s2(t2)
−

1
2s2(t1)

) ∫ 1

0
|uy(y)|2dy

+

(
1

s(t2)
−

1
s(t1)

) ∫ u(1)

0
a0(σ(ξ))2dξ + a0αu(1)

(
ηε(t1) − ηε(t2)

)
−

(
1

s(t2)
−

1
s(t1)

) ∫ u(0)

0
β(b(t2) − γξ)dξ −

β

s(t1)
(b(t2) − b(t1))u(0). (3.16)

We denote each term in the right-hand side by I1, I2, I3, I4 and I5. Let put l = max
0≤t≤T

|s(t)| and a =

min
0≤t≤T

|s(t)|. For other than I2, by the fact that |u(y)| ≤ 1
2 (1 + u2(y)) for y = 0, 1 and Lemma 3.2 it easy to

see that,

|I1| ≤ C1|s(t1) − s(t2)|(|ψt1(u)| + 1), (3.17)
5∑

k=3

|Ik| ≤ C2(|ηε(t1) − ηε(t2)| + |s(t2) − s(t1)| + |b(t2) − b(t1)|)(|ψt1(u)| + 1), (3.18)

where C1 and C2 are positive constants. For I2 by the definition of ψt it holds that,

1
s(t1)

∫ u(1)

0
a0(σ(ξ))2dξ

=ψt1(u) −
1

2s2(t1)

∫ 1

0
|uy(y)|2dy + a0αu(1)ηε(t1) +

1
s(t1)

∫ u(0)

0
β(b(t1) − γξ)dξ.

Here, we note that

|a0αu(1)ηε(t1)| ≤
a0αη

∗
ε

2
(1 + u2(1)),∣∣∣∣∣ 1

s(t1)

∫ u(0)

0
β(b(t1) − γξ)dξ

∣∣∣∣∣
≤

1
a

(
βb∗|u(0)| +

γ

2
u2(0)

)
≤

1
a

(
βb∗

2
+

(
βb∗

2
+
γ

2

)
u2(0)

)
.

where η∗ε = max
0≤t≤T

|ηε(t)|. Hence, by Lemma 3.2 we have that,

|I2| ≤ C3|s(t1) − s(t2)|(|ψt1(u)| + 1), (3.19)
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where C3 is a positive constant. As a consequence, by Eqs (3.17)–(3.19) we infer that there exists a
positive constant C such that Eq (3.15) holds.

Now, (AP2)ε(ũ0ε, s, η, b) can be written into the following Cauchy problem (CP)ε:

ũt + ∂ψt(ũ(t)) =
yst(t)
s(t)

ηy(t) in H,

ũ(0, y) = ũ0ε(y) for y ∈ [0, 1].

Since yst
s ηy ∈ L2(0,T ; H), by the general theory of evolution equations governed by time dependent

subdifferentials (cf. [4]) we see that (CP)ε has a solution ũ on [0,T ] such that ũ ∈ W1,2(Q(T )), ψt(ũ(t)) ∈
L∞(0,T ) and t → ψt(ũ(t)) is absolutely continuous on [0,T ]. This implies that ũ is a unique solution of
(AP2)ε(ũ0ε, s, η, b) on [0,T ]. �

As next step, we provide an uniform estimate with respect to ε on a solution ũ of (AP2)ε(ũ0ε, s, η, b).

Lemma 3.4. Let T > 0, s ∈ W1,∞(0,T ) with s > 0 on [0,T ], η ∈ V(T ) and ũε be a solution of
(AP2)ε(ũ0ε, s, η, b) on [0,T ] for each ε > 0. Then, it holds that

|ũε(t)|2H +

∫ t

0
|ũεy(τ)|2Hdy ≤ M(1 + |η|2V(T )) for t ∈ [0,T ] and ε ∈ (0, 1], (3.20)

where M = M(a0, a, β, b∗,T ) is a positive constant which is independent of ε and depends on a0, a, β,
b∗ and T , a = min

0≤t≤T
s(t).

Proof. Let ũε be a solution of (AP2)ε(ũ0ε, s, η, b) on [0,T ] for each ε > 0. First, it holds that

1
2

d
dt
|ũε(t)|2H −

∫ 1

0

1
s2(t)

ũεyy(t)ũε(t)dy =

∫ 1

0

yst(t)
s(t)

ηy(t)ũε(t)dy. (3.21)

The second term on the left-hand side is as follows:

−

∫ 1

0

1
s2(t)

ũεyy(t)ũε(t)dy

=
a0

s(t)
((σ(ũε(t, 1))2 − ασ(ηε(t))s(t))ũε(t, 1)

−
1

s(t)
β(b(t) − γũε(t, 0))ũε(t, 0) +

1
s2(t)

∫ 1

0
|ũεy(t)|2dy

≥ − a0α|ηε(t)||ũε(t, 1)| −
1

s(t)
β(b(t) − γũε(t, 0))ũε(t, 0) +

1
s2(t)

∫ 1

0
|ũεy(t)|2dy,

where ηε(t) = (ρε ∗ η)(t, 1). From the above, we obtain that

1
2

d
dt
|ũε(t)|2H +

1
s2(t)

∫ 1

0
|ũεy(t)|2dy

≤

∫ 1

0

yst(t)
s(t)

ηy(t)ũε(t)dy + a0α|ηε(t)||ũε(t, 1)|

+
1

s(t)
β(b(t) − γũε(t, 0))ũε(t, 0) for t ∈ [0,T ]. (3.22)
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We estimate the right-hand side of Eq (3.22). First, by Young’s inequality we have that,∫ 1

0

yst(t)
s(t)

ηy(t)ũε(t)dy ≤
1

4s2(t)

∫ 1

0
|ηy(t)|2dy + |st(t)|2

∫ 1

0
|ũε(t)|2dy. (3.23)

Here, by Sobolev’s embedding theorem in one dimension, we note that it holds that,

|z(y)|2 ≤ Ce|z|X |z|H for z ∈ X and y ∈ [0, 1], (3.24)

where Ce is a positive constant defined from Sobolev’s embedding theorem. By Eq (3.24) and s ≥ a
on [0,T ], we obtain

1
s(t)

β(b(t) − γũε(t, 0))ũε(t, 0) ≤
βb∗

s(t)
|ũε(t, 0)|

≤
βb∗Ce

2s(t)

(
|ũεy(t)|H |ũε(t)|H + |ũε(t)|2H

)
+
βb∗

2s(t)

≤
1

4s2(t)
|ũεy(t)|2H +

(
(βb∗Ce)2

4
+
βb∗Ce

2a

)
|ũε(t)|2H +

βb∗

2a
, (3.25)

and

a0α|ηε(t)||ũε(t, 1)| ≤
a0α

2

(
Ce(|ũεy(t)|H |ũε(t)|H + |ũε(t)|2H) + |ηε(t)|2

)
≤

1
4s2(t)

|ũεy(t)|2H +

(
s2(t)

(a0α

2
Ce

)2
+

a0α

2
Ce

)
|ũε(t)|2H +

a0α

2
|ηε(t)|2. (3.26)

From Eqs (3.21)–(3.26), we have that for t ∈ [0,T ]

1
2

d
dt
|ũε(t)|2H +

1
2s2(t)

∫ 1

0
|ũεy(τ)|2dy

≤

(
|st(t)|2 +

(βb∗Ce)2

4
+
βb∗Ce

2a

)
|ũε(t)|2H +

βb∗

2a

+

(
s2(t)

(a0α

2
Ce

)2
+

a0α

2
Ce

)
|ũε(t)|2H +

1
4s2(t)

|ηy(t)|2H +
a0α

2
|ηε(t)|2. (3.27)

Denote F(t) the coefficient of |ũε|2H in the right-hand side. As s ∈ W1,2(0,T ), we observe that F ∈
L1(0,T ). Then, by Gronwall’s inequality, we have for t1 ∈ [0,T ],

1
2
|ũε(t1)|2H +

1
2l2

∫ t1

0
|ũεy(τ)|2Hdy ≤

(
Gε(T )

∫ t1

0
F(t)dt

)
e
∫ t1

0 F(t)dt (3.28)

where Gε(t) = 1
2

(
|ũ0|

2
H + 1 +

βb∗

a T + 1
2a2

∫ t

0
|ηy(t)|2Hdt + a0α

∫ t

0
|ηε(t)|2dt

)
for t ∈ [0,T ]. We note that it

holds that ∫ T

0
|ηε(τ, 1)|2dτ ≤

∫ T

0
|η(τ, 1)|2dτ ≤ Ce

∫ T

0
(|ηy(τ)|H |η(τ)|H + |η(τ)|2H)dt

≤ Ce

(
|η|L∞(0,T ;H)T 1/2

(∫ T

0
|ηy(τ)|2Hdτ

)1/2

+ T |η|2L∞(0,T ;H)

)
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≤ CeT 1/2(1 + T 1/2)|η|2V(T1). (3.29)

Therefore, by Eq (3.28) and Eq (3.29) we see that there exists a positive constant M = M(a0, a, β, b∗,T )
such that Lemma 3.4 holds. �

Lemma 3.5. Let T > 0, s ∈ W1,∞(0,T ) with s > 0 on [0,T ] and η ∈ V(T ). If (A1)–(A3) hold, then,
(AP2)(ũ0, s, η, b) has a unique solution ũ on [0,T ].

Proof. Let s ∈ W1,∞(0,T ) with s > 0 on [0,T ]. Then, we already have a solution ũε of
(AP2)ε(ũ0ε, s, η, b) on [0,T ] for each ε > 0. By letting ε → 0 we show the existence of a solution ũ of
(AP2)(ũ0, s, η, b) on [0,T ]. First, by Lemma 3.4 we see that {ũε} is bounded in
L∞(0,T ; H) ∩ L2(0,T ; X). Next, for z ∈ X, it holds that,∣∣∣∣∣∫ 1

0
ũεt(t)zdy

∣∣∣∣∣
=

∣∣∣∣∣− 1
s2(t)

(∫ 1

0
ũεy(t)zydy

)
−

a0

s(t)
((σ(ũε(t, 1))2 − ασ((ρε ∗ η)(t, 1))s(t))z(1)

+
1

s(t)
β(b(t) − γũε(t, 0))z(0) +

∫ 1

0

yst(t)
s(t)

ηy(t)zdy
∣∣∣∣∣

≤
1
a2 |ũεy(t)|H |zy|H +

a0

a
|ũε(t, 1)|2|z(1)| + a0α|(ρε ∗ η)(t, 1)||z(1)| +

βb∗

a
|z(0)|

+
βγ

a
|ũε(t, 0)||z(0)| +

|st(t)|
a
|ηy(t)|H |z|H for a.e. t ∈ [0,T ]. (3.30)

By the estimate Eq (3.30) and Eq (3.24) we infer that {ũεt} is bounded in L2(0,T ; X∗). Therefore,
we take a subsequence {εi} ⊂ {ε} such that for some ũ ∈ W1,2(0,T ; X∗) ∩ L∞(0,T ; H) ∩ L2(0,T ; X),
ũεi → ũ weakly in W1,2(0,T ; X∗) ∩ L2(0,T ; X), weakly-* in L∞(0,T ; H) as i → ∞. Also, by Aubin’s
compactness theorem, we see that ũεi → ũ in L2(0,T ; H) as i→ ∞.

Now, we prove that the limit function ũ is a solution of (AP2)(ũ0, s, η, b) on [0,T ] satisfying ũ ∈
W1,2(0,T ; X∗) ∩ V(T ), (S”2) and (S3). Let z ∈ V(T ). Then, it holds that,∫ T

0

∫ 1

0
ũεt(t)z(t)dydt +

∫ T

0

1
s2(t)

(∫ 1

0
ũεy(t)zy(t)dy

)
dt

+

∫ T

0

a0

s(t)
((σ(ũε(t, 1))2 − ασ((ρε ∗ η)(t, 1))s(t))z(t, 1)dt

−

∫ T

0

1
s(t)

β(b(t) − γũε(t, 0))z(t, 0)dt =

∫ T

0

∫ 1

0

yst(t)
s(t)

ηy(t)z(t)dydt. (3.31)

From the weak convergence, it is easy to see that,∫ T

0

∫ 1

0
ũεit(t)z(t)dydt →

∫ T

0
〈ũt(t), z(t)〉Xdt,∫ T

0

1
s2(t)

(∫ 1

0
ũεiy(t)zy(t)dy

)
dt →

∫ T

0

1
s2(t)

(∫ 1

0
ũy(t)zy(t)dy

)
dt as i→ ∞.
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The third term of the left-hand side of Eq (3.31) is as follows:∣∣∣∣∣∫ T

0

a0

s(t)
((σ(ũε(t, 1))2 − ασ((ρε ∗ η)(t, 1))s(t))z(t, 1)dt

−

∫ T

0

a0

s(t)
((σ(ũ(t, 1))2 − ασ(η(t, 1))s(t))z(t, 1)dt

∣∣∣∣∣
≤

a0

a

(∫ T

0
|ũε(t, 1) − ũ(t, 1)|2dt

)1/2(∫ T

0
2(|ũε(t, 1)|2 + |ũ(t)|2)|z(t, 1)|2dt

)1/2

.

+ a0α

∫ T

0
|(ρε ∗ η)(t, 1) − η(t, 1)||z(t, 1)|dt

Here, by Eq (3.24) we note that it holds that,∫ T

0
|ũε(t, z) − ũ(t, z)|2dt

≤Ce

(∫ T

0
|ũε(t) − ũ(t)|2X

)1/2(∫ T

0
|ũε(t) − ũ(t)|2H

)1/2

for z = 0, 1, (3.32)

and ∫ T

0
|ũε(t, 1)|2|z(t, 1)|2dt ≤ C2

e

∫ T

0
|ũε(t)|X |ũε(t)|H |z(t)|X |z(t)|Hdt

≤ C2
e |ũε|L∞(0,T ;H)|z|L∞(0,T ;H)

(∫ T

0
|ũε(t)|2X

)1/2(∫ T

0
|z(t)|2X

)1/2

.

Since (ρε ∗ η)(t, 1) → η(t, 1) in L2(0,T ) as ε → 0, by the boundedness of ũε in L2(0,T ; X), ũ ∈
L2(0,T ; X) and the strong convergence in L2(0,T ; H) we see that∫ T

0

a0

s(t)
((σ(ũεi(t, 1))2 − ασ((ρεi ∗ η)(t, 1))s(t))z(t, 1)dt

→

∫ T

0

a0

s(t)
((σ(ũ(t, 1))2 − ασ(η(t, 1))s(t))z(t, 1)dt as i→ ∞.

What concerns the forth term on the left-hand side of Eq (3.31), by Eq (3.32) it follows that,∫ T

0

1
s(t)

β(b(t) − γũεi(t, 0))z(t, 0)dt →
∫ T

0

1
s(t)

β(b(t) − γũ(t, 0))z(t, 0)dt as i→ ∞.

Therefore, by the limiting process i → ∞ in Eq (3.31) we see that the limit function ũ is a solution
of (AP2)(ũ0, s, η, b) on [0,T ]. Also, the solution ũ is unique. Indeed, let ũ1 and ũ2 be a solution of
(AP2)(ũ0, s, η, b) on [0,T ] and put ũ = ũ1 − ũ2. Then, (S”2) implies that

〈ũt, z〉X +
1
s2

(∫ 1

0
ũyzydy

)
+

a0

s

(
(σ(ũ1(·, 1))2 − ασ(η(·, 1))s) − ((σ(ũ2(·, 1))2 − ασ(η(·, 1))s)

)
z(1)
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+
1
s
βγ(ũ1(·, 0) − ũ2(·, 0))z(0) = 0 for z ∈ X a.e. on [0,T ]. (3.33)

We take z = ũ in Eq (3.33). Then, by the monotonicity of σ we have

1
2

d
dt
|ũ(t)|2H +

1
s2(t)

∫ 1

0
|ũy(t)|2dy ≤ 0 for a.e. t ∈ [0,T ]. (3.34)

By Eq (3.34), we have the uniqueness of a solution ũ to (AP2)(ũ0, s, η, b) on [0,T ]. �

Lemma 3.6. Let T > 0 and s ∈ W1,∞(0,T ) with s > 0 on [0,T ]. Then, (AP1)(ũ0, s, b) has a unique
solution ũ on [0,T ].

Proof. From Lemma 3.5, we see that (AP2)(ũ0, s, η, b) has a solution ũ on [0,T ] such that
ũ ∈ W1,2(0,T ; X∗) ∩ L∞(0,T ; H) ∩ L2(0,T ; X). Define a solution operator δT (η) = ũ, where ũ is a
unique solution of (AP2)(ũ0, s, η, b) for given η ∈ V(T ). Let put δT (ηi) = ũi for i = 1, 2 and η = η1 − η2

and ũ = ũ1 − ũ2. Then, by (S”2) it holds that

1
2

d
dt
|ũ(t)|2H +

1
s2

∫ 1

0
|ũy(t)|2dy

+
a0

s(t)

(
(σ(ũ1(t, 1))2 − ασ(η1(t, 1))s(t)) − ((σ(ũ2(t, 1))2 − ασ(η2(t, 1))s(t))

)
ũ(t, 1)

+
βγ

s(t)
|ũ(t, 0)|2 =

∫ 1

0

yst(t)
s(t)

ηy(t)ũ(t)dy for a.e. t ∈ [0,T ]. (3.35)

For the third term I3 in the left-hand side of Eq (3.35), by the monotonicity of σ we have that I3 ≥

−a0α|η(t, 1)||ũ(t, 1)|. From Eq (3.24) it holds that,

|η(t, 1)||ũ(t, 1)| ≤ C1/2
e |η(t, 1)|(|ũy(t)|

1/2
H |ũ(t)|1/2H + |ũ(t)|H)

and ∫ t

0
|η(τ, 1)||ũ(τ, 1)|dτ

≤C1/2
e

(
|ũ|1/2L∞(0,T1;H)

∫ t

0
|η(t, 1)||ũy(τ)|1/2H dτ + |ũ|L∞(0,T1;H)

∫ t

0
|η(t, 1)|dτ

)
≤C1/2

e

(
|ũ|1/2L∞(0,T1;H)T

1/4
1

(∫ t

0
|ũy(τ)|2H

)1/4

+ |ũ|L∞(0,T1;H)T
1/2
1

)(∫ t

0
|η(t, 1)|2

)1/2

. (3.36)

Let T1 ∈ (0,T ] and we integrate Eq (3.35) over [0, t] for any t ∈ [0,T1]. Then, by Eq (3.36) we obtain,

δ
(
|ũ(t)|2H +

∫ t

0
|ũy(τ)|2Hdτ

)
≤a0αC1/2

e T 1/4
1 (1 + T 1/4

1 )
(∫ t

0
|η(τ, 1)|2dτ

)1/2

|ũ|V(T1)

+
|st|L∞(0,T1)

a
T 1/2

1

(∫ t

0
|ηy(τ)|2Hdτ

)1/2

|ũ|V(T1) (3.37)
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and δ = min{1/2, 1/l2}, where l = max0≤t≤T |s(t)|. Finally, by Eq (3.37) we have

δ|ũ|V(T1) ≤

[
a0αC1/2

e T 1/4
1 (1 + T 1/4

1 ) +
|st|L∞(0,T1)

a
T 1/2

1

]
|η|V(T1). (3.38)

From Eq (3.38) we see that there exists T1 ≤ T such that δT1 is a contraction on V(T1). Hence,
Banach’s fixed point theorem guarantees that there exists ũ ∈ V(T1) such that δT1(ũ) = ũ. Thus, we see
that (AP1)(ũ0, s, b) has a solution ũ on [0,T1]. Here, T1 is independent of the choice of the initial data.
Therefore, by repeating the local existence argument, we have a unique solution ũ of (AP1)(ũ0, s, b) on
the whole interval [0,T ]. Thus, we see that Lemma 3.6 holds. �

Here, for given s ∈ W1,∞(0,T ) with s > 0 on [0,T ] we show that a solution ũ of (AP1)(ũ0, s, b) is
non-negative and bounded on Q(T ).

Lemma 3.7. Let T > 0, s ∈ W1,∞(0,T ) with s > 0 on [0,T ] and ũ be a solution of (AP1)(ũ0, s, b) on
[0,T ]. Then, it holds that

0 ≤ ũ(t) ≤ u∗(T ) := max{αl(T ),
b∗

γ
} on [0, 1] for t ∈ [0,T ],

where l(T ) = max0≤t≤T |s(t)|.

Proof. By (S’2), we note that it holds that,

〈ũt, z〉X +

∫ 1

0

1
s2 ũyzydy +

a0

s
σ(ũ(·, 1))(σ(ũ(·, 1)) − αs)z(1)

−
1
s
β(b(·) − γũ(·, 0))z(0) =

∫ 1

0

yst

s
ũyzdy for z ∈ X a.e. on [0,T ]. (3.39)

First, we prove that ũ(t) ≥ 0 on [0, 1] for t ∈ [0,T ]. By taking z = −[−ũ]+ in Eq (3.39) we have,

1
2

d
dt
|[−ũ(t)]+|2H +

1
s2(t)

∫ 1

0
|[−ũ(t)]+

y |
2dy

−
a0

s(t)
σ(ũ(·, 1))(σ(ũ(·, 1)) − αs(t))[−ũ(t, 1)]+ +

1
s(t)

β(b(t) − γũ(·, 0))[−ũ(t, 0)]+

= −

∫ 1

0

yst(t)
s(t)

ũy(t)[−ũ(t)]+dy a.e. on [0,T ]. (3.40)

Here, the third term in the left-hand side of Eq (3.40) is equal to 0 and the forth term in the left-hand
side of Eq (3.40) is non-negative. Also, we obtain that∫ 1

0

yst(t)
s(t)

[−ũ(t)]+
y [−ũ(t)]+dy ≤

1
2s2(t)

|[−ũ(t)]+
y |

2
H +

(st(t))2

2
|[−ũ(t)]+|2H,

Then, we have

1
2

d
dt
|[−ũ(t)]+|2H +

1
2s2(t)

∫ 1

0
|[−ũ(t)]+

y |
2dy ≤

(st(t))2

2
|[−ũ(t)]+|2H for a.e. t ∈ [0,T ].
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Therefore, by Gronwall’s inequality and the assumption that ũ0 ≥ 0 on [0, 1], we conclude that ũ(t) ≥ 0
on [0, 1] for t ∈ [0,T ].

Next, we show that a solution ũ of (AP1)(ũ0, s, b) has a upper bound u∗(T ). Put U(t, y) = [ũ(t, y) −
u∗(T )]+ for y ∈ [0, 1] and t ∈ [0,T ]. Then, it holds that

1
2

d
dt
|U(t)|2H +

1
s2(t)

∫ 1

0
|Uy(t)|2dy +

a0

s(t)
σ(ũ(·, 1))(σ(ũ(·, 1)) − αs(t))U(t, 1)

−
1

s(t)
β(b(t) − γũ(·, 0))U(t, 0) =

∫ 1

0

yst(t)
s(t)

ũy(t)U(t)dy for a.e. t ∈ [0,T ]. (3.41)

Here, by ũ(t) ≥ 0 on [0, 1] for t ∈ [0,T ] we note that a0σ(ũ(·, 1))(σ(ũ(t, 1))−αs(t)) = a0ũ(t, 1)(ũ(t, 1)−
αs(t)). Then, by u∗(T ) ≥ αl(T ) ≥ αs(t) for t ∈ [0,T ], it holds that

a0

s(t)
ũ(t, 1)(ũ(t, 1) − αs(t))U(t, 1) ≥

a0

s(t)
ũ(t, 1)(u∗(T ) − αs(t))U(t, 1) ≥ 0.

Also, by Eq (1.3) and b ≤ b∗, we observe that,

−
1

s(t)
β(b(t) − γũ(t, 0))U(t, 0) =

1
s(t)

β(γũ(t, 0) − b∗ + b∗ − b(t))U(t, 0)

≥
βγ

s(t)
|U(t, 0)|2 +

β

s(t)
(b∗ − b(t))U(t, 0) ≥ 0. (3.42)

By applying the above two results to Eq (3.41) we obtain that,

1
2

d
dt

∫ 1

0
|U(t)|2dy +

1
2s2(t)

∫ 1

0
|Uy(t)|2dy ≤

(st(t))2

2
|U(t)|2H for a.e. t ∈ [0,T ].

This result and the assumption that ũ0 ≤ b∗/γ on [0, 1] implies that ũ(t) ≤ u∗(T ) on [0, 1] for t ∈ [0,T ].
Thus, Lemma 3.7 is proven. �

At the end of this section, we relax the condition s ∈ W1,∞(0,T ), namely, for given s ∈ W1,2(0,T )
with s > 0 on [0,T ], we construct a solution to (AP1)(ũ0, s, b).

Lemma 3.8. Let T > 0 and s ∈ W1,2(0,T ) with s > 0 on [0,T ]. If (A1)–(A3) hold, then, (AP1)(ũ0, s, b)
has a unique solution ũ on [0,T ].

Proof. For given s ∈ W1,2(0,T ) with s > 0 on [0,T ], we choose a sequence {sn} ⊂ W1,∞(0,T ) and l,
a > 0 satisfying a ≤ sn ≤ l on [0,T ] for each n ∈ N, sn → s in W1,2(0,T ) as n → ∞. By Lemma 3.6
we can take a sequence {ũn} of solutions to (AP1)(ũ0, sn, b) on [0,T ]. Let z ∈ X. Then, it holds that

〈ũnt, z〉X +
1
s2

n

(∫ 1

0
ũnyzydy

)
+

a0

sn
σ(ũn(·, 1))(σ(ũn(·, 1)) − αsn)z(1)

−
1
sn
β(b − γũn(·, 0))z(0) =

∫ 1

0

ysnt

sn
ũnyzdy a.e. on [0,T ]. (3.43)
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We take z = ũn in Eq (3.43). Then, similarly to the proof of Lemma 3.4 we derive

1
2

d
dt
|ũn(t)|2H +

1
4s2

n(t)

∫ 1

0
|ũny(τ)|2dy

≤

(
|snt(t)|2 +

(βb∗Ce)2

4
+
βb∗Ce

2a

)
|ũn(t)|2H +

βb∗

2a

+

(
s2

n(t) (a0αCe)2 + a0αCe

)
|ũn(t)|2H for a.e. t ∈ [0,T ].

From this, we infer that {ũn} is bounded in L∞(0,T ; H)∩L2(0,T ; X). Also, by referring to the derivation
of Eq (3.30) we obtain from Eq (3.43) that∣∣∣∣∣∫ 1

0
ũnt(t)zdy

∣∣∣∣∣
≤

1
a2 |ũny(t)|H |zy|H +

a0

a
|ũn(t, 1)|2|z(1)| + a0α|ũn(t, 1)||z(1)| +

βb∗

a
|z(0)|

+
βγ

a
|ũn(t, 0)||z(0)| +

|snt(t)|
a

(
|ũn(t, 1)||z(1)| + |ũn(t)|H(|zy|H + |z|H)

)
.

Here, we note that ∫ 1

0

ysnt(t)
sn(t)

ũny(t)zdy =
snt(t)
sn(t)

(
ũn(t, 1)z(1) −

∫ 1

0
ũn(t)(yzy + z)dy

)
.

Here, by Lemma 3.7, we note that 0 ≤ ũn ≤ u∗ on Q(T ) for each n ∈ N, where u∗ = max{αl, b∗
γ
}. Using

this result and the boundedness of {ũn} in V(T ), we see that {ũnt} is bounded in L2(0,T ; X∗). Therefore,
we take a subsequence {n j} ⊂ {n} such that for some ũ ∈ W1,2(0,T ; X∗) ∩ V(T ), ũn j → ũ strongly in
L2(0,T ; H), weakly in W1,2(0,T ; X∗) ∩ L2(0,T ; X), weakly-* in L∞(0,T ; H), and ũn j(·, x) → ũ(·, x) in
L2(0,T ) at x = 0, 1 as j→ ∞.

Now, we consider the limiting process j→ ∞ in the following way:∫ T

0
〈ũnt(t), z(t)〉Xdt +

∫ T

0

1
s2

n(t)

(∫ 1

0
ũny(t)zy(t)dy

)
dt

+

∫ T

0

a0

sn(t)
σ(ũn(t, 1))(σ(ũn(t, 1)) − αsn(t))z(t, 1)dt

−

∫ T

0

1
sn(t)

β(b(t) − γũn(t, 0))z(t, 0)dt

=

∫ T

0

∫ 1

0

ysnt(t)
sn(t)

ũny(t)z(t)dydt for z ∈ V(T ). (3.44)

Note that by sn j → s in W1,2(0,T ) as j → ∞, it holds that sn j → s in C([0,T ]) as j → ∞. From the
convergence of ũn j and sn j, Eq (3.32) and a ≤ sn j ≤ l on [0,T ], it is clear that∫ T

0
〈ũn jt(t), z(t)〉Xdt →

∫ T

0
〈ũt(t), z(t)〉Xdt,
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0

a0

sn j(t)
σ(ũn j(t, 1))(σ(ũn j(t, 1)) − αsn j(t))z(t, 1)dt

→

∫ T

0

a0

s(t)
σ(ũ(t, 1))(σ(ũ(t, 1)) − αs(t))z(t, 1)dt

and ∫ T

0

1
sn j(t)

β(b(t) − γũn j(t, 0))z(t, 0)dt →
∫ T

0

1
s(t)

β(b(t) − γũ(t, 0))z(t, 0)dt

as j→ ∞. For the second term in the left-hand side of Eq (3.44), it follows that,∣∣∣∣∣∫ T

0

1
s2

n j
(t)

(∫ 1

0
ũn jy(t)zy(t)dy

)
dt −

∫ T

0

1
s2(t)

(∫ 1

0
ũy(t)zy(t)dy

)
dt

∣∣∣∣∣
≤

∫ T

0

∣∣∣∣∣ 1
s2

n j
(t)
−

1
s2(t)

∣∣∣∣∣|ũn jy(t)|H |zy(t)|Hdt

+

∣∣∣∣∣∫ T

0

1
s2(t)

(∫ 1

0
(ũn jy(t) − ũy(t))zy(t)dy

)
dt

∣∣∣∣∣
≤

2l
a2 |sn j − s|C([0,T ])|ũn jy|L2(0,T ;H)|zy|L2(0,T ;H)

+

∣∣∣∣∣∫ T

0

(
ũn jy(t) − ũy(t),

1
s2(t)

zy(t)
)

H
dt

∣∣∣∣∣
Hence, we observe that∫ T

0

1
s2

n j
(t)

(∫ 1

0
ũn jy(t)zy(t)dy

)
dt →

∫ T

0

1
s2(t)

(∫ 1

0
ũy(t)zy(t)dy

)
dt as j→ ∞.

Also, the right-hand side of Eq (3.44) is as follows:∣∣∣∣∣∫ T

0

∫ 1

0

ysn jt(t)
sn j(t)

ũn jy(t)z(t)dydt −
∫ T

0

∫ 1

0

yst(t)
s(t)

ũy(t)z(t)dydt
∣∣∣∣∣

≤

∫ T

0

∣∣∣∣∣ sn jt(t)
sn j(t)

−
st(t)
s(t)

∣∣∣∣∣|ũn jy(t)|H |z(t)|Hdt +

∣∣∣∣∣∫ T

0

(
ũn jy(t) − ũy(t),

yst(t)
s(t)

z(t)
)

H
dt

∣∣∣∣∣
≤

1
a
|sn jt − st|L2(0,T )|ũn jy|L2(0,T ;H)|z|L∞(0,T ;H)

+
1
a2 |sn j − s|C([0,T ])|st|L2(0,T )|ũn jy|L2(0,T ;H)|z|L∞(0,T ;H)

+

∣∣∣∣∣∫ T

0

(
ũn jy(t) − ũy(t),

yst(t)
s(t)

z(t)
)

H
dt

∣∣∣∣∣
From this, we have that∫ T

0

∫ 1

0

ysn jt(t)
sn j(t)

ũn jy(t)z(t)dydt →
∫ T

0

∫ 1

0

yst(t)
s(t)

ũy(t)z(t)dydt as j→ ∞.

Finally, by letting j → ∞ we see that ũ is a solution of (AP)(ũ0, s, b) on [0,T ]. Uniqueness is proved
by the same argument of the proof of Lemma 3.5. �
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4. Proof of Theorem 2.2

In this section, using the results obtained in Section 3, we establish the existence of a locally-in-time
solution (PC)(ũ0, s0, b). Throughout of this section, we assume (A1)–(A3). First, for T > 0, l > 0 and
a > 0 such that a < s0 < l we set

M(T, a, l) := {s ∈ W1,2(0,T )|a ≤ s ≤ l on [0,T ], s(0) = s0}.

Also, for given s ∈ M(T, a, l), we define two solution mappings as follows:
Ψ : M(T, a, l) → W1,2(0,T ; X∗) ∩ L∞(0,T ; H) ∩ L2(0,T ; X) by Ψ(s) = ũ, where ũ is a unique solution
of (AP1)(ũ0, s, b) on [0,T ] and ΓT : M(T, a, l) → W1,2(0,T ) by
ΓT (s) = s0 +

∫ t

0
a0(σ(Ψ(s)(τ, 1)) − αs(τ))dτ for t ∈ [0,T ]. Moreover, for any K > 0 we put

MK(T ) := {s ∈ M(T, a, l)| |s|W1,2(0,T ) ≤ K}.

Now, we show that for some T > 0, ΓT is a contraction mapping on the closed set of MK(T ) for any
K > 0.

Lemma 4.1. Let K > 0. Then, there exists a positive constant T ∗ ≤ T such that the mapping ΓT ∗ is a
contraction on the closed set MK(T ∗) in W1,2(0,T ∗).

Proof. For T > 0, a > 0 and l > 0 such that a < s0 < l, let s ∈ M(T, a, l) and ũ = Ψ(s). First, from the
proof of Lemma 3.8 we note that it holds

|Ψ(s)|W1,2(0,T ;X∗) + |Ψ(s)|L∞(0,T ;H) + |Ψ(s)|L2(0,T ;X) ≤ C for s ∈ MK(T ), (4.1)

where C = C(T, ũ0,K, l, b∗, β, s0) is a positive constant depending on T , ũ0, K, l, b∗, β and s0.
First we show that there exists T0 ≤ T such that ΓT0 : MK(T0)→ MK(T0) is well-defined. Let K > 0

and s ∈ MK(T ). By the definition of σ and Ψ(s) = ũ is a solution of (AP1)(ũ0, s, b), we observe that

ΓT (s)(t) = s0 +

∫ t

0
a0(σ(Ψ(s)(τ, 1)) − αs(τ))dτ

≥ s0 − a0αlt for t ∈ [0,T ]. (4.2)

Also, by Eq (3.24) and Eq (4.1), it holds that

ΓT (s)(t) ≤ s0 + a0T 1/2(
∫ t

0
|ũ(τ, 1)|2dτ)1/2

≤s0 + a0T 1/2(Ce|ũ|L∞(0,t;H)

∫ t

0
|ũ(τ)|X)1/2 ≤ s0 + a0T 1/2(T 1/4C1/2

e C),∫ t

0
|ΓT (s)(τ)|2dτ ≤ 2s2

0T + 4a2
0T

∫ t

0
(|ũ(τ, 1)|2 + (αs(t))2)dτ

≤2s2
0T + 4a2

0T
(
Ce|ũ|L∞(0,t;H)

∫ t

0
|ũ(τ)|X + (αl)2T

)
≤2s2

0T + 4a2
0T (T 1/2CeC2 + (αl)2T ), (4.3)
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and ∫ t

0
|Γ′T (s)(τ)|2dτ ≤ a2

0

∫ t

0
|σ(Ψ(s)(τ, 1)) − αs(τ)|2dτ ≤ 2a2

0(T 1/2CeC2 + (αl)2T ), (4.4)

where C is the same positive constant as in (4.1). Therefore, by Eqs (4.2)–(4.4) we see that there exists
T0 ≤ T such that ΓT0(s) ∈ MK(T0).

Next, for s1 and s2 ∈ MK(T0), let ũ1 = Ψ(s1) and ũ2 = Ψ(s2) and set ũ = ũ1 − ũ2, s = s1 − s2. Then,
it holds that

〈ũt, z〉X +

∫ 1

0
(

1
s2

1

ũ1y −
1
s2

2

ũ2y)zydy

+ a0

( 1
s1
σ(ũ1(·, 1))(σ(ũ1(·, 1)) − αs1) −

1
s2
σ(ũ2(·, 1))(σ(ũ2(·, 1)) − αs2)

)
z(1)

−

( 1
s1
β(b(t) − γũ1(·, 0)) −

1
s2
β(b(t) − γũ2(·, 0))

)
z(0)

=

∫ 1

0
(
ys1t

s1
ũ1y −

ys2t

s2
ũ2y)zdy for z ∈ X a.e. on [0,T ]. (4.5)

By taking z = ũ in Eq (4.5) we have

1
2

d
dt
|ũ|2H +

∫ 1

0
(

1
s2

1

ũ1y −
1
s2

2

ũ2y)ũydy

+ a0

( 1
s1
σ(ũ1(·, 1))(σ(ũ1(·, 1)) − αs1)) −

1
s2
σ(ũ2(·, 1))(σ(ũ2(·, 1)) − αs2)

)
ũ(·, 1)

−

( 1
s1
β(b(t) − γũ1(·, 0)) −

1
s2
β(b(t) − γũ2(·, 0)

)
ũ(·, 0)

=

∫ 1

0
(
ys1t

s1
ũ1y −

ys2t

s2
ũ2y)ũdy a.e. on [0,T ]. (4.6)

For the second term of the left-hand side of Eq (4.6), we observe that∫ 1

0

(
1

s2
1(t)

ũ1y(t) −
1

s2
2(t)

ũ2y(t)
)

ũy(t)dy

=
1

s2
1(t)
|ũy(t)|2H +

∫ 1

0

(
1

s2
1(t)
−

1
s2

2(t)

)
ũ2y(t)ũy(t)dy

≥
1

s2
1(t)
|ũy(t)|2H −

2l|s(t)|
a3s1(t)

|ũ2y(t)|H |ũy(t)|H

≥

(
1 −

η

2

) 1
s2

1(t)
|ũy(t)|2H −

1
2η

(
2l
a3

)2

|s(t)|2|ũ2y(t)|2H, (4.7)

where η is arbitrary positive number. Next, the third term in the left-hand side of Eq (4.6) is as follows:

a0

(
σ(ũ1(t, 1))(σ(ũ1(t, 1)) − αs1(t))

s1(t)
−
σ(ũ2(t, 1))(σ(ũ2(t, 1)) − αs2(t))

s2(t)

)
ũ(t, 1)
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=a0

[ 1
s1(t)

(
σ(ũ1(t, 1))(σ(ũ1(t, 1)) − αs1(t)) − σ(ũ2(t, 1))(σ(ũ2(t, 1)) − αs2(t))

)
+

(
1

s1(t)
−

1
s2(t)

)
σ(ũ2(t, 1))(σ(ũ2(t, 1)) − αs2(t))

]
ũ(t, 1)

=a0

[ 1
s1(t)

(σ(ũ1(t, 1)) − σ(ũ2(t, 1)))(σ(ũ1(t, 1)) − αs1(t))
]
ũ(t, 1)

+
σ(ũ2(t, 1))

s1(t)

(
σ(ũ1(t, 1)) − αs1(t) − (σ(ũ2(t, 1)) − αs2(t))

)
ũ(t, 1)

+

(
1

s1(t)
−

1
s2(t)

)
σ(ũ2(t, 1))(σ(ũ2(t, 1)) − αs2(t))ũ(t, 1)

:=I1 + I2 + I3.

By the monotonicity of σ(r) and Eq (3.24) we have that

I1 ≥ −
a0

s1(t)
(|ũ1(t, 1)| + αl)|Ce|ũ(t)|X |ũ(t)|H (4.8)

and

I2 =
a0

s1(t)
σ(ũ2(t, 1))

(
σ(ũ1(t, 1)) − αs1(t) − (σ(ũ2(t, 1)) − αs2(t))

)
ũ(t, 1)

≥ −
a0|ũ2(t, 1)|

s1(t)
α|s(t)||ũ(t, 1)|

≥ −
Ce(a0αũ2(t, 1))2

2s2
1(t)

|ũ(t)|X |ũ(t)|H −
1
2
|s(t)|2. (4.9)

Also, using the fact that σ(r) ≤ |r| for r ∈ R and Eq (3.24), we have the following estimate:

|I3| ≤

(
|s(t)|

s1(t)s2(t)

)
a0σ(ũ2(t, 1))(σ(ũ2(t, 1)) + αl)|ũ(t, 1)|

≤
Ce(a0ũ2(t, 1))2

2a2s2
1(t)

|ũ(t)|X |ũ(t)|H +
1
2

ũ2
2(t, 1)|s(t)|2

+
Ce(a0αlũ2(t, 1))2

2a2s2
1(t)

|ũ(t)|X |ũ(t)|H +
1
2
|s(t)|2. (4.10)

Here, we put L(1)
s1 (t) = a0(|ũ1(t, 1)| + αl)Ce and L(1)

s2 (t) = Ce(a0αũ2(t, 1))2/2 + Ce(a0ũ2(t, 1))2/2a2 +

Ce(a0αlũ2(t, 1))2/2a2. Next, by using Eq (3.24) and (A3), we have

− β

(
1

s1(t)
−

1
s2(t)

)
b(t)ũ(t, 0) + βγ

(
1

s1(t)
ũ1(t, 0) −

1
s2(t)

ũ2(t, 0)
)

ũ(t, 0)

= − β

(
1

s1(t)
−

1
s2(t)

)
b(t)ũ(t, 0) + βγ

1
s1(t)
|ũ(t, 0)|2

+ βγ

(
1

s1(t)
−

1
s2(t)

)
ũ2(t, 0)ũ(t, 0)
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≥ −

(
(βb∗)2Ce

2a2s2
1(t)

+
(βγ|ũ2(t, 0)|)2Ce

2a2s2
1(t)

)
|ũ(t)|X |ũ(t)|H − |s(t)|2 for t ∈ [0,T0]. (4.11)

For the right-hand side of Eq (4.6), we separate as follows:∫ 1

0

(
ys1t(t)
s1(t)

ũ1y(t) −
ys2t(t)
s2(t)

ũ2y(t)
)

ũ(t)dy

=

∫ 1

0

ys1t(t)
s1(t)

ũy(t)ũ(t)dy +

∫ 1

0

yst(t)
s1(t)

ũ2y(t)ũ(t)dy

+

∫ 1

0

(
1

s1(t)
−

1
s2(t)

)
ys2t(t)ũ2y(t)ũ(t)dy

:=I4 + I5 + I6.

Then, the three terms are estimated in the following way:

I4 ≤
η

2s2
1(t)
|ũy(t)|2H +

1
2η
|s1t(t)|2|ũ(t)|2H,

I5 ≤
1

2a

(
|st(t)|2 + |ũ2y(t)|2H |ũ(t)|2H

)
,

I6 ≤
1

2a2

(
|s(t)|2|ũ2y(t)|2H + |s2t(t)|2|ũ(t)|2H

)
.

From Eq (4.6) and all estimates we derive the following inequality:

1
2

d
dt
|ũ(t)|2H + (1 − η)

1
s2

1(t)
|ũy(t)|2H

≤
1

s1(t)
L(1)

s1
(t)|ũ(t)|X |ũ(t)|H

+
1

s2
1(t)

(
L(1)

s2
(t) +

(βγ|ũ2(t, 0)|)2Ce

2a2 +
(βb∗)2Ce

2a2

)
|ũ(t)|X |ũ(t)|H

+

(
1
2η
|s1t(t)|2 +

1
2a
|ũ2y(t)|2H +

1
2a2 |s2t(t)|2

)
|ũ(t)|2H

+

 1
2a2 |ũ2y(t)|2H +

1
2η

(
2l
a3

)2

|ũ2y(t)|2H +
1
2

ũ2
2(t, 1) + 2

 |s(t)|2 +
1

2a
|st(t)|2. (4.12)

We put C5(t) = ((βγ|ũ2(t, 0)|)2Ce)/2a2 + ((βb∗)2Ce)/2a2. By Young’s inequality we have that

1
s1(t)

L(1)
s1

(t)|ũ(t)|X |ũ(t)|H

≤
1

s1(t)
L(1)

s1
(t)

(
|ũy(t)|H |ũ(t)|H + |ũ(t)|2H

)
≤

η

2s2
1(t)
|ũy(t)|2H +

( (L(1)
s1 (t))2

2η
+

1
a

L(1)
s1

(t)
)
|ũ(t)|2H,
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and

(L(1)
s2

(t) + C5(t))
1

s2
1(t)
|ũ(t)|X |ũ(t)|H

≤(L(1)
s2

(t) + C5(t))
1

s2
1(t)

(|ũy(t)|H |ũ(t)|H + |ũ(t)|2H)

≤
1

s2
1(t)

η

2
|ũy(t)|2H +

1
a2

 (L(1)
s2 (t) + C5(t))2

2η
+ (L(1)

s2
(t) + C5(t))

 |ũ(t)|2H.

Hence, by applying these results to Eq (4.12) and taking a suitable η = η0, we obtain

1
2

d
dt
|ũ(t)|2H +

1
2

1
s2

1(t)
|ũy(t)|2H

≤

( (L(1)
s1 (t))2

2η0
+

1
a

L(1)
s1

(t)
)
|ũ(t)|2H

+
1
a2

 (L(1)
s2 (t) + C5(t))2

2η0
+ (L(1)

s2
(t) + C5(t))

 |ũ(t)|2H.

+

(
1

2η0
|s1t(t)|2 +

1
2a
|ũ2y(t)|2H +

1
2a2 |s2t(t)|2

)
|ũ(t)|2H

+

 1
2a2 |ũ2y(t)|2H +

1
2η0

(
2l
a3

)2

|ũ2y(t)|2H +
1
2

ũ2
2(t, 1) + 2

 |s(t)|2 +
1

2a
|st(t)|2. (4.13)

Now, we put the summation of all coefficients of |ũ(t)|2H by L(2)
s (t) for t ∈ [0,T0] and

L(3)
s2 (t) = |ũ2y(t)|2H/2a2 + (4l2|ũ2y(t)|2H)/2η0a6 + ũ2

2(t, 1)/2 + 2. Then, we have

1
2

d
dt
|ũ(t)|2H +

1
2

1
s2

1(t)
|ũy(τ)|2H

≤L(2)
s (t)|ũ(t)|2H + L(3)

s2
(t)|s(t)|2 +

1
2a
|st(t)|2 for t ∈ [0,T0]. (4.14)

By Eq (3.24) and Eq (4.1) we note that ũ2
i (·, 1), ũ4

i (·, 1) ∈ L1(0,T0) for i = 1, 2. From this and the fact
that si ∈ MK(T0) for i = 1, 2, we see that L(2)

s ∈ L1(0,T0) and L(3)
s2 ∈ L1(0,T0). Also, it holds that

L(3)
s2

(t)|s(t)|2 ≤ L(3)
s2

(t)T0|st|
2
L2(0,t) for t ∈ [0,T0].

Therefore, Gronwall’s inequality guarantees that

1
2
|ũ(t)|2H +

1
2

1
l2

∫ t

0
|ũy(τ)|2Hdτ

≤

[(
2|L(3)

s2
|L1(0,T0)T0 +

1
a

)
|st|

2
L2(0,t)

]
e2

∫ t
0 L(2)

s (τ)dτ for t ∈ [0,T0]. (4.15)

By using Eq (4.15) we show that there exists T ∗ ≤ T0 such that ΓT ∗ is a contraction mapping on the
closed subset of MK(T ∗). To do so, from the subtraction of the time derivatives of ΓT0(s1) and ΓT0(s2)
and relying on Eq (3.24) and Eq (4.15), we have for T1 ≤ T0 the following estimate:

|(ΓT1(s1))t − (ΓT1(s2))t|L2(0,T1)
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≤a0

(
|σ(ũ1(·, 1)) − σ(ũ2(·, 1))|L2(0,T1) + α|s1(t) − s2(t)|L2(0,T1)

)
≤a0

√
Ce

(∫ T1

0
(|ũy(t)|H |ũ(t)|H + |ũ(t)|2H)dt

)1/2

+ a0αT1|s|W1,2(0,T1)

≤a0

√
Ce

|ũ| 12L∞(0,T1;H)

(∫ T1

0
|ũy(t)|Hdt

) 1
2

+
√

T1|ũ|L∞(0,T1;H)


+ a0αT1|s|W1,2(0,T1). (4.16)

Using Eq (4.15) and Eq (4.16), we obtain

|ΓT1(s1) − ΓT1(s2)|L2(0,T1)

≤T1C6

(
T

1
4

1 |s|W1,2(0,T1) +
√

T1|s|W1,2(0,T1) + T1|s|W1,2(0,T1)

)
, (4.17)

where C6 is a positive constant obtained by Eq (4.15). Therefore, by Eq (4.16) and Eq (4.17) we see
that there exists T ∗ ≤ T0 such that ΓT ∗ is a contraction mapping on a closed subset of MK(T ∗). �

From Lemma 4.1, by applying Banach’s fixed point theorem, there exists s ∈ MK(T ∗), where T ∗ is
the same as in Lemma 4.1 such that ΓT ∗(s) = s. This implies that (PC)(ũ0, s0, b) has a unique solution
(s, ũ) on [0,T ∗].

At the end of this section, we show the boundedness of a solution ũ to (PC)(ũ0, s0, b) which
completes Theorem 2.2. By (S2) it holds that

〈ũt, z〉X +

∫ 1

0

1
s2 ũyzydy +

1
s
σ(ũ(·, 1))stz(1)

−
1
s
β(b(·) − γũ(·, 0))z(0) =

∫ 1

0

yst

s
ũyzdy for z ∈ X a.e. on [0,T ]. (4.18)

First, we note that the solution ũ of (PC)(ũ0, s0, b) is non-negative.

Lemma 4.2. Let T > 0 and (s, ũ) be a solution of (PC)(ũ0, s0, b) on [0,T ]. Then, ũ(t) ≥ 0 on [0, 1] for
t ∈ [0,T ].

Proof. Lemma 4.2 is proved by taking z = −[−ũ]+ in Eq (4.18) and using the argument of the proof of
Lemma 3.7. Here, by st(t) = a0(σ(ũ(t, 1)) − αs(t)) we note that it holds that∫ 1

0

yst(t)
s(t)

[−ũ(t)]+
y [−ũ(t)]+dy =

st(t)
s(t)

∫ 1

0

1
2

( d
dy

(y|[−ũ(t)]+|2) − |[−ũ(t)]+|2
)

=
st(t)
2s(t)

|[−ũ(t, 1)]+|2 −
st(t)
2s(t)

|[−ũ(t)]+|2H

=
a0(σ(ũ(t, 1)) − αs(t))

2s(t)
|[−ũ(t, 1)]+|2 −

a0(σ(ũ(t, 1)) − αs(t))
2s(t)

|[−ũ(t)]+|2H

≤
a0α

2
|[−ũ(t)]+|2H.

From this, we derive

1
2

d
dt
|[−ũ(t)]+|2H +

1
2s(t)

∫ 1

0
|[−ũ(t)]+

y |
2dy ≤

a0α

2
|[−ũ(t)]+|2H for a.e. t ∈ [0,T ].

This implies that ũ(t) ≥ 0 on [0, 1] for t ∈ [0,T ]. �
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Next, we show the boundedness of the solution (s, ũ) of (PC)(ũ0, s0, b).

Lemma 4.3. Let T > 0 and (s, ũ) be a solution of (PC)(ũ0, s0, b) on [0,T ]. Then, it holds that

(i) s(t) ≤ M for t ∈ [0,T ],

(ii) 0 ≤ ũ(t) ≤ u∗ := max{αM,
b∗

γ
} on [0, 1] for t ∈ [0,T ],

where M is a positive constant which depends on β, γ, α, b∗, |ũ0|H, s0, |bt|L2(0,T ) and |bt|L1(0,T ).

Proof. First, we prove (i). By taking z = s(ũ − b
γ
) in Eq (4.18) it holds that:

s(t)
2

d
dt

∣∣∣∣∣ũ(t) −
b(t)
γ

∣∣∣∣∣2
H

+

(bt(t)
γ
, s(t)(ũ(t) −

b(t)
γ

)
)

H

+
1

s(t)

∫ 1

0
|ũy(t)|2dy + σ(ũ(t, 1))st(t)

(
ũ(t, 1) −

b(t)
γ

)
− β(b(t) − γũ(t, 0))

(
ũ(t, 0) −

b(t)
γ

)
=

∫ 1

0
yst(t)ũy(t)

(
ũ(t) −

b(t)
γ

)
dy

for a.e. t ∈ [0,T ]. (4.19)

The second term of the left-hand side of Eq (4.19) is follows:∣∣∣∣∣(bt(t)
γ
, s(t)(ũ(t) −

b(t)
γ

)
)

H

∣∣∣∣∣ =

∣∣∣∣∣bt(t)
γ

s(t)
∫ 1

0
(ũ(t, y) − ũ(t, 0) + ũ(t, 0) −

b(t)
γ

)dy
∣∣∣∣∣

≤
1
γ
|bt(t)||s(t)|

(
|ũy(t)|H +

∣∣∣∣∣ũ(t, 0) −
b(t)
γ

∣∣∣∣∣). (4.20)

Also, by Lemma 4.2 we note that σ(ũ(t, 1))st(t) = ũ(t, 1)st(t). Moreover, we observe that∫ 1

0
yst(t)ũy(t)

(
ũ(t) −

b(t)
γ

)
dy

= st(t)
∫ 1

0

1
2

(
∂

∂y

(
y(ũ(t) −

b(t)
γ

)2
)
− (ũ(t) −

b(t)
γ

)2
)
dy

=
st(t)

2

(
ũ(t, 1) −

b(t)
γ

)2

−
st(t)

2

∫ 1

0

(
ũ(t) −

b(t)
γ

)2

dy. (4.21)

Hence, by Eq (4.20) and Eq (4.21) we have

1
2

d
dt

(
s(t)

∣∣∣∣∣ũ(t) −
b(t)
γ

∣∣∣∣∣2
H

)
+

1
s(t)

∫ 1

0
|ũy(t)|2dy

+ ũ(t, 1)st(t)
(
ũ(t, 1) −

b(t)
γ

)
−

st(t)
2

(
ũ(t, 1) −

b(t)
γ

)2

+ βγ|ũ(t, 0) −
b(t)
γ
|2

≤
1
γ
|bt(t)||s(t)|

(
|ũy(t)|H +

∣∣∣∣∣ũ(t, 0) −
b(t)
γ

∣∣∣∣∣) for a.e. t ∈ [0,T ]. (4.22)
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Here, the third and forth terms of the left-hand side of Eq (4.22) is as follows:

ũ(t, 1)st(t)
(
ũ(t, 1) −

b(t)
γ

)
−

st(t)
2

(
ũ(t, 1) −

b(t)
γ

)2

=st(t)ũ2(t, 1) − st(t)ũ(t, 1)
b(t)
γ
−

st(t)
2

(
ũ2(t, 1) − 2ũ(t, 1)

b(t)
γ

+

(b(t)
γ

)2)
=

st(t)
2

ũ2(t, 1) −
st(t)

2

(b(t)
γ

)2

. (4.23)

Since st(t) = a0(ũ(t, 1) − αs(t)), it holds that

st(t)
2

ũ2(t, 1) =
ũ(t, 1)

2

(
|st(t)|2

a0
+ αs(t)st(t)

)
=

1
2a0

ũ(t, 1)|st(t)|2 +
αs(t)

2

(
|st(t)|2

a0
+ αs(t)st(t)

)
=

1
2a0

ũ(t, 1)|st(t)|2 +
αs(t)

2
|st(t)|2

a0
+
α2

6
d
dt

s3(t). (4.24)

Note that the first and second terms in the last of Eq (4.24) are non-negative. Accordingly, by Eq (4.23)
and Eq (4.24) we have that

ũ(t, 1)st(t)
(
ũ(t, 1) −

b(t)
γ

)
−

st(t)
2

(
ũ(t, 1) −

b(t)
γ

)2

≥
α2

6
d
dt

s3(t) −
st(t)

2

(b(t)
γ

)2

=
α2

6
d
dt

s3(t) −
1

2γ2

( d
dt

(s(t)b2(t)) − 2s(t)b(t)bt(t)
)
. (4.25)

Also, for the right-hand side of Eq (4.22) we have

1
γ
|bt(t)||s(t)|

(
|ũy(t)|H + |ũ(t, 0) −

b(t)
γ
|

)
≤

1
2s(t)

|ũy(t)|2H +
1
2

s3(t)
(
|bt(t)|
γ

)2

+
βγ

2

∣∣∣∣∣ũ(t, 0) −
b(t)
γ

∣∣∣∣∣2 +
1

2βγ
|s(t)|2

(
|bt(t)|
γ

)2

. (4.26)

By combining Eq (4.25) and Eq (4.26) with Eq (4.22) we have

1
2

d
dt

(
s(t)

∣∣∣∣∣ũ(t) −
b(t)
γ

∣∣∣∣∣2
H

)
+

1
2s(t)

∫ 1

0
|ũy(t)|2dy

+
α2

6
d
dt

s3(t) −
1

2γ2

d
dt

(s(t)b2(t)) +
βγ

2
|ũ(t, 0) −

b(t)
γ
|2

≤
1
γ2 s(t)b(t)|bt(t)| +

1
2

s3(t)
(
|bt(t)|
γ

)2

+
1

2βγ
|s(t)|2

(
|bt(t)|
γ

)2

for a.e. t ∈ [0,T ]. (4.27)

Then, by integrating Eq (4.27) over [0, t] for t ∈ [0,T ] we obtain that

1
2

s(t)
∣∣∣∣∣ũ(t) −

b(t)
γ

∣∣∣∣∣2
H

+

∫ t

0

1
2s(τ)

|ũy(τ)|2Hdτ +
α2

6
s3(t) −

1
2γ2 (s(t)b2(t))

Networks and Heterogeneous Media Volume 18, Issue 1, 80–108.



106

≤
1
2

s0

∣∣∣∣∣ũ0 −
b(0)
γ

∣∣∣∣∣2
H

+
α2

6
s3

0 +
1

2γ2

∫ t

0
s3(τ)|bt(τ)|2dτ

+
b∗

γ2

∫ t

0
s(τ)|bt(τ)|dτ +

1
2βγ3

∫ t

0
|s(τ)|2|bt(τ)|2dτ for t ∈ [0,T ]. (4.28)

Here, by Young’s inequality it follows that

α2

6
s3(t) −

1
2γ2 (s(t)b2(t))

≥
α2

6
s3(t) −

(
η3

3
s3(t) +

2
3η3/2

( 1
2γ2 (b∗)2

)3/2)
, (4.29)

where η is an arbitrary positive number. Therefore, by Eq (4.28) and Eq (4.29) we obtain(
α2

6
−
η3

3

)
s3(t) ≤

2
3η3/2

( 1
2γ2 (b∗)2

)3/2

+
1
2

s0

∣∣∣∣∣ũ0 −
b(0)
γ

∣∣∣∣∣2
H

+
α2

6
s3

0 +
1

2γ2

∫ t

0
s3(τ)|bt(τ)|2dτ

+
b∗

γ2

∫ t

0
s(τ)|bt(τ)|dτ +

1
2βγ3

∫ t

0
|s(τ)|2|bt(τ)|2dτ for t ∈ [0,T ]. (4.30)

We put M(η) = (s0|ũ0 −
b(0)
γ
|2H)/2 + (α2s3

0)/6 + (2( 1
2γ2 (b∗)2)3/2))/3η3/2. Then, by taking a suitable η = η0

and J1(t) =
∫ t

0
s3(τ)|bt(τ)|2dτ, J2(t) =

∫ t

0
s(τ)|bt(τ)|dτ and J3(t) =

∫ t

0
|s(τ)|2|bt(τ)|2dτ for t ∈ [0,T ] we

derive that

α2

12
s3(t) ≤ M(η0) +

1
2γ2 J1(t) +

b∗

γ2 J2(t) +
1

2βγ3 J3(t) for t ∈ [0,T ]. (4.31)

Then, we have that

J′1(t) ≤
12M(η0)

α2 |bt(t)|2 +
6

(γα)2 |bt(t)|2J1(t)

+
12
α2

(b∗

γ2 J2(t) +
1

2βγ3 J3(t)
)
|bt(t)|2 for t ∈ [0,T ].

Hence, by Gronwall’s inequality we obtain that

J1(t) ≤
[12M(η0)

α2 |bt|
2
L2(0,T )

+
12
α2

(b∗

γ2 J2(t) +
1

2βγ3 J3(t)
)
|bt|

2
L2(0,T )

]
e

6
(γα)2

|bt |
2
L2(0,T ) for t ∈ [0,T ]. (4.32)

Here, we put N(T ) = 12
α2 |bt|

2
L2(0,T )e

6
(γα)2

|bt |
2
L2(0,T ) . Then, by Eq (4.31) and Eq (4.32) we obtain that

α2

12
s3(t) ≤ M(η0) +

1
2γ2 M(η0)N(T )
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+
b∗

γ2 (1 +
N(T )
2γ2 )J2(t) +

1
2βγ3 (1 +

N(T )
2γ2 )J3(t) for t ∈ [0,T ]. (4.33)

Now, we put l(T ) = max0≤t≤T |s(t)|. Then, we have

b∗

γ2 (1 +
N(T )
2γ2 )J2(t) ≤

b∗

γ2 (1 +
N(T )
2γ2 )l(T )|bt|L1(0,T )

≤
η3

3
l3(T ) +

2
3η3/2

(b∗

γ2 (1 +
N(T )
2γ2 )|bt|L1(0,T )

)3/2

,

and

1
2βγ3 (1 +

N(T )
2γ2 )J3(t) ≤

1
2βγ3 (1 +

N(T )
2γ2 )l2(T )|bt|

2
L2(0,T )

≤
2η3/2

3
l3(T ) +

1
3η3

( 1
2βγ3 (1 +

N(T )
2γ2 )|bt|

2
L2(0,T )

)3

.

Hence, by adding these estimates to Eq (4.33) and taking a suitable η = η0 we see that there exists
a positive constant M which depends on β, γ, α, b∗, s0, |bt|L2(0,T ) and |bt|L1(0,T ) such that s(t) ≤ M for
t ∈ [0,T ].

Next, we show (ii). Put U(t, y) = [ũ(t, y)− u∗]+ for y ∈ [0, 1] and t ∈ [0,T ], and then take z = U(t, y)
in Eq (4.18). Here, by ũ(t) ≥ 0 on [0, 1] for t ∈ [0,T ] we note that st(t) = a0(σ(ũ(t, 1)) − αs(t)) =

a0(ũ(t, 1) − αs(t)). Then, we observe that:∫ 1

0

yst(t)
s(t)

ũy(t)U(t)dy =
st(t)
2s(t)

∫ 1

0

( d
dy

(yU2(t)) − U2(t)
)
dy

=
st(t)
2s(t)

|U(t, 1)|2 −
st(t)
2s(t)

|U(t)|2H ≤
st(t)
2s(t)

|U(t, 1)|2 +
a0α

2
|U(t)|2H.

Then, by using the argument of the proof of Lemma 3.7 we derive

1
2

d
dt
|U(t)|2H +

1
s2(t)

∫ 1

0
|Uy(t)|2dy +

1
s(t)

ũ(t, 1)st(t)U(t, 1) −
st(t)
2s(t)

|U(t, 1)|2

≤
a0α

2
|U(t)|2H for a.e. t ∈ [0,T ]. (4.34)

Here, by u∗ ≥ αM ≥ αs(t) for t ∈ [0,T ], it holds that

st(t)
s(t)

ũ(t, 1)U(t, 1) −
st(t)
2s(t)

|U(t, 1)|2 =
st(t)
2s(t)

|U(t, 1)|2 +
st(t)
s(t)

u∗U(t, 1)

≥
a0(u∗ − αs(t))

s(t)
(
|U(t, 1)|2

2
+ u∗U(t, 1)) ≥ 0.

By applying the result to Eq (4.34) we obtain that

1
2

d
dt

∫ 1

0
|U(t)|2dy +

1
2s2(t)

∫ 1

0
|Uy(t)|2dy ≤

a0α

2
|U(t)|2H for a.e. t ∈ [0,T ].

This implies that ũ(t) ≤ u∗ on [0, 1] for t ∈ [0,T ]. Thus, Lemma 4.3 is now proven. �

Combining the statements of Lemma 4.2 and Lemma 4.3, we can conclude that Theorem 2.2 holds.
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