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Abstract. We propose a time-delayed Cucker-Smale type model(CS model),

which can be applied to modeling (1) collective dynamics of self-propelling
agents and (2) the dynamical system of stock return volatility in a financial

market. For both models, we assume that it takes a certain amount of time

to collect/process information about the current position/return configuration
until velocity/volatility adjustment is made. We provide a sufficient condition

under which flocking phenomena occur. We also identify the initial configu-

ration for a two-agent case, in which collective behaviors are accelerated by
changes in the delay parameter. Numerical illustrations and financial simula-

tions are carried out to verify the validity of the model.

1. Introduction. The study of emergent behaviors in particle systems, of which
agents interact through uncoordinated and decentralized interaction laws, has seen
a surge of interest recently. The emergent phenomena are investigated in var-
ious contexts such as flocking - alignment of velocity of self-propelling agents:
[17, 20, 24, 39, 46], herding - adjustment of both velocity and position: [4, 6, 7, 40],
synchronization - adjustment of oscillation frequency: [1, 29, 47] to name a few.
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The study of the collective dynamics is further diversified by considering various
effects such as time delay phenomena [18, 19, 23], randomness [2, 28], connectivity
of the underlying graph structure [35], presence of leadership or hierarchy [42], etc.

Among such phenomenological effects, we aim to understand the time delay
effect. Since it always takes non-negligible time (or delay) for the information to
be transmitted, processed and reflected on agents’ behaviors in many real world
applications, such delay effects arise ubiquitously in nature, societies, and science:
biology [27, 34, 38], physics [44], chemistry [41], engineering [33, 37], finance [32, 45],
traffic dynamics [21, 43], and opinion formulation [36].

More precisely, the goal of this paper is to propose a Cucker-Smale type model
with time delay, which can be interpreted in the following two ways:

1. As a model to describe the collective dynamics of self-propelling agents, who
consider the relative positional configuration over a fixed amount of time to
adjust their velocity.

2. As a model to understand the flocking phenomena of multi-asset return volatil-
ities, a measure of uncertainty in a financial market.

As such, our way how to incorporate the delay parameter into a CS model is different
from previous CS models with time delay.

After we present the model, we verify sufficient conditions that guarantee col-
lective behaviors of the system, and provide mathematical analysis that captures
the effects of delay phenomena on flocking dynamics. That is, we identify the
initial configuration that accelerates the flocking phenomena. Our results are dis-
tinguished from most results so far provided by the related literature, which focuses
on providing sufficient conditions on the delay to guarantee the onset of collective
behaviors.

Particularly, our model is developed on the assumption that it takes much shorter
for volatility adjustment than returns’ adjustment. As such, the way how the delay
parameter is incorporated into the model is different from previous CS models with
time delay. We verify through numerical simulations that our model is able to
forecast real data better than the previous models in the literature.

We organize this paper as follows. In Section 2, we state our modeling assump-
tion and propose a time-delayed CS model. In Section 3, we identify the initial
configuration that leads to acceleration of the flocking. In Section 4, the order
preservation is discussed. In Section 5, we provide several numerical examples to
illustrate the validity of our analytical results. Finally, in Section 6, we discuss the
applications of the model in predicting real financial market data.

2. Modeling time-delayed Cucker-Smale model. In this section, we introduce
our time-delayed CS model. We also provide motivations of the model from two
viewpoints: one from the collective dynamics of self-propelling agents, and the other
from volatility flocking phenomena in a financial market.

2.1. Modeling from the perspectives of self-propelling agents. The first
motivation comes from the flocking behavior of self-propelling particles. Flocking
is about adjusting one’s velocity according to the behavior of neighboring particles.
Depending on system configuration, such adjustment may occur instantly or may
involve a specific time delay. The most common CS type model with time-delay
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effect in the literature takes the following form [8, 18, 22]:

ẋτi (t) = vτi (t),

v̇τi (t) =
λ

N

N∑
j=1

ψ
(
|xτj (t− τ)− xτi (t)|

)
(vτj (t− τ)− vτi (t)),

(1)

where, for each i = 1, 2, · · · , N , xτi (t) ∈ R denotes the position of agent i at time
t ≥ −τ , and vτi (t) ∈ R denotes the velocity of agent i. We use the supperscript
τ to denote their dependence on the delay parameter τ . For the definition of the
interaction strength ψ, see [8, 18, 22]. This model corresponds to situations, where a
non-negligible time lapse is necessary for information-transmitting from a particle’s
position and velocity to the others’. We remark that we analyze here the one-
dimensional position and velocity. We leave the analysis in a general dimension for
future research.

On the other hand, we consider the case, in which it takes some time to collect
information about the relative positions of particles until the velocity adjustment
with respect to neighboring particles is made. This case is also often found natu-
ral. For example, drivers would adjust their speed (either accelerate or slow down)
while comparing their relative positions to other cars’. Such comparison is made
continuously and necessitates the sufficient amount of time before the instantaneous
adjustment is made. A driver keeps accumulating information about his/her neigh-
boring drivers’ driving styles and uses the historical data for changing his/her speed
when it is necessary. In this situation, the observational time lapse would often be
longer than the immediate speed adjustment.

We state our main modeling assumptions in a more rigorous manner as follows:

1. Each agent’s velocity is coupled to each other, and their collective dynamics
can be described by, among others, a CS type flocking model.

2. The adjustment between velocities of agents occurs immediately, while how in-
tensively they interact to each other depends on the history data of positional
configuration.

Assumption (2) can be restated as follows: the time scale for velocity adjustment is
negligible compared to the time needed to assess the information about the positions
of neighboring agents.

The time-delayed CS model for N agents based on the above assumptions with
the delay parameter τ > 0 is given by

CS(τ) :


ẋτi = vτi ,

v̇τi = λ
N

∑N
j=1 Ψτ

ij

(
vτj − vτi

)
for i = 1, · · · , N,(

xτi (t), vτi (t)
)

=
(
xτh,i(t), v

τ
h,i(t)

)
, −τ ≤ t ≤ 0,

where xτi := xτi (t) and vτi := vτi (t). The initial history data (xτh,i, v
τ
h,i) are given

functions on the initial time interval [−τ, 0].
Throughout this paper, we use the following two types of communication func-

tions Ψτ
ij between agents i and j:

1. Communication function for accumulated historical interaction:

Ψτ
ij := Ψ

(
xτi , x

τ
j , t, τ

)
:=

1

τ

∫ t

t−τ
ψ
(
|xτj (s)− xτi (s)|

)
ds. (2)
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2. Communication function with a fixed delay parameter:

Ψτ
ij := Ψ

(
xτi , x

τ
j , t, τ

)
:= ψ

(
|xτj (t− τ)− xτi (t− τ)|

)
, (3)

with the interaction kernel ψ(r) : R→ R+

ψ(r) :=
1

(ε+ r2)
γ
2

, (ε = 1), (4)

which is commonly used for describing flocking phenomena in the literature [6, 20,
40, 42]. The interaction strength exponent γ ∈ R can be derived from assumptions,
or can be chosen to fit data. The exponent γ is usually assumed to be non-negative
in the study of flocking phenomena between self-propelling agents. (Below, it will
be discussed that γ < 0 is reasonable in models of a financial market.) Note that,
when ε = 0 the interaction ψ(r) = r−γ becomes singular at r = 0 when γ > 0.

2.2. Modeling for understanding volatility flocking phenomena in finan-
cial markets. Our second motivation comes from attempts to model stock return
volatility flocking phenomena using the delayed interaction between them. For ex-
ample, in the Generalized Autocorrelated Conditional Heteroskedasticy (GARCH)
model [25], a discrete-version of the Stochastic Volatility model [5], the expected
volatility at t is represented by the t−τ observable information set for 0 < τ ≤ t. By
modeling time delay τ , the model can mimic shocks today retaining their influence
on volatility and return expectations for many periods in the future.

However, the GARCH model is usually developed as a univariate model, because
it is difficult to jointly estimate multivariate volatility dynamics on time. So far,
multivariate GARCH or SV model is only developed with strict assumptions [5], [16].
Recently, the CS-type volatility models have advanced the multivariate volatility
modeling without loss of computational efficiency. The authors in [9, 10] refer
to the CS mechanism, particularly a version that has been applied to explaining
the collective behavior in human society [3], [13], and [26]. In [11], various key
financial parameters for the CS-type volatility model is calibrated to be referred in
its practical use.

More recently, a time-delay CS-type volatility model was suggested in [8], which
introduced the delay parameter into the dynamic system of regime switching volatil-
ity by following (1). On the other hand, we present a model of multivariate time-
delayed CS mechanism based on the following assumptions & observations of volatil-
ity dynamics:

1. Asset return volatilities are coupled to each other, and their collective dynam-
ics can be described by, among others, a CS type flocking model.

2. The adjustment between volatilities occurs instantaneously, while how inten-
sively they interact to each other depends on the initial history data of the
return.

Assumption (2) would be restated as follows: the time scale for volatilities’ adjust-
ment is negligible compared to the time scale for returns’ information-exchange.
The assumptions will be further discussed and justified through various numerical
simulations in Sections 5 and 6.

We assume that N assets are traded in a market. Then, based on the above
two assumptions, we derive a time-delayed CS type volatility-flocking model, which
takes the exact equation of CS(τ). The only difference is about the interpretation:
in this context, xτi := xτi (t) denotes the price return of asset i at time t ≥ −τ , and
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vτi := vτi (t) denotes the return’s volatility. In this model, a communication noise is
not included. Instead, we focus on the time delay effect on the dynamics.

Given no consensus in the literature on which is the appropriate interaction kernel
for volatility dynamics modeling, we assume, throughout this paper, that commu-
nication functions Ψτ

ij between agents i and j takes the form (2) or (3) presented
above. Contrary to the study of flocking phenomena between self-propelling agents
considered in the previous subsection, it is relevant to assume γ to be non-positive.
For example, in modeling collective behavior of volatility, it is more reasonable to
assume that volatility, which is fluctuating far from others, relaxes faster. This as-
sumption is also consistent with that of [8, 9]. Note that, unlike the self-propelling
agents’ case, the kernel become degenerate at r = 0 when ε = 0 in this case.

3. The effect of time-delay on the flocking dynamics. In this section, we
conduct mathematical analysis of the model CS(τ) to understand the qualitative
effect caused by such a delay mechanism on flocking dynamics. More precisely, we
identify initial configurations under which the time-delay effect can accelerate the
overall flocking behavior of the delayed CS model. Our study is unlike most of
the results found in mathematical literature on the delay effect in flocking dynam-
ics, focusing on the derivation of sufficient conditions that guarantee the flocking
asymptotics in the presence of the delay effect. This analysis is given for the two-
particle system. More analyses on systems with a general number of particles are
left for the future research.

To state our main results, we define the flocking phenomenon of the system. We
start with basic properties of the mean and variance of position and velocity, which
are defined as follows:

• means of xτ and vτ :

xτc (t) :=
1

N

N∑
i=1

xτi (t), vτc (t) :=
1

N

N∑
i=1

vτi (t).

• variances of xτ and vτ :

Xτ (t) :=
1

N

N∑
i=1

|xτi (t)− xτc (t)|2, Vτ (t) :=
1

N

N∑
i=1

|vτi (t)− vτc (t)|2.

Lemma 3.1. Let (xτ , vτ ) be the solution to CS(τ). If the initial data is given by

xτc (0) = vτc (0) = 0, (5)

then we have xτc (t) = vτc (t) = 0 for all t > 0.

Proof. Due to the symmetry of Ψτ
ij = Ψτ

ji, we have

v̇τc =
λ

N2

N∑
i=1

N∑
j=1

Ψτ
ij

(
vτj − vτi

)
= 0.

This, together with (5), gives the desired result.

In view of Lemma 3.1, we fix xτc and vτc for our convenience.

We summarize our assumptions that are applied throughout the paper.

• We assume ε = 1 and γ > 0 for the communication function (4).
• We assume xτc (0) = vτc (0) = 0.
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Under these assumptions, the flocking phenomena of the system CS(τ) is defined
more succinctly as follows:

Definition 3.2. Let (xτ , vτ ) be the solution to CS(τ). We say the asymptotic
flocking occurs if

lim
t→+∞

|vτi (t)| = 0, and max
1≤i≤N

|xτi (t)| <∞ for i = 1, 2, · · · , N.

Now, we are ready to state our main theoretical result, which compares the decay
speed of system CS(τ) corresponding respectively to delays parameters τ2 > τ1 > 0.

Theorem 3.3. Let N = 2. Fix τ2 > τ1 ≥ 0. Let (xτ2 , vτ2) and (xτ1 , vτ1) be the
solutions to CS(τ2) and CS(τ1), respectively, for the interaction kernel (4) with
ε > 0. Assume the following ordering condition holds for t ∈ [−τ2, 0]:

xτ2h,1(t) < xτ2h,2(t), vτ2h,1(t) < vτ2h,2, for t ∈ [−τ2, 0],

xτ1h (t) = xτ2h (t), vτ1h (t) = vτ2h (t), for t ∈ [−τ1, 0],
(6)

where xτh :=
(
xτh,1, x

τ
h,2, ..., x

τ
h,N

)
and vτh :=

(
vτh,1, v

τ
h,2, ..., v

τ
h,N

)
for given τ . Then,

we have for t > 0,

Vτ2(t) < Vτ1(t),

where Vτ1(t) = 1
N

∑N
i=1 |v

τ1
i (t)|2 and Vτ2(t) = 1

N

∑N
i=1 |v

τ2
i (t)|2 are the variances of

the velocities to CS(τ1) and CS(τ2) with zero means, respectively.

3.1. Range of γ for flocking. We show that asymptotic flocking occurs to our
problem CS(τ) at least when γ ∈ [0, 1].

Lemma 3.4. Let (xτ , vτ ) be the solution to CS(τ). Given τ ≥ 0, the energy
functional Xτ and Vτ satisfies

Vτ (t) ≤ Vτ (0)e−2λ
∫ t
0

Ψτmin(s) ds, Xτ (t) ≤ 2
(
Xτ (0) + Vτ (0)t2

)
.

Proof. From Lemma 3.1, we set xτc ≡ vτc ≡ 0. Then,

dVτ (t)

dt
= − λ

N2

N∑
i=1

N∑
j=1

Ψτ
ij

∣∣vτj (t)− vτi (t)
∣∣2 ≤ −2λΨ

τ(t)
minVτ (t),

which yields Vτ (t) ≤ Vτ (0)e−2λ
∫ t
0

Ψτmin(s) ds.
For Xτ , we obtain the following inequality:

dXτ (t)

dt
=

2

N

N∑
i=1

xτi (t)vτi (t) ≤ 2
√
Xτ (t)

√
Vτ (t)

≤ 2
√
Vτ (0)e−λ

∫ t
0

Ψτmin(s) ds
√
Xτ (t).

Solving this, we have√
Xτ (t)−

√
Xτ (0) ≤

√
Vτ (0)

∫ t

0

e−λ
∫ s
0

Ψτmin(u) du ds,

and hence we obtain our result, where the minimum of the interaction kernel is
defined by

Ψτ
min(t) := min

1≤i,j≤N
Ψτ
ij(t).
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In the following proposition, we show that asymptotic flocking occurs when γ ∈
[0, 1].

Proposition 1. Let (xτ , vτ ) be the solution to CS(τ). Given τ ≥ 0, we have

lim
t→+∞

∫ t

0

Ψτ
min(s)ds =∞

for γ ∈ [0, 1].

Proof. From Lemma 3.4, we have

|xτi (s)− xτj (s)|2 ≤ 2NXτ (s) ≤ max
{

2N
(
Xτ (0) + Vτ (0)t2

)
, sup
−τ≤u≤0

2NXτ (u)
}

for t− τ ≤ s ≤ t. Then, this gives

Ψτ
min(t) ≥ min

1≤i,j≤N

{
inf

t−τ≤s≤t
ψ
(
|xτi (s)− xτj (s)|

)}
≥ ψ

(∣∣∣max
{

2N
(
Xτ (0) + Vτ (0)t2

)
, sup
−τ≤u≤0

2NXτ (u)
}∣∣∣ 12)

≥
( 1

1 + sup−τ≤u≤0 2NXτ (u) + 2NVτ (0)

) γ
2 1

(1 + t2)
γ
2

≥ κ

(1 + t)γ
,

where κ :=
(
1+sup−τ≤u≤0 2NXτ (u)+2NVτ (0)

)− γ2 . Then, the desired result follows
from 0 ≤ γ ≤ 1.

3.2. Proof of theorem 3.3. We first show that the sign of velocity vτi , i = 1, 2,
does not change as time goes on.

Lemma 3.5. Given τ > 0, let (x, v) be the solution to CS(τ). For N = 2, if we
have

vτh,1(0) < 0 < vτh,2(0), (7)

this inequality holds for all t > 0.

Proof. The relation xc = vc ≡ 0 gives

ẋτ2 = vτ2 , v̇τ2 = −λΨτ
21v

τ
2 .

Here, Ψτ
21 is either Ψτ

21 = 1
τ

∫ t
t−τ ψ

(
|2xτ2(s)|

)
ds or Ψτ

21 = ψ
(
|2x2(t− τ)|

)
. Then, we

have

vτ2 = vτ2 (0)e−λ
∫ t
0

Ψτ21(s) ds > 0,

and this together with the assumption (7) gives the desired result.

Proof of Theorem 3.3. For N = 2, under the condition (6), we have Vτ2(0) =
Vτ1(0) and

V ′τ2(0) = − λ

N2

N∑
i=1

N∑
j=1

Ψτ2
ij

∣∣vτ2h,j(0)− vτ2h,i(0)
∣∣2

< − λ

N2

N∑
i=1

N∑
j=1

Ψτ1
ij

∣∣vτ1h,j(0)− vτ1h,i(0)
∣∣2

= V ′τ1(0) < 0.

(8)
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Suppose, to the contrary, that Vτ1 and Vτ2 become identical at a first time t∗ > 0,
that is,

Vτ2(t∗) = Vτ1(t∗) and Vτ2(t) 6= Vτ1(t) for 0 < t < t∗. (9)

Here, we note that the relation vτ2c = vτ1c = 0 implies

Vτ2(t) =
∣∣vτ22 (t)

∣∣2 , Vτ1(t) =
∣∣vτ12 (t)

∣∣2 ,
and hence (8) gives

|vτ22 |2 < |v
τ1
2 |2

for 0 < t < t∗. Furthermore, Lemma 3.5 says that the sign of vτ22 and vτ12 will not
change for t > 0. Therefore,

0 < vτ22 < vτ12 (10)

for 0 < t < t∗. Then, this also implies that for 0 < t < t∗,

0 < xτ22 < xτ12 . (11)

Now, we claim that the following inequality holds, for any t ∈ (0, t∗),

Ψ
(
xτ21 , x

τ2
2 , t, τ2

)
> Ψ

(
xτ11 , x

τ1
2 , t, τ1

)
.

For this, we separate the proof into two cases depending on the choice of Ψ: (2)
and (3).

• Case of (2): For 0 < t < t∗, we have from (10) that xτ22 and xτ12 are increasing
functions of t. Then the relation (11) gives

1

τ2

∫ t

t−τ2
ψ(|2xτ22 (s)|)ds =

1

τ2

∫ t

t−τ1
ψ
(
|2xτ22 (s)|

)
ds+

1

τ2

∫ t−τ1

t−τ2
ψ
(
|2xτ22 (s)|

)
ds

>
1

τ2

∫ t

t−τ1
ψ
(
|2xτ12 (s)|

)
ds+

1

τ2

∫ t−τ1

t−τ2
ψ
(
|2xτ12 (s)|

)
ds

>
1

τ2

∫ t

t−τ1
ψ
(
|2xτ12 (s)|

)
ds+

τ2 − τ1
τ2

ψ
(
|2xτ12 (t− τ1)|

)
>

1

τ2

∫ t

t−τ1
ψ
(
|2xτ12 (s)|

)
ds

+

(
1− τ1

τ2

)
1

τ1

∫ t

t−τ1
ψ
(
|2xτ12 (s)|

)
ds

=
1

τ1

∫ t

t−τ1
ψ
(
|2xτ12 (s)|

)
ds.

• Case of (3): For 0 < t < t∗, it suffices to show

xτ22 (t− τ2) < xτ12 (t− τ1). (12)
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We first consider the case t− τ2 < t− τ1 ≤ 0. Since the condition (6) implies v2 > 0
for t ≤ 0, we have

xτ22 (t− τ2) = xτ22 (−τ2) +

∫ t−τ2

−τ2
vτ22 (s)ds

= xτ12 (−τ2) +

∫ t−τ2

−τ2
vτ12 (s)ds

< xτ12 (−τ2) +

∫ t−τ1

−τ2
vτ12 (s)ds = xτ12 (t− τ1).

When t− τ2 ≤ 0 < t− τ1,

xτ22 (t− τ2) < xτ22 (0) = xτ12 (0) < xτ12 (t− τ1).

When 0 < t− τ2 < t− τ1,

xτ22 (t− τ2) = xτ22 (0) +

∫ t−τ2

0

vτ22 (s)ds

< xτ12 (0) +

∫ t−τ2

0

vτ12 (s)ds

< xτ12 (0) +

∫ t−τ2

0

vτ12 (s)ds+

∫ t−τ1

t−τ2
vτ12 (s)ds

= xτ12 (t− τ1).

Now, the claim (12) implies that the following inequality holds for all 0 < t < t∗:

ψ(‖2xτ22 (t− τ2)‖) > ψ(‖2xτ12 (t− τ1)‖).
In both cases, we have

V ′τ2(t) = −2λVτ2Ψ
(
xτ21 , x

τ2
2 , t, τ2

)
, V ′τ1(t) = −2λVτ1(t)Ψ

(
xτ11 , x

τ1
2 , t, τ1

)
.

Consequently, we obtain the following inequality:

Vτ2(t∗) = Vτ2(0)e−2λ
∫ t∗
0

Ψ
(
x
τ2
1 ,x

τ2
2 ,t,τ2

)
dt

< Vτ1(0)e−2λ
∫ t∗
0

Ψ
(
x
τ1
1 ,x

τ1
2 ,t,τ1

)
dt = Vτ1(t∗),

which contradicts (9).

4. Order preservation. In this section, we show that the order preserving prop-
erty holds for our model. The number of agents are not restricted. We first show
that the flocking does not occur in finite time:

Lemma 4.1. Given τ ≥ 0, let (xτ , vτ ) be the solution to CS(τ). Suppose that we
have initial data with Vτ (0) > 0. Then, all of {vτi }Ni=1 are not identical in finite
time.

Proof. Recalling vc ≡ 0, we get

dVτ
dt

=
d

dt

 1

N

N∑
i=1

|vτi |2
 = − λ

N2

N∑
i=1

N∑
j=1

Ψτ
ij

∣∣vτj − vτi ∣∣2.
Now, we use ψ ≤ ψ∞ to get

dVτ
dt
≥ − λ

N2

N∑
i=1

N∑
j=1

ψ∞
∣∣vτj − vτi ∣∣2 = −2λψ∞Vτ .
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This implies that Vτ is not zero at finite time if Vτ (0) > 0.

Next, we show that the positions of any two agents cannot be overlapped before
their velocities are completely aligned.

Lemma 4.2. Let (xτ , vτ ) be the solution to CS(τ). Given τ ≥ 0, assume that the
following condition holds for t ∈ [−τ, 0]:

xτh,1(t) < xτh,2(t) < · · · < xτh,N (t), vτh,1(t) < vτh,2(t) < · · · < vτh,N (t). (13)

If any pair of (xτi , x
τ
j ) becomes identical in finite time T > 0, there exists 0 < t∗ < T

such that vτi (t∗) = vτj (t∗).

Proof. Suppose that there exists a pair of indices (i, j) such that

xτi (T ) = xτj (T ), i < j.

Then, we consider

xτj (T )− xτi (T ) = xτj (0)− xτi (0) +

∫ T

0

{
vτj (s)− vτi (s)

}
ds.

Recalling (13), we know

xτj (0)− xτi (0) > 0,

which gives ∫ T

0

{
vτj (s)− vτi (s)

}
ds < 0. (14)

If the equality vτi = vτj does not occur within interval [0, T ], the continuity of vτi
and vτj , and the initial condition 0 < vτj (0)− vτi (0) imply∫ T

0

{
vτj (s)− vτi (s)

}
ds > 0.

This contradicts (14).

In the following lemma, we consider the first time when a pair i < j violates the
condition (13), and observe the behavior of vk, where i ≤ k ≤ j:

Lemma 4.3. Let (xτ , vτ ) be the solution to CS(τ). Given τ ≥ 0, assume that the
condition (13) holds for t ∈ [−τ, 0]. Suppose a pair vτi , vτj (i < j) violates (13) for
the first time at t = t∗, that is, t∗ is the minimum time with vτi (t∗) = vτj (t∗). Then,
we have

vτi (t∗) = vτk(t∗) = vτj (t∗), ∀k ∈ {i, i+ 1, · · · , j − 1, j}.

Proof. Suppose, to the contrary, that there exists an index k ∈ {i + 1, · · · , j − 1}
such that

vτi (t∗) = vτj (t∗) 6= vτk(t∗).

Without loss of generality, we assume

vτi (t∗) = vτj (t∗) < vτk(t∗).

Then, since we have from (13) that

vτk(0) < vτj (0),

the intermediate value theorem implies that there exists t∗∗ < t∗ such that

vτj (t∗∗) = vτk(t∗∗).
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This contradicts the assumption that t∗ is the first time when the condition (13) is
violated.

Proposition 2. Let (xτ , vτ ) be the solution to CS(τ). Given τ ≥ 0, if the following
condition holds for t ∈ [−τ, 0]:

xτh,1(t) < xτh,2(t) < · · · < xτh,N (t), vτh,1(t) < vτh,2(t) < · · · < vτh,N (t). (15)

Then, this ordering is preserved for t ≥ 0:

xτ1(t) < xτ2(t) < · · · < xτN (t), vτ1 (t) < vτ2 (t) < · · · < vτN (t).

Proof. Suppose that the condition (15) is first violated at time t∗ > 0. Then, due
to Lemmas 4.2 and 4.3, there exists an index i ∈ {1, 2, · · · , N − 1} such that

vτi+1(t∗) = vτi (t∗) =: v,

and {
vτj (t∗)− v ≥ 0, ∀j ≥ i+ 1

vτj (t∗)− v ≤ 0, ∀j ≤ i
. (16)

Note that Lemma 4.1 guarantees the existence of an index k such that

vτk(t∗) 6= v.

Since the condition (15) is violated first at t∗, Lemma 4.2 implies that the fol-
lowing relation holds at t∗:

xτj+1(t∗) > xτj (t∗), ∀j ∈ {1, 2, · · · , N − 1},

which implies that{
ψ
(
‖xτj (t∗ − τ)− xτi+1(t∗ − τ)‖

)
> ψ

(
‖xτj (t∗ − τ)− xτi (t∗ − τ)‖

)
, ∀j > i+ 1

ψ
(
‖xτj (t∗ − τ)− xτi+1(t∗ − τ)‖

)
< ψ

(
‖xτj (t∗ − τ)− xτi (t∗ − τ)‖

)
, ∀j < i

.

(17)

From (16) and (17), we find that

v̇τi+1(t∗)− v̇τi (t∗)

=
λ

N

N∑
j=1

Ψτ
i+1,j(t

∗)
(
vτj (t∗)− vτi+1(t∗)

)
− λ

N

N∑
j=1

Ψτ
i,j(t

∗)
(
vτj (t∗)− vτi (t∗)

)
=

λ

N

N∑
j=i+2

(
Ψτ
i+1,j(t

∗)−Ψτ
i,j(t

∗)
)(
vτj (t∗)− v

)
+
λ

N

i−1∑
j=1

(
Ψτ
i+1,j(t

∗)−Ψτ
i,j(t

∗)
)(
vτj (t∗)− v

)
> 0.

Therefore, by the continuity of vi+1 − vi, there exists a time 0 < t∗∗ < t∗ for which
we have

vτi+1(t∗∗)− vτi (t∗∗) < 0.

But, considering vτi+1(0)− vτi (0) > 0, this implies that

vτi+1(t∗∗∗)− vτi (t∗∗∗) = 0
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for some 0 < t∗∗∗ < t∗∗. This contradicts the assumption that t∗ is the first time
for which vτi+1(t∗)− vτi (t∗) = 0. This completes the proof.

5. Numerical simulation. We now present several numerical examples using the
model CS(τ). First, we conduct numerical simulation to verify the result in The-
orem 3.3. We also conduct a simulation with history data that violate condition
(6). Second, we examine simulations related with Proposition 2. This examination
provides an insight for understanding the time delay’s effects on the flocking speed
of agents N > 2. For numerical experiments, we use the Euler scheme with fixed
time step ∆t = 1/128. In each test, we set history data according to the solutions
to CS(0) for t ∈ [−2, 0], i.e.,

xτh(t) := x0
h(t), vτh(t) := v0

h(t), t ∈ [−2, 0].

5.1. Case N = 2. By Theorem 3.3, we show that different variances’ decaying
speed made by different time delay are subject to the configuration of history data.
To confirm it, we conduct the numerical analysis for comparing the time evolution
of variances with various time delays in CS(τ).

5.1.1. Verification of theorem 3.3. According to Theorem 3.3, given two different
time delays, if history data satisfy the order condition (6), faster flocking behaviors
arise with larger time delays. This tendency is found by examining the flocking be-
havior with increasing values of time-delays τ = 0, 1

4 ,
1
2 , 1,

5
4 ,

3
2 . For this experiment,

we consider γ = 1, λ = 1, and take history data for t ∈ [−2, 0] by the solution to
CS(0) with initial data,

x0
h,1(−2) = −1, x0

h,2(−2) = 1, v0
h,1(−2) = −1, v0

h,2(−2) = 1.

Then, the initial data satisfy the condition (6), because Proposition 2 holds for
τ = 0.

In Figure 1, we depict the time evolution of xτ , vτ and Vτ up to t = 18. Sep-
arate numerical simulations are conducted for different communication functions.
Each experiment’s results are found in the left(with (2)) and right(with (3)) panel,
respectively. We find no solutions crossing out, implying that the order of solution
is preserved. Furthermore, in Figures 1e-1f, we observe that Vτ converges to zero
rapidly as τ increases. The difference between solutions by different delays with the
kernel (2) is smaller than that with the kernel (3).

5.1.2. Violation of condition (6). For better understanding the role of initial config-
urations in Theorem 3.3, here we consider history data which violate the condition
(6). As in Section 5.1.1, we take γ = 1, λ = 1 and prepare history data by solving
CS(0) with

x0
h,1(−2) = −6, x0

h,2(−2) = 6, v0
h,1(−2) = 1, v0

h,2(−2) = −1.

Here, the values of x0
h,1(−2) and x0

h,2(−2) are set to be relatively far from each other

(compared to Section 5.1.1) to compare the flocking speed without considering any
collision between solutions for each τ . In Figure 2, the trajectory of xτ and vτ

shows no collision for each fixed time delay τ . Particularly, in Figures 2e–2f, we
confirm that the variance Vτ corresponding to a smaller time delay shows a more
pronounced decreasing tendency before the time interval [9, 10]. This pattern is
contrary to the results in Theorem 3.3. However, after the time interval, it appears
that variances corresponding to larger time delays decay faster. Consistent results
are obtained for two interaction kernels (2) and (3). As observed in Section 5.1.1,
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Figure 1. Verification of Theorem 3.3: Time evolution of posi-
tion(top), velcocity(middle) and variance(bottom) with two types
of communication (2)(left) and (3)(right). Each line show the re-
sults with various time delays. History data and other parameter
values are given in Section 5.1.1.

the averaged interaction kernel (2) shows smaller differences between results with
different delays.

5.2. Case N = 3. In Proposition 2, we show that the ordering relation (15) main-
tains for all t ≥ 0. Here, we verify this property for N = 3 and then show the
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Figure 2. Violation of condition (6): Time evolution of posi-
tion(top), velcocity(middle) and variance(bottom) with two types
of communication (2)(left) and (3)(right). Each line show the re-
sults with various time delays. History data and other parameter
values are given in Section 5.1.2.
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effects of different time delays on the flocking behaviors. For the experiments, we
use γ = 1, λ = 1 and history data from t = −2 to t = 0 by the solution of CS(0)
with initial data,

x0
h,1(−2) = 3.719443170061712, v0

h,1(−2) = −3.689068693043051,

x0
h,2(−2) = −8.764952796300973, v0

h,2(−2) = −6.007401634608296,

x0
h,3(−2) = 5.045509626239265, v0

h,3(−2) = 9.696470327651342.

(18)

From Figure 3, it is noteworthy to find that solutions maintain the ordering con-
dition (15) for t ≥ 0. Moreover, the result from the N = 3 case also shows that
larger time delays lead to faster flocking tendency. Although we do not report the
numerical results for larger values of N , we also observed that larger time delays
led to faster flocking behaviors for ordered history data satisfying (15). From this
numerical observations, we expect Theorem 3.3 to be generalized to the case N > 2.

Although our theoretical results are found for γ ≥ 0, we provide numerical re-
sults about the solutions’ behavior with γ < 0 regarding the interaction between
asset return volatilities as mentioned in Section 2. We reuse the history data of the
previous simulations and set γ = −1, and λ = 0.004. In Figure 4, we show that
when the order condition is not preserved, the time delay effect is reversed to show
decelerated flocking with a larger time delay.

Finally, we study the case that the order relation (15) is violated for N = 3. We
prepare for history data by solving the problem CS(0) with initial data

x0
h,1(−2) = −16.276445076710459, v0

h,1(−2) = −0.635594737301151,

x0
h,2(−2) = 3.200093962187581, v0

h,2(−2) = −5.263727976621469,

x0
h,3(−2) = 13.076351114522879, v0

h,3(−2) = 5.899322713922622.

(19)

From Figure 5, we find that the solutions are crossing-out as t develops. Thus,
the flocking speed is not monotonically changing(increasing or decreasing) by the
increase in the time delay. Although we report the results based on two initial
data (18), satisfying (15), and (19), violating (15), consistent results are found from
simulations with other history data.

6. Applications in financial market data. The aim of this section is twofold.
First, we provide details about how to apply Model CS(τ) to study financial data.
By providing details, we discuss the model’s power of explaining the stylized facts
about stock returns’ volatilities such as volatility clustering and comovement. Sec-
ond, we discuss the model’s predicting power. We compare our model’s predicting
power with that of the efficient market hypothesis (EMH), a classical finance theory
in predicting the value at t+1. According to EMH, the best prediction of tomorrow
expectation E [xt+1] is today’s realization xt because the market is fully efficient for
the current price reflect all available information for market participants. Thus,
any difference between realized xt+1 and xt is stochastic shocks εt+1 that are not
predictable at t. Finally, we also compare the model’s predicting power with a pop-
ularly used time-delayed CS type model in predicting the dynamics of stock return
volatility.

Here, we consider the dynamics of asset i’s log price dSi(t)/Si(t):

dSi(t)

Si(t)
= xi(t)dt+ vi(t)dWi(t), t > 0, 1 ≤ i ≤ N, (20)
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Figure 3. Simulation Results for N = 3: Time evolution of posi-
tion(top), velcocity(middle) and variance(bottom) with two types
of communication (2)(left) and (3)(right). Each line show the re-
sults with various time delays. History data and other parameter
values are given in (18).

where Wi(t) is the standard Wiener process (or Brownian motion). As assumed
in CS(τ), let N be the number of assets. Thus, the spot evolution of the price
process Si(t) is governed by the market’s expected return xi(t), volatility vi(t), and
the geometric Brownian motion for i = 1, ..., N . Since ẋi(t) = vi(t), modeling the
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Figure 4. Simulation Results with γ = −1 in (4): Time evolution
of position(top), velcocity(middle) and variance(bottom) with two
types of communication (2)(left) and (3)(right). Each line show the
results with various time delays. History data and other parameter
values are given in (18).

dynamical system of v̇i(t) is a key to understand both the expected return xi(t) and
volatility vi(t)dWi(t).

For simulation, we use daily closing prices of thirty companies (N = 30) that
are listed on the Dow Jones Industrial Average Index (DJIA) as of May 22nd 2020.
Our sample period starts from January 1st 2019 and ends on May 22nd, 2020. We
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Figure 5. Simulation Results with γ = −1 in (4): Time evolution
of position(top), velcocity(middle) and variance(bottom) with two
types of communication (2)(left) and (3)(right). Each line show the
results with various time delays. History data and other parameter
values are given in (19), violating the condition (15).
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set the time step size ∆t as 2 days and the time delay τ as 1 day. For comparison,
we consider the interaction kernel Ψτ

ij in (3). Denoting the predicted values of(
xτi (t+ ∆t), vτi (t+ ∆t)

)
by
(
xτ,predi (t+ ∆t), vτ,predi (t+ ∆t)

)
, we provide a discrete-

version of Model CS(τ) as follows:{
xτ,predi (t+ ∆t) = xτi (t) + ∆tvτi (t),

vτ,predi (t+ ∆t) = vτi (t) + ∆tλ
N

∑N
j=1 Ψτ

ij(t)
(
vτj (t)− vτi (t)

)
.

(21)

Now, the simulation procedure is summarized as follows: for each i = 1, · · · , N ,
and t = 0, 1, · · · , T −∆t,

• Step 1: Import realized data of
(
xi(s), vi(s)

)
at s = t− τ and s = t.

• Step 2: Predict vτ,predi (t+ ∆t) according to (21).

In Figure 6, we present our simulation results of vτ,predi (t+ ∆t) and compare them
with truly realized vτh,i(t+ ∆t).
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Figure 6. Comparison of real and simulated volatility data of
General Electric (GE)
Left: Real volatility data

Center: Simulated data based on (1)
Right: Simulated data based on (21)
Note: Volatilities are drawn over the sample period. We use thirty firms listed

on DJIA and λ = 10. See text for details of data sources and values of other
parameters.

The model successfully predict real financial data, presenting a few noteworthy
stylized facts about volatility dynamics. Particularly, simulated data exhibit volatil-
ity clustering (e.g., [14]), high/low volatilities continue for a while. The pattern is
related to long memory (e.g., [12]) and propagating responses of an impulse with sto-
chastic information arrival. We compare the results according to the mean squared
errors and the simulated data’s correlation with true data. The mean squared errors
are computed as
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1

N

1

T + 1−∆t

N∑
i=1

T−∆t∑
t=0

(
vτi (t+ ∆t)− vτ,predi (t+ ∆t)

)2
,

where vτi (t+ ∆t) indicate real volatility data.
We find that the simulation results of CS(τ) show lower mean squared errors

(1.316%) in forecasting the real data than them from (1) (1.328%). Particularly, the
mean squared error of CS(τ)’s forecast is 1.254% whereas (1)’s is 1.4% in predicting
real volatility of Exxon Mobile’s return, which show the highest mean squared error
among thirty volatility series during the sample period. Our model also provides
better prediction than the EMH’s prediction, of which the mean squared errors of
1.353%. Finally, CS(τ) simulation results have the higher correlation (84.05%) with
real data than the model (1) (82.14%).

However, CS(τ) is somewhat limited in explaining the real volatility perfectly.
For example, high picks around 310th day shown in real data are not fully predicted
by simulations. Since CS(τ) explains one asset’s movement in the 30 assets network,
the simulation shows its relative movement to others. If there is a macroeconomic
shock to the entire market, then all assets’ returns are moving in the similar way.
Subsequently, simulated data plots are smoother than real points. Most notable
peaks are around the start of COVID-19 pandemic, in which many firms were
exposed to this unexpected shocks to macroeconomic conditions.

Despite more rooms to be discussed and investigated in the future study, our
simulations show that financial data are relevant subjects to study the real ap-
plication of CS system by their dynamics developed by the continuous commu-
nication/interaction. Notably, CS(τ) provides understanding on one stock’s price
dynamics according to its relative movement to other 29 stocks in the same network.
Such understanding is important in the optimal portfolio selection. If a stock’s price
movement is significantly different from other stocks, then it deserves attention for
generating the minimum-risk portfolio. On the other hand, if all stocks in a basket
are moving into the same direction, then its reaction to the shock may not contain
valuable information.

Here, we provide more results from simulations based on real financial data. In
this simulation, we focus on the results from CS(τ). All simulations are conducted
given the initial data in Jan., 1st 2019 through May. 2020. At every t, we predict
∆v = vt+1 − vt and rt+1 according to the delayed interaction between asset return
volatility vit for i = 1, . . . , 30. Other parameters are given same with the simulation
of Figure 6.

Figure 7 show real volatility data and simulated data of two companies, CISCO
and Walt Disney, with λ = 10, 30, and 100 for several companies that are listed on
the DJIA. From Figure 7, we also find volatilities’ comovement (e.g., [15, 30, 31]).
Although the model generates a few negative volatility points, such negative values
appear consistently in simulations of most of CS type volatility models. Particularly
in CS(τ)’s simulation, as λ increases, the simulation results show more negative
volatility points. The simulations with small λ’s result higher forecasting power.
The right choice of λ depends on initial data and other parameters like N and Ψij .
We leave this subject for the future study on the appropriate choice of λ.
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Figure 7. Historical and Simulated Volatilities with different λ:
DIS and CSCO
Left-top: Real volatility data
Right-top: Simulated data based on CS(τ) with λ = −10
Left-bottom: Simulated data based on CS(τ) with λ = −30

Right-bottom: Simulated data based on CS(τ) with λ = −100

Note: Volatilities are drawn over the sample period. We use thirty firms listed
on DJIA. See text for details of data sources and values of other parameters.
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