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Abstract. We study the extension of the macroscopic crowd motion model
with congestion to a population divided into two types. As the set of pairs

of density whose sum is bounded is not geodesically convex in the product of

Wasserstein spaces, the generic splitting scheme may be ill-posed. We thus
analyze precisely the projection operator on the set of admissible densities,

and link it to the projection on the set of measures of bounded density in the
mono-type case. We then derive a numerical scheme to adapt the one-typed

population splitting scheme.

1. Introduction. The modeling of the collective motion of entities - as a human
crowd, a population of cells in biology or self-propelled particles in physics - involves
a large range of approaches based on the level of description of the particle and its
interactions. On the one hand, microscopic models rely on the description of each
particle’s motion. The population is thus described as a collection of n points
moving and interacting in the space. Formally, the system evolves according to a
system of coupled ordinary differential equations

dXi

dt
= vi(t,X1, . . . , Xn) i = 1, . . . , n. (1)

It is said as “Lagrangian”, since we follow each trajectory in time. It is tractable
for a reasonable number of particles, but it becomes unusable when the size of the
system increases since it involves the computation of many interactions (roughly
increasing as the square of the total population).
On the other hand, in macroscopic models the population is described by its density,
that is a number of particles by surface unit. The system is thus a partial differential
equation on this very density ρ, of the type

∂tρ+∇ · (ρu) = 0 (2)

where u is the “Eulerian” velocity of the crowd in the space. It allows the descrip-
tion of a system of arbitrarily large number of particles, but does not provide the
information of every trajectory.
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The work of Félicien Bourdin is supported by the ERC grant NORIA. .

783

http://dx.doi.org/10.3934/nhm.2022026
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Congestion. When modeling the collecting motion of particles, one shall often
introduce a congestion constraint in the description of the motion. This congestion
encodes the impenetrability of the entities at a microscopic scale. Generically,
one distinguishes between a desired velocity (or self-propulsion in physics) and an
effective velocity, which is the resulting velocity due to the interactions ruled by
congestion. There are two main approaches to introduce congestion on a crowd
motion model. On the one hand, soft models rely on a relaxation of the constraint
that affects the behaviour of the system as some configurations get close of the
saturation. In microscopic space-continuous models, a highly repulsive potential
of interaction at short-range is usually introduced in the model to prevent any
overlapping between particles for instance in the context of pedestrians [11], or
collision of solids, see [2], [23]. For discrete-space microscopic models of motion of
pedestrians, cellular automaton based models place people on a given grid [3], [5].
In macroscopic models, the porous media equation [8], [13], [19] can be seen as a
gradient flow for the functional

ρ 7→
∫
ρm(x)dx, (3)

hence penalizing the high values of the density. A kernel can also be considered [17],
by introducing a term of the form

∇(G ∗ ρ), (4)

where G ∗ ρ is the convolution between the density ρ and a repulsive kernel G(x, y)

generically of the form V (‖x− y‖), for instance V (r) = e−
r2

2σ2 (see [16] for various
choices of V ).

In this article, we will be focused on hard models of congestion, that are models
that do not allow any overlapping or violation of the constraint. A microscopic
hard model of crowd motion is introduced in [15], in which the desired velocities are
projected at every time on the set of admissible velocities, that are the velocities
that lead to non-overlapping configurations. This complex model (the particles are
driven by a velocity that is the projection on a set that evolves in time) is shown
to fit into the framework of the sweeping process, introduced by Moreau [18]. The
well-posedness of the model is based on a catching-up, or splitting algorithm which
has generically two steps:

• Step 1 (prediction): apply the unconstrained velocities during a fixed time
step,

• Step 2 (correction): project the obtained positions on the set of admissible
configurations.

The macroscopic model of crowd motion introduced in [14] is built on the same
approach of projection of the velocities. Given a density on a domain Ω ⊂ R2 under
maximal congestion ρ ≤ 1, the set of admissible velocities writes

Cρ =
{
v ∈ L2(Ω), ∇ · v ≥ 0 where ρ = 1

}
. (5)

The models then reads 
∂tρ+∇ · (ρu) = 0

u ∈ argmin
v∈Cρ

‖v − U‖22 (6)

U being the desired velocity. The well-posedness of the model is established in [14],
and it is shown in [15] that the Eq. (6) fits in a sweeping framework.
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Macroscopic multi-type models. As the microscopic models allow natively to
consider any heterogeneity in the behaviours of the population, there are few ex-
tensions of macroscopic congestion models for a population composed by different
types. Multiphase flows have been widely studied in physics, see [4] and [9], even
under a total density constraint [6], but may not be applied to crowd (or cell) mo-
tion since they involve a phase separation and not a total mixture of the types. A
separation of phase has been also considered in order to study the motion of cars
structured in a multilane traffic [24]. Conversely, in the model we shall consider we
assume a mixture between two densities ρ1, ρ2 with a constraint on the total density
ρ1 + ρ2 ≤ 1, as considered in [13] and [15]. It can be seen as the formal limit as
m→∞ of a cross-diffusion model with a common pressure term

p =
m

m− 1
(ρ1 + ρ2)m−1, (7)

that reduces to the classical porous media equation

∂tρ−∆ρm = 0 (8)

in the absence of one of the two types.
In what follows, we study the two-species adaptation of the crowd motion model (6),

that writes 
∂tρ1 +∇ · (ρ1u1) = 0

∂tρ2 +∇ · (ρ2u2) = 0

(u1, u2) = PCρ1,ρ2 (U1, U2)

(9)

where U1, U2 are the spontaneous velocities, Cρ1,ρ2
is the set of admissible veloci-

ties that transport the densities such that ρ1 + ρ2 remains smaller than 1 almost
everywhere and PCρ1,ρ2 the orthogonal projection operator on Cρ1,ρ2

.

Optimal transport, Wasserstein spaces and admissible set of densities.
In order to define a splitting scheme that shall be the macroscopic counterpart of
the microscopic splitting scheme defined above, we need to introduce the formalism
of Wasserstein spaces. Being given a convex compact domain Ω of Rd, and two
probability measures µ, ν on Ω, one denotes Π(µ, ν) the set of transport plans from
µ to ν. The 2-Wasserstein distance between µ and ν is then defined as

W 2
2 (µ, ν) = inf

γ∈Π(µ,ν)

∫
Ω

‖x− y‖2dγ(x, y). (10)

It defines a distance on P(Ω) that metrizes the weak convergence of probability
measures, at makes P(Ω) a geodesic space, denoted by W2(Ω). We refer to [22] for
a general introduction to Optimal Transport and Wasserstein spaces. Under this
setting, the splitting scheme introduced in [15] for (6) writes, given a time step
τ > 0 and ρt a density at time t:

• Step 1 (prediction): Transport the density by the desired velocity during τ ,
with

µt = (Id + τU)#ρt, (11)

where # is the pushforward operator.

• Step 2 (correction): Project the intermediate density on the set of admissible
densities

K1 = {ρ ∈W2(Ω), ρ ≤ 1} . (12)



786 FÉLICIEN BOURDIN

Numerical schemes for hard congestion macroscopic models. We shall end
this introduction by saying a few words on schemes developed to approximate the
macroscopic crowd motion model (6). In [14], existence of solutions to (6) is proven
by considering the limit of a JKO-scheme. This scheme originally introduced in [12]
approximates the model by the iterations

ρk+1 = argmin
ρ∈W2(Ω)

∫
Ω

Ddρ+ 1K1
(ρ) +

1

2τ
W 2

2 (ρ, ρk), (13)

when the desired velocity is of the form −∇D. As highlighted in [21], there are two
main issues when using this algorithm as a numerical scheme. The first one is that
it involves the computation of a Wasserstein distance, which is a linear problem
under constraint and thus can be long. The use of regularized optimal transport
and Sinkhorn algorithm can overcome this difficulty [10], [20]. The second problem
is a freezing phenomenon: when implementing the algorithm on a given mesh, for
small timesteps the Wasserstein part of (13) becomes large and forbids any mass
displacement. One should then work under the inverse of a CFL condition of the
type dx < Cτ . This condition forces to use small meshes, resulting on a high
increase of the time of computation. The last constraint is that the use of a JKO
scheme is possible only if the desired velocity has a specific form that defines a
model that has a gradient flow structure, see [22].
We shall consider in this paper an implementation of the splitting scheme (11) (12)
which extends the implementation presented in [15] for a mono-type population.
The prediction step (11) is computed by transportation of the cells of the mesh by
the desired velocity, in a Lagrangian approach. The correction step (12) is computed
by a stochastic algorithm: from each oversaturated cell a random walk starts and
dispatches the excess of mass when it reaches a free cell where the density is lower
than 1. The analysis of the convergence of this scheme is far beyond the scope of
this paper, but it is easy to compute and allows to choose large time steps, providing
a fast computation of the scheme for large total time.
The rest of the paper is organized as follows. In section 2, the model is introduced
and a splitting algorithm is derived. In section 3, we analyze the projection operator
on the set of admissible pairs of densities and state a well-posedness theorem on
the scheme. In section 4, we present an implementation of the numerical algorithm
and show some simulations.

2. Macroscopic crowd model for a two-type population, splitting algo-
rithm. Let Ω be a convex bounded domain of R2. In what follows, we identify a
density measure to a function. We want to model the evolution of ρ1, ρ2 ∈ W2(Ω)
by integrating a total density constraint ρ1 + ρ2 ≤ 1 as it is done for the mono-type
model in [14]. We denote by Uj ∈ L2(Ω,R2) the desired velocity of the type j.
Being given two admissible densities, the cone of the admissible velocities writes

Cρ1,ρ2 =
{
u1, u2 ∈ L2

(
Ω,R2

)
,∇ · (ρ1u1 + ρ2u2) ≥ 0 where ρ1 + ρ2 = 1

}
(14)

where “φ ≥ 0 where ρ1 + ρ2 = 1” for φ ∈ (H1(Ω))
′

has a weak formulation: for
every q ∈ H1

ρ1+ρ2
(Ω),

〈φ, q〉 ≥ 0, (15)

where
H1
ρ1+ρ2

(Ω) =
{
q ∈ H1 (Ω) , q ≥ 0 a.e., q(1− ρ1 − ρ2) = 0

}
. (16)

We shall thus study the following model:
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Problem 1. For ρ0
1, ρ

0
2 ∈W2(Ω) such that ρ0

1 +ρ0
2 ≤ 1 and for U1, U2 ∈ L2

(
Ω,R2

)
,

we look for ρ1, ρ2 ∈ L2
(
[0, T ] ,L2 (Ω)

)
that satisfy (in a weak sense)

∂tρ1 +∇ · (ρ1u1) = 0

∂tρ2 +∇ · (ρ2u2) = 0

(u1, u2) = PCρ1,ρ2 (U1, U2)

ρ1(0, ·), ρ2(0, ·) = ρ0
1, ρ

0
2,

(17)

where PCρ1,ρ2 is the projection for the L2 norm on Cρ1,ρ2 .

Let us first recall how the existence is proven in [14] in the case of a single type
when the desired velocity is of the form U = −∇D. A JKO scheme is introduced,
that writes

ρk+1 = argmin
ρ∈W2(Ω)

∫
Ω

Ddρ+ 1K1(ρ) +
1

2τ
W 2

2 (ρ, ρk), (18)

with

K1 = {ρ ∈W2(Ω), ρ ≤ 1 a.e.} (19)

the set of admissible densities. The existence of a unique minimizer is obtained by
the convexity of K1 for generalized geodesics of base ρk joining two minimizers µ0

and µ1, of the form µt = (tr0 + (1− t)r1)#ρ
k (where ri is a transport plan from ρk

to µi) and from the strict convexity of the functional defined by (13) along these
generalized geodesics. In the 2-dimensional case, the set of admissible densities

K2 = {ρ1, ρ2 ∈W2(Ω), ρ1 + ρ2 ≤ 1} (20)

is no more convex along a generalized geodesic.

Example 1. Consider for instance ρ1 and ρ2 being the indicator function of the
balls B(0, ε), B(1, ε) for a small ε > 0 (we can normalize in order to have total
masses equal to 1). Let µ1 = ν2 = ρ1 and µ2 = ν1 = ρ2. The transports plans from
(ρ1, ρ2) to (µ1, µ2) are

r1(x, y) = r2(x, y) = (x, y) (21)

and the transport plans from (ρ1, ρ2) to (ν1, ν2) are

s1(x, y) = (x+ 1, y)

s2(x, y) = (x− 1, y).
(22)

The generalized geodesic between (µ1, µ2) and (ν1, ν2) with respect to (ρ1, ρ2) is
thus

(αt1, α
t
2) =

(
1B(t,ε),1B(1−t,ε)

)
, (23)

which is not admissible for t = 1/2, as one can see on figure 1.

Remark 1. As a matter of fact, K2 is not even geodesically convex in the product
space W2(Ω)×W2(Ω) endowed with

d((µ1, µ2), (ν1, ν2))2 = d(µ1, ν1)2 + d(µ2, ν2)2. (24)

Indeed, let (µ1, µ2) and (ν1, ν2) ∈ K2, and consider two geodesics of constant speed
xt : [0, 1] → W2(Ω), yt : [0, 1] → W2(Ω) respectively from µ1 to ν1 and from µ2

to ν2. Then zt = (xt, yt) is a constant speed geodesic from (µ1, µ2) to (ν1, ν2) in
W2(Ω)×W2(Ω). In the previous example, the generalized geodesics are thus actual
geodesics and do not remain into K2.
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µ1 µ2 t = 0

αt1 αt2 t = 0.25

αt1α
t
2 t = 0.45

αt2 αt1 t = 0.75

ν1ν2 t = 1

Figure 1. The interpolation between two opposite configurations
of spheres along generalized geodesics. In particular, for t = 0.45
the pair (αt1, α

t
2) is not in K2.

Even in the absence of an existence theorem for problem 1, we can write a
splitting scheme for Eq. (17).

Definition 2.1. Given ρ0
1, ρ

0
2 ∈ W2(Ω) such that ρ0

1 + ρ0
2 ≤ 1, U1, U2 ∈ L2

(
Ω,R2

)
and a time step τ > 0, we define the splitting scheme as

µk+1
j = (Id+ τUj)#ρ

k
j (prediction)

(ρk+1
1 , ρk+1

2 ) ∈ argmin
(ρ1,ρ2)∈K2

W 2
2 (ρ1, µ

k+1
1 ) +W 2

2 (ρ2, µ
k+1
2 ) (correction) (25)

From its pushforward structure, the prediction step uniquely defines a pair of
intermediate probability measures. It is less straightforward that the projection on
K2 is unique. Indeed, even if the argmin of the correction step of (25) is not empty
from the minimization of a continuous functional on a compact set in W2(Ω) ×
W2(Ω), it is unclear that it is a singleton. The next section is dedicated to a special
analysis of this correction step in order to get well-posedness of the splitting scheme
(25).

3. Properties of the projection on K2. The goal of this section is to show that
under tractable assumptions, the splitting scheme (25) is uniquely defined.

3.1. Uniqueness of the projection. Let us start with a lemma that links the
projection on K2 with the projection of the total density on K1.



SPLITTING FOR A MACROSCOPIC CROWD MOTION MODEL WITH TWO TYPES 789

Lemma 3.1. Let µ1, µ2 ∈ W2(Ω). We denote ρ the projection of µ1 + µ2 on K1.
Let

(ρ1, ρ2) ∈ argmin
(ν1,ν2)∈K2

W 2
2 (ν1, µ1) +W 2

2 (ν2, µ2). (26)

Then ρ1 + ρ2 = ρ and

W 2
2 (ρ1 + ρ2, µ1 + µ2) = W 2

2 (ρ1, µ1) +W 2
2 (ρ2, µ2). (27)

Proof. From the definition of ρ, one has

W 2
2 (ρ, µ1 + µ2) ≤W 2

2 (ρ1 + ρ2, µ1 + µ2) . (28)

Let T the optimal transport map from ρ1 + ρ2 to µ1 +µ2, T1 the optimal transport
map from ρ1 to µ1 and T2 from ρ2 to µ2. Let γ = (Id, T1)# ρ1 + (Id, T2)# ρ2. The
marginals of γ are respectively ρ1 + ρ2 and µ1 + µ2. The quadratic cost associated
to γ is W 2

2 (ρ1, µ1) +W 2
2 (ρ2, µ2). One thus has

W 2
2 (ρ1 + ρ2, µ1 + µ2) ≤W 2

2 (ρ1, µ1) +W 2
2 (ρ2, µ2) . (29)

Let ζ be an optimal transport plan (in the sense of Kantorovich) from µ1 + µ2

to ρ. One has µ1 � µ1 + µ2, µ2 � µ1 + µ2: denote f and g the corresponding
Radon-Nikodym derivatives, and

dζ1(x, y) = f(x)dζ(x, y)

dζ2(x, y) = g(x)dζ(x, y).
(30)

One has ζ1 + ζ2 = ζ, πx#ζ1 = µ1 and πx#ζ2 = µ2 (πx and πy are the projection on

the coordinates). By denoting νj = πy#ζj for j = 1, 2, we get

W 2
2 (ρ, µ1 + µ2) =

∫
Ω2

|x− y|2dζ

=

∫
Ω2

|x− y|2dζ1 +

∫
Ω2

|x− y|2dζ2

≥W 2
2 (ν1, µ1) +W 2

2 (ν2, µ2) .

(31)

By optimality of the pair (ρ1, ρ2), one has

W 2
2 (ρ1, µ1) +W 2

2 (ρ2, µ2) ≤W 2
2 (ρ, µ1 + µ2) . (32)

By combining (28), (29), (32), we get W 2
2 (ρ, µ1 + µ2) = W 2

2 (ρ1 + ρ2, µ1 + µ2).
As the projection on K1 is uniquely defined (proposition 2 in [15]), we get ρ =
ρ1 + ρ2.

Remark 2. From the previous lemma, we get that the sum of two densities that
realize the distance to any pair of densities (µ1, µ2) can be computed by projecting
µ1+µ2 on K1. However, there can be many pairs that realize this distance. Consider
for instance in dimension 1 the case µ1 = µ2 = δ0. One has PK1(µ1 +µ2) = 1[−1,1].
Let then be f, g ∈ L∞([−1, 1]) two nonnegative functions such that f+g = 1 almost
everywhere. Setting

ρ1 = fdλ

ρ2 = gdλ
(33)

where λ is Lebesgue measure on [−1, 1], (ρ1, ρ2) realizes the distance to (µ1, µ2) in
the sense of (26).

Nevertheless, when every density is absolutely continuous with respect to Lebesgue
measure we have uniqueness of the projection.



790 FÉLICIEN BOURDIN

Proposition 1. Let µ1, µ2 ∈ W2(Ω) two absolutely continuous measures with re-
spect to Lebesgue measure. There exists a unique couple (ρ1, ρ2) in K2 that mini-
mizes W 2

2 (ρ1, µ1) +W 2
2 (ρ2, µ2).

Proof. As every measure is absolutely continuous, all the transport plans are trans-
port maps (in the sense of Monge). Let T be the unique transport map from µ1 +µ2

to ρ := PK1
(µ1 + µ2) and ρ1, ρ2 that minimize the distance to K2. Let T1 and T2

the optimal transport maps from µ1 to ρ1 and from µ2 to ρ2. The Tj are uniquely
defined on the supports of the µj .

Let us show that T1 = T2 almost everywhere. Out of supp(µ1) ∩ supp(µ2), one
can modify T1 or T2. Let γ = (Id, T1)#µ1 + (Id, T2)#µ2 : the marginals of γ are
µ1 + µ2 and ρ1 + ρ2 = ρ from lemma 3.1. The cost of γ is∫

Ω

|x− y|2dγ =

∫
Ω

|x− T1(x)|2dµ1 +

∫
Ω

|x− T2(x)|2dµ2

= W 2
2 (ρ1, µ1) +W 2

2 (ρ2, µ2)

= W 2
2 (ρ, µ1 + µ2).

(34)

γ is thus an optimal transport plan between its marginals. By uniqueness one has
γ = (Id, T )#(ρ1 + ρ2). Let z ∈ supp(ρ1) ∩ supp(ρ2). We have

• (z, T1(z)) ∈ supp(γ)

• (z, T2(z)) ∈ supp(γ)

so T1 = T2 = T a.e., and ρj = T#µj , for j = 1, 2. The ρj are thus uniquely
determined.

From the previous proof, we get the following corollary that gives the form of
the K2 projection from the K1 projection of the sum of the densities:

Corollary 1. Let µ1, µ2 ∈W2(Ω) two absolutely continuous measures with respect
to Lebesgue measure. Let T be an optimal transport map from µ1 + µ2 to its
projection on K1. Then the projection of (µ1, µ2) on K2 is given by (T#µ1, T#µ2).

Provided that the predicted densities in (25) are absolutely continuous, the cor-
rection step is thus uniquely defined. The remaining question is the following: what
condition should be assumed to have a pair of predicted densities that are absolutely
continuous with respect to Lebesgue measure?

3.2. Well-posedness of the splitting scheme. Let us start with a convenient
definition.

Definition 3.2. We define the partial order on the set of positive measures on Ω
by

µ1 ≤∗ µ2 ⇐⇒ µ1 � µ2 and
dµ1

dµ2
≤ 1 µ2 − a.e. (35)

In other words, µ1 ≤∗ µ2 if µ2 − µ1 defines a positive measure. The following
lemma controls the image of Lebesgue measure by the prediction step.

Lemma 3.3. Let Ω be a (large enough) open set of R2, U a C1 velocity field on Ω
and Ω0 a compact set included in Ω. Assume that the partial derivatives of U are
bounded by a constant c > 0. Then for every τ < (5c)−1, denoting λ the Lebesgue
measure on R2,

(Id+ τU)#λ|Ω0
≤∗ (1 + 5cτ)λ|Ω0

τ‖U‖L∞(Ω0) . (36)
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where Ω0
τ‖U‖L∞(Ω0) is the set of points at distance lower than τ‖U‖L∞(Ω0) from Ω0.

Proof. Let τ > 0 and

f :

{
Ω0 −→ f(Ω0)
x 7−→ x+ τU(x).

(37)

f is C1 and onto for τ < c−1: let x, y ∈ Ω such that f(x) = f(y). One has

x− y = τ

∫ 1

0

JacU ((1− t)x+ ty) · (y − x)dt (38)

so ‖x− y‖ ≤ cτ‖x− y‖.
Let A a borelian set of Ω.

(Id+ τU)#λ|Ω0
(A) =

∫
Ω0

1A ((Id+ τU)(x)) dλ

=

∫
Ω0

1A(f(x))
|det(Jacf (x))|
|det(Jacf (x))|

dλ

(39)

One has |det(Jacf )| ≥ 1−2cτ−2c2τ2, and for τ <

√
2− 1

2c
, one gets

1

1− 2cτ − 2c2τ2

≤ 1 + 4cτ + 4c2τ2. If τ ≤ (4c)−1, one has 1 + 4cτ + 4c2τ2 ≤ 1 + 5cτ and

(Id+ τU)#λ|Ω0
(A) ≤ (1 + 5cτ)

∫
Ω0

1A(f(x))|det(Jacf (x))|dλ

= (1 + 5cτ)

∫
f(Ω0)

1A(x)dλ

≤ (1 + 5cτ)λ
(
A ∩ Ω

τ‖U‖L∞(Ω0)

0

)
.

(40)

We are now able to state a well-posedness result for the splitting scheme at two
types (25).

Theorem 3.1. Let U1, U2 ∈ C1(R2,R2) two velocity fields. Assume that they
are bounded by c1 > 1, and their partial derivatives are bounded by a constant c2.
Let ρ0

1, ρ
0
2 two absolutely continuous measures whose support is included in a ball

B(x, r0), τ > 0 a time step smaller than (5c2)−1, and a total time T . Then, setting
Ω = B(x,R) for R large enough, the splitting scheme (25) is uniquely defined for

n :=

⌈
T

τ

⌉
iterations.

Proof. From lemma 3.3, the first predicted pair of densities is supported in B(x, r0+
τc1) and its sum has a density lower than 1 + 5c2τ . From proposition 1, the first
correction step is well-defined. We shall use the following lemma, whose proof is in
appendix.

Lemma 3.4. Let Ω be a compact set, and µ1, µ2 two absolutely continuous mea-
sures, such that µ1 ≤∗ µ2. Then PK1

(µ1) ≤∗ PK1
(µ2).

From this lemma and corollary 1, one gets that the corrected velocities are sup-
ported on the ball B(x, r1), with r1 =

√
1 + 5c2τ(r0 + c1τ). One proceed by induc-

tion to show that the densities are well-defined at each step and supported at step
k by a ball of radius

rk = (1 + 5c2τ)
k
2 (r0 +

c1τ√
1 + 5c2τ − 1

)− c1τ√
1 + c2τ − 1

. (41)
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Setting R = rn concludes the proof.

Let us end this theoretical section with a continuity proposition for the projection
on K2.

Proposition 2. Assume that Ω is compact. Then the restriction of the projection
on K2 to the set of absolutely continuous measures with respect to Lebesgue measure
is continuous.

Proof. Let (µn1 , µ
n
2 )n that converges towards (µ1, µ2). Denote

(ρn1 , ρ
n
2 ) = PK2

(µn1 , µ
n
2 )

(ρ1, ρ2) = PK2(µ1, µ2).
(42)

Let Tn an optimal transport map from µn1 + µn2 to ρn1 + ρn2 and T from µ1 + µ2 to
ρ1 + ρ2. As PK1

is continuous (proposition 2 in [15]), (ρn1 + ρn2 )n converges towards
ρ1 + ρ2. Theorem 1.50 in [22] ensures (as Ω is compact) that (Id, Tn)#(µn1 + µn2 )
converges towards (Id, T )#(µ1 +µ2). Let ν1 be an accumulation point of (Tn#µ

n
1 )n;

we still denote (Tn#µ
n
1 )n the subsequence converging to ν1. One has

πy# ((Id, Tn)#(µn1 + µn2 )) = Tn#µ
n
1 + Tn#µ

n
2 . (43)

On the one hand, πy# ((Id, Tn)#(µn1 + µn2 )) converges to ρ1 + ρ2. On the other
hand, (Tn#µ

n
1 )n converges towards ν1. Therefore,

lim
n→∞

Tn#µ
n
2 = ρ1 + ρ2 − ν1. (44)

One thus has, by using twice lemma 3.1:

W 2
2 (µ1, ν1) +W 2

2 (µ2, ρ1 + ρ2 − ν1) = lim
n→∞

W 2
2 (µn1 , T

n
#µ

n
1 ) +W 2

2 (µn2 , T
n
#µ

n
2 )

= lim
n→∞

W 2
2 (µn1 + µn2 , T

n
#(µn1 + µn2 ))

= W 2
2 (µ1 + µ2, ρ1 + ρ2)

= W 2
2 (µ1, ρ1) +W 2

2 (µ2, ρ2).

(45)

Since (ν1, ρ1 +ρ2−ν1) is admissible, by uniqueness of the projection on K2, ν1 = ρ1.
Thus (ρn1 )n has one unique accumulation point in W 2(Ω) which is compact: it
converges towards ρ1 (and similarly (ρn2 )n converges towards ρ2).

4. Numerical implementation and results. In this section we detail the nu-
merical scheme used to approximate the splitting scheme (25). It is largely inspired
of the methods developed for the mono-type model in [15], [21].

4.1. Prediction step. We present here two main methods to implement the pre-
diction step. We consider only one density since the predictions are made indepen-
dently for the two types.

Finite volume step. In [21], a conservative finite volume scheme in introduced, with
an upwind operator to discretize the flux. Given a mesh of size h, we start by
defining the velocities at the edges of the mesh, as on figure 2. We then introduce
the upwind operator that computes the flux flowing through a given edge:

Aup(U, ρ−, ρ+) =

{
Uρ− if U ≥ 0

Uρ+ if U < 0.
(46)
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Uxk,l Uxk+1,l

Uyk,l

Uyk,l+1

ρnk,l

Figure 2. The cell of the mesh in position (k, l). The densities
are defined inside the cell, whereas the velocities are defined at the
edges.

The prediction step reads

ρ̃n+1
k,l = ρnk,l −

dt

h

(
Aup

(
Uxk+1,l, ρ

n
k,l, ρ

n
k+1,l

)
−Aup

(
Uxk,l, ρ

n
k−1,l, ρ

n
k,l

))
− dt

h

(
Aup

(
Uyk,l+1, ρ

n
k,l, ρ

n
k,l+1

)
−Aup

(
Uyk,l, ρ

n
k,l−1, ρ

n
k,l

))
.

(47)

This scheme is conservative, stable under the CFL condition
dt

h
≤ 1

4‖U‖∞
. How-

ever, it forces choosing small time steps as the mesh shrinks, and it is diffusive as
we shall see on the following example in dimension 1.

Example 2. Consider for Ω = [0, 1] a single density ρ = ε1[ 1
4 ,

3
4 ] subject to a

velocity U = 5
2 − 2x (so U

(
1
4

)
= 2 and U

(
( 3

4

)
= 1). One can pick a maximal time

step dt = h
2 to preserve positivity. At step n, one can see that the n cells at the

right of x = 3
4 have some mass. The front of the density is thus traveling at speed

δx
δt

= nh
ndt = 2. The scheme thus presents a quicker diffusion than the model, that

prescribes a front speed equal to 1.

Lagrangian transport. In order to have a scheme that can use large time step, we
present a Lagrangian version of the prediction step, introduced in [15]. The key idea
is to transport the whole cell Ck,l = [kh, (k + 1)h]× [lh, (l + 1)h] by computing the
image of its center by T (x) := x+dtU(x). One then dispatches the transported cell

B‖·‖∞

(
T (x),

h

2

)
(48)

on the cells of the mesh, as on figure 3.

Remark 3. This scheme is conservative, stable and preserves the positivity for
any time step. The front speed of the density studied in example 2 is now for this
scheme 1+ dh

dt , so it can be reduced by considering a large time step or a small mesh
size.

4.2. Correction step. Let us first recall how the projection on K1 is obtained in
the mono-type case in [15]. We shall then use corollary 1 to derive an algorithm to
compute the projection on K2.

Starting from a density µ discretized on a given squared mesh, the projection on
K1 is approximated by the following stochastic algorithm.

• Start from a random oversaturated cell and transport the excess of mass µ−1
with a random walk,
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x2,2

T

Figure 3. The distribution of the image of the cell (2, 2) by T.
We first compute the image of the center, then draw a box of size
h. The lower left part is lifted on the cell (3, 4), the upper left part
on (3, 5), the upper right part on (4, 5) and the lower right part on
(4, 4).

• When an undersaturated cell is reached, deliver as much mass as possible,

• When the total mass has been distributed, restart the process starting from
another oversaturated cell.

We then average this random projection on a great number of realizations in order
to limit the error introduced in the computation. We refer to [15] or the heuristics
used to derive this scheme. Let us illustrate on a toy example that in practical
situations, despite the randomness of this projection step, the obtained density does
not fluctuate much as we compute it several times with independent replicates.

Example 3. On a 2D squared grid of N = 80 subdivisions along each direction,
we computed several times the projection of an oversatured disc carrying a density
ρ = 1.01 on the area (

x− 1

2

)2

+

(
y − 1

2

)2

≤ 0.22. (49)

For each computation, we run Ntest = 50 parallel computations and take the aver-
age. We estimate so 20 different projections and then compute the 2-Wasserstein
distances between the pairs of projected densities. The histogram of the computed
distances is represented on figure 3. One sees that the distances lie in the range
[0.03, 0.05], whereas the total mass is ρtot = 800.93 and the total moved mass is
δρ = 7.93. The error is thus small regarding the amount of mass moved.

Whereas the convergence of the previous scheme is far beyond the scope of this
paper and could be in itself an interesting research focus, let us recall a partial
result of convergence in dimension 1 [21].

Theorem 4.1 (Theorem 5.2.1 in [21]). Let µ be a positive density on [−L,L],
ε > 1 and ρε = 1[−L,L] + εµ. Denote νε the mean of the random projection of ρε as
the mesh size tends to 0 (we assume it converges). Then

lim
ε→0

1

ε
W2(νε, PK1(ρε)) = 0. (50)
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Figure 4. Distribution of the 2-Wasserstein distances between
pairs of estimated projections of the density in example 3.

From this very partial convergence result and the stability of the projection
illustrated in example 3, we expect this random method to prescribe a projection
close to the actual K1 projection and that does not depend much on the random
realization of the process.

The correction step is thus computed with the following scheme :

Correction scheme for two types

• Project the sum of the predicted densities µ1 + µ2 on K1 with the
stochastic algorithm:

ρ = PK1
(µ1 + µ2),

.

• Compute with Sinkhorn’s algorithm the transport plan γε from µ1 +µ2

to ρ,

• Compute f =
dµ1

d(µ1 + µ2)
and g =

dµ2

d(µ1 + µ2)
,

• Setting γε1(x, y) = f(x)γε(x, y) and γε2(x, y) = g(x)γε(x, y), the projec-

tion on K2 is given by

(πy#γ
ε
1, π

y
#γ

ε
2) (51)

where πy is the projection on the y coordinate.

Remark 4. Let us compute (51) when γT = (Id, T )#µ is derived from a transport
map and µ = µ1 + µ2. One can compute that in this case

T#µ1 = πy#

(
dµ1

dµ
(x)dγT (x, y)

)
, (52)

so the exact projection (T#µ1) is indeed given by the previous algorithm when
one has access to the actual transport map. In the case of regularized transport
computed with Sinkhorn’s algorithm, the plan is generically not a transport map.
However, it is known [7] that the regularized transport plan γε converges towards
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the exact transport map γT as the regularization parameter ε is small. One thus

has that γεj converges towards
dµj
dµ

(x)dγT (x, y) and therefore that the approximated

projection does so.

4.3. More general velocities. The splitting scheme allows the velocities to be
more general than two time-constant velocity fields that are generic when using
a JKO scheme. In the implementation we shall consider, we allow a mixture of
different terms:

• a constant velocity field Ui,

• attraction towards an external potential: −∇φi,

• attraction towards a chemoattractant emitted by the particles: ∇c where the
concentration c satisfies a Segel equation with instantaneous diffusion, i.e.

− κ∆c = ρ1 + ρ2, (53)

• attraction/repulsion between the particles: ∇(V ∗ (ρ1 + ρ2)) where V (x, y) =
ψ(‖x− y‖) is a potential of interaction.

4.4. Numerical results. A full implementation of the previous scheme is avail-
able1 with a ready-to-use notebook demo that reproduces every simulation of this
section. One can in particular find every parameter and initial condition used to
generate these simulations.

On figure 5 is depicted the case of two saturated discs of radius r = 0.15 subject
to constant fields that make the densities cross. One sees that the crowd finds a
compromise to avoid oversaturation by spreading on a wider area while crossing.
The desired velocities chosen are here constants

u1 = ex

u2 = −ex.
(54)

On figure 6, chemoattraction is introduced. After spreading in order to cross, the
two densities aggregate back into saturated areas. The desired velocities are taken
here of the form

u1 = ex +∇c1
u2 = −ex +∇c2

−κ∆c1 = ρ1

−κ∆c2 = ρ2.

(55)

A third example of more complex behavior is illustrated on figure 7. In the
absence of external velocities field or potential, the motion is only driven here by
chemoattractraction and short-range interactions with the same type. The short
range interaction potential has been chosen of the form

V (x, y) = 1‖x−y‖<R

(
1− ‖x− y‖

2

R2

)3

. (56)

We added a repulsion for the chemoattractant of the other type. One sees that the
crowd reaches a compromise to separate into distinct phases.

1https://gitlab.math.u-psud.fr/bourdin/macroscopic-cell-motion

https://gitlab.math.u-psud.fr/bourdin/macroscopic-cell-motion
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t = 0

t = 0.15

t = 0.30

t = 0.50

Figure 5. The motion of two crossing discs. The first column
represents the sum of the two densities, and the other two the
separated densities. The total time of the simulation is T = 0.5
for a timestep dt = 0.01 and a mesh size N = 100. The random
projection step is averaged on 50 experiments.

t = 0

t = 0.15

t = 0.30

t = 0.50

Figure 6. The motion of two crossing discs in the presence of
chemoattraction. We chose the same parameters that in the previ-
ous simulation, with κ = 10.

The desired velocities write here

u1 = ex +∇c1 − α∇c2 + η∇(V ∗ ρ1)

u2 = −ex +∇c2 − α∇c2 + η∇(V ∗ ρ2)

−κ∆c1 = ρ1

−κ∆c2 = ρ2.

(57)
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t = 0

t = 0.15

t = 0.35

t = 0.50

Figure 7. Aggregation of a composite crowd driven by chemoat-
traction and short-range interactions. For t = 0.50, we see small
numerical diffusion due to the stochastic projection on K2. The
parameters here are N = 150, κ = 8, α = 0.2, η = 0.1, R = 0.04.
The random projection step is averaged on 100 runs and the mesh
size is N = 150. The time parameters are still T = 0.5 and dt =
0.01.

Appendix.

Proof of lemma 3.4. The proof of the following lemma was suggested by Filippo
Santambrogio.

Lemma 3.4. Let Ω be a compact set, and µ1, µ2 two absolutely continuous mea-
sures, such that µ1 ≤∗ µ2. Then PK1

(µ1) ≤∗ PK1
(µ2).

Proof. Let µ1 ≤∗ µ2 two absolutely continuous measures. Let fn : R −→ R+

a sequence of strictly convex C1 functions, such that f ′n(0) = fn(0) = 0, and
f ′n(∞) = n. We choose fn such that fn converges towards f = ∞1]1,∞[. It is

possible to choose ‖fn − gn‖∞ ≤ 1
n , with gn(x) = n(x− 1)1x>1, as represented on

figure 8.
We consider the following optimization problems

ρnj ∈ argmin
ρ∈W2(Ω)

W 2
2 (ρ, µj) +

∫
Ω

fn(ρ(x))dx. (58)

with the convention ∞ if ρ has no density. The optimality conditions write

ϕj + f ′n(ρnj ) = cj (59)

where ϕj is a Kantorovich potential from ρnj to µj and cj is a constant. We aim
at showing ρn1 ≤∗ ρn2 . As f ′n is strictly increasing, it is sufficient to show that
f ′n(ρ1

n) ≤ f ′n(ρ2
n) a.e. Denote

m = inf
y∈Ω

f ′n(ρn2 (y))− f ′n(ρn1 (y)). (60)
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g5
f5
limit

Figure 8. In solid line, the function g5. In dashed, its approxi-
mation by a strictly convex smooth function f5. In dotted line is
displayed the common limit to fn and gn.

One can write

m = inf
y∈Ω

c2 − c1 + ϕ1 − ϕ2. (61)

m is realized on some y0 ∈ Ω such that:{
∇ϕ1(y0) = ∇ϕ2(y0)

Hess(ϕ1 − ϕ2)|y0
≥ 0

(62)

Moreover, for y ∈ Ω one has

ρnj (y) = |det(I −D2ϕj)|y| × µj (y −∇ϕj(y)) , (63)

for the transport map from ρnj to µj is of the form T (x) = x − ∇φj(x). Assume
infess ρn2 − ρn1 < 0. Then infessf ′n(ρn2 )− f ′n(ρn1 ) < 0 so m < 0. Thus,

|det(I −D2ϕ2)|y0
×|µ2 (y0 −∇ϕ2(y0)) < |det(I −D2ϕ1)|y0

| × µ1 (y0 −∇ϕ1(y0)) .
(64)

On the one hand, one has

µ2(y0 −∇ϕ2(y0)) = µ2(y0 −∇ϕ1(y0))

≥ µ1(y0 −∇ϕ1(y0)).
(65)

On the other hand, denote A = Id−D2ϕ2(y0), B = Id−D2ϕ1(y0), a = det(A),
b = det(B). A and B are Hessian matrix of convex functions so belong to S+

2 (R).
Let

γ

{
[0, 1] −→ R
t 7−→ det(B + t(A−B)).

(66)

The derivative of γ can be expressed with the comatrix of B: γ′(t)= 1Tr(TCom(B)
(A−B)). It is nonnegative from (62). We get a ≥ b which is absurd with (64) and
(65). One thus has ρn1 ≤ ρn2 a.e. Let us then show the convergence of the ρnj . By
optimality of ρnj , one has

W 2
2 (ρnj , µj) ≤W 2

2 (ρnj , µj) +

∫
Ω

fn(ρnj )

≤W 2
2 (ρj , µj) +

∫
Ω

fn(ρj)

(67)
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where ρj ∈ argmin
W2(Ω)

W 2
2 (ρj , µj) +

∫
Ω

f(ρj).

By comparing fn and gn (increasing towards f), we get:

W 2
2 (ρnj , µj) ≤W 2

2 (ρj , µj) +

∫
Ω

f(ρj) +
|Ω|
n
. (68)

Let ρ̃j an accumulation point of ρnj . ρ̃j satisfies:

W 2
2 (ρ̃j , µj) ≤W 2

2 (ρj , µj). (69)

Let us show that ρ̃j ∈ K1. One will then have by optimality ρ̃j = ρj and thus

ρ1 = lim
n→∞

ρn1 ≤∗ lim
n→∞

ρn2 = ρ2. (70)

Let ε > 0 and A = {ρ̃j > 1 + ε}. Assume λ(A) > 0. One has

lim sup
n→∞

ρnj (A) ≥ ρ̃j(A) ≥ (1 + ε)λ(A). (71)

One can assume (by extracting)∫
Ω

ρnj (x)dx ≥
(

1 +
ε

2

)
λ(A). (72)

Let An = A ∩
{
ρnj > 1

}
, one has(

1 +
ε

2

)
λ(A) ≤

∫
An

ρnj (x)dx+

∫
A\An

1dx. (73)

For any y > 1, y ≤ fn(y)

n
+ 1, so

(
1 +

ε

2

)
λ(A) ≤

∫
An

fn(ρnj (x))

n
dx+ λ(An) + λ (A\An) . (74)

We get

nε

2
λ(A) ≤

∫
An

fn(ρnj (x))dx

≤
∫

Ω

fn(ρnj (x))dx+W 2
2 (ρnj , µj).

(75)

Let χ a probability measure whose density is lower than 1 almost everywhere. By
optimality, one has

nε

2
λ(A) ≤

∫
Ω

fn(χ(x))dx+W 2
2 (χ, µj)

≤ λ(Ω)

n
+W 2

2 (χ, µj)

(76)

which is absurd when n→∞. Thus λ(A) = 0 and ρ̃j is admissible.
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