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Abstract. This paper presents several sufficient frameworks for a collision

avoidance and flocking dynamics of the Cucker–Smale (CS) model and thermo-
dynamic CS (TCS) model with arbitrary dimensions and singular interaction

kernels. In general, unlike regular kernels, singular kernels usually interfere

with the global well-posedness of the targeted models from the perspective of
the standard Cauchy–Lipschitz theory due to the possibility of a finite-in-time

blow-up. Therefore, according to the intensity of the singularity of a kernel

(strong or weak), we provide a detailed framework for the global well-posedness
and emergent dynamics for each case. Finally, we provide an admissible set

in terms of system parameters and initial data for the uniform stability of

the d-dimensional TCS with a singular kernel, which can be reduced to a suffi-
cient framework for the uniform stability of the d-dimensional CS with singular

kernel if all agents have the same initial temperature.

1. Introduction. The emergent dynamics of interacting many-body systems are
often observed in complex ecosystems. Examples include the synchronization of
fireflies and pacemaker cells [7, 28, 55], aggregation of bacteria [51], flocking of
birds [26], and swarming of fish [27, 50]. To briefly introduce them, we refer to
[1, 6, 17, 29, 43, 47, 49, 53, 54]. We are interested in flocking dynamics in which
each particle converges to a common velocity with an ordered formation by us-
ing limited information and simple laws. After the groundbreaking work [52] on
the flocking model of birds proposed by Viscek et al., many mathematical models
describing collective behavior have been widely investigated in the mathemathical
community. Since [26], many mathematicians and physicists have been concerned
with the Cucker–Smale (CS) type models derived from a Newtonian-like second-
order model for position-velocity, governed by the following system in terms of
(xi, vi):
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
dxi
dt

= vi, t > 0, i ∈ [N ] := {1, · · · , N},
dvi
dt

=
κ

N

∑
j 6=i

ψ(‖xi − xj‖) (vj − vi) ,

(xi(0), vi(0)) = (x0
i , v

0
i ) ∈ Rd × Rd,

(1)

where N is the number of particles and κ is a strictly positive coupling strength.
Many papers have studied on the CS model and its variants. This research com-
prises the following topics: the mean-field limit [4, 5, 20, 36, 38], kinetic model
[10, 40], hydrodynamic descriptions [30, 32, 41], particle analysis [10, 17], time-delay
effect [15, 19], stochastic description [11], bi-cluster flocking [21, 22], relativistic set-
ting [3, 5, 8, 35], unit-speed constraint [13, 14, 21, 37, 48], and collision avoidance
[9, 18, 20, 23, 24, 25, 42, 44, 45, 46].

However, the above literature has only addressed the CS model without the tem-
perature field. Therefore, the authors in [39] generalized the CS model to consider
the temperature settings from the system of gas mixtures with rational reductions,
called the thermodynamic CS (TCS) model. Afterward, in a follow-up paper [34],
the authors derived an approximated TCS model by assuming that the diffusion
velocities are sufficiently small, which is given by the following second-order system
for position-velocity-temperature, (xi, vi, Ti):

dxi
dt

= vi, t > 0, i ∈ [N ],

dvi
dt

=
κ1

N

∑
j 6=i

φ(‖xi − xj‖)
(
vj
Tj
− vi
Ti

)
,

dTi
dt

=
κ2

N

∑
j 6=i

ζ(‖xi − xj‖)
(

1

Ti
− 1

Tj

)
,

(xi(0), vi(0), Ti(0)) = (x0
i , v

0
i , T

0
i ) ∈ R2d × R>0,

(2)

where N is the number of particles and κ1 and κ2 are strictly positive coupling
strengths. For a brief introduction to the TCS type models, we refer to papers
which are derivation of the TCS model [34, 39], asymptotic behavior [34], uniform
stability and uniform-in-time mean-field limit [33], hydrodynamic description [31],
time-delay effect [12], unit-speed constraint [2] and collision avoidance [16].

Throughout the paper, we choose the simplest singular communication weights
(or singular interaction kernels) ψ, φ and ζ to predict collision avoidance between
each pair of particles in (1) and (2):

ψ(r) :=
1

rα
, φ(r) :=

1

rβ
, ζ(r) :=

1

rγ
, α, β, γ > 0.

We are only interested in the singularity when r = 0; thus, it is not important to
determine the explicit structures of the singular weights φ and ζ. Indeed, we aim
to observe the flocking behavior of (1) and (2) when each of the communication
weights has no regularity at zero. We must first consider the global well-posedness
(i.e., the noncollisional phenomenon) problem of the targeted models because the
singular kernels are not well defined at r = 0. In addition to this motivation,
collision avoidance between each pair of particles is an important issue in mechanical
engineering and motion control engineering, to name a few for UAV (uncrewed
aerial vehicle), drones and ACAS (airborne collision avoidance system), to name a
few. Therefore, studying sufficient frameworks for collision avoidance in interacting
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many-body systems is of great significance. For more advanced works in this paper,
we present several frameworks that differ from those in previous papers [9, 16, 18, 20,
23, 24, 25, 42, 44, 45, 46] related to collision avoidance, which can be summarized in
the next paragraph. The main novelties of this paper are presented below. First

of all, we prove the global well-posedness (i.e., collision avoidance) of the systems
(1) and (2) in terms of quantities for L∞-diameters, independent of the number of
particles N . To do this, we employ useful functionals to derive several dissipative
structures with singular kernels. Second, we present the emergent dynamics in
terms of L∞-diameters under sufficient frameworks in terms of the initial data and
system parameters in (1) and (2). The flocking estimates are independent of N ;
therefore, it is natural to consider the uniform stability estimates of (1) and (2),
which yield uniform-in-time mean-field limits from (1) and (2) to the corresponding
Vlasov equation by taking N →∞, respectively. Third, we rigorously demonstrate
the uniform L2-stability result of (2) under the admissible initial data and system
parameters, which can be trivially reduced to the uniform L2-stability result of
(1) by removing (2)3 from Remark 1. Furthermore, we can derive the uniform
stability estimate of (2) with a much simpler argument than the literature [5, 33, 36].
In summary, the ultimate goal of this paper is to extend the uniform stability
independent of N of (1) on one-dimensional Euclidean space R1 studied in [20] to
the CS and TCS models on Rd with arbitrary dimensions.

This paper is organized as follows. In Section 2, we briefly revisit facts regarding
the temperature field (2)3 and provide basic estimates for the global well-posedness
of (1) and (2). In Section 3, we study several sufficient frameworks for collision
avoidance, global well-posedness, and the emergent dynamics of (1) under strongly
or weakly singular interaction kernels, respectively. In Section 4, we also present
the global well-posedness of (2) on admissible data in terms of the initial data and
system parameters by dividing the singularity of each communication weight in the
targeted models into a weak case and strong case. However, unlike the case of (1)
in Section 3, we provide sufficient frameworks for the emergent dynamics regardless
of the intensity of the singularity. In Section 5, we provide a detailed proof for
the uniform L2-stability of (2) under appropriate admissible data using the results
from Section 3 and Section 4. Finally, Section 6 is devoted to summarizing the main
results and discussing the remaining issues to be investigated in future work.

Notation. Throughout the paper, we employ the following notation and
abbreviations:

‖ · ‖ := l2-norm,〈·, ·〉 := standard inner product, (T)CS with singular kernel:=(T)CSS,

X := (x1, · · · , xN ), V := (v1, · · · , vN ), T := (T1, · · · , TN ), [N ] := {1, · · · , N},
DZ := max

i,j∈[N ]
‖zi − zj‖, dX := min

i 6=j,i,j∈[N ]
‖xi − xj‖ for Z = (z1, · · · , zN ) ∈ {X,V, T}.

2. Preliminaries. In this section, we provide basic materials to guarantee the
global well-posedness of the CSS model (1) and TCSS model (2). For this, we
revisit previous results for the temperature field (2)3 in Section 2.1 to be used
throughout the paper. In Section 2.2, we provide the uniform boundedness of speed
for each particle in (1) and (2).

2.1. Previous results. In this subsection, we briefly provide facts regarding the
temperature system (2)3 for global well-posedness. In the literature [39], the authors
proved that the total temperature sum is conserved and that the entropy principle
holds, stated as follows.
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Definition 2.1. [34, 39] Let τ ∈ (0,∞] and (X,V, T ) be a solution to the singular
system (2) for t ∈ (0, τ). Then, the total entropy is defined as

S :=

N∑
i=1

ln(Ti).

We now present the previous results on the conservation of the temperature sum
and the monotonicity of the total entropy as follows.

Proposition 1. [34, 39] For a fixed τ ∈ (0,∞], suppose that (X,V, T ) is a solution
to the singular system (2) for t ∈ (0, τ). Then, the following assertions hold.

1. (Conserved temperature sum) The total sum
∑N
i=1 Ti is conserved:

N∑
i=1

Ti(t) =

N∑
i=1

T 0
i := NT∞, ∀t ∈ [0, τ).

2. (Entropy principle) The total entropy S is monotonically increasing:

dS(t)

dt
=

1

2N

N∑
i,j=1

ζ(‖xj − xi‖)
∣∣∣∣ 1

Ti
− 1

Tj

∣∣∣∣2 ≥ 0, ∀t ∈ [0, τ).

Due to the entropy principle and the simple structure of (2)3, the authors in
[12, 34] proved that the temperature for each particle of (2) on t ∈ [0, τ) is uniformly
bounded.

Proposition 2. [12, 34] (Monotonocity of max-min temperatures) Let τ ∈ (0,∞].
Assume that (X,V, T ) is a solution to the singular system (2) for t ∈ (0, τ). Then,
min1≤i≤N Ti(t) is monotonically increasing and max1≤i≤N Ti(t) is monotonically
decreasing in t ∈ [0, τ). Hence, we have the uniform boundedness of temperature as
below.

0 < min
i∈[N ]

T 0
i := T∞m ≤ Ti(t) ≤ max

i∈[N ]
T 0
i := T∞M , i ∈ [N ], t ∈ [0, τ).

Remark 1. By the standard Cauchy–Lipschitz theory, the TCSS model (2) for
[0, τ) can be reduced to the CSS model (1) for [0, τ) if the initial temperature data
for (2) have the same positive constant, T 0 > 0, that is,

T 0
1 = · · ·T 0

N = T 0 > 0.

2.2. Basic materials. In this subsection, we derive that the maximum speed is
uniformly bounded by physical constraints in terms of the initial data in (1) to verify
the global well-posedness. More concretely, we show that the maximum speed is
monotonically decreasing in (1).

Lemma 2.2. Let τ ∈ (0,∞] and (X,V ) be a solution to the singular system (1)
for t ∈ (0, τ). Then, it follows that

max
i∈[N ]

‖vi‖ ≤ max
i∈[N ]

‖v0
i ‖, t ∈ [0, τ).

Proof. We choose an index Mt ∈ [N ] dependent on time t ∈ [0, τ) such that

‖vMt
‖ := max

i∈[N ]
‖vi(t)‖.
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Then, we take the inner product vMt with v̇Mt in (1)2 to obtain the following for
a.e. t ∈ (0, τ),

1

2

d‖vMt
‖2

dt
=

κ

N

N∑
j=1

ψ(‖xMt
− xj‖) 〈vj − vMt

, vMt
〉 ≤ 0.

Hence, we obtain

1

2

d‖vMt
‖2

dt
≤ 0, a.e. t ∈ (0, τ) =⇒ ‖vMt‖ ≤ ‖vM0‖, t ∈ [0, τ),

implying the desired result.

max
i∈[N ]

‖vi‖ ≤ ‖vM0‖ ≤ max
i∈[N ]

‖v0
i ‖, t ∈ [0, τ).

Therefore, if we prove that (1) has a noncollisional phenomenon at any time, then
we have global well-posedness with Lemma 2.2 and the Cauchy–Lipschitz theory.
For detailed descriptions, we refer to Section 3. In the case of the system (2),
immediately determining information about the maximum speed is challenging, so
we use another method to guarantee the uniformly boundedness of the maximum
speed in Section 4.

3. Global well-posedness and emergent dynamics of CSS. In this section,
we establish sufficient frameworks in terms of the initial data and system parameters
for the global well-posedness, collision avoidance, and emergent dynamics of (1), by
dividing them into two cases: α ≥ 1 and 0 < α < 1, according to the singularity
of ψ. To achieve this, we will employ useful functionals to derive the dissipative
differential inequalities for position-velocity diameters DX and DV .

3.1. Strongly singular kernel. In this subsection, we study the global well-
posedness of the CSS model (1) when ψ is a strongly singular kernel.

ψ(r) =
1

rα
, r > 0, α ≥ 1.

3.1.1. Global well-posedness. Next, we rigorously verify the global well-posedness
of (1) under a strongly singular interaction kernel. It suffices to demonstrate the
noncollisional state between each pair of particles on any finite time. We assume
that t0 is the first collision time of the singular system (1), and [l] denotes the set
of all particles that collide with the l-th particle at time t0, i.e.,

[l] := {i ∈ [N ] | ‖xl(t)− xi(t)‖ → 0 as t→ t0−}.

Let δ be a strictly positive real number satisfying

‖xl(t)− xi(t)‖ ≥ δ > 0, ∀ t ∈ [0, t0) and ∀i /∈ [l].

Thus, we define the following L∞-diameters in terms of position-velocity from the

perspective of [l] for t ∈ [0, t0):

dX,[l] := min
i,j∈[l],i6=j

‖xi − xj‖, DX,[l] := max
i,j∈[l]

‖xi − xj‖, DV,[l] := max
i,j∈[l]

‖vi − vj‖.

For simplicity, we use the following notation:

ψij :=ψ(‖xi − xj‖), i, j ∈ [N ], i 6= j, and ψij,[l] := ψ(‖xi − xj‖), i, j ∈ [l], i 6= j,
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where |[l]| is a cardinal number of the set [l].

Next, we employ the following functional Ψij,[l] for (i, j) ∈ [l]2:

Ψij,[l](t) :=
ψ(‖xi − xj‖)

|[l]|
for i, j ∈ [l], i 6= j,

Ψii,[l](t) := ψ
(
dX,[l]

)
−
∑
j 6=i,j∈[l] ψ(‖xi − xj‖)

|[l]|
, for i ∈ [l].

Then, we observe that Ψij satisfies the following three properties:

1. Ψij,[l] ≥
ψ(DX,[l])

|[l]|
, i, j ∈ [l], i 6= j,

2.
∑
j∈[l]

Ψij,[l] = ψ
(
dX,[l]

)
, i ∈ [l],

3.
∑
j∈[l]

Ψij,[l] (vj − vi) =
∑

j 6=i,j∈[l]

ψij
|[l]|

(vj − vi) , i ∈ [l].

Theorem 3.1. Suppose that (X,V ) is a solution to (1) with a strongly
singular kernel and noncollisional position initial data, that is,

α ≥ 1 and min
i,j∈[N ],i6=j

‖x0
i − x0

j‖ > 0.

Then, we can obtain the global well-posedness of (1), or,
equivalently, we have the global-in-time collisionless state:

xi(t) 6= xj(t), (i, j) ∈ [N ]2, i 6= j and ∀t ∈ [0,∞).

Proof. First, we use the following relation

∣∣∣∣d‖xi − xj‖2dt

∣∣∣∣ = 2|〈xi − xj , vi − vj〉| ≤ 2‖xi − xj‖‖vi − vj‖

with the Cauchy–Schwarz inequality to have that for a.e. t ∈ (0, t0),

∣∣∣∣dDX,[l](t)

dt

∣∣∣∣ ≤ DV,[l](t). (3)

Now, we take two indices it, jt ∈ [l] dependent on time t ∈ (0, t0) such that

DV,[l](t) := ‖vit(t)− vjt(t)‖, it, jt ∈ [l].

Then, it follows from (1)2 that for a.e. t ∈ (0, t0),
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1

2

d

dt
‖vit − vjt‖2

=

〈
vit − vjt ,

dvit
dt
− dvjt

dt

〉
=

〈
vit − vjt ,

κ

N

N∑
k=1

ψitk(vk − vit)−
κ

N

N∑
k=1

ψjtk(vk − vjt)

〉

=

〈
vit − vjt ,

κ

N

∑
k/∈[l]

ψitk(vk − vit)−
κ

N

∑
k/∈[l]

ψjtk(vk − vjt)

〉

+

〈
vit − vjt ,

κ

N

∑
k∈[l]

ψitk(vk − vit)−
κ

N

∑
k∈[l]

ψjtk(vk − vjt)

〉
=: I1 + I2.

• (Estimate of I1): If we apply Lemma 2.2 and the Cauchy–Schwarz inequality

to I1, then there exists a nonnegative constant C(κ, [l], N, V (0), δ) satisfying

I1 =

〈
vit − vjt ,

κ

N

∑
k/∈[l]

ψitk(vk − vit)−
κ

N

∑
k/∈[l]

ψjtk(vk − vjt)

〉

≤ DV,[l]

∥∥∥∥∥∥ κN
∑
k/∈[l]

ψitk(vk − vit)−
κ

N

∑
k/∈[l]

ψjtk(vk − vjt)

∥∥∥∥∥∥
≤ DV,[l]

∥∥∥∥∥∥ κN
∑
k/∈[l]

ψitk(vk − vit)

∥∥∥∥∥∥+

∥∥∥∥∥∥ κN
∑
k/∈[l]

ψjtk(vk − vjt)

∥∥∥∥∥∥


≤
4κ(N − |[l]|)ψ(δ) maxi∈[N ] ‖v0

i ‖
N

·DV,[l]

=: C(κ, [l], N, V (0), δ)DV,[l],

(4)

where we used the definition of δ and monotonocity of ψ.

• (The estimate of I2): For this, we employ the properties of Ψ to get that

I2 =

〈
vit − vjt ,

κ

N

∑
k∈[l]

ψitk(vk − vit)−
κ

N

∑
k∈[l]

ψjtk(vk − vjt)

〉

=

〈
vit − vjt ,

κ|[l]|
N

∑
k∈[l]

Ψitk(vk − vit)−
κ|[l]|
N

∑
k∈[l]

Ψjtk(vk − vjt)

〉

=−κ|[l]|
N

ψ
(
dX,[l]

)
〈vit − vjt , vit−vjt〉+

κ|[l]|
N

〈
vit − vjt ,

∑
k∈[l]

(Ψitk−Ψjtk)vk

〉

= −κ|[l]|
N

ψ
(
dX,[l]

)
〈vit − vjt , vit − vjt〉+

κ|[l]|
N〈

vit − vjt ,
∑
k∈[l]

(Ψitk −min(Ψitk,Ψjtk) + min(Ψitk,Ψjtk)−Ψjtk)vk

〉
.

(5)

Here, since

〈vit − vjt , vjt〉 ≤ 〈vit − vjt , vk〉 ≤ 〈vit − vjt , vit〉,
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we can show that

I2 ≤ −
κ|[l]|
N

ψ
(
dX,[l]

)
〈vit − vjt , vit − vjt〉

+
κ|[l]|
N

〈
vit − vjt ,

∑
k∈[l]

(Ψitk −min(Ψitk,Ψjtk))vit

〉

+
κ|[l]|
N

〈
vit − vjt ,

∑
k∈[l]

(min(Ψitk,Ψjtk)−Ψjtk)vjt

〉

≤ −κ|[l]|
N

ψ
(
dX,[l]

)
〈vit − vjt , vit − vjt〉

+
κ|[l]|
N

ψ
(
dX,[l]

)
〈vit − vjt , vit − vjt〉

− κ|[l]|
N

∑
k∈[l]

min(Ψitk,Ψjtk) 〈vit − vjt , vit − vjt〉

= −κ|[l]|
N

∑
k∈[l]

min(Ψitk,Ψjtk) 〈vit − vjt , vit − vjt〉

≤ −κ|[l]|
N

ψ(DX,[l]) 〈vit − vjt , vit − vjt〉 = −κ|[l]|
N

ψ(DX,[l])D
2
V,[l],

(6)

where we used the first property of Ψ. Hence, we combine (4) with (6) to obtain
for a.e. t ∈ (0, t0),

dDV,[l]

dt
≤ −κ|[l]|

N
ψ(DX,[l])DV,[l] + C(κ, [l], N, V (0), δ).

We then integrate to both sides of the above inequality from s to t for 0 ≤ s ≤ t < t0
to yield ∫ t

s

ψ(DX,[l])DV,[l]du ≤
N
(
DV,[l](s) + C(κ, [l], N, V (0), δ)(t− s)

)
κ|[l]|

. (7)

Moreover, let Φ be a primitive of a strongly singular kernel ψ with α ≥ 1. Then,
for fixed t1 > 0,

Φ(t) := Φ(t; t1) :=

∫ t

t1

ψ(u)du =


log

t

t1
, if α = 1,

1

1− α
(
t1−α − t11−α) , if α > 1.

(8)

Therefore, it follows from (7) that for 0 ≤ s ≤ t < t0,

∣∣Φ(DX,[l](t))
∣∣ ≤ ∣∣∣∣∫ t

s

d

du
Φ(DX,[l](u))du

∣∣∣∣+
∣∣Φ(DX,[l](s))

∣∣
=

∣∣∣∣∫ t

s

ψ(DX,[l](u))

(
d

du
DX,[l](u)

)
du

∣∣∣∣+
∣∣Φ(DX,[l](s))

∣∣
≤
∫ t

s

ψ(DX,[l](u))

∣∣∣∣ dduDX,[l](u)

∣∣∣∣ du+
∣∣Φ(DX,[l](s))

∣∣
≤
∫ t

s

ψ(DX,[l](u))DV,[l](u)du+
∣∣Φ(DX,[l](s))

∣∣ ,
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which implies from (7) that

∣∣Φ(DX,[l](t))
∣∣ ≤ ∣∣Φ(DX,[l](s))

∣∣+
N
(
DV,[l](s) + C(κ, [l], N, V (0), δ)(t− s)

)
κ|[l]|

,

0 ≤ s ≤ t < t0.

Now, we take s = 0 and t→ t0− for the above inequality to obtain

lim
t→t0−

∣∣Φ(DX,[l](t))
∣∣ ≤ ∣∣Φ(DX,[l](0))

∣∣+
N
(
DV,[l](0) + C(κ, [l], N, V (0), δ)t0

)
κ|[l]|

<∞,

which yields a contradiction to the definition of t0 and (8) because

lim
t→t0−

∣∣Φ(DX,[l](t))
∣∣ =∞.

Consequently, we have shown the noncollisional phenomenon of (1), i.e.,

xi(t) 6= xj(t), ∀(i, j) ∈ [N ]2 and ∀t ∈ [0,∞).

Finally, one combines this with Lemma 2.2 to have the desired global well-
posedness of (1) under the strongly singular kernel from the standard Cauchy–
Lipschitz theory.

Remark 2. Note that Φ(t) with 0 < α < 1 in (8) is always finite if

0 ≤ t1 ≤ t <∞.
Therefore, we may take a different strategy from the proof of Theorem 3.1 to guar-
antee the global well-posedness of (1) under a weakly singular kernel (0 < α < 1).

3.1.2. Emergent dynamics. In this subsubsection, from the proof of Theorem 3.1,
we study the sufficient frameworks for the emergent dynamics of (1), assuming
α ≥ 1. Before we continue, we revisit the definition of the emergent dynamics of
(1).

Definition 3.2. Let Z := (X,V ) be a global-in-time solution to the singular system
(1). The configuration Z exhibits asymptotic flocking if

(i) (Group formation) ⇐⇒ sup
0≤t<∞

max
i,j∈[N ]

‖xi(t)− xj(t)‖ <∞,

(ii) (Velocity alignment) ⇐⇒ lim
t→∞

max
i,j∈[N ]

‖vj(t)− vi(t)‖ = 0.

We present sufficient frameworks for the asymptotic flocking of (1) with a strongly
singular kernel using two approaches, the bootstrapping argument (or continuous
argument) and the Lyapunov functional.

Theorem 3.3. (Asymptotic flocking via bootstrapping) Let (X,V ) be a
global-in-time solution to (1) with

α ≥ 1 and min
i,j∈[N ],i6=j

‖x0
i − x0

j‖ > 0.

Further assume that there exists a positive constant D∞X satisfying

DX(0) +
DV (0)

κψ(D∞X )
≤ D∞X . (9)

Then, we have the following asymptotic flocking result:
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1. (Group formation) DX(t) < D∞X ,

2. (Velocity alignment) DV (t) ≤ DV (0) exp (−κψ(D∞X )t).

Proof. If DV (0) = 0, then we have nothing to prove. Therefore, we can assume
DV (0) > 0. We observe from the condition (9) that the set

S := {t > 0 | DX(s) < D∞X , ∀s ∈ (0, t)}
is nonempty. We define t∗ := supS > 0. Hence,

DX(t∗) = D∞X .

Now, we claim that
t∗ = +∞.

To prove the claim, we suppose that t∗ < +∞ for the proof by contradiction. Then,
by replacing [l] with [N ] in the proof of Theorem 3.1, we use the arguments of
Theorem 3.1 to establish the following:∣∣∣∣dDX

dt

∣∣∣∣ ≤ DV ,
dDV

dt
≤ −κψ(DX)DV ≤ −κψ(D∞X )DV , a.e. t ∈ (0, t∗),

where we used the definition of S. Then, Grönwall’s lemma implies that

DV (t) ≤ DV (0) exp (−κψ(D∞X )t) , ∀t ∈ [0, t∗].

Moreover, because

DX(t) = DX(0) +

∫ t

0

dDX(s)

ds
ds ≤ DX(0) +

∫ t

0

DV (s)ds

≤ DX(0) +

∫ t

0

DV (0) exp (−κψ(D∞X )s) ds

< DX(0) +
DV (0)

κψ(D∞X )
≤ D∞X , ∀t ∈ [0, t∗],

one can show that DX(t∗) < D∞X , resulting in a contradiction, i.e., t∗ =∞. Thus,
one has

DX(t) < D∞X , DV (t) ≤ DV (0) exp (−κψ(D∞X )t) , t ∈ [0,∞).

Therefore, we achieve the desired results.

Next, we provide a different approach to achieve the asymptotic flocking of (1)
via the Lyapunov functional method introduced in [38].

Theorem 3.4. (Asymptotic flocking via the Lyapunov functional) Let (X,V ) be a
global-in-time solution to (1) with

α ≥ 1, and min
i,j∈[N ],i6=j

‖x0
i − x0

j‖ > 0,

and further assume that

DV (0) ≤ κ
∫ ∞
DX(0)

ψ(s)ds. (10)

Then, we obtain the following asymptotic flocking estimate: there exists a strictly
positive number D∞X > 0 such that

1. (Group formation) DX(t) ≤ D∞X ,
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2. (Velocity alignment) DV (t) ≤ DV (0) exp (−κψ(D∞X )t), t ∈ [0,∞).

Proof. First, we use the same arguments employed in Theorem 3.1 and Theorem
3.3 to deduce that ∣∣∣∣dDX

dt

∣∣∣∣ ≤ DV ,
dDV

dt
≤ −κψ(DX)DV . (11)

Now, we consider the following Lyapunov functional:

L±(DX , DV ) := DV±κΨ(DX),

where Ψ(t) :=
∫ t

0
ψ(s)ds. Then, we apply (11) to obtain

d

dt
L±(DX , DV ) =

dDV

dt
± κdDX

dt
ψ(DX)

≤ −κψ(DX)DV ± κ
dDX

dt
ψ(DX)

= κψ(DX)

(
−DV ±

dDX

dt

)
≤ 0.

(12)

Next, we utilize (12) to induce L±(DX(t), DV (t)) ≤ L±(DX(0), DV (0)) and more-
over,

κ

∣∣∣∣∣
∫ DX(t)

DX(0)

ψ(s)ds

∣∣∣∣∣ ≤ DV (t) + κ

∣∣∣∣∣
∫ DX(t)

DX(0)

ψ(s)ds

∣∣∣∣∣ ≤ DV (0).

Therefore, we combine this with the condition (10) to yield

κ

∣∣∣∣∣
∫ DX(t)

DX(0)

ψ(s)ds

∣∣∣∣∣ ≤ DV (0) ≤ κ
∫ ∞
DX(0)

ψ(s)ds.

Hence, there is a smallest positive real number D∞X satisfying

DV (0) = κ

∫ D∞
X

DX(0)

ψ(s)ds;

thus

DX(t) ≤ D∞X , ∀t ∈ [0,∞).

Due to the above estimate and (11), from Grönwall’s lemma, it follows that

DV (t) ≤ DV (0) exp (−κψ(D∞X )t) , t ∈ [0,∞).

Finally, we prove the desired asymptotic flocking results.

Remark 3. If α > 1, then it follows from a direct calculation that∫ ∞
DX(0)

ψ(s)ds <∞.

Therefore, we know that the assumption (10) can not be rejected. However, we can
remove (10) in the case of 0 < α ≤ 1 because∫ ∞

DX(0)

ψ(s)ds =∞.
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Ultimately, we combine the sufficient frameworks of Theorem 3.3 with Theorem
3.4 to conclude the following.

Corollary 1. (Refined asymptotic flocking) Let (X,V ) be a global-in-time solution
to (1) with

α ≥ 1 and min
i,j∈[N ],i6=j

‖x0
i − x0

j‖ > 0.

Further assume that there are two strictly positive constants D∞X1
and D∞X2

such
that

DV (0) = κ

∫ D∞
X1

DX(0)

ψ(s)ds ≤ max

(
κ

∫ ∞
DX(0)

ψ(s)ds, κψ(D∞X2
)(D∞X2

−DX(0))

)
.

Then, it follows that the following asymptotic flocking holds.

1. (Group formation) DX(t) ≤ max
(
D∞X1

, D∞X2

)
,

2. (Velocity alignment) DV (t) ≤ DV (0) exp
(
−κψ

(
max

(
D∞X1

, D∞X2

))
t
)
, t ∈

[0,∞).

Thus, we attain a larger admissible set in terms of the initial data and system
parameters where asymptotic flocking occurs in (1) with a strongly singular kernel.

3.2. Weakly singular kernel. In this subsubsection, we present the global well-
posedness of (1) with the weakly singular interaction kernel

ψ(r) =
1

rα
, 0 < α < 1 and r > 0.

For this, we first provide the following proposition regarding the existence of a
collisional phenomenon of the two-particle system (1) on R1.

Proposition 3. [8, 16, 42] Let (X,V ) be a solution to the two-particle system (1)
such that

0 < α < 1, d = 1, x0
1 6= x0

2.

Then, there exist sufficient conditions only in terms of the initial data and system
parameters satisfying a finite-in-time collision. That is, there is a strictly positive
time t0 ∈ (0,∞) such that

x1(t0) = x2(t0).

Thus, due to Proposition 3, we easily observe that the global well-posedness does
not hold for arbitrary noncollisional position data. Hence, we deduce that the global
well-posedness may be guaranteed under more restrictive sufficient conditions than
those of Theorem 3.1 in the CSS model (1) with a weakly singular interaction kernel.

Theorem 3.5. (Global well-posedness and asymptotic flocking) Let (X,V ) be a
solution to (1) with

0 < α < 1 and min
i,j∈[N ],i6=j

‖x0
i − x0

j‖ > 0.

Further suppose that there exists a strictly positive number D∞X1
satisfying

DV (0) = κ

∫ D∞
X1

DX(0)

ψ(s)ds < κψ(D∞X1
) min
i,j∈[N ],i6=j

‖x0
i − x0

j‖. (13)

Then, we have the global well-posedness of (1) with a weakly singular kernel.
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More precisely, we attain the strict positivity of the relative distance between the
pairwise particles along (1) with 0 < α < 1:

inf
0≤t<∞

min
i,j∈[N ],i6=j

‖xi − xj‖ ≥ min
i,j∈[N ],i6=j

‖x0
i − x0

j‖ −
DV (0)

κψ(D∞X1
)
> 0.

Furthermore, we gain the following asymptotic flocking estimate, as follows:

1. (Group formation) DX(t) ≤ D∞X1
, ∀t ∈ [0,∞),

2. (Velocity alignment) DV (t) ≤ DV (0) exp
(
−κψ(D∞X1

)t
)
.

Proof. Suppose that the local well-posedness of (1) with 0 < α < 1 holds on
t ∈ (0, t∗) for t∗ ∈ (0,∞). Then, it follows from Theorem 3.4 and the condition (13)
that

‖xi(t)− xj(t)‖ ≥ ‖x0
i − x0

j‖ −
∫ t

0

‖vi(s)− vj(s)‖ds

≥ ‖x0
i − x0

j‖ −
∫ t

0

DV (s)ds

≥ ‖x0
i − x0

j‖ −
∫ ∞

0

DV (s)ds

≥ ‖x0
i − x0

j‖ −
DV (0)

κψ(D∞X1
)

≥ min
i,j∈[N ],i6=j

‖x0
i − x0

j‖ −
DV (0)

κψ(D∞X1
)
> 0.

Therefore, by the standard Cauchy–Lipschitz theory and Lemma 2.2, we demon-
strate that there exists a positive ε such that the uniqueness and existence of the
solution to (1) with 0 < α < 1 on (0, t∗ + ε) can be guaranteed. Hence, we obtain
the global well-posedness and strict positivity of the relative distance between each
pair of particles. Thus, the same arguments employed in Theorem 3.4 with Re-
mark 3 can be employed to obtain the asymptotic flocking of (1) with 0 < α < 1.
Consequently, we reach the desired assertions.

4. Global well-posedness and the emergent dynamics of TCSS. In this
section, we recall the previous results for the global well-posedness of (2) with
β ≥ 1, equivalently,

φ(r) =
1

rβ
, β ≥ 1 and r > 0.

We describe the basic dissipative structures in terms of DX , DV , and DT under
0 < β <∞. For this, we employ some useful functionals, as in Section 3.1, to derive
several differential inequalities with respect to position-velocity-temperature, which
are independent of the number of particles N . As the main results of this section,
we present the global well-posedness and emergent dynamics of (2).

Before we describe the main results, we revisit the basic notion for the asymptotic
flocking for the TCSS model (2).
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Definition 4.1. Let Z := (X,V, T ) be a global-in-time solution to (2). The con-
figuration Z exhibits the asymptotic flocking if

(i) (Group formation) ⇐⇒ sup
0≤t<∞

max
i,j∈[N ]

‖xi(t)− xj(t)‖ <∞,

(ii) (Velocity alignment) ⇐⇒ lim
t→∞

max
i,j∈[N ]

‖vj(t)− vi(t)‖ = 0,

(iii) (Temperature equilibrium) ⇐⇒ lim
t→∞

max
i,j∈[N ]

|Tj(t)− Ti(t)| = 0.

To analyze the asymptotic flocking phenomenon of (2), the existence and unique-
ness of the solution to (2) on a global time interval are essential. Therefore, a
noncollision result is crucial to obtain the global well-posedenss of (2).

4.1. Previous result and dissipative structures. In this subsection, we briefly
introduce the previous result related to the global well-posedness of (2) with a
strongly singular kernel studied in [16].

Proposition 4. [16] (Global well-posedness of TCSS with β ≥ 1) Suppose that
(X,V, T ) is a solution to (2) satisfying

1 ≤ β ≤ γ

2
and min

i,j∈[N ],i6=j
‖x0

i − x0
j‖ > 0.

Then, we have the global well-posedness (i.e., global collisionless state) of (2) in the
sense that

xi(t) 6= xj(t), (i, j) ∈ [N ]2, i 6= j and ∀t ∈ [0,∞).

However, in this paper, we propose reasonable sufficient frameworks for the emer-
gent dynamics in Section 4 and uniform stability independent of N in Section 5,
going beyond the previous paper [16]. This independence leads to deriving a kinetic
Vlasov equation corresponding to the particle model (2) via the uniform-in-time
mean-field limit. This kinetic equation represents the dynamics of an infinite num-
ber of particles based on the standard BBGKY hierarchy. (For the related papers
on the uniform-in-time mean-field limit and the BBGKY hierarchy, we refer to
[4, 5, 10, 20, 36, 38, 40].) Furthermore, the authors of the previous literature [16]
provided an inaccurate framework for the emergent dynamics of (2) when β ≥ 1.
Moreover, they did not provide a sufficient framework for the global well-posedness
and emergent dynamics of (2) when 0 < β < 1. To remedy these issues, we must
first provide the following lemma concerning the dissipative differential inequalities
of (2) to establish sufficient frameworks for global well-posedness when 0 < β < 1
and the emergent dynamics for 0 < β <∞.

Next, we consider the following functional Φij defined by
Φij(t) :=

φ(‖xi − xj‖)
N

for i, j ∈ [N ], i 6= j,

Φii(t) := φ (dX)−
∑
j 6=i φ(‖xi − xj‖)

N
.

We can easily verify that Φij satisfies the following properties:

1. Φij ≥
φij
N

for i, j ∈ [N ], i 6= j, and

N∑
j=1

Φij = φ (dX) ,
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2.

N∑
j=1

Φij

(
vj
Tj
− vi
Ti

)
=
∑
j 6=i

φij
N

(
vj
Tj
− vi
Ti

)
, where φij := φ(‖xi − xj‖).

Moreover, we also employ the functional Ψ defined by
Ψij(t) :=

ζ(‖xi − xj‖)
N

for i, j ∈ [N ], i 6= j,

Ψii(t) := ζ (dX)−
∑N
j=1,j 6=i ζ(‖xi − xj‖)

N
.

Then, we observe that Ψij satisfies the following properties:

1. Ψij ≥
ζij
N

for i, j ∈ [N ], i 6= j, and

N∑
j=1

Ψij = ζ (dX) ,

2.

N∑
j=1

Ψij

(
1

Ti
− 1

Tj

)
=

N∑
j=1

ζij
N

(
1

Ti
− 1

Tj

)
, where ζij := ζ(‖xi − xj‖).

We can now derive several dissipative differential inequalities of (1.2) with 0 < β <
∞ using Φ and Ψ.

Lemma 4.2. Let (X,V, T ) be a solution to (2) on [0, τ) for τ ∈ (0,∞] such that

0 < β <∞ and min
i,j∈[N ],i6=j

‖x0
i − x0

j‖ > 0.

Then, for a.e. t ∈ (0, τ),

1.

∣∣∣∣dDX

dt

∣∣∣∣ ≤ DV ,

2.
dDV

dt
≤ −κ1φ(DX)

T∞M
DV +

2κ1φ(dX)

(T∞m )2
DTDV ,

3.
dDT

dt
≤ −κ2ζ(DX)

(T∞M )2
DT .

Proof. For the first assertion, we note that∣∣∣∣d‖xi − xj‖2dt

∣∣∣∣ = 2|〈xi − xj , vi − vj〉| ≤ 2‖xi − xj‖‖vi − vj‖,

which combines with the Cauchy–Schwarz inequality, for a.e. t ∈ (0, τ), to yield∣∣∣∣dDX(t)

dt

∣∣∣∣ ≤ DV (t).

Next, we prove the third assertion with respect to the L∞-diameter for temperature.
For this, we select two indices Mt and mt, depending on time t, satisfying

DT (t) = TMt(t)− Tmt(t), mt,Mt ∈ [N ].

Then, it follows from the properties of Ψij and (2)3 that, for a.e. t ∈ (0, τ),

dDT

dt
= ṪMt

− Ṫmt

=
κ2

N

N∑
k=1

ζMtk

(
1

TMt

− 1

Tk

)
− κ2

N

N∑
k=1

ζmtk

(
1

Tmt
− 1

Tk

)

= κ2

N∑
k=1

ΨMtk

(
1

TMt

− 1

Tk

)
− κ2

N∑
k=1

Ψmtk

(
1

Tmt
− 1

Tk

)
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= κ2ζ

(
min

1≤i,j≤N
‖xi − xj‖

)(
1

TMt

− 1

Tmt

)
− κ2

N∑
k=1

1

Tk
(ΨMtk −Ψmtk)

= κ2ζ

(
min

1≤i,j≤N
‖xi − xj‖

)(
1

TMt

− 1

Tmt

)
− κ2

N∑
k=1

1

Tk
(ΨMtk −min(ΨMtk,Ψmtk) + min(ΨMtk,Ψmtk)−Ψmtk)

≤ κ2ζ

(
min

1≤i,j≤N
‖xi − xj‖

)(
1

TMt

− 1

Tmt

)
+

κ2

Tmt

N∑
k=1

(Ψmtk −min(ΨMtk,Ψmtk))

− κ2

TMt

N∑
k=1

(ΨMtk −min(ΨMtk,Ψmtk))

= −κ2

(
1

Tmt
− 1

TMt

) N∑
k=1

(min(ΨMtk,Ψmtk)) ≤ − κ2DT

(T∞M )2

N∑
k=1

(min(ΨMtk,Ψmtk))

≤ −κ2ζ(DX)

(T∞M )2
DT .

For the second assertion, we take two indices it and jt, depending on time t ∈ (0, τ),
satisfying

DV (t) := ‖vit(t)− vjt(t)‖, it, jt ∈ [N ],

and assume that
∑N
i=1 vi = 0 without loss of generality. Then, we use (2)2 to obtain

that for a.e. t ∈ (0, τ),

1

2

d

dt
‖vit − vjt‖2 =

〈
vit − vjt ,

dvit
dt
− dvjt

dt

〉
=

〈
vit − vjt ,

κ1

N

N∑
k=1

φitk

(
vk
Tk
− vit
Tit

)
− κ1

N

N∑
k=1

φjtk

(
vk
Tk
− vjt
Tjt

)〉

=

〈
vit − vjt , κ1

N∑
k=1

Φitk

(
vk
Tk
− vit
Tit

)
− κ1

N∑
k=1

Φjtk

(
vk
Tk
− vjt
Tjt

)〉

= −κ1φ (dX)

〈
vit − vjt ,

vit
Tit
− vjt
Tjt

〉
+ κ1

〈
vit − vjt ,

N∑
k=1

(Φitk − Φjtk)
vk
Tk

〉
.

We apply the properties of Φ and the following relation

Φitk − Φjtk = Φitk −min(Φitk,Φjtk) + min(Φitk,Φjtk)− Φjtk

to have

1

2

d

dt
‖vit − vjt‖2

= −κ1φ (dX)

〈
vit − vjt ,

vit
Tit
− vjt
Tjt

〉
+ κ1

〈
vit − vjt ,

N∑
k=1

(Φitk −min(Φitk,Ψjtk) + min(Φitk,Φjtk)− Φjtk)
vk
Tk

〉
:= I1 + I2.
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•(Estimate of I2) For this, we apply the following inequality

〈vit − vjt , vjt〉 ≤ 〈vit − vjt , vk〉 ≤ 〈vit − vjt , vit〉

to I2 to show that

I2 ≤ κ1

〈
vit − vjt ,

N∑
k=1

(Φitk −min(Φitk,Φjtk))
vit
Tk

〉

+ κ1

〈
vit − vjt ,

N∑
k=1

(min(Φitk,Φjtk)− Φjtk)
vjt
Tk

〉

= −κ1

N∑
k=1

min(Φitk,Φjtk)
‖vit − vjt‖2

Tk

+ κ1

〈
vit − vjt ,

N∑
k=1

Φitk
vit
Tk

〉
− κ1

〈
vit − vjt ,

N∑
k=1

Φjtk
vjt
Tk

〉
.

(14)

where we used the nonnegativity of Φ. Then, it follows from (14), Proposition 2
and the properties of Φ that for a.e. t ∈ (0, τ),

I1 + I2 ≤ −κ1

N∑
k=1

min(Φitk,Φjtk)
‖vit − vjt‖2

Tk

+ κ1

〈
vit − vjt ,

N∑
k=1

Φitkvit

(
1

Tk
− 1

Tit

)〉

− κ1

〈
vit − vjt ,

N∑
k=1

Φjtkvjt

(
1

Tk
− 1

Tjt

)〉

≤ −κ1φ(DX)
‖vit − vjt‖2

T∞M
+ κ1‖vit − vjt‖‖vit‖

N∑
k=1

Φitk

∣∣∣∣ 1

Tk
− 1

Tit

∣∣∣∣
+ κ1‖vit − vjt‖‖vjt‖

N∑
k=1

Φjtk

∣∣∣∣ 1

Tk
− 1

Tjt

∣∣∣∣ .
Therefore, using Proposition 2, the property of Φ and the following relations:∣∣∣∣ 1

Ti
− 1

Tj

∣∣∣∣ ≤ DT

(T∞m )2
, ‖vi‖ =

∣∣∣∣∣vi −
∑N
j=1 vj

N

∣∣∣∣∣ ≤ DV , i, j ∈ [N ],

one can show that

1

2

dD2
V

dt
= I1 + I2 ≤ −

κ1φ(DX)

T∞M
D2
V +

2κ1φ(dX)

(T∞m )2
DTD

2
V ,

which implies that for a.e. t ∈ (0, τ),

dDV

dt
≤ −κ1φ(DX)

T∞M
DV +

2κ1φ(dX)

(T∞m )2
DTDV .

Finally, we get the desired second assertion.
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4.2. Collision avoidance and asymptotic flocking. In this subsection, we study
the sufficient framework for the global well-posedness and emergent dynamics of (2)
under 0 < β < ∞ using Lemma 4.2 and the bootstrapping argument. More con-
cretely, we present a sufficient framework for the strict positivity of each relative
distance for all particles in (2), assuming 0 < β <∞.

Theorem 4.3. (Global well-posedness and asymptotic flocking) Suppose that the
initial data and system parameters satisfy

0 < β <∞ and min
i,j∈[N ],i6=j

‖x0
i − x0

j‖ > 0.

Further assume that there exist two positive constants d∞X and D∞X such that

dX(0)− exp

(
2κ1DT (0)φ(d∞X )(T∞M )2

κ2ζ(D∞X )(T∞m )2

)
DV (0)T∞M
κ1φ(D∞X )

≥ d∞X ,

DX(0) + exp

(
2κ1DT (0)φ(d∞X )(T∞M )2

κ2ζ(D∞X )(T∞m )2

)
DV (0)T∞M
κ1φ(D∞X )

≤ D∞X .
(15)

Then, we have the following global well-posedness and asymptotic flocking results

on (0,∞) :

1. (Collision avoidance and Group formation)

DX(t) < D∞X and dX(t) > d∞X ,

2. (Velocity alignment)

DV (t) ≤ exp

(
2κ1DT (0)φ(d∞X )(T∞M )2

κ2ζ(D∞X )(T∞m )2

)
DV (0) exp

(
−κ1φ(D∞X )

T∞M
t

)
,

3. (Temperature equilibrium)

DT (t) ≤ DT (0) exp

(
−κ2ζ

(
D∞X

(T∞M )2

)
t

)
.

Proof. First, suppose that [0, τ) is a maximal interval for which an unique solution
of (2) under 0 < β < ∞ exists and τ < ∞ for the proof by contradiction. When
DV (0) = 0, then we have nothing to prove. Therefore, we now assume DV (0) > 0.
We note from (15) that the following set

S := {t > 0 | dX(s) > d∞X , DX(s) < D∞X , ∀s ∈ (0, t) and t ≤ τ}

is nonempty. Here, we define t∗ := supS > 0, which implies that

DX(t∗) = D∞X or dX(t∗) = d∞X .

Thus, it suffices to demonstrate that

t∗ = τ.

Suppose that t∗ < τ for the proof by contradiction. Then, we utilize the third
assertion of Lemma 4.2 with S to attain that∣∣∣∣dDX

dt

∣∣∣∣ ≤ DV ,
dDT

dt
≤ −κ2ζ(DX)

(T∞M )2
DT ≤ −

κ2ζ(D∞X )

(T∞M )2
DT , a.e. t ∈ (0, t∗),
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where, Grönwall’s lemma yields

DT (t) ≤ DT (0) exp

(
−κ2ζ(D∞X )

(T∞M )2
t

)
, ∀t ∈ [0, t∗]. (16)

Next, we use the second assertion of Lemma 4.2 together with S and (16) to get
that for a.e. t ∈ (0, t∗),

dDV

dt
≤ −κ1φ(DX)

T∞M
DV +

2κ1φ(dX)

(T∞m )2
DTDV

≤ −κ1φ(D∞X )

T∞M
DV +

2κ1φ(d∞X )

(T∞m )2
DTDV

≤ −κ1φ(D∞X )

T∞M
DV +

2κ1φ(d∞X )DT (0)

(T∞m )2
exp

(
−κ2ζ(D∞X )

(T∞M )2
t

)
DV .

(17)

Hence, we apply the comparison principle for ODE to (17) to obtain

DV (t) ≤ exp

(
2κ1DT (0)φ(d∞X )(T∞M )2

κ2ζ(D∞X )(T∞m )2

)
DV (0) exp

(
−κ1φ(D∞X )

T∞M
t

)
. (18)

Therefore, it follows from (18) and the first assertion of Lemma 4.2 that

DX(t) = DX(0) +

∫ t

0

dDX(s)

ds
ds ≤ DX(0) +

∫ t

0

DV (s)ds

≤ DX(0) +

∫ t

0

exp

(
2κ1DT (0)φ(d∞X )(T∞M )2

κ2ζ(D∞X )(T∞m )2

)
DV (0) exp

(
−κ1φ(D∞X )

T∞M
s

)
ds

< DX(0) + exp

(
2κ1DT (0)φ(d∞X )(T∞M )2

κ2ζ(D∞X )(T∞m )2

)
DV (0)T∞M
κ1φ(D∞X )

≤ D∞X , ∀t ∈ [0, t∗],

(19)

which means that DX(t∗) < D∞X . Moreover, we again employ the first assertion of
Lemma 4.2 to deduce that

dX(t) = dX(0)−
∫ t

0

d(dX(s))

ds
ds ≤ dX(0)−

∫ t

0

DV (s)ds

≥ dX(0)−
∫ t

0

exp

(
2κ1DT (0)φ(d∞X )(T∞M )2

κ2ζ(D∞X )(T∞m )2

)
DV (0) exp

(
−κ1φ(D∞X )

T∞M
s

)
ds

> dX(0)− exp

(
2κ1DT (0)φ(d∞X )(T∞M )2

κ2ζ(D∞X )(T∞m )2

)
DV (0)T∞M
κ1φ(D∞X )

≥ d∞X , ∀t ∈ [0, t∗],

(20)

which leads to dX(t∗) > d∞X . Thus, we have t∗ = τ . However, from the stan-
dard Cauchy–Lipschitz theory with Proposition 2, (18), (20), and the conservation

of momentum (i.e.,
∑N
k=1 vi = constant), there exists a positive ε such that the

uniqueness and existence of solution to (2) with 0 < β < ∞ on (0, τ + ε) can be
guaranteed. In conclusion, we obtain the global well-posedness (i.e., τ =∞). Con-
sequently, it follows from the set S with t∗ =∞, (16), (18), (19), and (20) that the
desired results hold.

5. Uniform L2-stability of TCSS. In this section, we define a sufficient frame-
work for the uniform L2-stability estimate of (2) with an arbitrary singular inter-
action kernel on 0 < β < ∞ and dimension d ∈ N. With Remark 1, if we set
T 0

1 = · · · = T 0
N = T∞ > 0, it follows that the TCSS model (2) can be reduced to

the CSS model (1). Therefore, it suffices to construct a sufficient framework for
the L2-uniform stability of (2). To do this, we revisit the TCSS model (2) which is
governed by the following system in terms of (X,V, T ):
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dxi
dt

= vi, t > 0, i ∈ [N ],

dvi
dt

=
κ1

N

N∑
j=1

φ(‖xi − xj‖)
(
vj
Tj
− vi
Ti

)
,

dTi
dt

=
κ2

N

N∑
j=1

ζ(‖xi − xj‖)
(

1

Ti
− 1

Tj

)
,

(xi(0), vi(0), Ti(0)) = (x0
i , v

0
i , T

0
i ) ∈ R2d × R>0,

N∑
i=1

v0
i = Nv∞ = 0,

N∑
i=1

T 0
i = NT∞.

(21)

The definition of the uniform L2-stability estimate of (2) is as follows.

Definition 5.1. (Uniform L2-stability): For the two solutions (X,V, T ) and (X̄, V̄ ,
T̄ ) to (2) with the initial data (X0, V 0, T 0) and (X̄0, V̄ 0, T̄ 0), respectively, if there
exists a positive constant G∞ independent of t such that

sup
0≤t<∞

(
‖X(t)− X̄(t)‖+ ‖V (t)− V̄ (t)‖

)
≤ G∞

(
‖X0 − X̄0‖+ ‖V 0 − V̄ 0‖

)
,

then we say that the equation (2) satisfies the uniform L2-stability.

In particular, we estimate G∞ defined in Definition 5.1 so that this is indepen-
dent of the number of particle N in (2) because the independence of N is very
important for deriving uniform-in-time mean-field limits based on the standard
BBGKY method. Assume that there exist two global-in-time solutions (X,V, T )
and (X̄, V̄ , T̄ ) of (2) with the initial data (X0, V 0, T 0) and (X̄0, V̄ 0, T̄ 0), respec-
tively. Then, without loss of generality, we further suppose that

v∞ = v̄∞ = 0,

where the assumption v∞ = v̄∞ for two average momentums v∞ and v̄∞ is very
crucial to derive the uniform L2-stability of (2). Indeed, under appropriate con-
ditions for asymptotic flocking, the uniform stability between two clusters with
different average velocities cannot be established. However, we verify the uniform
L2-stability estimate when the averages of the sum of the initial temperatures are
different from each other, that is,

T∞ = T̄∞ or T∞ 6= T̄∞.

We use the following simple notation:

• φ(‖xi − xj‖) := φij , ζ(‖xi − xj‖) := ζij , φ(‖x̄i − x̄j‖) := φ̄ij , ζ(‖x̄i − x̄j‖) := ζ̄ij

• DX̄ , DV̄ , DT̄ , T̄
∞
m , T̄∞M is defined similarly as before.

We study the system of differential inequalities in terms of ‖X − X̄‖, ‖V − V̄ ‖,
and ‖T − T̄‖ to deduce a sufficient framework for the uniform L2-stability of (21).

Lemma 5.2. Suppose that (X,V, T ) and (X̄, V̄ , T̄ ) are two global-in-time solutions
to (21) such that

0 < β <∞, min

(
min

i,j∈[N ],i6=j
‖x̄0

i − x̄0
j‖, min

i,j∈[N ],i6=j
‖x0

i − x0
j‖
)
> 0.

and (15) hold, respectively. Then, it follows that for a.e. t ∈ (0,∞),
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1. (Differentiation of the difference between X and X̄)∣∣∣∣d‖X − X̄‖dt

∣∣∣∣ ≤ ‖V − V̄ ‖,
2. (Differentiation of the difference between V and V̄ )

d‖V − V̄ ‖
dt

≤ −
(
κ1φ(D∞X )

T∞M
− κ1φ(d∞X )DT

(T∞m )2

)
‖V − V̄ ‖+

2κ1φ(d∞X )DV̄

T∞m T̄∞m
‖T − T̄‖

+
2βκ1

min(dX , dX̄)β+1

(
DV̄

T̄∞m
+
DV̄DT̄

(T̄∞m )2

)∥∥X − X̄∥∥ ,
3. (Differentiation of the difference between T and T̄ )

d‖T − T̄‖
dt

≤ 2γκ2DT̄

(T̄∞m )2(min(d∞X , d
∞
X̄

))β+1
‖X − X̄‖

+ κ2ζ(d∞X )

(
DT̄

T∞m (T̄∞m )2
+

DT

T̄∞m (T∞m )2

)
‖T − T̄‖.

Proof. • (Proof of (1)) For the first assertion, we apply the Cauchy–Schwarz in-
equality to show that

1

2

∣∣∣∣d‖X − X̄‖2dt

∣∣∣∣ = |〈X − X̄, V − V̄ 〉| ≤ ‖X − X̄‖‖V − V̄ ‖,

which implies that for a.e. t ∈ (0,∞),∣∣∣∣d‖X − X̄‖dt

∣∣∣∣ ≤ ‖V − V̄ ‖.
• (Proof of (3)) For the third assertion, we use (21)3 for a.e. t ∈ (0,∞) to obtain
the following:

1

2

d‖T − T̄‖2

dt
=
κ2

N

N∑
i=1

(Ti − T̄i)

 N∑
j=1

ζij

(
1

Ti
− 1

Tj

)
−

N∑
j=1

ζ̄ij

(
1

T̄i
− 1

T̄j

)
=
κ2

N

N∑
i,j=1

(
ζij − ζ̄ij

)
(Ti − T̄i)

(
1

T̄i
− 1

T̄j

)

+
κ2

N

N∑
i,j=1

ζij(Ti − T̄i)
(

1

Ti
− 1

Tj
− 1

T̄i
+

1

T̄j

)
:= I1 + I2.

� (Estimate of I1) To estimate I1, we first observe from Proposition 2 that for a.e.
t ∈ (0,∞),

I1 =
κ2

N

N∑
i,j=1

(
ζij − ζ̄ij

)
(Ti − T̄i)

(
1

T̄i
− 1

T̄j

)

≤ κ2

N

N∑
i,j=1

∣∣ζij − ζ̄ij∣∣ |Ti − T̄i| ∣∣∣∣ 1

T̄i
− 1

T̄j

∣∣∣∣
≤ κ2DT̄

N(T̄∞m )2

N∑
i,j=1

∣∣ζij − ζ̄ij∣∣ |Ti − T̄i|
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≤ γκ2DT̄

N(T̄∞m )2(min(d∞X , d
∞
X̄

))γ+1

N∑
i,j=1

(‖xi − x̄i‖+ ‖xj − x̄j‖)|Ti − T̄i|

≤ 2γκ2DT̄

(T̄∞m )2(min(d∞X , d
∞
X̄

))γ+1
‖X − X̄‖‖T − T̄‖,

where we used 1) the uniform boundedness of the Lipschitz norm of the ζ with
triangle inequality and Theorem 4.1 to estimate the third inequality, and 2) the
Cauchy–Schwarz inequality to estimate the last inequality.

� (The estimate of I2) (Estimate of I2) We apply the standard technique of in-
terchanging i and j and dividing by 2 to yield

I2 =
κ2

N

N∑
i,j=1

ζij(Ti − T̄i)
(

1

Ti
− 1

Tj
− 1

T̄i
+

1

T̄j

)

=
κ2

2N

N∑
i,j=1

ζij((Ti − T̄i)− (Tj − T̄j))
(

1

Ti
− 1

Tj
− 1

T̄i
+

1

T̄j

)

=
κ2

2N

N∑
i,j=1

ζij((Ti − T̄i)− (Tj − T̄j))
(

1

Ti
− 1

Tj
− 1

T̄i
+

1

T̄j

)

=
κ2

2N

N∑
i,j=1

ζij((Ti − T̄i)− (Tj − T̄j))
(
−((Ti − T̄i)− (Tj − T̄j))

TiT̄i

)

+
κ2

2N

N∑
i,j=1

ζij((Ti − T̄i)− (Tj − T̄j))
(
Tj − T̄j

)( 1

Tj T̄j
− 1

TiT̄i

)

≤ κ2

2N

N∑
i,j=1

ζij((Ti − T̄i)− (Tj − T̄j))
(
Tj − T̄j

)( 1

Tj T̄j
− 1

TiT̄i

)

≤ κ2

2N

N∑
i,j=1

ζij(|Ti − T̄i|+ |Tj − T̄j |)
∣∣Tj − T̄j∣∣ ∣∣∣∣ 1

Tj T̄j
− 1

TiT̄i

∣∣∣∣
≤ κ2ζ(d∞X )

2N

(
DT̄

T∞m (T̄∞m )2
+

DT

T̄∞m (T∞m )2

) N∑
i,j=1

(|Ti − T̄i|+ |Tj − T̄j |)
∣∣Tj − T̄j∣∣

≤ κ2ζ(d∞X )

(
DT̄

T∞m (T̄∞m )2
+

DT

T̄∞m (T∞m )2

)
‖T − T̄‖2,

since Theorem 4.3 holds and∣∣∣∣ 1

Tj T̄j
− 1

TiT̄i

∣∣∣∣ ≤ 1

Ti

∣∣∣∣ 1

T̄i
− 1

T̄j

∣∣∣∣+
1

T̄j

∣∣∣∣ 1

Ti
− 1

Tj

∣∣∣∣ ≤ DT̄

T∞m (T̄∞m )2
+

DT

T̄∞m (T∞m )2
.

Therefore, we combine I1 with I2 for a.e. t ∈ (0,∞) to attain the following:

d‖T − T̄‖
dt

≤ 2γκ2DT̄

(T̄∞m )2(min(d∞X , d
∞
X̄

))β+1
‖X − X̄‖

+ κ2ζ(d∞X )

(
DT̄

T∞m (T̄∞m )2
+

DT

T̄∞m (T∞m )2

)
‖T − T̄‖,
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which gives the desired second assertion of the lemma.

• (Proof of (3)) For this, by using the second equation (21)2, one can easily check
that

1

2

d‖V − V̄ ‖2

dt
=
κ1

N

N∑
i=1

〈
vi − v̄i,

N∑
j=1

φij

(
vj
Tj
− vi
Ti

)
−

N∑
j=1

φ̄ij

(
v̄j
T̄j
− v̄i
T̄i

)〉

=
κ1

N

N∑
i,j=1

(
φij − φ̄ij

)〈
vi − v̄i,

v̄j
T̄j
− v̄i
T̄i

〉

+
κ1

N

N∑
i,j=1

φij

〈
vi − v̄i,

vj
Tj
− vi
Ti
− v̄j
T̄j

+
v̄i
T̄i

〉
:= J1 + J2.

� (Estimate of J1) We employ Theorem 4.1 and the following relation

‖v̄i‖ =

∥∥∥∥∥v̄i −
∑N
i=1 v̄i
N

∥∥∥∥∥ ≤ N − 1

N
·DV̄ ≤ DV̄

to deduce that

J1 =
κ1

N

N∑
i,j=1

(
φij − φ̄ij

)〈
vi − v̄i,

v̄j
T̄j
− v̄i
T̄i

〉

≤ κ1

N

N∑
i,j=1

∣∣φij − φ̄ij∣∣ ‖vi − v̄i‖∥∥∥∥ v̄jT̄j − v̄i
T̄i

∥∥∥∥
≤ βκ1

N min(dX , dX̄)β+1

N∑
i,j=1

(‖xi − x̄i‖+ ‖xj − x̄j‖) ‖vi − v̄i‖
∥∥∥∥ v̄jT̄j − v̄i

T̄i

∥∥∥∥
≤ βκ1

N min(dX , dX̄)β+1

×
N∑

i,j=1

(‖xi − x̄i‖+ ‖xj − x̄j‖) ‖vi − v̄i‖
(∥∥∥∥ v̄j − v̄iT̄j

∥∥∥∥+ ‖v̄i‖
∣∣∣∣ 1

T̄j
− 1

T̄i

∣∣∣∣)

≤ βκ1

N min(dX , dX̄)β+1

N∑
i,j=1

(‖xi − x̄i‖+ ‖xj − x̄j‖) ‖vi − v̄i‖
(
DV̄

T̄∞m
+
DV̄DT̄

(T̄∞m )2

)

≤ 2βκ1

min(dX , dX̄)β+1
·
(
DV̄

T̄∞m
+
DV̄DT̄

(T̄∞m )2

)∥∥X − X̄∥∥ ∥∥V − V̄ ∥∥ ,
where we used the Lipschitz norm of f(r) = 1

rβ
, r > min(d∞X , d

∞
X̄

) in the second
inequality and utilized Theorem 4.3 with Proposition 2 in the fourth inequality and
used the Cauchy–Schwarz inequality to estimate the last inequality.

� (Estimate of J2) Again, from the standard technique of interchanging i and j
and dividing by 2,

J2 =
κ1

N

N∑
i,j=1

φij

〈
vi − v̄i,

vj
Tj
− vi
Ti
− v̄j
T̄j

+
v̄i
T̄i

〉
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=
κ1

2N

N∑
i,j=1

φij

〈
vi − v̄i − vj + v̄j ,

vj
Tj
− vi
Ti
− v̄j
T̄j

+
v̄i
T̄i

〉

=
κ1

2N

N∑
i,j=1

φij

〈
vi − v̄i − vj + v̄j ,

vj
Ti
− vi
Ti
− v̄j
Ti

+
v̄i
Ti

〉

+
κ1

2N

N∑
i,j=1

φij

〈
vi − v̄i − vj + v̄j ,

vj
Tj
− vj
Ti

+
v̄j
Ti
− v̄i
Ti
− v̄j
T̄j

+
v̄i
T̄i

〉
:= J21 + J22.

? (Estimate of J21) We note from Proposition 2 and Theorem 4.3 that

J21 = − κ1

2N

N∑
i,j=1

φij
‖vi − v̄i − vj + v̄j‖2

Ti

≤ − κ1

2N

N∑
i,j=1

φ(D∞X )
‖vi − v̄i − vj + v̄j‖2

T∞M

= − κ1

2N

N∑
i,j=1

φ(D∞X )

(
‖vi − v̄i‖2 + ‖vj − v̄j‖2

T∞M

)
= −κ1φ(D∞X )

T∞M
‖V − V̄ ‖2,

because we assumed that v∞ = v̄∞ = 0.

? (Estimate of J22) Moreover, due to Theorem 4.3,

J22 =
κ1

2N

N∑
i,j=1

φij

〈
vi − v̄i − vj + v̄j ,

vj
Tj
− vj
Ti

+
v̄j
Ti
− v̄i
Ti
− v̄j
T̄j

+
v̄i
T̄i

〉

=
κ1

2N

N∑
i,j=1

φij

〈
vi − v̄i − vj + v̄j ,

vj
Tj
− v̄j
Tj

+
v̄j
Tj
− vj
Ti

+
v̄j
Ti
− v̄i
Ti
− v̄j
T̄j

+
v̄i
T̄i

〉

=
κ1

2N

N∑
i,j=1

φij

〈
vi − v̄i − vj + v̄j ,

v̄j
Tj
− v̄i
Ti
− v̄j
T̄j

+
v̄i
T̄i

〉

+
κ1

2N

N∑
i,j=1

φij

〈
vi − v̄i − vj + v̄j ,

vj
Tj
− v̄j
Tj
− vj
Ti

+
v̄j
Ti

〉
:= J221 + J222.

◦ (Estimate of J221) We employ the Cauchy–Schwarz inequality, Proposition 2,
Theorem 4.3, and v∞ = v̄∞ = 0 to deduce that

J221 =
κ1

2N

N∑
i,j=1

φij

〈
vi − v̄i − vj + v̄j ,

v̄j
Tj
− v̄i
Ti
− v̄j
T̄j

+
v̄i
T̄i

〉

≤ κ1

2N

N∑
i,j=1

φij(‖vi − v̄i‖+ ‖vj − v̄j‖)
(
‖v̄j‖

∣∣∣∣ 1

Tj
− 1

T̄j

∣∣∣∣+ ‖v̄i‖
∣∣∣∣ 1

Ti
− 1

T̄i

∣∣∣∣)
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≤ κ1φ(d∞X )DV̄

2NT∞m T̄∞m

N∑
i,j=1

(‖vi − v̄i‖+ ‖vj − v̄j‖)(|Ti − T̄i|+ |Tj − T̄j |)

≤ 2κ1φ(d∞X )DV̄

T∞m T̄∞m
‖V − V̄ ‖‖T − T̄‖.

◦ (The estimate of J222) Likewise, it is easy to verify that

J222 =
κ1

2N

N∑
i,j=1

φij

〈
vi − v̄i − vj + v̄j ,

vj
Tj
− v̄j
Tj
− vj
Ti

+
v̄j
Ti

〉

≤ κ1

2N

N∑
i,j=1

φij(‖vi − v̄i‖+ ‖vj − v̄j‖)
(
‖vj − v̄j‖

∣∣∣∣ 1

Tj
− 1

Ti

∣∣∣∣)

≤ κ1φ(d∞X )DT

2N(T∞m )2

N∑
i,j=1

(‖vi − v̄i‖+ ‖vj − v̄j‖)‖vj − v̄j‖

≤ κ1φ(d∞X )DT

(T∞m )2
‖V − V̄ ‖2.

Finally, we combine J1 with J21, J221 and J222 to concldue that for a.e. t ∈ (0,∞),

d‖V − V̄ ‖
dt

≤ −
(
κ1φ(D∞X )

T∞M
− κ1φ(d∞X )DT

(T∞m )2

)
‖V − V̄ ‖+

2κ1φ(d∞X )DV̄

T∞m T̄∞m
‖T − T̄‖

+
2βκ1

min(dX , dX̄)β+1
·
(
DV̄

T̄∞m
+
DV̄DT̄

(T̄∞m )2

)∥∥X − X̄∥∥ ,
which yields the desired second assertion.

Remark 4. The results in Lemma 5.2 are similar to those in the previous paper
[33]; however, we proved Lemma 5.2 in a much more concise way. The authors of
[33] verified Lemma 5.22 and the result is similar to Lemma 5.23 by dividing N
particles into two sets for technical calculations, and too long estimates were made
for each of them.

Next, we are ready to prove the uniform L2-stability of (21) under a sufficient
framework in terms of the initial data and system parameters, which can be used to
derive the uniform-in-time mean-field limit from (21) to the corresponding kinetic
Vlasov equation. Thus, we must estimate G∞ defined in Definition 5.1 so that it
is independent of the initial data (X0, V 0, T 0) as well as the number of particle N
for the sake of an uniqueness of measure-valued solution to the kinetic equation.
For papers related to the uniform-in-time mean-field limit and the measure-valued
solution framework, refer to [4, 5, 20, 33, 36, 38].

Next, we set the following simple notation to simply express the three differ-
ential inequalities of Lemma 5.2.

‖X − X̄‖ =: X , ‖V − V̄ ‖ =: V, ‖T − T̄‖ =: T .

Theorem 5.3. Let (X,V, T ) and (X̄, V̄ , T̄ ) be two global-in-time solutions of (21)
such that

0 < β <∞, min

(
min

i,j∈[N ],i6=j
‖x0

i − x0
j‖, min

i,j∈[N ],i6=j
‖x̄0

i − x̄0
j‖
)
> 0
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and (15) hold, respectively. Then, the uniform L2-stability estimate holds for (21).
More precisely, there exist G∞ > 0 and C1 > 0 such that for ε ∈ (0, C1),

1. (Uniform stability for X )

X (t) ≤ G∞ (X (0) + V(0) + T (0)) ,

2. (Uniform stability for V)

V(t) ≤ G∞ (X (0) + V(0) + T (0)) exp (−(C1 − ε)t) ,

3. (Uniform stability for T )

T (t) ≤ G∞ (X (0) + V(0) + T (0)) , t ∈ (0,∞).

Proof. First, it follows from Theorem 4.3 and Lemma 5.2 that there exist a strictly
positive constant C1 and nonnegative constants {C̃k}5k=1 independent of t, N and
the initial data such that

•
∣∣∣∣dXdt

∣∣∣∣ ≤ V, a.e. t ∈ (0,∞),

• dV
dt
≤ −C1V + C̃1 exp(−C1t)V + C̃2 exp(−C1t)X + C̃3 exp(−C1t)T ,

• dT
dt
≤ C̃4 exp(−C1t)X + C̃5 exp(−C1t)T .

(22)

Now, for an arbitrarily given ε ∈ (0, C1), we set

W(t) := V(t) exp ((C1 − ε)t) .

Then, (22) can be converted to the following inequalities:

•
∣∣∣∣dXdt

∣∣∣∣ ≤ W exp(−(C1 − ε)t), a.e. t ∈ (0,∞),

• dW
dt
≤ −εC1W + C̃1 exp(−εt)W + C̃2 exp(−εt)X + C̃3 exp(−εt)T ,

• dT
dt
≤ C̃4 exp(−C1t)X + C̃5 exp(−C1t)T .

(23)

By defining C̄1 = min(ε, C1 − ε), we estimate (23) as follows:

•
∣∣∣∣dXdt

∣∣∣∣ ≤ W exp(−C̄1t), a.e. t ∈ (0,∞),

• dW
dt
≤ C̃1 exp(−C̄1t)W + C̃2 exp(−C̄1t)X + C̃3 exp(−C̄1t)T ,

• dT
dt
≤ C̃4 exp(−C̄1t)X + C̃5 exp(−C̄1t)T .

(24)

Now, we sum up from (24)1 to (24)3 to guarantee that there exists C ≥ 0, indepen-
dent of t, N and the initial data, such that

d

dt
(X +W + T ) ≤ C exp(−C̄1t)(X +W + T ).

Therefore, we can conclude that

X + V + T ≤ X +W + T

≤ exp

(
C

C̄1

)
(X (0) +W(0) + T (0)) = exp

(
C

C̄1

)
(X (0) + V(0) + T (0)),
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yielding the uniform L2-stability of (21). Moreover, we get the desired results (1),
(2) and (3).

Remark 5. Further, G∞, estimated in the proof of Theorem 5.3, is independent
of the number of particles N , time t, and the given initial data (X(0), V (0), T (0)),
(X̄(0), V̄ (0), T̄ (0)).

Remark 6. In previous articles [5, 33, 36], the authors verified the uniform stability
estimates of the targeted models with regular kernels that are monotonically de-
creasing, nonnegative, bounded, and Lipschitz continuous. Their verifications were
conducted by employing functionals, such as

MZ(t) = max
0≤s≤t

‖Z(s)− Z̄(s)‖

with arguments that were too technical and lengthy. However, we used the following
substitution

u(t) = ‖V (t)− V̄ (t)‖ exp ((C1 − ε)t)
to obtain a much more improved proof in Theorem 5.3 than those in previous papers.

6. Conclusion. In this paper, we provided several sufficient frameworks, indepen-
dent of the number of particles N , for collision avoidance (that is, global well-
posedness) and the emergent dynamics of the CS and TCS models under strongly
and weakly singular kernels, respectively. We first derived the dissipative struc-
tures with the L∞-diameters DX , DV (and DT ) and then used the Lyapunov func-
tional approach and appropriate bootstrapping arguments with technical estimates
to obtain the collision avoidance and asymptotic flocking results. In particular, a
collisional phenomenon of the two-particle CSS and TCSS models on R1 under the
weakly singular kernel; therefore we adopted a sufficient framework for the global
well-posedness and emergent behavior so that the two models have strictly positive
lower bounds on all pairwise distances. Furthermore, to construct an admissible
set for the emergent dynamics of the TCSS model, we introduced sufficient frame-
works. These were introduced to ensure that the distance between each pair of
particles to have a positive lower bound regardless of having weakly or strongly sin-
gular kernels, due to the dissipative velocity structure with φ(dX) and finite-in-time
blow-up when dX = 0, unlike the CSS model. Finally, we described the sufficient
frameworks for the L2-uniform stability results of the TCSS model, which can be
used to derive uniform-in-time mean-field limits of the CSS and TCSS models. In
summary, this work is meaningful in that it provides sufficient frameworks to enable
deriving uniform-in-time mean-field limits from the CS and TCS models with sin-
gular kernels to the corresponding kinetic Vlasov equation, respectively. However,
several remaining questions require study in future work:

• (Question 1): Can we enlarge the sufficient framework for the emergent dy-
namics independent of N of the TCSS model with a strongly singular kernel
without the strict positivity of each relative distance?

• (Question 2): Can we improve the sufficient frameworks for the uniform sta-
bility of the CSS and TCSS models in Section 5 when each nonzero relative
distance converges to zero?
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• (Question 3): Can we also prove the noncollisional phenomena of the CS and
TCS models with singular kernels on complete Riemannian manifolds?
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