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Abstract. This paper contains two contributions in the study of optimal
transport on metric graphs. Firstly, we prove a Benamou–Brenier formula

for the Wasserstein distance, which establishes the equivalence of static and
dynamical optimal transport. Secondly, in the spirit of Jordan–Kinderlehrer–

Otto, we show that McKean–Vlasov equations can be formulated as gradient

flow of the free energy in the Wasserstein space of probability measures. The
proofs of these results are based on careful regularisation arguments to cir-

cumvent some of the difficulties arising in metric graphs, namely, branching

of geodesics and the failure of semi-convexity of entropy functionals in the
Wasserstein space.

1. Introduction. This article deals with the equivalence of static and dynami-
cal optimal transport on metric graphs, and with a gradient flow formulation of
McKean–Vlasov equations in the Wasserstein space of probability measures.

Let (V,E) be a finite (undirected) connected graph and let ` : E → (0,∞) be a
given weight function. Loosely speaking, the associated metric graph is the geodesic
metric space (G, d) obtained by identifying the edges e ∈ E with intervals of length
`e, and gluing the intervals together at the nodes. In other words, a metric graph
describes a continuous “cable system”, rather than a discrete set of nodes; see
Section 2.2 for a more formal definition. Metric graphs arise in many applications
in chemistry, physics, or engineering, describing quasi-one-dimensional systems such
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as carbon nano-structures, quantum wires, transport networks, or thin waveguides.
They are also widely studied in mathematics; see [6, 23] for an overview.

For 1 ≤ p < ∞, the Lp-Wasserstein distance Wp between Borel probability
measures µ and ν on G is defined by the Monge–Kantorovich transport problem

Wp(µ, ν) := min
σ∈Π(µ,ν)

{∫

G×G
dp(x, y) dσ(x, y)

}1/p

,

where Π(µ, ν) denotes the set of transport plans; i.e., all Borel probability measures
σ on G × G with respective marginals µ and ν. Since G is compact, the Wasser-
stein distance Wp metrises the topology of weak convergence of Borel probability
measures on G, for any p ≥ 1. The resulting metric space of probability measures
is the Lp-Wasserstein space over G.

Metric graphs (G, d) are prototypical examples of metric spaces that exhibit
branching of geodesics: it is (typically) possible to find two distinct constant speed
geodesics (γt)t∈[0,1] and (γ̃t)t∈[0,1], taking the same values for all times t ∈ [0, t0] up
to some t0 ∈ (0, 1). For this reason, several key results from optimal transport are
not directly applicable to metric graphs. This paper contains two of these results.

The Benamou–Brenier formula. On Euclidean space Rd, a dynamical char-
acterisation of the Wasserstein distance has been obtained in celebrated works of
Benamou and Brenier [4, 5]. The Benamou–Brenier formula asserts that

W 2
2 (µ, ν) = inf

(µt,vt)

{∫ 1

0

‖vt‖2L2(µt)
dt
}

(1)

where the infimum runs over all 2-absolutely continuous curves (µt)t∈[0,1] in the

L2-Wasserstein space over Rd, satisfying the continuity equation

d

dt
µt +∇ · (vtµt) = 0 (2)

with boundary conditions µ0 = µ and µ1 = ν.
Here we are interested in obtaining an analogous result in the setting of metric

graphs. However, such an extension is not straightforward, since standard proofs
in the Euclidean setting (see [2, 26]) make use of the flow map T : [0, 1]×Rd → Rd
associated to a (sufficiently regular) vector field (vt)t∈[0,1], which satisfies

d

dt
T (t, x) = vt

(
T (t, x)

)
, T (0, x) = x, T (t, ·)#µ0 = µt,

see, e.g., [2, Proposition 8.1.8]. On a metric graph such a flow map T typically fails
to exist, since solutions (µt)t∈[0,1] to the continuity equation (2) are usually not
uniquely determined by an initial condition µ0 and a given vector field (vt)t∈[0,1].

Circumventing this difficulty, Gigli and Han obtained a version of the Benamou–
Brenier formula in very general metric measure spaces [13]. However, this paper
requires a strong assumption on the measures (namely, a uniform bound on the
density with respect to the reference measure). While this assumption is natural in
the general setting of [13], it is unnecessarily restrictive in the particular setting of
metric graphs.

In this paper, we prove a Benamou–Brenier formula that applies to arbitrary
Borel probability measures on metric graphs. The key ingredient in the proof is a
careful regularisation step for solutions to the continuity equation.
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Gradient flow structure of diffusion equations. As an application of the Bena-
mou–Brenier formula, we prove another central result from optimal transport: the
identification of diffusion equations as gradient flow of the free energy in the Wasser-
stein space (P(G),W2). In the Euclidean setting, results of this type go back to the
seminal work of Jordan, Kinderlehrer, and Otto [14].

Here we consider diffusion equations of the form

∂tη = ∆η +∇ ·
(
η
(
∇V +∇W [µ]

))
, (3)

for suitable potentials V : G → R and W : G × G → R. In analogy with the
Euclidean setting, we show that this equation arises as the gradient flow equation
for a free energy F : P(G)→ (−∞,+∞] composed as the sum of entropy, potential,
and interaction energies:

F(µ) :=

∫

G

η(x) log η(x) dλ(x) +

∫

G

V (x)η(x) dλ(x)

+
1

2

∫

G×G
W (x, y)η(x)η(y) dλ(x) dλ(y),

if µ = ηλ, where λ denotes the Lebesgue measure on G.
A key difference compared to the Euclidean setting is that the entropy is not

semi-convex along W2-geodesics; see Section 4. This prevents us from applying “off-
the-shelf” results from the theory of metric measure spaces. Instead, we present
a self-contained proof of the gradient flow result. Its main ingredient is a chain
rule for the entropy along absolutely continuous curves, which we prove using a
regularisation argument.

Interestingly, we do not need to assume continuity of the potential V at the
vertices. Therefore our setting includes diffusion with possibly singular drift at the
vertices.

The Wasserstein distance over metric graphs for p = 1 has been studied in [20].
The focus is on the approximation of Kantorovich potentials using p-Laplacian type
problems.

The recent paper [10] deals with dynamical optimal transport metrics on metric
graphs. The authors start with the dynamical definition à la Benamou–Brenier
and consider links to several other interesting dynamical transport distances. The
current paper is complementary, as it shows the equivalence of static and dynamical
optimal transport, and a gradient flow formulation for diffusion equations.

Various different research directions involving optimal transport and graphs exist.
In particular, dynamical optimal transport on discrete graphs have been intensively
studied in recent years following the papers [11, 19, 21]. The underlying state space
in these papers is a discrete set of nodes rather than a gluing of one-dimensional
intervals.

Another line of research deals with branched optimal transport, which is used to
model phenomena such as road systems, communication networks, river basins, and
blood flow. Here one starts with atomic measures in the continuum, and graphs
emerge to describe paths of optimal transport [28, 7].

Organisation of the paper. In Section 2 we collect preliminaries on optimal
transport and metric graphs. Section 3 is devoted to the continuity equation and
the Benamou–Brenier formula on metric graphs. In particular, we present a care-
ful regularisation procedure for solutions to the continuity equation. Section 4
contains an example which demonstrates the lack convexity of the entropy along
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W2-geodesics in the setting of metric graphs. Section 5 deals with the gradient flow
formulation of diffusion equations.

2. Preliminaries. In this section we collect some basic definitions and results from
optimal transport and metric graphs.

2.1. Optimal transport. In this section we collect some basic facts on the family
of Lp-Wasserstein distances on spaces of probability measures. We refer to [26,
Chapter 5], [1, Chapter 2] or [27, Chapter 6] for more details.

Let (X, d) be a compact metric space. The space of Borel probability measures
on X is denoted by P(X). The pushforward measure T#µ induced by a Borel map
T : X → Y between two Polish spaces is defined by (T#µ)(A) := µ(T−1(A)) for all
Borel sets A ⊆ Y .

Definition 2.1 (Transport plans and maps).

1. A (transport) plan between probability measures µ, ν ∈ P(X) is a probability
measure σ ∈ P(X ×X) with respective marginals µ and ν, i.e.,

(proj1)#σ = µ and (proj2)#σ = ν,

where proji(x1, x2) := xi for i = 1, 2. The set of all transport plans between
µ and ν is denoted by Π(µ, ν).

2. A transport plan σ ∈ Π(µ, ν) is said to be induced by a Borel measurable
transport map T : X → X if σ = (Id, T )#µ, where (Id, T ) : X → X × X
denotes the mapping x 7→ (x, T (x)).

Definition 2.2 (Kantorovich–Rubinstein–Wasserstein distance). For p ≥ 1, the Lp-
Kantorovich–Rubinstein–Wasserstein distance between probability measures µ, ν ∈
P(X) is defined by

Wp(µ, ν) := inf

{(∫

X×X
dp(x, y) dσ(x, y)

)1/p

: σ ∈ Π(µ, ν)

}
. (4)

For any µ, ν ∈ P(X) the infimum above is attained by some σmin ∈ Π(µ, ν); any
such σmin is called an optimal (transport) plan between µ and ν. If a transport map
T induces an optimal transport plan, we call T optimal as well.

By compactness of (X, d), the Lp-Wasserstein distance metrises the weak conver-
gence in P(X) for any p ≥ 1; see, e.g., [27, Corollary 6.13]. Moreover, (P(X),Wp)
is a compact metric space as well.

We conclude this section with a dual formula for the Wasserstein distance (see,
e.g., [26, Section 1.6.2]). To this aim, we recall that for c : X × X → R, the c-
transform of a function ϕ : X → R ∪ {+∞} is defined by ϕc(y) := infx∈X c(x, y)−
ϕ(x). A function ψ : X → R ∪ {+∞} is called c-concave if there exists a function
ϕ : X → R ∪ {+∞} such that ψ = ϕc.

Proposition 2.3 (Kantorovich duality). For any µ, ν ∈ P(X) we have

W p
p (µ, ν) = sup

ϕ,ψ∈C(X)

{∫

X

ϕdµ+

∫

X

ψ dν : ϕ(x) + ψ(y) ≤ dp(x, y) ∀x, y ∈ X
}
.

Moreover, the supremum is attained by a maximising pair of the form
(ϕ,ψ) = (ϕ,ϕc), where ϕ is a c-concave function, for c(x, y) := dp(x, y).

Any maximiser ϕ is called a Kantorovich potential.
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2.2. Metric graphs. In this subsection we state some basic facts on metric graphs;
see e.g., [20], [6] or [16] for more details.

Definition 2.4 (Metric graph). Let G = (V,E, `) be an oriented, weighted graph,
which is finite and connected. We identify each edge e = (einit, eterm) ∈ E with an
interval (0, `e) and the corresponding nodes einit, eterm ∈ V with the endpoints of
the interval, (0 and `e respectively). The spaces of open and closed metric edges
over G are defined as the respective topological disjoint unions

E :=
∐

e∈E
(0, `e) and E :=

∐

e∈E
[0, `e].

The metric graph over G is the topological quotient space

G := E
/
∼
,

where points in E corresponding to the same vertex are identified.

Note that the orientation of e determines the parametrisation of the edges, but
does not otherwise play a role. To distinguish ingoing and outgoing edges at a given
node, we introduce the signed incidence matrix I = (ιev) whose entries are given
by

ιev :=





+1 if v = einit,

−1 if v = eterm,

0 otherwise.

As a quotient space, any metric graph naturally inherits the structure of a metric
space from the Euclidean distance on its metric edges [9, Chapter 3]: indeed, under
our standing assumption that G is connected the quotient semi-metric d becomes a
metric.

The distance d : G×G→ [0,∞) on G can be more explicitly described as follows:

For x, y ∈ G, let G̃ = (Ṽ, Ẽ) be the underlying discrete graph obtained by adding
new vertices at x and y, and let d(x, y) be the weighted graph distance between x

and y in G̃, i.e.,

d(x, y) := min

n∑

i=1

`ei ,

where the minimum is taken over all sequences of vertices x = x0, . . . , xn = y in
the extended graph G̃ such that xi−1 and xi are vertices of an edge ei ∈ Ẽ for all
i = 1, . . . , n. In particular, if x and y are vertices in G, no new nodes are added,
and we recover the graph distance in the original graph. We refer to [23, Chapter 3]
for details.

By construction, the distance function d metrises the topology of G. It is readily
checked that d is a geodesic distance, i.e., each pair of points x, y ∈ G can be joined
by a curve of minimal length d(x, y). Consequently, also the Wasserstein space
(P(G),W2) is a geodesic space.

In a metric space (X, d), recall that the local Lipschitz constant of a function
f : X → R is defined by

lip(f)(x) := lim sup
y→x

|f(y)− f(x)|
d(x, y)

,



692 MATTHIAS ERBAR, DOMINIK FORKERT, JAN MAAS AND DELIO MUGNOLO

whenever x ∈ X is not isolated, and 0 otherwise. The (global) Lipschitz constant is
defined by

Lip(f) := sup
y 6=x

|f(y)− f(x)|
d(x, y)

.

If the underlying space X is a geodesic space, we have Lip(f) = supx lip(f)(x).

At the risk of being redundant, we explicitly introduce a few relevant function
spaces, although they are actually already fully determined by the metric measure
structure of the metric graph G.

(i) C(G) denotes the space of continuous real-valued functions on G, endowed
with the uniform norm ‖·‖∞.

(ii) Ck(E) is the space of all functions ϕ on E such that the restriction to each
closed edge has continuous derivatives up to order k ∈ N.

(iii) Lp(G), for p ∈ [1,∞], is the p-Lebesgue space over the measure space (G, λ),
where λ denotes the image of the 1-dimensional Lebesgue measure on E under
the quotient map.

(iv) Likewise, we consider the Sobolev spaces W 1,p(E) of Lp(G)-functions whose
restriction on each edge is weakly differentiable with weak derivatives in Lp(G).

3. The continuity equation on a metric graph. In this section we fix a metric
graph G and perform a study of the continuity equation

∂tµt +∇ · Jt = 0 (5)

in this context.

3.1. The continuity equation. In this work we mainly deal with weak solutions
to the continuity equation, which will be introduced in Definition 3.2. To motivate
this definition, we first introduce the following notion of strong solution.

Definition 3.1 (Strong solutions to the continuity equation). A pair of measurable
functions (ρ, U) with ρ : (0, T ) × G → R+ and U : (0, T ) × E → R is said to be a
strong solution to (5) if

(i) t 7→ ρ(t, x) is continuously differentiable for every x ∈ G;
(ii) x 7→ Ut(x) belongs to C1(E) for every t ∈ (0, T );

(iii) the continuity equation d
dtρt(x) +∇ ·Ut(x) = 0 holds for every t ∈ (0, T ) and

x ∈ E;
(iv) for every t ∈ (0, T ) and w ∈ V we have

∑
e∈Ew

ιewUt(we) = 0.

Here, we write ρt := ρ(t, ·) and Ut := U(t, ·) and denote by ∇ the spatial derivative.
Moreover, Ew denotes the set of all edges adjacent to the node w ∈ V, and we ∈ E
denotes the corresponding endpoint of the metric edge e which corresponds to w ∈
G.

To motivate the definition of a weak solution, suppose that we have a strong
solution (ρt, Ut)t∈(0,T ) to the continuity equation (5). Let ψ ∈ C1(E) ∩ C(G) be a
test function. Integration by parts on every metric edge e gives

d

dt

∫ `e

0

ψρt dx =

∫ `e

0

∇ψ · Ut dx+ ψUt

∣∣∣
`e

0
,

and summation over e ∈ E yields

d

dt

∫

G

ψρt dx =

∫

E

∇ψ · Ut dx+
∑

w∈V
ψ(w)

∑

e∈Ew

ιewUt(we) =

∫

E

∇ψ · Ut dx,
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where we use the continuity of ψ on G as well as the node condition (iv) above in
the last step. This ensures that the net ingoing momentum vanishes at every node
in V. In particular, choosing ψ ≡ 1 yields∫

G

ρs dλ =

∫

G

ρt dλ,

for all s, t ∈ (0, T ), i.e. solutions to the continuity equation are mass-preserving.
Here condition (iv) is crucial to ensure that no creation or annihilation of mass
occurs at the nodes.

Definition 3.2 (Weak solution). A pair (µt, Jt)t∈(0,T ) consisting of probability

measures µt on G and signed measures Jt on E, such that t 7→
(
µt(A), Jt(A)

)
is

measurable for all Borel sets A, is said to be a weak solution to (5) if

(i) t 7→
∫
G
ψ dµt is absolutely continuous for every ψ ∈ C1(E) ∩ C(G);

(ii)
∫ T

0
|Jt|(E) dt <∞;

(iii) for every ψ ∈ C1(E) ∩ C(G) and a.e. t ∈ (0, T ), we have

d

dt

∫

G

ψ dµt =

∫

E

∇ψ · dJt. (6)

Remark 1. Proposition 3.9 below shows that continuous functions on G can be
uniformly approximated by C1 functions. By standard arguments it then follows
that (µt, Jt)t∈(0,T ) is a weak solution if and only if the following conditions hold:
(i′) t 7→ µt is weakly continuous; (ii) from Definition 3.2 holds; and

(iii′) for every ϕ ∈ C1
c

(
(0, T )×E

)
such that ϕt, ∂tϕt ∈ C1(E)∩C(G) for all t ∈ (0, T )

we have ∫ T

0

(∫

G

∂tϕdµt +

∫

E

∇ϕ · dJt
)

dt = 0. (7)

See Lemma 3.10 below for the weak continuity in (i′).

The next result asserts that the momentum field does not give mass to vertices
for a.e. time point. Hence, we can equivalently restrict the integrals over E in (6)
and (7) to the space of open edges E.

Lemma 3.3. Let B := E \ E denote the set of all boundary points of edges. For
any weak solution to the continuity equation (µt, Jt)t∈(0,T ), we have

∫ T

0

|Jt|(B) dt = 0.

Proof. Fix a metric edge e in E and take w ∈ {einit, eterm}. Without loss of general-
ity we take w = einit. Then we can construct a family of functions ϕε for ε ∈ (0, `e)
with the following properties:

(a) ϕε ∈ C1(E) ∩ C(G);
(b) ϕε ≡ 0 on E \ e and ϕε → 0 uniformly on G as ε→ 0;
(c) |∇ϕε| = 1 on (0, ε) ⊂ e and |∇ϕε| → 0 uniformly on compact subsets of E\{w}.
For instance, we could set ϕε(x) := 1e(x)ηε(x), where ηε : R→ R is a C1 approxi-

mation of the function x 7→
(
x ∧ ε(`e−x)

`e−ε
)
∨ 0. Choosing ϕ(t, x) = ϕε(x) in (7), we

obtain by passing to the limit ε→ 0 that
∫ T

0
|Jt|({w})dt = 0.
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Lemma 3.4 (Weak and strong solutions). The following assertions hold:

(i) If (ρt, Ut)t∈(0,T ) is a strong solution to the continuity equation, then the pair
(µt, Jt)t∈(0,T ) defined by µt = ρtλ and Jt = Utλ is a weak solution to the
continuity equation.

(ii) If (µt, Jt)t∈(0,T ) is a weak solution to the continuity equation (6) such that the

densities ρt := dµt

dλ and Ut := dJt
dλ exist for all times t ∈ (0, T ) and satisfy

the regularity conditions (i) and (ii) of Definition 3.1, then (ρt, Ut)t∈(0,T ) is a
strong solution to the continuity equation.

Proof. Both claims are straightforward consequences of integration by parts on each
metric edge in E.

3.2. Characterisation of absolutely continuous curves. Let (X, d) be a metric
space and let T > 0.

Definition 3.5. For p ≥ 1, we say that a curve γ : (0, T ) → X is p-absolutely
continuous if there exists a function g ∈ Lp(0, T ) such that

d(γs, γt) ≤
∫ t

s

gr dr ∀s, t ∈ (0, T ) : s ≤ t. (8)

The class of p-absolutely continuous curves is denoted by ACp
(
(a, b); (X, d)

)
.

For p = 1 we simply drop p in the notation. The notion of locally p-absolutely
continuous curve is defined analogously.

Proposition 3.6. Let p ≥ 1. For every p-absolutely continuous curve γ : (0, T )→
X, the metric derivative defined by

|γ̇|(t) := lim
s→t

d(γs, γt)

|s− t|
exists for a.e. t ∈ (0, T ) and t 7→ |γ̇|(t) belongs to Lp(0, T ). The metric derivative
|γ̇|(t) is an admissible integrand in the right-hand side of (8). Moreover, any other
admissible integrand g ∈ Lp(0, T ) satisfies |γ̇|(t) ≤ g(t) for a.e. t ∈ (0, T ).

Proof. See, e.g., [2, Theorem 1.1.2].

The next result relates the metric derivative of t 7→ µt to the L2(µt)-norm of the
corresponding vector fields vt.

Theorem 3.7 (Absolutely continuity curves). The following statements hold:

(i) If (µt)t∈(0,T ) is absolutely continuous in (P(G),W2), then there exists, for

a.e. t ∈ (0, T ), a vector field vt ∈ L2(µt) such that ‖vt‖L2(µt) ≤ |µ̇|(t) and
(µt, vtµt)t∈(0,T ) is a weak solution to the continuity equation (6).

(ii) Conversely, if (µt, vtµt)t∈(0,T ) is a weak solution to the continuity equation (6)

satisfying
∫ 1

0
‖vt‖L2(µt) dt < +∞, then (µt)t∈(0,T ) is an absolutely continuous

curve in (P(G),W2) and |µ̇|(t) ≤ ‖vt‖L2(µt) for a.e. t ∈ (0, T ).

Proof of (i). We adapt the proof of [2, Theorem 8.3.1] to the setting of metric
graphs.

The idea of the proof is as follows: On the space-time domain Q := (0, T )×G we

consider the Borel measure µ :=
∫ T

0
δt ⊗ µt dt whose disintegration with respect to

the Lebesgue measure on (0, T ) is given by (µt)t∈(0,T ). To deal with the fact that

gradients of smooth functions are multi-valued at the nodes, we define µt ∈M+(E)
by µt(A) :=

∑
e∈E µt(A∩ e) for every Borel set A ⊆ E. We then set Q := (0, T )×E
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and define µ ∈ M+(Q) by µ :=
∫ T

0
δt ⊗ µt dt. (Note that mass at the nodes is

counted multiple times). Consider the linear spaces of functions T and V given by

T := span

{
(0, T )×G 3 (t, x) 7→ a(t)ϕ(x) : a ∈ C1

c (0, T ), ϕ ∈ C1(E) ∩ C(G)

}
,

V :=

{
(0, T )× E 3 (t, x) 7→ ∇xΦ(t, x) : Φ ∈ T

}
.

The strategy is to show that the linear functional L : V → R given by

L(a⊗∇ϕ) := −
∫

Q

ȧ(t)ϕ(x) dµ(x, t),

is well-defined and L2(Q,µ)-bounded with ‖L‖2 ≤
∫ T

0
|µ̇|2(t) dt. Once this is

proved, the Riesz Representation Theorem yields the existence of a vector field

vvv in V ⊆ L2(Q,µ) such that ‖vvv‖2L2(µ) ≤
∫ T

0
|µ̇|2(t) dt and

−
∫ T

0

ȧ(t)

∫

G

ϕ(x)dµt(x) dt = L(a⊗∇ϕ) =

∫ T

0

a(t)

∫

E

∇ϕ(x)vt(x) dµt(x) dt (9)

for vt := vvv(t, ·) and all a ∈ C1
c (0, T ) and ϕ ∈ C1(E) ∩ C(G).

Once this is done, we show that the momentum vector field JJJ := vvv · µ does not
assign mass to boundary points in E, so that vvv can be interpreted as an element in
L2(Q,µ) and the integration over vector fields can be restricted to E.

Step 1. Fix a test function ϕ ∈ C1(E)∩C(G) and consider the bounded and upper
semicontinuous function H : G×G→ R given by

H(x, y) :=





lip(ϕ)(x) if x = y,
|ϕ(x)− ϕ(y)|

d(x, y)
if x 6= y,

for x, y ∈ G. For s, t ∈ (0, T ), let σs→t ∈ Π(µs, µt) be an optimal plan. The
Cauchy–Schwarz inequality yields∣∣∣∣

∫

G

ϕdµs −
∫

G

ϕdµt

∣∣∣∣ ≤
∫

G×G
d(x, y)H(x, y) dσs→t(x, y)

≤W2(µs, µt)

(∫

G×G
H2(x, y) dσs→t(x, y)

)1/2

.

(10)

As ϕ is globally Lipschitz on G, we obtain
∣∣∣
∫

G

ϕdµs −
∫

G

ϕdµt

∣∣∣ ≤ Lip(ϕ)W2(µs, µt)

and infer that the mapping t 7→
∫
G
ϕdµt is absolutely continuous, hence, differen-

tiable outside of a null set Nϕ ⊆ (0, T ).
Fix t ∈ (0, T ) and take a sequence {sn}n∈N converging to t. Since {µsn} is weakly

convergent, this sequence is tight. Consequently, {σsn→t}n∈N is tight as well, and
we may extract a subsequence converging weakly to some σ̂ ∈ P(G×G). It readily
follows that σ̂ ∈ Π(µt, µt). Moreover, along the convergent subsequence, we have∫

G×G
d2(x, y) dσ̂(x, y) ≤ lim inf

n→∞

∫

G×G
d2(x, y) dσsn→t(x, y)

= lim inf
n→∞

W 2
2 (µsn , µt) = 0,

which implies that σ̂ = (Id, Id)#µt.
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Using this result and the upper-semicontinuity of H, it follows from (10) that

lim sup
s→t

∣∣∣∣
∫
G
ϕdµs −

∫
G
ϕdµt

s− t

∣∣∣∣ ≤ |µ̇|(t) lim sup
s→t

(∫

G×G
H2(x, y) dσs→t(x, y)

)1/2

≤ |µ̇|(t) · ‖lip(ϕ)‖L2(µt)
.

(11)

Step 2. Take Φ ∈ T . Using dominated convergence, Fatou’s Lemma, and (11), we
obtain∣∣∣∣
∫

Q

d

dt
Φ(x, t) dµ(x, t)

∣∣∣∣ = lim
h↘0

∣∣∣∣
1

h

∫

Q

Φ(x, t− h)− Φ(x, t) dµ(x, t)

∣∣∣∣

= lim
h↘0

∣∣∣∣
1

h

∫ T

0

(∫

G

Φ(x, t) dµt+h(x)−
∫

G

Φ(x, t) dµt(x)

)
dt

∣∣∣∣

≤
∫ T

0

|µ̇|(t) · ‖lipx(Φ)(·, t)‖L2(µt)
dt

≤
(∫ T

0

|µ̇|2(t) dt

)1/2(∫

Q

|lipx(Φ)(x, t)|2 dµ(x, t)
)1/2

.

(12)
Since

∫
Q
|lipx(Φ)(x, t)|2 dµ(x, t) ≤

∫
Q
|∇Φ(x, t)|2 dµ(x, t), we infer that L is well-

defined and extends to a bounded linear functional on the closure of V in L2(Q,µ)

with ‖L‖2 ≤
∫ T

0
|µ̇|2(t) dt, which allows us to apply the Riesz Representation The-

orem, as announced above.
In particular, (9) implies that t 7→

∫
E
∇ϕ · vt dµt is a distributional derivative

for t 7→
∫
G
ϕdµt. Since the latter function is absolutely continuous and, therefore,

belongs to the Sobolev space W 1,1(0, T ), we obtain

d

dt

∫

G

ϕdµt =

∫

E

∇ϕ · vt dµt for a.e. t ∈ (0, T ). (13)

We conclude that (µt, vt)t∈(0,T ) solves the continuity equation in the weak sense.
Lemma 3.3 implies that for a.e. t the momentum field Jt := vt · µt does not give
mass to any boundary point in E . Consequently, the spatial domain of integration
on the right-hand side of (9) may be restricted to E.

Step 4. It remains to verify (by a standard argument) the inequality relating the
L2(µt)-norm of the vector field vt to the metric derivative of µt.

For this purpose, fix a sequence ($$$i)i∈N of functions $$$i ∈ V converging to vvv in
L2(µ) as i→∞. For every compact interval I ⊆ (0, T ) and a ∈ C1(0, T ) satisfying
0 ≤ a ≤ 1 and supp a = I, we then obtain∫

Q

a(t)|vvv(x, t)|2 dµ(x, t) = lim
i→∞

∫

Q

a(t)$$$i(x, t)vvv(x, t) dµ(x, t)

= lim
i→∞

L(a$$$i) ≤
(∫ T

0

1I |µ̇t|2 dt
)1/2

lim
i→∞

(∫

Q

1I |$$$i|2 dµ
)1/2

=
(∫ T

0

1I |µ̇|2(t) dt
)1/2(∫

Q

1I |v|2 dµ
)1/2

.

Letting ‖a− 1I‖∞ → 0, this inequality implies
∫

I

∫

E

|vt|2 dµt dt ≤
∫

I

|µ̇|2(t) dt.
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GRADIENT FLOWS FOR METRIC GRAPHS 85

Recall that on a metric graph The injectivity radius corresponds to half the total
length of the shortest embedded cycle.

This means that for any two points x, y 2 G of distance less than 2", the geodesic
connecting x to y is uniquely defined.

We consider the supergraph Gext ◆ G defined by adjoining an additional auxiliary
edge eext

v of length " to each node v 2 V (see Figure 3). The corresponding set of metric
edges will be denoted by Eext � E. For the purpose of this definition below, we identify
each edge e = (einit, eterm) 2 E with the interval (�me

2
, me

2
) instead of (0, me). Again,

the nodes einit, eterm 2 V correspond to the respective end-points of the interval. For
each fixed edge e 2 E we identify the auxiliary edges eext

einit
and eext

eterm
with the intervals

(�me

2
� 2",�me

2
) and (me

2
, me

2
+ 2"), respectively.

We next define a regularisation procedure for functions based on averaging. To
obtain a continuous function, it will be crucial to use non-centred averages. For this
purpose, we set ↵"e := (me + 2")/me and ↵"(x) := ↵"e, whenever x is a point on the
metric edge e in E.

e

eext
einit

eext
eterm

Figure 3. The construction of the supergraph Gext by means of ad-
joining an additional leaf at every node in V .

Definition 4.11 (Regularisation of functions). For ' 2 L1(Gext), we define '" : G !
R by

'"(x) :=
1

2"

Z ↵"
ex+"

↵"
ex�"

'(y) dy for x 2 [�me

2
, me

2
]. (22)

Note that the value of '" in the nodes does not depend on the choice of the edge,
so that '" indeed defines a function on G. We collect some basic properties of this
regularisation in the following result.

Proposition 4.12. The following properties hold for every " > 0 be su�ciently small:
(i) Regularising e�ect: For any ' 2 C(Gext) we have '" 2 C(G) \ C1(E) and

r'"(y) =
↵"e
2"

�
'(↵"ey + ") � '(↵"ey � ")

�
(23)

for y 2 [�me/2, me/2].
(ii) If ' belongs to C(Gext), then '" converges uniformly to '|G as "& 0.

Proof. The claim in (i) follows by a direct computation; the one in (ii) follows using
the uniform continuity of ' on Gext. ⇤

As a first application of the regularisation procedure above, we state a useful lemma.

Lemma 4.13 (Weak continuity). Let (⇢t, Jt)t2(0,T ) be a weak solution to the continuity
equation on G. Then t 7!

R
G
' dµt is continuous for every ' 2 C(G).

Proof. Take a continuous extension of ' to Gext and define '" accordingly. Proposition
4.12.ii then implies that '" converges uniformly to ' on G as " & 0. As a result,
the function t 7!

R
G
'" dµt converges uniformly to t 7!

R
G
' dµt. Since '" belongs to

Figure 1. The supergraph Gext is constructed by adjoining an
additional leaf at every node in V .

Since I ⊆ (0, T ) is arbitrary, this implies that ‖vt‖L2(µt)
≤ |µ̇|(t) for a.e. t ∈

(0, T ).

3.3. Regularisation of solutions to the continuity equation. Next we in-
troduce a suitable spatial regularisation procedure for solutions to the continuity
equation. This will be crucial in the proof of the second part of Theorem 3.7.

Let ε > 0 be sufficiently small, i.e., such that 2ε is strictly smaller than the
length of every edge in E. We then consider the supergraph Gext ⊇ G defined by
adjoining an auxiliary edge eext

v of length 2ε to each node v ∈ V (see Figure 1). The
corresponding set of metric edges will be denoted by Eext ⊃ E.

We next define a regularisation procedure for functions based on averaging. The
crucial feature here is that non-centred averages are used, to ensure that the regu-
larised function is continuous.

In the definition below, we parametrise each edge e = (einit, eterm) ∈ E using the
interval (− `e2 , `e2 ) instead of (0, `e). The auxiliary edges eext

einit and eext
eterm will then

be identified with the intervals (− `e2 − 2ε,− `e2 ) and ( `e2 ,
`e
2 + 2ε), respectively. We

stress that for each vertex v, there is only one additional edge, but we use several
different parametrisations for it – one for each edge incident in v.

Definition 3.8 (Regularisation of functions). For ϕ ∈ L1(Gext), we define ϕε :
G→ R by

ϕε(x) :=
1

2ε

∫ αε
ex+ε

αε
ex−ε

ϕ(y) dy for x ∈ e = [− `e2 , `e2 ], (14)

where αεe := (`e + 2ε)/`e. We write αε(x) := αεe, whenever x ∈ E is a point on the
metric edge e.

Note that the value of ϕε in each of the nodes depends only on data on the
corresponding auxiliary edge. In particular, the value at the nodes does not depend
on the choice of the edge, so that ϕε indeed defines a function on G. We collect
some basic properties of this regularisation in the following result.

Proposition 3.9. The following properties hold for every ε > 0 sufficiently small:

(i) Regularising effect: For any ϕ ∈ C(Gext) we have ϕε ∈ C1(E) ∩ C(G) and

∇ϕε(y) =
αεe
2ε

(
ϕ(αεey + ε)− ϕ(αεey − ε)

)
(15)

for y ∈ [−`e/2, `e/2].
(ii) If ϕ belongs to C(Gext), then ϕε converges uniformly to ϕ|G as ε↘ 0.

Proof. (i) follows by direct computation; (ii) follows using the uniform continuity
of ϕ on Gext.
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Lemma 3.10 (Weak continuity). Let (ρt, Jt)t∈(0,T ) be a weak solution to the con-

tinuity equation on G. Then t 7→
∫
G
ϕdµt is continuous for every ϕ ∈ C(G).

Proof. Fix ϕ ∈ C(G), take a continuous extension to Gext, and define ϕε accord-
ingly. Proposition 3.9.ii then implies that ϕε converges uniformly to ϕ on G as
ε↘ 0. As a result, the function t 7→

∫
G
ϕε dµt converges uniformly to t 7→

∫
G
ϕdµt.

Since ϕε belongs to C(G) ∩C1(E) by Proposition 3.9.i, we conclude that the map-
ping t 7→

∫
G
ϕdµt is continuous, being a uniform limit of continuous functions.

By duality, we obtain a natural regularisation for measures.

Definition 3.11 (Regularisation of measures). For µ ∈ M(G) we define µε ∈
M(Gext) by ∫

Gext

ϕdµε :=

∫

G

ϕε dµ. (16)

for all ϕ ∈ C(Gext).
Analogously, for J ∈ M(E) we define Jε ∈ M(Eext) as follows: first we extend

J to a measure on G giving no mass to G \E. Then we define J̃ε ∈M(Gext) by the

formula above. Finally, we define Jε ∈M(Eext) by restriction of J̃ε to Eext.

It is readily checked that the right-hand side defines a positive linear functional
on C(Gext), so that µε is indeed a well-defined measure.

Proposition 3.12. The following properties hold for any ε > 0:

(i) Mass preservation: µε(Gext) = µ(G) for any µ ∈M(G).
(ii) Regularising effect: For any µ ∈ P(G), the measure µε is absolutely continuous

with respect to λ with density

ρε(x) =





1

2ε
µ
(
e ∩ Ie(x)

)
, for x on e in E,

1

2ε

(
1{d(x,w)≤2ε}µ({w}) +

∑

e∈E:w∈e
µ
(
e ∩ Ie(x)

))
, for x on eext

w , w ∈ V,

where

Ie(x) :=

(
x− ε
aεe
∨
(
− `e

2

)
,
x+ ε

aεe
∧ `e

2

)
.

In particular, ρε(x) ≤ 1
2ε for all x ∈ Gext.

(iii) Kinetic energy bound: For µ ∈ P(G) and v ∈ L2(µ), define J = vµ|E ∈M(E).
Consider the regularised measures µε ∈ P(Gext) and Jε ∈M(Eext). Then we
have Jε = vεµε for some vε ∈ L2(µε) and

∫

Eext

|vε|2 dµε ≤
∫

E

|v|2 dµ. (17)

(iv) For any µ ∈ P(G) we have weak convergence µε ⇀ µ in P(Gext) as ε→ 0.
(v) Let (µt, Jt)t∈(0,T ) be a weak solution to the to the continuity equation (6). Then

the regularised pair (µεt , J
ε
t )t∈(0,T ) is a weak solution to a modified continuity

equation on Gext in the following sense:
For every absolutely continuous function ϕ on Gext, the function t 7→∫
Gext

ϕdµεt is absolutely continuous and for a.e. t ∈ (0, T ) we have

d

dt

∫

Gext

ϕdµεt =

∫

Eext

αε∇ϕ · dJεt , (18)

with αε as in Definition 3.8.
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In order to prove (iii), we will make use of the so-called Benamou–Brenier func-
tional (see, e.g., [26, Section 5.3.1] for corresponding results in the Euclidean set-
ting).

Define K2 := {(a, b) ∈ R × R : a + b2/2 ≤ 0}. By a slight abuse of notation,
C(G,K2) (resp. L∞(G,K2)) denotes the set of all continuous (resp. bounded and
measurable) functions a, b : G→ R such that a+ b2/2 ≤ 0.

Definition 3.13. The Benamou–Brenier functional B2 : M(G) ×M(E) → R ∪
{+∞} is defined by

B2(µ, J) := sup
(a,b)∈C(G,K2)

{∫

G

a dµ+

∫

E

bdJ

}
.

Some basic properties of this functional are collected in the following lemma.

Lemma 3.14. The following statements hold:

(i) For y, z ∈ R we have

α(z, y) := sup
(a,b)∈K2

{az + by} =





|y|2
2z

if z > 0,

0 if z = 0 and y = 0,

+∞ otherwise.

(19)

(ii) For µ ∈M(G) and J ∈M(E) we have

B2(µ, J) = sup
(a,b)∈L∞(G,K2)

{∫

G

a dµ+

∫

E

bdJ

}
. (20)

(iii) The functional B2 is convex and lower semicontinuous with respect to the
topology of weak convergence on M(G)×M(E).

(iv) If µ ∈ M(G) is nonnegative and J ∈ M(E) satisfies J � µ|E with J = vµ|E,
then we have

B2(µ, J) =
1

2

∫

E

|v|2 dµ. (21)

Otherwise, we have B2(µ, J) = +∞.
Proof. (i): see [26, Lemma 5.17].

(ii): Clearly, the right-hand side of (20) is bounded from below by B2(µ, J).
To prove the reverse inequality, let a, b : G→ R be measurable functions satisfying
a+b2/2 ≤ 0. By Lusin’s theorem (see, e.g., [8, Theorem 7.1.13]) there exist functions
aδ, bδ ∈ C(G,K2) satisfying

µ({a 6= aδ}) ≤
δ

2
, sup |aδ| ≤ sup |a| and |J |({b 6= bδ}) ≤

δ

2
, sup |bδ| ≤ sup |b|.

Define ãδ := min{aδ,−|bδ|2/2}, so that the inequality ãδ + b2δ/2 ≤ 0 is satisfied.
Hence, the pair (ãδ, bδ) is admissible for the supremum on the right-hand side of
(20). Since

∫
G
ãδ dµ +

∫
E
bδ dJ converges to

∫
G
a dµ +

∫
E
bdJ as δ ↘ 0, we obtain

(20).

(iii): This follows from the definition of B2 as a supremum of linear functionals.

(iv): Let µ be nonnegative and J � µ with J = vµ. Setting v = 0 on G \E, (20)
and (19) yield

B2(µ, J) = sup
(a,b)∈L∞(G,K2)

{∫

G

a+ bv dµ
}

=
1

2

∫

E

|v|2 dµ.
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To prove the converse, suppose first that there exists a Borel set A ⊆ G with
µ(A) < 0. Pick a = −k1A and b ≡ 0 with k ≥ 0, so that B2(µ, J) ≥ −kµ(A). Since
k can be taken arbitrarily large, we infer that B2(µ, J) = +∞. Now suppose µ is
non-negative, but the signed measure J is not absolutely continuous with respect

to µ|E, i.e., there exists a µ-null set A ⊆ E such that J(A) 6= 0. For a = −k22 1A
and b = k1A with k ∈ R, we have B2(µ, J) ≥ kJ(A), which implies the result.

Proof of Proposition 3.12. (i): The claim follows readily from the definitions.

(ii): For ϕ ∈ C(Gext) we have
∫

Gext

ϕ(y) dµε(y) =

∫

G

ϕε(x) dµ(x) =
∑

w∈V
ϕε(w)µ

(
{w}

)
+
∑

e∈E

∫

e

ϕε(x) dµ(x).

For w ∈ V, we note that ϕε(w) is obtained by averaging ϕ on a subset of the
auxiliary edge eext

w :

ϕε(w) =
1

2ε

∫

eextw

1{d(w,y)≤2ε}ϕ(y) dy.

For e ∈ E we obtain, interchanging the order of integration,
∫

e

ϕε(x) dµ(x) =
1

2ε

∫

(−`e/2,`e/2)

(∫ αε
ex+ε

αε
ex−ε

ϕ(y) dy

)
dµ(x)

=
1

2ε

∫

(−`e/2−2ε,`e/2+2ε)

ϕ(y)µ
(
Iε(y)

)
dy

Combining these three identities, the desired result follows.

(iii): Take bounded measurable functions a, b : G → R satisfying a + b2/2 ≤ 0,
extend them by 0 to Gext, and define regularised functions aε, bε : G → R as done
for ϕ in (14). By Jensen’s inequality and the fact that the regularisation is linear
and positivity-preserving, we obtain

aε(x) +
1

2
|bε(x)|2 ≤

(
a+ 1

2 |b|2
)ε

(x) ≤ 0 ∀x ∈ G,

i.e., aε and bε are admissible for the supremum in (20). Therefore,
∫

Gext

adµε +

∫

Eext

bdJε =

∫

G

aε dµ+

∫

E

bε dJ ≤ 1

2

∫

E

|v|2 dµ. (22)

The result follows by taking the supremum over all admissible functions a and b.

(iv): This follows from the uniform convergence of ϕε to ϕ; see Proposition 3.9(ii).

(v): The function ϕ is absolutely continuous, hence a.e. differentiable on Eext.
Proposition 3.9(i) yields ϕε ∈ C1(E) ∩ C(G) and

∇ϕε(x) = αε(x)(∇ϕ)ε(x) ∀x ∈ E. (23)

Since αε is constant on each metric edge in E, we obtain, using the continuity
equation and the definition of the regularisation,

d

dt

∫

Gext

ϕdµεt =
d

dt

∫

G

ϕε dµt =

∫

E

∇ϕε · vt dµt

=

∫

E

(∇ϕ)ε · αεvt dµt =

∫

Eext

∇ϕ · (αεvεt ) dµεt .
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Now we are ready to prove the second part of Theorem 3.7: we adapt the proof
of [13], where (much) more general metric measure spaces are treated, but stronger
assumptions on the measures are imposed (namely, uniform bounds on the density
with respect to the reference measure). Here we consider more general measures
using the above regularisation procedure.

3.4. Conclusion of the characterisation of absolutely continuous curves.
In the proof of the second part of Theorem 3.7, we make use of the Hopf–Lax
formula in metric spaces and its relation to the dual problem of optimal transport.

Definition 3.15 (Hopf–Lax formula). For a real-valued function f on a geodesic
Polish space (X, d), we define Qtf : X → R ∪ {−∞} by

Qtf(x) := inf
y∈X

{
f(y) +

1

2t
d2(x, y)

}

for all t > 0, and Q0f := f .

The operators (Qt)t≥0 form a semigroup of nonlinear operators with the following
well-known properties; see [3] for a systematic study.

Proposition 3.16 (Hopf–Lax semigroup). Let (X, d) be a geodesic Polish space.
For any Lipschitz function f : X → R the following statements hold:

(i) For every t ≥ 0 we have Lip(Qtf) ≤ 2Lip(f).
(ii) For every x ∈ X, the map t 7→ Qtf(x) is continuous on R+, locally semi-

concave on (0,∞), and the inequality

d

dt
Qtf(x) +

1

2
lip(Qtf)2(x) ≤ 0 (24)

holds for all t ≥ 0 up to a countable number of exceptions.
(iii) The mapping (t, x) 7→ lip(Qtf)(x) is upper semicontinuous on (0,∞)×X.

Proof. (i): This statement can be derived from [3, Proposition 3.4]. For the conve-
nience of the reader we provide the complete argument here.

Fix t > 0 and x ∈ X. For z ∈ X we write F (t, x, z) := f(z) + 1
2td

2(x, z). We
claim that

Qtf(x) = inf
z∈X

d(x,z)≤2tL

F (t, x, z),

where L denotes the Lipschitz constant of f . Indeed, if d(x, z) > 2tL, we have

F (t, x, z) = f(z) +
1

2t
d2(x, z) ≥ f(x)− Ld(x, z) +

1

2t
d2(x, z) > f(x) = F (t, x, x),

which implies the claim.
Fix now y ∈ X and ε > 0. Using the claim, we may pick z ∈ X such that

d(y, z) ≤ 2tL and F (t, y, z) ≤ Qtf(y) + ε. Then:

Qtf(x)−Qtf(y) ≤ F (t, x, z)− F (t, y, z) + ε =
1

2t

(
d2(x, z)− d2(y, z)

)
+ ε

≤ d(x, y)

2t

(
d(x, z) + d(y, z)

)
+ ε ≤ d(x, y)

2t

(
d(x, y) + 4tL

)
+ ε.

Reversing the roles of x and y, this estimate readily yields

lip(Qtf)(x) ≤ 2L.

Since X is assumed to be a geodesic space, we have Lip(Qtf) = supx lip(Qtf)(x)
and the result follows.
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(ii): See [3, Theorem 3.5].

(iii): See [3, Propositions 3.2 and 3.6].

We can now conclude the proof of Theorem 3.7 on the characterisation of abso-
lutely continuous curves in the Wasserstein space over a metric graph.

Proof of (ii) in Theorem 3.7. Without loss of generality, we set T = 1. The main
step of the proof is to show that

W 2
2 (µ0, µ1) ≤

∫ 1

0

‖vr‖2L2(µr) dr. (25)

From there, a simple reparametrisation argument (see also [2, Lemma 1.1.4 & 8.1.3])
yields

W 2
2 (µt, µs) ≤

1

|s− t|

∫ t

s

‖vr‖2L2(µr) dr

for all 0 ≤ s < t ≤ 1, which implies the absolute continuity of the curve (µt)t∈(0,1)

in W2(G) as well as the desired bound |µ̇|(t) ≤ ‖vt‖L2(µt)
for every Lebesgue point

t ∈ (0, 1) of the map t 7→ ‖vt‖2L2(µt)
.

Thus, we have to show (25). To this aim, we will work on the supergraph
Gext ⊇ G.

By Kantorovich duality (Proposition 2.3), there exists ϕ ∈ C(G) satisfying

1

2
W 2

2 (µ0, µ1) =

∫

G

Q1ϕdµ1 −
∫

G

ϕdµ0. (26)

Moreover, ϕ is Lipschitz, which follows from the fact that ϕ is c-concave with
c(x, y) = 1

2d(x, y)2 and (G, d) is compact. We consider Lipschitz continuous exten-

sions of ϕ and Q1ϕ to Gext, both constant on each auxiliary metric edge in Eext.
In particular, ϕ and Q1ϕ are Lipschitz on Gext.

Set Jt := vtµt and consider a regularised pair (µεt , J
ε
t )t∈(0,1) as defined by (16).

We write
∫

Gext

Q1ϕdµε1 −
∫

Gext

ϕdµε0 =

n−1∑

i=0

(∫

Gext

(
Q(i+1)/nϕ−Qi/nϕ

)
dµε(i+1)/n

+

∫

Gext

Qi/nϕd
(
µε(i+1)/n − µεi/n

))
,

(27)

and bound the two terms on the right-hand side separately.

Bound 1. To estimate the first term on the right-hand side of (27), we use (24)
to obtain

n−1∑

i=0

∫

Gext

(
Q(i+1)/nϕ−Qi/nϕ

)
dµε(i+1)/n

≤ −1

2

n−1∑

i=0

∫

Gext

∫ (i+1)/n

i/n

lip2(Qtϕ) dtdµε(i+1)/n

= −1

2

∫

Gext×(0,1)

lip2(Qtϕ)(x) dµµµεn(x, t),

(28)

where the measures µµµεn :=
∑n−1
i=0 µ

ε
(i+1)/n ⊗ L1|(i/n,(i+1)/n) are defined on Gext ×

(0, 1).
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To show weak convergence of the sequence (µµµεn)n∈N, we take ψ ∈ C(Gext× [0, 1]).
Note that t 7→ µt is weakly continuous by Lemma 3.10, hence t 7→ µεt is weakly
continuous as well. Consequently,

∫
Gext

ψ(·, t) dµεbtnc/n →
∫
Gext

ψ(·, t) dµεt for every

t. Integrating in time over (0, 1), we infer, using dominated convergence, that µµµεn
converges weakly to µµµε :=

∫ 1

0
µεt ⊗ δt dt as n→∞.

As lip2(Qtϕ) is not necessarily continuous, an additional argument is required
to pass to the limit in (28). For this purpose, we observe that Proposition 3.12.ii
yields µµµεn � λ ⊗ L1 with a density ρεn(x, t) ≤ 1/(2ε) for x ∈ Gext and t ∈ (0, 1).
In particular, the family (ρεn)n∈N is uniformly integrable with respect to λ ⊗ L1.
Consequently, the Dunford–Pettis Theorem (see, e.g., [8, Theorem 4.7.18]) implies
that (ρεn)n∈N has weakly-compact closure in L1(Gext × (0, 1)). Since lip2(Qtϕ) is
bounded, we may pass to the limit n→∞ in (28) and infer that

lim sup
n→∞

n−1∑

i=0

∫

Gext

(
Q(i+1)/nϕ−Qi/nϕ

)
dµε(i+1)/n

≤ −1

2

∫

Gext×(0,1)

lip2(Qtϕ)(x) dµµµε(x, t) = −1

2

∫ 1

0

∫

Eext

lip2(Qtϕ) dµεt dt,

(29)

where we use that µεt � λ on Gext to remove the set of nodes V from the domain
of integration.

Bound 2. We now treat the second term in (27). As (µt)t∈(0,1) belongs to a
weak solution to the continuity equation and we know from Proposition 3.9.(i)) that
(Qi/nϕ)ε belongs to C1(E) ∩C(G), we infer that the mapping t 7→

∫
G

(Qi/nϕ)ε dµt
is absolutely continuous. Therefore,

n−1∑

i=0

∫

Gext

Qi/nϕd(µε(i+1)/n − µεi/n) =

n−1∑

i=0

∫

G

(Qi/nϕ)ε d(µ(i+1)/n − µi/n)

=

n−1∑

i=0

∫ (i+1)/n

i/n

(∫

E

∇(Qi/nϕ)ε dJt

)
dt

=

n−1∑

i=0

∫ (i+1)/n

i/n

(∑

e∈E
αεe

∫

e

(∇Qi/nϕ)ε dJt

)
dt

=

n−1∑

i=0

∫ (i+1)/n

i/n

(∑

e∈E
αεe

∫

e

∇Qi/nϕ · dJεt

)
dt

≤ αεmax

2

n−1∑

i=0

∫ (i+1)/n

i/n

∫

Eext

∣∣∇Qi/nϕ
∣∣2 dµεt dt+

αεmax

2

∫ 1

0

∫

Eext

|vεt |2 dµεt dt,

(30)

where αεmax := maxe∈E αεe and Jεt = vεtµ
ε
t .

Proposition 3.16.iiiyields the bound lim supn→∞ lip2(Qbntc/nϕ) ≤ lip2(Qtϕ). As
ϕ is Lipschitz continuous, (i) in the same proposition shows that supt,x lip(Qtϕ)(x) <
∞. Thus, we may invoke Fatou’s lemma to obtain

lim sup
n→∞

n−1∑

i=0

∫ (i+1)/n

i/n

∫

Eext

∣∣∇Qi/nϕ
∣∣2 dµεt dt ≤

∫ 1

0

∫

Eext

lip2(Qtϕ) dµεt dt.
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Using this estimate together with Proposition 3.12.iii, we obtain

lim sup
n→∞

n−1∑

i=0

∫

Gext

Qi/nϕd
(
µε(i+1)/n − µεi/n

)
≤ αεmax

2

∫ 1

0

∫

Gext

lip2(Qtϕ) dµεt dt

+
αεmax

2

∫ 1

0

∫

E

|vt|2 dµt dt.

(31)

Combination of both bounds. Recalling (27), we use (29) and (31) to obtain
∫

Gext

Q1ϕdµε1 −
∫

Gext

ϕdµε0 ≤
αεmax

2

∫ 1

0

∫

E

|vt|2 dµtdt

+
αεmax − 1

2

∫

Gext

∫ 1

0

lip2(Qtϕ) dµεt dt.

Using Proposition 3.12.iv, the fact that αεmax → 1, and the bound supt Lip(Qtϕ) <
∞, we may pass to the limit (ε→ 0) to obtain

∫

G

Q1ϕdµ1 −
∫

G

ϕdµ0 ≤
1

2

∫ 1

0

∫

E

|vt|2 dµt dt. (32)

In view of (26), this yields the result.

Corollary 1 (Benamou–Brenier formula). For any µ, ν ∈ P(G), we have

W 2
2 (µ, ν) = min

{∫ 1

0

∫

E

|vt|2 dµt dt

}
, (33)

where the minimum is taken among all weak solutions to the continuity equation
(µt, vtµt)t∈[0,1] satisfying µ0 = µ and µ1 = ν.

Proof. As (P(G),W2) is a geodesic space, we may write

W 2
2 (µ, ν) = min

{∫ 1

0

|µ̇|2(t) dt

}
,

where the minimum runs over all absolutely continuous curves (µt)t∈[0,1] connecting
µ and ν. Therefore, the result follows from Theorem 3.7.

4. Lack of geodesic convexity of the entropy. In this section we consider the
entropy functional Ent : P(G)→ (−∞+∞] defined by

Ent(µ) :=





∫

G

ρ log ρdλ if µ = ρλ,

+∞ otherwise.
(34)

As is well known, this functional is lower semicontinuous on (P(G),W2); see, e.g.,
[17, Corollary 2.9].

A celebrated result by McCann asserts that Ent is geodesically convex on (P(Rd),
W2), the Wasserstein space over the Euclidean space Rd. More generally, on a
Riemannian manifoldM, the relative entropy (with respect to the volume measure)
is geodesically κ-convex on (P(M),W2) for κ ∈ R, if and only if the Ricci curvature
is bounded below by κ, everywhere on M [24, 12, 25].

Metric graphs are prototypical examples in which such bounds fail to hold. Here
we present an explicit example, which shows that the functional Ent on the metric
space (P(G),W2) over a metric graph G induced by a graph with maximum degree
larger than 2 is not geodesically κ-convex for any κ ∈ R.
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Example 4.1. Consider a metric graph induced by a graph with 3 leaves as shown
in Figure 2.

ν

µ µ

1
Figure 2. The support of probability measures µ and ν on a met-
ric graph induced by a oriented star with 3 leaves

We impose an edge weight 1 on each of the edges e1, e2, f . Consider the proba-
bility measures µ, ν ∈ P(G) with respective densities ρ, η : G→ R+ given by

ρ(x) :=

{
1
2ε1[0,ε](x), x ∈ e1 or x ∈ e2,

0, x ∈ f, , η(x) :=

{
0, x ∈ e1 or x ∈ e2,
1
ε1[1−ε,1](x), x ∈ f.

Lemma 4.2. The unique optimal coupling of µ and ν is given by monotone re-
arrangement from each of the edges e1 and e2 to f , i.e., by the map T with

T (x) = 1− ε+ x ∈ f for x ∈ e1 or x ∈ e2.

Proof. Let π be an optimal coupling of µ and ν and decompose it as π = π1 + π2,
where πi, i = 1, 2, are couplings of µi, the restriction of µ to ei, and some νi
a measure on f such that ν1 + ν2 = ν. Necessarily π1, π2 are also optimal. By
standard optimal transport theory on the interval ei ∪ f ⊂ R, πi is given by a
map Ti, the monotone rearrangement from µi to νi. If we show that ν1 = ν2, then
T1 = T2 = T with T as above and the claim is proven. To this end, assume by
contradiction that ν1 6= ν2 and hence T1 6= T2. We consider the coupling π′ = π′1+π′2
where π′1 = π′2 = (π1 + π2)/2 (here, we identify e1 ∪ f and e2 ∪ f in the obvious
way). Since T1 6= T2, the support of π′1 is not contained in the graph of a function.
Since π′ is optimal, the couplings πi are also optimal between their marginals µi
and 1

2ν, and thus have to be induced by the monotone rearrangement map T , a
contradiction.

Consequently, the constant speed-geodesic from µ to ν is given by (Tt#µ)t∈[0,1]

where Tt is the linear interpolation of T and the identity on e1 ∪ f and e2 ∪ f
respectively, more precisely

Tt(x) :=

{
x+ (2− ε)t ∈ ei, if x ≤ 1− (2− ε)t,
x+ (2− ε)t− 1 ∈ f, if x > 1− (2− ε)t,

for x ∈ ei, i ∈ {1, 2}.
Set tε0 := 1−ε

2−ε and tε1 := 1
2−ε . The relative entropy of µt is given by:

Ent(µt) =





log
(

1
2ε

)
, t ∈ [0, tε0],

1
ε

(
1− (2− ε)t

)
log
(

1
2

)
+ log

(
1
ε

)
, t ∈ [tε0, t

ε
1],

log
(

1
ε

)
, if t ∈ [tε1, 1].
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Thus, t 7→ Ent(µt) is piecewise affine; see Figure 3. It follows that t 7→ Ent(µt) is
not κ-convex for any κ ∈ R.

t
0 1−ε

2−ε
1

2−ε 1

Ent

log 1
ε

log 1
2ε

1

Figure 3. Plot of the entropy along the geodesic interpolation

5. Gradient flows in the Wasserstein space over a metric graph. In this sec-
tion we study gradient flows in the Wasserstein space over a metric graph. Namely,
we consider diffusion equations on metric graphs arising as the gradient flow of
free energy functionals composed as the sum of entropy, potential, and interaction
energies. We give a variational characterisation of these diffusion equations via
energy-dissipation identities and we discuss the approximation of solutions via the
Jordan–Kinderlehrer–Otto scheme (minimizing movement scheme). This provides
natural analogues on metric graphs of the corresponding classical results in Eu-
clidean space. We follow the approach from the Euclidean case; see in particular
[2, Section 10.4], and adapt it to the current setting.

Let V : E→ R be Lipschitz continuous and define the weighted volume measure
m := e−V λ on G (since λ gives no mass to vertices, the potential ambiguity of V
there does not matter). We consider the following functionals on P(G):

(i) the relative entropy EV : P(G)→ (−∞,∞] defined by

EV (µ) := Ent[µ|m] =





∫

G

ρ(x) log ρ(x) dm(x) if µ = ρm,

+∞ otherwise.
(35)

(ii) the interaction energy W : P(G)→ R defined by

W(µ) :=
1

2

∫

G×G
W (x, y) dµ(x) dµ(y),

where W : G×G→ R is symmetric and Lipschitz continuous.

Moreover, we define F : P(G)→ (−∞,+∞] as the sum of the previous quantities:

F := EV +W.

Note that EV is bounded from below (by Jensen’s inequality and finiteness of
m) and lower semicontinuous with respect to weak convergence. Moreover, W is
bounded and continuous with respect to weak convergence.

Further note that for µ ∈ P(G) with µ� λ we can write

EV (µ) = E(µ) + V(µ),
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where E(µ) = Ent[µ|λ] is the Boltzmann entropy on G and V : P(G) → R defined
by

V(µ) :=

∫

G

V (x) dµ(x)

is the potential energy. The latter is well defined for µ � λ despite the potential
discontinuity of V at the vertices.

5.1. Diffusion equation and energy dissipation. We consider the following
diffusion equation on the metric graph G given by

∂tη = ∆η +∇ ·
(
η
(
∇V +∇W [µ]

))
. (36)

Here µ = ηλ is a probability on G and we set W [µ](x) :=
∫
G
W (x, y) dµ(y). In

analogy with the classical Euclidean setting we will show below that this PDE is
the Wasserstein gradient flow equation of the free energy F . Though the setting of
metric graphs is one-dimensional, we prefer to use multi-dimensional notation such
as ∆ and ∇· for the sake of clarity.

We consider the following notion of weak solution for (36).

Definition 5.1. We say that a curve (ηt)t∈[0,T ] of probability densities w.r.t. λ on

G is a weak solution to (36) if for ρt := ηt · eV we have ρt ∈ W 1,1(E) ∩ C(G) for
a.e. t, and the pair (µ, J) given by

µt = ρtm and Jt = − (∇ρt + ρt∇W [µt])m

is a weak solution to the continuity equation in the sense of Definition 3.2, i.e., we
ask that t 7→ µt is weakly continuous and for every ϕ ∈ C1

c

(
(0, T ) × E

)
such that

ϕt, ∂tϕt ∈ C1(E) ∩ C(G) for all t ∈ (0, T ), we have
∫ T

0

(∫

G

∂tϕρt dm−
∫

E

∇ϕ ·
(
∇ρt + ρt∇W [µt]

)
dm

)
dt = 0. (37)

Remark 2. Let us briefly consider the special case where V = W = 0. Then (36)
is simply the heat equation on a metric graph, which has been introduced already
in [18]. It is known since [15, 22] that the Laplacian with natural vertex conditions
(continuity across the vertices along with a Kirchhoff-type condition on the fluxes)
is associated with a Dirichlet form, hence the Cauchy problem for this PDE is well-
posed on L2(G): more precisely, it is governed by an ultracontractive, Markovian
C0-semigroup (et∆)t≥0 that extrapolates to Lp(G) for all p ≥ 1, as well as to C(G)
and, by duality, to the space M(G) of Radon measures on G. For any initial value
µ0 ∈M(G), (t, x) 7→ ρ(t, x) = (et∆µ0)(x) defines a classical solution to the Cauchy
problem for the heat equation with initial value µ0. It is easy to see that this
solution is a weak solution in the sense of Definition 5.1 as well.

The dissipation of the free energy along solutions to (36) at µ = ρm is formally
given by

d

dt
F(µ) = −

∫

E

∣∣∣∇ρ
ρ

+∇W [µ]
∣∣∣
2

dµ.

This motivates the following definition.

Definition 5.2 (Energy dissipation functional). The energy dissipation functional
I : P(G)→ [0,+∞] is defined as follows. If µ = ρm with ρ ∈ W 1,1(E) ∩ C(G) and



708 MATTHIAS ERBAR, DOMINIK FORKERT, JAN MAAS AND DELIO MUGNOLO

∇ρ+ ρ∇W [µ] = wρ for some w ∈ L2(µ) we set

I(µ) :=

∫

E

|w|2 dµ.

Otherwise, we set I(µ) = +∞.

Remark 3. We emphasize that continuity of ρ on G is required for finiteness of
I(µ) in this definition. It is not sufficient that ρ belongs to W 1,1(E). The continuity
is important in the proof of Theorem 5.5 below, as it ensures spatial continuity for
gradient flow curves (i.e., curves of maximal slope with respect to the upper gradient√
I) and it allows us to identify them with weak solutions to the diffusion equation

(36). The requirement of spatial continuity for weak solutions to (36) in Definition
5.1 is essential in order to couple the dynamics on different edges across common
vertices.

We collect the following properties of the dissipation functional.

Lemma 5.3. Let {µn}n ⊆ P(G) be a sequence weakly converging to µ ∈ P(G) such
that

sup
n
F(µn) <∞ and sup

n
I(µn) <∞. (38)

Then we have

I(µ) ≤ lim inf
n
I(µn). (39)

Proof. First note that we can rewrite I(µ) as the integral functional

I(µ) = Gα(µ, J) =

∫

E

α
(dµ

dσ
,

dJ

dσ

)
dσ, (40)

where α : [0,∞) × R → [0,∞] is the lower semicontinuous and convex function
defined by

α(s, u) =





|u|2/s if s > 0,

0 if s = 0 and u = 0,

+∞ otherwise,

(41)

and J = wwwµ = (∇ρ + ρ∇W [µ])m. Here σ is any measure such that µ, J � σ; its
choice is irrelevant by 1-homogeneity of α.

Now, let µn = ρnm. Lower semicontinuity of F and (38) imply that F(µ) <∞.
Therefore we can write µ = ρm for a suitable density ρ. Superlinearity of r 7→ r log r
implies that ρn converges weakly to ρ in L1(G,m).

Recall that I(µn) =
∫
|wwwn|2dµn with Un := ρnwwwn = ∇ρn + ρn∇W [µn]. Hölder’s

inequality and the bound (38) yield that the measures Jn = Unm have uniformly
bounded total variation. Hence up to extracting a subsequence, we have that Jn
converges weakly* to a measure J on E. Lower semicontinuity of the integral
functional Gα yields

Gα(µ, J) ≤ lim inf
n
I(µn) <∞. (42)
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This allows us to write J = wwwρm for a www ∈ L2(µ) and Gα(µ, J) =
∫
|www|2dµ. Since

ρn ∈W 1,1(E) ∩ C(G), we have for any function s ∈ C1
c (E) by integration by parts,

−
∫

G

ρn∇sdλ =

∫

G

s∇ρn dλ

=

∫

G

seV
(
∇ρn + ρn∇W [µn]

)
dm−

∫

G

seV∇W [µn] dµn

=

∫

G

seV dJn −
∫

G

seV∇W [µn] dµn.

(43)

The convergence of Jn to J weakly and ρn to ρ in L1 together with the fact that
J = wwwρm gives no mass to V and the boundedness of ∇W allows us to pass to the
limit and obtain

−
∫

G

ρ∇sdλ =

∫

G

seV dJ −
∫

G

seV∇W [µ] dµ

=

∫

G

swwwρdλ−
∫

G

sρ∇W [µ] dλ ∀s ∈ C1
c (E).

We infer that ρ ∈ W 1,1(E) and that ρwww = ∇ρ + ρ∇W [µ]. In particular, ρ ∈ C(E)
by the Sobolev embedding theorem.

Let us now show that ρ ∈ C(G). For this purpose, note that each pair of adjacent
edges (e, f) can be identified with the interval [−`e, `f ]. Consider s ∈ C1(E) such
that s = 0 for all g 6= e, f and s = r on e, f for some r ∈ C1

c (−`e, `f ). Repeating
the argument above, we infer that ρ ∈ W 1,1([−`e, `f ]) and in particular that ρ is
continuous at 0. We thus obtain that ρ ∈ C(G). Hence from (42) we obtain the
claim.

Let us denote by I0 the energy dissipation functional with W = 0, more precisely,
if µ = ρm with ρ ∈W 1,1(E) ∩ C(G) with ∇ρ = wρ for some w ∈ L2(µ) we set

I0(µ) :=

∫

E

|w|2 dµ.

Otherwise, we set I0(µ) = +∞. As already observed for the functional I, we can
write I0(µ) =

∫
α(ρ,∇ρ) dm, with µ = ρm where α is the function in (41). Then I0

is a convex and lower semi-continuous functional by the previous lemma. We note
that under the assumption that W is Lipschitz, I(µ) is finite if and only if I0(µ) is
finite.

Next, we observe that finiteness of the I0 implies a quantitative L∞ bound on
the density.

Lemma 5.4. For µ ∈ P(G) with I0(µ) <∞ and µ = ρm we have ρ ∈ C(G) with

‖ρ‖∞ ≤ A
√
I0(µ),

where the constant A > 0 depends on ‖V ‖∞.

Proof. The continuity of ρ follows from the definition of I0(µ). Using Hölder’s we
obtain with ∇ρ = ρw,

∫
|∇ρ|dλ ≤ e‖V ‖∞

∫
|∇ρ|dm ≤ e‖V ‖∞

(∫
|w|2 dµ

) 1
2

.

The claim then follows immediately from the Sobolev embedding theorem applied
to each of the finitely many edges.
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5.2. Energy-dissipation equality. The main result of this section is the following
gradient flow characterisation of the diffusion equation (36).

Theorem 5.5. For any 2-absolutely continuous curve (µt)t∈[0,T ] in (P(G),W2)
with F(µ0) <∞ we have

LT (µ) := F(µT )−F(µ0) +
1

2

∫ T

0

|µ̇|2(r) + I(µr) dr ≥ 0.

Moreover, we have LT (µ) = 0 if and only if µt = ρtm is a weak solution to (36) in
the sense of Definition 5.1.

The main step in proving this result is to establish a chain rule for the free energy
F along absolutely continuous curves in (P(G),W2). Recall the definition of α from
(41).

Proposition 5.6 (Chain rule). Let (µt)t∈[0,T ] be a 2-absolutely continuous curve in

(P(G),W2) satisfying
∫ T

0
I(µt) dt < +∞. Write µt = ρtm and let Jt = Utm be an

optimal family of momentum vector fields, i.e., (µt, Jt)t∈[0,T ] solves the continuity

equation and |µ̇|2(t) =
∫
α(ρt, Ut)dm. Let ρtwt = ∇ρt + ρt∇W [µt] as in Definition

5.2. Then, t 7→ F(µt) is absolutely continuous and we have

d

dt
F(µt) =

∫

E

〈wt,dJt〉 for a.e. t ∈ [0, T ]. (44)

Proof. We first note that the assumptions ensure that also
∫ T

0
I0(µt) dt < ∞.

Hence, we have
∫ T

0

∫

E

α(ρt,∇ρt) dmdt <∞,
∫ T

0

∫

E

α(ρt, Ut) dmdt <∞. (45)

We proceed by a twofold regularisation. Using a family (ηδ)δ>0 of even and
smooth approximation kernels with compact support in [−δ, δ], we regularise in
time via

ρδt :=

∫ δ

−δ
ηδ(s)ρt−s ds,

and set µδt = ρδtm. Here we extend ρ to a curve on the time-interval [−δ, T + δ]
which is constant on [−δ, 0] and [T, T + δ]. Similarly defining Jδt as the time-
regularisation of Jt we obtain that (µδ, Jδ) is a solution to the continuity equation.

Convexity of I0 and the Benamou–Brenier functional yield that
∫ T

0
I0(µδt ) dt and∫ T

0
|µ̇δ|2(t) dt <∞. Hence, (45) also holds with ρδt , U

δ
t in place of ρt, Ut. Moreover,

we must have U δ = 0 on {ρδ = 0}.
Further, we regularise the logarithm and define for ε > 0 the function Fε :

[0,∞)→ R by setting

Fε(r) = (r + ε) log(r + ε)− ε log ε.

Then we define the regularized free energy Fε of µ = ρm via

Fε(µ) =

∫

G

Fε(ρ) dm +
1

2

∫

G×G
W (x, y) dµ(x) dµ(y).

Let us set gε,δ = F ′ε(ρ
δ) = 1 + log(ρδ + ε). Note that by Lemma 5.4, ρδ is bounded

and thus also gε,δ is bounded. We will first show that

Fε(µδT )−Fε(µδ0) =

∫ T

0

∫

G

〈∇gε,δt +∇W [µδt ], dJδt 〉dt. (46)
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Then passing to the limit δ, ε→ 0 will yield the claim.
While establishing (46) we write g instead of gε,δ for simplicity. We have

Fε(µδT )−Fε(µδ0) =

∫ T

0

∫

G

(
F ′ε(ρ

δ) +W [µδt ]
)
∂tρ

δ
t dm dt.

Differentiation under the integral sign is justified by boundedness of F ′ε(ρ
δ) and W

and the regularity in time of ρδ. Note that W [µδt ] is an admissible test function in
the continuity equation for (µδ, Jδ). Thus, to establish (46) it remains to show that
the continuity equation can also be used on the function g = F ′ε(ρ

δ). Recall that g
is bounded with ∇g = ∇ρδ/(ρδ + ε). We can approximate g uniformly by functions
gα ∈ C1(E× [0, T ]) ∩ C(G× [0, T ]) as follows. First extend g to Gext × [0, T ] with
constant values on the additional edge incident to vertex v equal to the value of g
at v. Then we apply the regularising procedure (14). The continuity equation for
(µδ, Jδ) yields

∫ T

0

∫

G

gαt ∂tρ
δ
t dmdt =

∫ T

0

∫

E

〈∇gαt , dJδt 〉.

Passing to the limit as α→ 0 then will finish the proof of (46). Convergence of the
left hand side is immediate since g is bounded and so gα is bounded uniformly in
α. For the right hand side we estimate with Jδ = U δm:

∣∣∣∣
∫ T

0

∫

E

〈∇gαt −∇gt, dJδt 〉dt
∣∣∣∣ ≤

(∫ T

0

∫

E

|∇gαt −∇gt|2ρδt dmdt

) 1
2

×
(∫ T

0

∫

E

α(ρδt , U
δ
t ) dmdt

) 1
2

.

The second factor is finite as noted above. To estimate the first factor, we recall
that ρδ is bounded. Hence for a suitable constant C <∞

∫ T

0

∫

E

|∇gαt −∇gt|2ρδt dm dt ≤ C
∫ T

0

∫

E

|∇gαt −∇gt|2 dλ dt

Using (15) and dominated convergence, the latter term goes to zero as α→ 0 if we
show that ∫ T

0

∫

E

|∇g|2 dλ dt <∞.

But using ∇g = ∇ρδ/(ρδ + ε) we can estimate
∫ T

0

∫

E

|∇g|2 dλ dt ≤ e‖V ‖∞
∫ T

0

I0(µδt) dt <∞.

Thus, (46) is established.

We will now pass to the limits δ, ε→ 0 in (46), starting with the right-hand side.
For the limit δ → 0, note that Uδ → U a.e. and wwwε,δ → wwwε a.e. as δ → 0 with

wwwε = ∇ρ/(ρ+ ε) +∇W [µ]. Dominated convergence then yields that as δ → 0:
∫ T

0

∫

E

〈wwwε,δt , Uδt 〉dmdt→
∫ T

0

∫

E

〈wwwεt , Ut〉dmdt.

Indeed, we have the majorant

|〈wwwε,δ, Uδ〉| ≤ 1

2
|wwwε,δ|2(ρδ + ε) +

1

2

|U δ|2
ρδ + ε

≤ α
(
ρδ,∇ρδ

)
+ C(ρδ + ε) +

1

2
α(ρδ, Uδ)
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≤
[
α
(
ρ,∇ρ

)]δ
+ C(ρδ + ε) +

1

2

[
α(ρ, U)

]δ

for a suitable constant C, using the fact ∇W [ρδ] is uniformly bounded. Here,[
·
]δ

denotes the time-regularisation of the function in brackets and we have used
Jensen’s inequality in the last step to interchange the regularisation operation with
the convex function α. Since by assumption α

(
ρ,∇ρ

)
and α(ρ, U) are integrable on

[0, T ]× E, the majorant above indeed converges in L1
(
[0, T ]× E

)
.

To further pass to the limit ε→ 0, we note that wwwε → www a.e. on the set {ρ > 0}.
Since U = 0 a.e. on the set {ρ = 0}, we conclude that 〈wwwε, U〉 → 〈www,U〉 a.e. Using
similar as before the majorant |〈wwwε, U〉| ≤ α

(
ρ,∇ρ

)
+Cρ+ α(ρ, U)/2, we conclude

by dominated convergence.

It remains to pass to the limit on the left-hand side in (46). The weak continuity
of t 7→ µt implies that µδt ⇀ µt weakly as δ → 0. This is sufficient to conclude that
W(µδt )→W(µt). Note that for any µ = ρm ∈ P(G) we have

∫
Fε(ρ) dm = EV (µε)−Mε log ε,

with µε = (1 + M)−1(µ + εm) and M = m(G). Convexity of r 7→ r log r and

Jensen’s inequality yield that EV (µδ,εt ) ≤ EV (µεt ). Thus, lower semicontinuity of EV
under weak convergence shows that EV (µδ,εt ) → EV (µεt ) and hence

∫
Fε(ρ

δ
t ) dm →∫

Fε(ρt) dm as δ → 0. The limit ε → 0 is then easily achieved by monotone con-
vergence. From the convergence of the right-hand side of (46) and the assumption
that F(µ0) <∞ we finally conclude that F(µt) <∞ for all t > 0 and that

F(µT )−F(µ0) =

∫ T

0

∫
〈wwwt, dJt〉dt.

Hence t 7→ F(µt) is absolutely continuous and (44) follows.

We can now prove Theorem 5.5.

Proof of Theorem 5.5. Note that the right-hand side of (44) may be estimated by
means of Hölder’s and Young’s inequality as

∫

E

〈wt, Ut〉dm ≥ −
√∫

E

|wt|2ρt dm

√∫

E

|Ut|2
ρt

dm

≥ −1

2

∫

E

|wt|2ρt dm− 1

2

∫

E

|Ut|2
ρt

dm.

(47)

Hence, by integrating both sides of (44) from 0 to T we obtain that LT (µ) ≥ 0.
Moreover, we have equality if and only if for a.e. t and µt-a.e. we have Ut = −ρtwt.
Now the continuity equation with Jt = Utm = −ρtwtm = −∇ρt + ρt∇W [µt]m
becomes the weak formulation of (36)

5.3. Metric gradient flows. Here, we recast the variational characterisation of
McKean–Vlasov equations on metric graphs from the previous section in the lan-
guage of the theory of gradient flows in metric spaces. Let us briefly recall the basic
objects. For a detailed account we refer the reader to [2].

Let (X, d) be a complete metric space and let E : X → (−∞,∞] be a function
with proper domain, i.e., the set D(E) := {x : E(x) <∞} is non-empty.

The following notion plays the role of the modulus of the gradient in a metric
setting.
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Definition 5.7 (Strong upper gradient). A function g : X → [0,∞] is called a
strong upper gradient of E if for any x ∈ AC

(
(a, b); (X, d)

)
the function g ◦ x is

Borel and

|E(xs)− E(xt)| ≤
∫ t

s

g(xr)|ẋ|(r) dr ∀ a ≤ s ≤ t ≤ b .

Note that by the definition of strong upper gradient, and Young’s inequality
ab ≤ 1

2 (a2 + b2), we have that for all s ≤ t:

E(xt)− E(xs) +
1

2

∫ t

s

g(xr)
2 + |ẋ|2(r) dr ≥ 0.

Definition 5.8 (Curve of maximal slope). A locally 2-absolutely continuous curve
(xt)t∈(0,∞) is called a curve of maximal slope of E with respect to its strong upper
gradient g if t 7→ E(xt) is non-increasing and

E(xt)− E(xs) +
1

2

∫ t

s

g(xr)
2 + |ẋ|2(r) dr ≤ 0 ∀ 0 < s ≤ t. (48)

We say that a curve of maximal slope starts from x0 ∈ X if limt↘0 xt = x0.

Equivalently, we can require equality in (48). If a strong upper gradient g of E
is fixed we also call a curve of maximal slope of E (relative to g) a gradient flow
curve.

Finally, we define the (descending) metric slope of E as the function |∂E| :
D(E)→ [0,∞] given by

|∂E|(x) = lim sup
y→x

max{E(x)− E(y), 0}
d(x, y)

. (49)

The metric slope is in general only a weak upper gradient for E, see [2, Theorem
1.2.5]. In our application to metric graphs we will show that the square root of the
dissipation I provides a strong upper gradient for the free energy F .

Corollary 2. The functional
√
I is a strong upper gradient of F on (P(G),W2).

The curves of maximal slope for F with respect to this strong upper gradient coincide

with weak solutions to (36) satisfying
∫ T

0
I(µt) dt <∞.

Proof. For a 2-absolutely continuous curve with (µt)t with
∫ T

0
I(µt) dt < ∞, the

chain rule (44) together with the estimate (47) yields

|F(µt)−F(µs)| ≤
∫ t

s

√
I(µr)|µ̇r|dr ∀s, t ∈ [0, T ] : s ≤ t, (50)

i.e.,
√
I is a strong upper gradient. Theorem 5.5 yields the identification of curves

of maximal slope.

The dissipation functional I(µ) can be related to the metric slope of the free
energy F under suitable conditions on µ ∈ P(G).

Lemma 5.9. For any µ ∈ P(G) we have

I(µ) ≤ |∂F|2(µ).

Proof. We assume that µ = ρm = ρ̃λ ∈ P(G) satisfies |∂F|(µ) <∞, since otherwise
there is nothing to prove.

Step 1. We show first that ρ ∈W 1,1(E) and ∇ρ+ ρ∇W [µ] = ρwww with www ∈ L2(µ).



714 MATTHIAS ERBAR, DOMINIK FORKERT, JAN MAAS AND DELIO MUGNOLO

For this purpose, take any sss ∈ C∞(E) which vanishes in a neighbourhood of
every node and put s̃ss = eV sss. As a consequence, the mapping rt : G→ G defined by
rt := Id + ts̃ss maps each edge into itself for t > 0 sufficiently small. We claim that:

lim
t↘0

F
(
(rrrt)#µ

)
−F(µ)

t
=

∫

G

[
− ρ∇sss+ sssρ∇W [µ]

]
dλ. (51)

To show this, note that rrrt is injective for every t small enough. Therefore, the
change of variables formula yields that the density ρ̃t of (rrrt)#µ with respect to λ
satisfies

ρ̃(x) = ρ̃t(rrrt(x))∇rrrt(x); .

Consequently, with F (r) = r log r we have

F((rrrt)#µ)−F(µ) =

∫

G

F
( ρ̃

∇rrrt

)
∇rrrt − F (ρ̃) dλ+

∫

G

[V ◦ rrrt − V ] dµ

+

∫

G×G
[W ◦ (rrrt ⊗ rrrt)−W ] dµ⊗ µ.

Note that ∇rrrt = 1 + t∇s̃ss. Dividing by t and letting t ↘ 0 and noting that ∇s̃ss =
eV (∇sss+ sss∇V ) and ρ̃s̃ss = ρsss we deduce (51).

For t > 0 sufficiently small, we then have

W2

(
µ, (rrrt)#µ

)
≤ t‖s̃ss‖L2(µ).

This estimate, together with (51), implies
∫

G

[
− ρ∇sss+ sssρ∇W [µ]

]
dλ = lim

t↘0

F
(
(rrrt)#µ

)
−F(µ)

t
≤ |∂F|(µ)‖s̃ss‖L2(µ).

Hence, the left-hand side defines an L2(µ)-bounded linear functional on a subspace
of L2(µ). Using the Hahn–Banach theorem we may extend this functional to L2(µ).
The Riesz representation theorem then yields a unique element w ∈ L2(µ) such that
‖w‖L2(µ) ≤ |∂F|(µ) and

∫

G

[
− ρ∇sss+ sssρ∇(V +W [µ])

]
dλ =

∫

G

wwws̃ssdµ =

∫

G

wwwρsdλ (52)

for all sss as above.
Considering in particular functions sss supported on a single edge, we infer that

ρ ∈ W 1,1(E) and ∇ρ + ρ∇W [µ] = ρwww with www ∈ L2(µ). In particular, we have
ρ ∈ C(E) by Sobolev embedding.

Step 2. Next we show that ρ belongs to C(G). For this purpose we repeat the
argument above, for a different class of functions sss.

Consider a pair of adjacent edges e, f ∈ E with common vertex v. For the
moment, we identify the concatenation of the two edges with the interval [−`e, `f ]
such that v corresponds to 0. Let s : [−`e, `f ] → R be a C∞-function vanishing
in a neighbourhood of −`e and `f . In particular, rt := Id + ts̃ maps [−`e, `f ] into
itself for t > 0 sufficiently small, where s̃ = eV s. Let the maps sss : E → R and
rt : E→ G be defined on e∪ f by s and rt through the identification with [−`e, `f ]
and by setting sss = 0 and rt = id on all other edges. Repeating the argument from
Step 1, we infer that ρ ∈W 1,1([−`e, `f ]) with the identification of e, f with [−`e, `f ]
as above. In particular, ρ is continuous at 0. Since the choice of the pair e, f is
arbitrary, we conclude that ρ ∈ C(G).



WASSERSTEIN GRADIENT FLOWS OVER METRIC GRAPHS 715

Combining both steps, we infer that I(µ) <∞ and

I(µ) = ‖www‖2L2(µ) ≤ |∂F|2(µ).

From Lemma 5.9 and the lower semicontinuity of I we immediately infer that√
I lies below the relaxed metric slope, i.e., the lower semicontinuous relaxation of
|∂F| given by

|∂−F|(µ) := inf
{

lim inf
n
|∂F|(µn) : µn ⇀ µ

}
.

Corollary 3. For all µ ∈ P(G) we have
√
I(µ) ≤ |∂−F|(µ).

5.4. Approximation via the JKO scheme. In this section, we consider the
time-discrete variational approximation scheme of Jordan–Kinderlehrer–Otto for
the gradient flow [14].

Given a time step τ > 0 and an initial datum µ0 ∈ P(G) with F(µ0) < ∞, we
consider a sequence (µτn)n in P(G) defined recursively via

µτ0 = µ0, µτn ∈ argmin
ν

{
F(ν) +

1

2τ
W2(ν, µτn−1)2

}
. (53)

Then we build a discrete gradient flow trajectory as the piecewise constant in-
terpolation (µ̄τt )t≥0 given by

µ̄τ0 = µ0, µ̄τt = µτn if t ∈
(
(n− 1)τ, nτ ]. (54)

Then we have the following result.

Theorem 5.10. For any τ > 0 and µ0 ∈ P(G) with F(µ0) < ∞ the variational
scheme (53) admits a solution (µτn)n. As τ → 0, for any family of discrete solutions
there exists a sequence τk → 0 and a locally 2-absolutely continuous curve (µt)t≥0

such that

µ̄τkt ⇀ µt ∀t ∈ [0,∞). (55)

Moreover, any such limit curve is a gradient flow curve of F , i.e., a weak solution
to the diffusion equation (36).

Proof of Theorem 5.10. The result basically follows from general results for metric
gradient flows, where the scheme is known as the minimizing movement scheme; see
[2, Section 2.3]. We consider the metric space (P(G),W2) and endow it with the
weak topology σ. It follows that [2, Assumptions 2.1 (a,b,c)] are satisfied. Existence
of a solution to the variational scheme (53) and of a subsequential limit curve (µt)t
now follows from [2, Corollary 2.2.2, Proposition 2.2.3]. Moreover, [2, Theorem
2.3.2] gives that the limit curve is a curve of maximal slope for the strong upper
gradient |∂−F|, i.e.,

1

2

∫ t

0

|µ̇|2(r) + |∂−F(µr)|2 dr + F(µt) ≤ F(µ0).

Thus, by Corollary 3, it is also a curve of maximal slope for the strong upper
gradient

√
I. Theorem 5.5 yields the identification with weak solutions to (36).
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