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ABSTRACT. In this paper, we deal with the Hall equations with fractional
Laplacian
By + curl ((curl B) x B) + AB = 0.

We begin to prove the existence of unique global in time solutions with suffi-
ciently small initial data in H*, k& > % By correcting AB logarithmically, we
then show the existence of unique local in time solutions. We also deal with the
two dimensional systems closely related to the 2% dimensional version of the
above Hall equations. In this case, we show the existence of unique local and
global in time solutions depending on whether the damping term is present or
not.

1. Introduction. The 3D incompressible resistive Hall-Magnetohydrodynamics
system (Hall-MHD in short) is the following system of PDEs for (u,p, B):

us+u-Vu—B-VB+Vp— pulAu =0, (1a)
Bi+u-VB—B-Vu+curl ((curl B) x B) —vAB =0, (1b)
divu =0, divB=0, (1c)

where u = (u1,us,us) is the plasma velocity field, p is the pressure, and B =
(B1, Ba, Bs) is the magnetic field. p and v are the viscosity and the resistivity
constants, respectively. The Hall-MHD is important in describing many physical
phenomena [2, 17, 19, 23, 26, 27, 33]. In particular, the Hall MHD explains magnetic
reconnection on the Sun which is very important role in acceleration plasma by
converting magnetic energy into bulk kinetic energy.

The Hall-MHD recently has been studied intensively. The Hall-MHD can be
derived from either two fluids model or kinetic models in a mathematically rigorous
way [1]. Global weak solution, local classical solution, global solution for small data,
and decay rates are established in [4, 5, 6]. There have been many follow-up results
of these papers; see [7, 8, 12, 13, 14, 15, 16, 18, 29, 30, 31, 32, 34, 35] and references
therein.
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1.1. The Hall equation with fractional Laplacian. We note that the Hall
term curl ((curl B) x B) is dominant in mathematical analysis of (1) and so we only
consider the Hall equations ((u,p) = 0 in (1)). Also motivated by [7], we consider
the Hall equation with fractional Laplacian:

By + curl ((curl B) x B) + A’B =0, divB =0, (2)
where we take v = 1 for simplicity. (2) is locally well-posed [7] when 8 > 1. But,
we do not know whether (2) is locally well-posed when 8 = 1:

B, +curl ((curl B) x B) + AB =0, divB=0. (3)
However, we can show the existence of solutions globally in time if initial data is

sufficiently small.

Theorem 1.1. Let By € H* with k > g and div By = 0. There exists a constant
€0 > 0 such that if || Bo|| g+ < €0, there exists a unique global-in-time solution of (3)
satisfying

t 2
B2 + (1 — Ceo)/o [a2BG)|, ds <UBolZ for aite > 0.

Moreover, B decays in time

C
! 0
where Cy depends on || Byl g+ which is expressed in (27) explicitly.

Remark 1. The decay rate (4) is consistent with the decay rates of the linear part
of (3).

Remark 2. After this work was completed, the referee pointed out that the same
result is proved in [37, Theorem 1.1]. Compared to the proof in [37] where they use
the Littlewood-Paley decomposition, we use the standard energy energy estimates
and classical commutator estimates.

As one of a minimal modification of (3) to show the existence of unique local in
time solutions, we now take a logarithmic correction of (3):
By + curl ((curl B) x B) +1n(2 + A)AB = 0, (5)
where the Fourier symbol of In(2 + A)A is In(2 + |£])|].

Theorem 1.2. Let By € H* with k > % and div By = 0. There exists T, =
T.(||Bollgr) > 0 such that there exists a unique local-in-time solution of (5) satis-
fying
1 exp (= Boll m+)
<Wf— SEPATNZollar)
15O < (—rr— ! 6)
1.2. 2D models. In this paper, we also deal with 2D models closely related to the
2% dimensional (3). If we take B of the form

B(ta x,y) = (7¢y(t7x7y)7wm(t7xay)’ Z(t,l’,y)) ) (7)

we can rewrite (3) as

), 0<t<Tr=

Yo+ A = [, Z], (8a)
Zy+ NZ = [Ay, 9], (8b)
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where [f,g] = Vf-V1g= fog, — fy9z. (7) is used to show a finite-time collapse to
a current sheet [3, 20, 21, 24] and is used in [10] to study regularity of stationary
weak solutions.

1.2.1. Case 1. Although (8) is defined in 2D and has nice cancellation properties
(18), the local well-posedness seems unreachable. But, suppose that we redistribute
the power of the fractional Laplacians in (8) in such a way that (8b) has the full
Laplacian and (8a) is inviscid:

t = [%Z]a Zy — AZ = [A¢,¢] (9)

(9) has no direct link to (2), but we may interpret (9) as the 21 dimensional model
of the Hall equations where only Bs has the full Laplacian in (2). In this case, we
can show that (9) is locally well-posed. Let

2 2 2 2

E) = v@lga + 12O 5s o = 1olls + 1 Zolls - (10)
Theorem 1.3. There exists Ty = Ty (Ey) > 0 such that there exists a unique solution
of (9) satisfying

Eo1 1
< — <T, < —.
g(t)_l—CtEO forall0 <t < <C$0

Moreover, we have the following blow-up criterion:

t t
£(t) +/O IVZ(8)|372 ds < 00 <= /O (1922 + IV20(s)][}. ) ds < oc.

Since there is no dissipative effect in the equation of ¢ in (9), we only have the
local in tim result in Theorem 1.3. Among the possible conditions for the global
existence, we find that adding a damping term to the equation of i) works. More
precisely, we deal with the following

In this case, we can show the existence of global in time solutions with small initial
data having regularity one higher than the regularity in Theorem 1.3. Moreover, we
can find decay rates of ¢ by using the structure of equation of ¥ which is a damped
transport equation, and this is also the reason why the same method cannot be
applied to Z. Let

F&) = @3 + 1203y Fo = %ollss + 1 Zoll 3 s
Ni(t) = Vo) 13 + IV Z ()[4 -

Theorem 1.4. There exists a constant €y > 0 such that if Fo < €g, there exists a
unique global-in-time solution of (11) satisfying

t
F(t)+ (1 - CEO)/ Ni(s)ds < Fo  for allt > 0.
0

Moreover, ¢ decays exponentially in time

k=1 5k
[W)l2 < lollze” A @), < Fo® Vol § e
with 1 < k < 5.

(5—k)(1—Ceq)
—fot
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1.2.2. Case 2. As another way to redistribute the derivatives in (8), we also deal
with

wt - Aw = [¢a Z]a Zt = [A% W (12)
Let £(t) and &y be defined as before (10).

Theorem 1.5. There exists T, > 0, which is depending on &, such that there
exists a unique solution of (12) satisfying

& 1
t) < ——— ll t<T, < —.
5()_1—Ct50 forall0 <t < <C€0

Moreover, we have the following blow-up criterion

t t
£(t) +/ (V12 ds < 00 <= / V2| . ds.
0 0
We now add a damping term to the equation of Z in (12):

V=AY =[, 2], Zi+7Z=[A,y] (13)

In this case, we can use the same regularity used in Theorem 1.5 because the
dissipative effect in ¥ helps to control A in the equation of Z. Let Ns(t) =

2 2
IV (@) s + 12 ()| -
Theorem 1.6. There exists a constant g > 0 such that if & < €y, there exists a

unique global-in-time solution of (13) satisfying

t
E@)+ (11— Ceo)/ No(s)ds < & for all t > 0.
0

Remark 3. Compared to Theorem 1.3, we only need one term in the blow-up
criterion in Theorem 1.5 which is due to the dissipative effect in the equation of .
Compared to Theorem 1.4, the proof of Theorem 1.6 is simpler, but we are not able
to derive decay rates of 1 and Z.

2. Preliminaries. All constants will be denoted by C' and we follow the convention

that such constants can vary from expression to expression and even between two

occurrences within the same expression. And repeated indices are summed over.
The fractional Laplacian A? = (y/—A)? has the Fourier transform representation

ABF(€) = €17 F(©).
For s > 0, H? is a energy space equipped with

e =Wl W gres (1 e = 1A Fll o -

In the energy spaces, we have the following interpolations: for so < s < s1

1l ze < 1 Geo 1St s 5 = 050 + (1 = 6)s1. (14)
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2.1. Inequalities. We begin with two inequalities in 3D:

3
1l < Cllfllas s> 5, (15a)
1 1 s
< b, = 1

We also provide the following inequalities in 2D

[flls S CUAIZ NIVANZ s Iflle < CUFIZ IASI

which will be used repeatedly in the proof of Theorem 1.3, Theorem 1.4, Theorem
1.5, and Theorem 1.6. We also recall

HszHp =Afl-
which holds in any dimension.
We finally provide the Kato-Ponce commutator cstimate [22]

1A, fT gll 2 = [1A*(Fg) = FA gl .
< CIVfllp A" g o+ Cllgll e [IAFF]] -
and the fractional Leibniz rule [11]: for 1 < p < oo and p;, ¢; # 1,

IA* (D e < CUAf oy NgllLar + Clf L2 1A%l o
1 1 1 1 1 (17)
=—+—=—+

(16)

P p @ p2 @
2.2. Commutator. We recall the commutator [f,g] = Vf-V1g = fog9, — fy9z-
Then, the commutator has the following properties:

fo9l=1[AF, 9]+ [f, Agl + 2[fe, 9o + 2[fy, 9], (18a)
/fﬁ ] =0, (18b)

[ ta.01= [ gl (15¢)

3. Proof of Theorem 1.1 and Theorem 1.2.

3.1. Proof of Theorem 1.1. We recall (3):
B; + curl((curl B) x B) + AB = 0. (19)

3.1.1. Approximation. We first approximate (19) by putting eAB to the right-
hand side of (19):

By + curl((curl B) x B) + AB = ¢AB. (20)
We then mollify (20) as follows

OB + curl (7. (cwrl FBE) x JB) + AT2B = eJ2ABY

BYY = 7.B,,

where 7, is the standard mollifier described in [25, Chapter 3.2]. Then, as proved
in [4, Proposition 3.1], there exists a unique global-in-time solution {B(®} of (21).
Since the bounds in Section 3.1.2 are independent of € > 0, we can pass to the limit
in a subsequence and show the existence of smooth solutions globally in time when
By e H* k> %, is sufficiently small as in [37, Section 3.2].

(21)
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3.1.2. A priori estimates. We begin with the L? bound:

1d

2 10ll?
5 I1Bl3:+||atB|  =o. (22)

We now take A* to (19) and take the inner product of the resulting equation
with A*B. Then,

1 2
d HAkBHiQ + HA%'H“BH = —/Ak curl((curl B) x B) - A*B
L2

2dt
= / ({A%'H“,B} X curlB) -AF"z cwrl B < H [A%'H“,B} X culrlBHL2 HA%'H“B‘ a®
By (16) and (15a) with k > 5,
H [A3+% B] x curlBH < C||VB|,~ HAH curlBH
L2 L2
o (23)
< C|1Bl g Af*’“B‘ -
So, we obtain
d i \kp2 11k pl? 11k pl?
A, + HA2+ BHL2 < C|Bl e |AZF B‘ - (24)
By (22) and (24),
d 5 RTE: N 2
1Bl + [A2B] < Cl1Bl 225
If || Bo|| g» = €0 is sufficiently small, we can derive a uniform bound
t 2
2 1 2
1B + (1 — C’eo)/o |a2B)|, ds < IBol forameso.  (25)

3.1.3. Uniqueness. Let By and By be two solutions of (19). Then, B = By — By
satisfies

B; 4+ AB + curl ((curl By) x B) — curl ((curl B) x B) =0 (26)
with By = 0. We take the inner product of (26) with B. By (17) with k > 3,

1d

5%”3”%2 + HA%BH; =— / (curl ((curl By) x B)) - B

= —/A% (((curl By) x B)) - A2 curl B

2
< C||VB| HA%BH +0HVA%31H 1B s A%B‘

L2 L6 L2

1 2 5 1 2

< C VB HA?BH +0HA531H HAEB’

L2 L2 L2

2
1

< C|Billg [A2B]|

where we use (15b) to control LS and L? terms. If Cey < 1, (25) implies B = 0 in
L? which gives the uniqueness of a solution.
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3.1.4. Decay rates. By (14), it is enough to derive the decay rate with & = [ to
show (4). Since

k % + 1.k 2 L
|A*B,5 <IBIE. [A3B| <1150l

r

by (14) and (22), we create the following ODE from (24)
CEO

d 2
2 INBI| . + |a*B] ¢ <o
| 0||L2

By solving this ODE, we find the following decay rate

k5], < — (Wl JNBLe) e

1 1 \k
(28 1Bo 17 + (1 = Ceo) [ A*Boll . )

3.2. Proof of Theorem 1.2. We recall (5):
B; + curl ((curl B) x B) +1In(2 + A)AB = 0,

The the uniqueness part of Theorem 1.2 is the same as that of Theorem 1.1 and we
only derive a priori bounds. Let

|vie=mas], = [ane-+iene |fof a
We begin with the L2 bound:
LB + || Vi T AAtE| = (28)

Following the computations in the proof of Theorem 1.1, we also have

d 2
= |[akBl. + | Vine +A)A%+’fBHL2 < C|B| e

For each N € N, we have
~ 2 ~ 2
| = e B e [ g B as
L lg|<2N lg|>2N
~ 2 1 ~ 2

<2N/ Z1B€)| d 7/ In(2 k1B d
< H<2N|§| | <£>\ € a2 g ISP BlO] e
<2V |A*B|2, + 2+2N H\ﬁzwm

So, (29) is replaced by
% |A*B]7. + | VinG+ M)Ak

c|B
< OV [|AFB . Bl + !Jng:’ |vimE+aal

2
A%+’fBH . (29)
L2

We now choose N > 0 such that

1

52+ 2V) < C'||B|| g < In(2 +2V)
and so N ~ ||B||g+. Then, (29) is reduced to

d
= ARBI[}. < Cexp (IBlle) 1Blle [A"B . (30)
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By (28) and (30), we obtain

d 2

2 1Bl < Cexp (| Bl ) 1B
and so we have

d
7 1Bl < Cexp ([Blla) [ Bllae < Cexp ([ Bllarv)-
By solving this ODE, we can derive (6).

4. Proof of Theorem 1.3 and Theorem 1.4.

4.1. Proof of Theorem 1.3. We recall (9):

Yy = [, Z], (31a)
Zy— AZ = [Ay, 1] (31b)

4.1.1. Approximation. We first approximate (31a) by putting €A% to the right-
hand side and mollify the resulting equations as (21). Then, we have

atd}(e) — «76[-.761/J(€)> jeZ(e)} + 6J€2A¢(€)7
0,7 — AJEQZ(S) — JE[AJA/)“),JE#)(G)]

with w((f) = Jpo and Z((f) = J.Zy. Since (32) is defined in R2, the proof of the
existence of a unique global-in-time solution of (32) is relatively easier than the one
o (21). Moreover, the bounds in Section 4.1.2 are independent of € > 0 and so we
can pass to the limit in a subsequence and show the existence of smooth solutions
locally in time when 1y € H* and Z, € H3.

(32)

4.1.2. A priori estimates. We first note that

1d 2 B
St 1Yz = /ww, Z]=0. (33)
We next multiply (31a) by —At, (31b) by Z, and integrate over R?. By (18c),
1d
5o (19013 +1213:) + 19215 = [ (~Avlw. 2+ Ziavsh =0, (30

We also multiply (31a) by A%, (31b) by —A®Z and integrate over R2. Then,

1d
oL (IIA%II?LZ + IIVAZ||2L2) + ||AQZ||2LQ — /A“w[w,Z] —/AgZ[AWM (35)
=R.
We now compute the right-hand side of (35). By (18a), (18b), and (18¢),
R = 2/A2w[Aw,AZ] +4/A21/1[¢1,AZI} +4/A21/1[wy7AZy]
vt [ A%0100,, 20 +4 [ 820180, 2) + 4 [ 820{bar, 22
(36)

8 / A2 gy, Zyy) + 4 / A2[yy, Zyy] — 2 / A2Z[ Ay i)
—Q/AQZ[A%,%].
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So, we find that the number of derivatives acting on (¥, 1, Z) are (4,4,2), (3,4,3),
and (4,2,4) up to multiplicative constants. Hence,

d
= (I1a%])7, + 1vAzZI: ) + a2z},
<c [ vl [Vl [922] + € [ [9%6] |90 [v°2] + € [ V4] [920] 92
2
< CJ|A% e (122 g + CUVP[| o A% 2 [[V22]]
+C A% 2 V20, 1872 2
3 1
< C 8% 5, V22| + C %17, VA2 [ 422])
+C A% 2 [ V20 [14%2]] 2
<08 4+ L |A2Z]% + 5|V < OE? 4 5 |82 + 1 IV 2]
where we use
[V22)l; < CliaZl,. |8%2) . < CIVZIL |4%2]
<C|VZ|2. +C || Aa%Z|,
with § satisfying 4Cd = 1. So, we have

d 2 2 1
p (HA%HH + ||VAZ||2LQ) +[|18%2] . < CE + S IV 27 - (37)
By (33), (34), and (37), we derive &' < CE? from which we deduce
&o 1
t) < for all t<T < —.
5()_1—07580 orall0 <t < <C’80 (38)

4.1.3. Uniqueness. Let (1, Z1) and (2, Z3) be two solutions of (31) and let ¢ =
Y1 — o and Z = Zy — Zy. Then, (v, Z) satisfies the following equations:

v = [, Z1] + [W2, Z],  Zi — AZ = [AY, 1] + [Athe, Y]
with ¢(0,2) = Z(0,z) = 0. For these equations, we have
1d
2 dt
— [aviv.21) - [ Avlpe, 21+ [ Ziav.on + [ 2860
= (D+I1)+(II)+(IV).
The first term is bounded using the definition of [f, g] and divV+Z; = 0:
I = / (V121 - V) Ay = —/ (V50121 - V) 0 < C ||V 21| o IV, .
We next bound (II)+(III) as

()4 (II1) = — / 210, 4] < C | V2], IV 2 [V 2

(IV9I3: + 121132 ) + 1V 2135

1
< C(IV2ll} < + [V20all7 ) 1996132 + 7 11V 2113
The last term is bounded as

1
(IV) < C [V 19812 IV 212 < C V20| 19132 + 7 192115
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So, we have

a 2 2

= (Iv9lZ: + 11213 ) )
< C (|IV22] p + 92015 + 920215 ) (IV132 +112132)

By (38), VQz/JlHioo + HVngHiw is integrable in time. Integrating (34) and (35)
in time, we have

t
/0 (IVZ@I2: +[422()]2.) ds < 00 for0 <t <

vo| S

which gives the integrability of the first term in the parentheses on the right-hand
side of (39). By repeating the same argument one more time, we have the uniqueness
up to T.

4.1.4. Blow-up criterion. Let
B(s) = [V2Z(5)]| poe + | V?%()[ -
We first deal with

1d
2dt

_ / N AR / Ay, Z,] < C||V22] . [ A

(180152 +19213:) + 18213 = [ A%l 2] - [ Aziav,v)

and so we have
d 2 2 2 2 2
= (1801152 + 12132 ) + 182132 < C|[V22]) o 18913 -
This implies
t
1AvOF +IVZ(@0)]7 +/O 1AZ(s)]72 ds < o0
t
— / IV22(s)]| .. ds < oo.
0

We also deal with
1d
2dt
= —/A21/)[A1/},Z] - Q/Azw ([wmv Zz] + W)y,ZyD

(IVAwIE: +1821%:) + IVAZIG = - [ A%0lw.2)+ [ 22280,

i / A ([thay AZa) + [ty AZ,]) = (1)+(IT)+(I1I).
As in Section 4.1.3,

1) = / (VVEZ - VAY) - VAY < C||V2Z| . IVAY]7. . (41)
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We next estimate (IT) + (III):
() + (11D = 4 | A0 (180, 2]+ [y AZ) + [bays Zoy)+ o Zi)
< C/\VQZ] \v3w|2+0/|v2¢y (V3| | V32| (42)
2 1
< CO|[V22| e IVAYIIZ: + C [V IVASIT2 + 5 IVAZ] s -
By (41) and (42), we have
L OTApZ. + 1AZ%) +IVAZ|% < C (||V?2 V3|2 ) IV A
= (IVAGIE: + 182132 ) + IVAZIT: < C (|[V22]) o + IV} ) 929132
which implies
t t
IVAY@)IZ2 + IAZ(#)]7 +/ IVAZ(s)[72 ds < 00 = / B(s)ds < oo. (43)
0 0

We finally deal with

1d

535 (182005 + 19821 ) + |22, = [ Al 21~ [ Azi6v.01 =R

with the same R in (36). So, we have
Ld
2dt

2

< CIV2z| o A% e + OVl 187211 . (A%
+ CIVAZ 1 IV A | A%

(12115 + 1IVAZIE:) + 222,

3 3 1
< C ([922] o + V2] + IVAZIE 192012 ) A%, + 5 1422,
which gives
d
= (I1a%3. + IVAZI3:) + [[4%2];,
3 3 2|2
< C (B(s) + IVAZ| 3. VA7) | a7,

By (40) and (43), (44) implies
¢ t
HA21/)(15)H2L2 + ||VAZ(7§)H2L2 +/O HAQZ(S)Hi2 ds < oo < /0 B(s)ds < 0.

4.2. Proof of Theorem 1.4. We recall (11):
vty =[,2], Zi—AZ=[A¢,y]

Since the uniqueness is already proved in Section 4.1.3 even without the damping
term, we only focus on the a priori bounds and the decay rates.

4.2.1. A priori estimates. We first have

1d
2dt
1d
2dt

|91 + 1417 = 0,
(45)
(IV9ll3= + 12132 ) + IV9ll3: + IV Z]72 = 0.
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We now consider the highest order part:
1d

2dt
— - [a%v.2)+ [ atziv. vl
We compute the right-hand side of this. By (18a), (18b), and (18c),
- [ 8%l 2+ [ atziav

_y / ABZ (At ] + 2 / ABZ [Adsy, o] + 2 / A2Z (A%, 0]

(Iva2e]7. + 1822115, ) + Va7, + [vaz]?,

+2/A2Z (A%, 1] +2/AZ (A%, Ay, +2/AZ [A%,, Ay,
—/A?’z/;[Aw,AZ] —2/A3w[A1/117Zx] —2/A3¢[Awy,zy] —2/A3¢[¢I,Azx]
—2/A3w[wy,AZy] —2/A4w[ww,zgﬂ] —2/A4¢[¢y,zy] —/A%[A%,Z}.

(46)

We now count the number of derivatives hitting on (Z,1, ) using the integration
by parts and (18b) and (18c) up to multiplicative constants. Except for the last
integral, we have

(6,2,4) — (5,2,5), (5,3,4) (4,2,6) — (5,5,2), (4,3,5)
(2’ 27 8) }_> (3’ 27 7) H (4’ 27 6)’ (3’ 3’ 6) '—> (5’ 5’ 2)7 (4’ 3’ 5)
(2,4,6) — (2,5,5), (3,4,5).
The last integral is
/ (VEZ - VA%Y) AP = — / (VYO Z - VA*Y) 9A%)

and so this gives (2,5,5). So, the combinations of the numbers of derivatives taken

on (Z,9, 1) are
(2,5,5), (3,4,5), (4,3,5), (5,2,5), (5,3,4).
The first and the fourth cases are bounded by
1
C|IV22) o IVA%0|[ 1, < OV 2] IV A% + 5 VA%,
1
OV o V82| < O [[V20)] o VA2, + 5 [ V222]
The second case is bounded by
CIV2Zl| L [VH el o VA% . < CUAZIE: [[VA*Z| L A2 ([ VA% £
1
< ClIAZ|a | A% 5. [[VA% 2] + 5 VA%,
The third case is bounded by
1 1 1 3
ClIV 2] [Vl o [VA%[| . < Ol A2 2. [|VA2Z] . 1AV E [ VA% £
1
< CllAYlz: 8225, [[VA* 2], + 5 VA%,
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The last one is bounded by

CIV o [Vl o VA2 o < CIVAGIE A% . (VA% L [[VA*Z]] .
1
< VAP VA% 1 [VA2Z|| . < CIVAYIE: VA%, + 5 IVA*Z] .

So, we obtain

d 2 2 2 2

7 (w22}, + 118225 ) + [[Va2]l;. + [va2Z|[;,

< O|[V22 5 VA% + C IV VA2 + CIVASIE VA%,
+CIIAZ]7 A%}, [[VA2Z|[. + CllAvl. |a22])5. VA2 Z]|;.

By (45) and (47),
F'(t) + Ni(t) < C (F(t) + F2(t)) Mi(t).

So, if Fy = € is sufficiently small, we obtain

t
F(t) + (1 - Ceo)/ Ni(s)ds < Fy for all t > 0.
0

4.2.2. Decay rates. From (45), [|4(t)|l ;2 < ||[¥o]| ;2 €. Since

33 IV0lE 4 19013 == [ avlw.2)= [ (942 v) av
= f/(alezw) oY
<||V2Z]| ;. VY72 < CeoIVEI[72,

we have

V()] 2 < [Vaho| 2 e~ OO,
By using (14), we also obtain

_ (5= (1=Ceq),
4

k-1 5k
[A 9 @)]| 2 < Fo ™ IVl 3 e 1<k <5

5. Proof of Theorem 1.5 and Theorem 1.6.

5.1. Proof of Theorem 1.5. We recall (12):

¢t—A¢: [1/}72]7 Zt: [A¢7¢]

By applying the same approximation and mollification methods in Section 4.1.1,
we can show the existence of smooth solutions locally in time when vy € H* and
Zy € H3.
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5.1.1. A priori estimates. We first have

3o Il + IV, =0,

1d
53 (IV9IZ: +1121%2) + 1A¢]Z: = 0.

We next deal with
i (187015 19215 + [V, = [ty 21— [ a¥7180,01 =

with the same R in (36). In this case, we choose the the number of derivatives
acting on (1, v, Z) different from Section 4.1.2, which are given by (3,5, 2), (2,5, 3),
and (4,4, 2) after several integration by parts. Hence, we have

L (a2, + 1vazI%) + [V,

< C||V22]| . A%, + CIVAZ| s || V2| o VA%, +
ClAZ| L |[VP|| o VA

1
<C&f+ 5 |VAZy||2,
and so we have the following bound
d
= (8207, +1vAZ|: ) + Va2, < ce2. (49)
By (48) and (49), we derive & < CE? from which we deduce

&o 1
< ———— forall <T, < ==
Et) < I cig, orall0 <t <C€0 (50)

5.1.2. Uniqueness. Let (y1, Z1) and (¢2, Z3) be two solutions and let ¢ = 91 — 1y
and Z = Zy — Z5. As in Section 4.1.3

1d
5= (IVUllE: +112132) + 1893,

- / A, Z4] - / Alin, 7] + / 210, ] + / Z[Ads, ]
= (D+ D)+ IID)+(IV).

The first term three terms are bounded as
(D) < IVZull e IVl 2 1A% 2 < CIV 2L VY7 + 2 ”A'L/}“L??
W10 = - [ Z[A0.6) < C[VZ ] [V6]2 0]

1
<O (IVZilx + IV Zallz ) V0152 + 5 1407
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The last term is bounded as
(V) < € [ V%% s IVl 2o 12112 < € [[V20s| 19913 1201132 121
< OVl L IVl 5 1215 + 5 18012 < C 9%l 19012
+OIZIE + S 1w,
< CIVAGIs [8%0][2, 99122 + O 12120 + 5 [1Aw)2
So, we have
& (19wl +121%.)
< C(IVZil}w + 192l + VA1 [|A%65]5. ) (IV915. + 1213:) -

By (50), the terms in the parentheses are integrable up to %*. By repeating the
same argument one more time, we have the uniqueness up to 7.

T.
2

5.1.3. Blow-up criterion. To derive the blow-up criterion, we first bound

1d / A2, 7] / AZ[AG, ]

(1avllE= + 12132 ) + IV AV

2 1
<OV 19213 + 5 VAU
and so we have
d 2
= (1Aw12: + IV ZI2.) + IVAYIE. < CIV29lf;. IV 212
This implies

t
1AL, + IV Z ()17 +/0 IVAY(s)| 72 ds < oo

¢ 2
= / [V29(s)|| o ds < o0
0
We also take
1d
5o (IVAVIE + 1AZIE:) + a2}, = - [ a%vle2)+ [ a*2z(80,0)
—— [ a%lav2)-2 [ A% (02 2] + ), 2)
~2 [ A (e AZ) + [0, 82,)
= (D)+(IT)+(III).
By using the computation in (41),

(1) = / (VVEZ-VAY) - VAY < C V22|, |V

1
< OV 2. IV Avl g + 2 (1A%
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We next estimate (IT) + (ITT) using (42):
(IT) + (IIT) < C/]V2Z| |v3¢|2+c/|v2¢| IViy| V22|
< CIAZIE IVAVIE: +C |V2l[s 121, + 5 | A%,

So, we have

d
= (IVA¥IE: + 182132 ) + A%, )
<c (Ivavli. + [V} ) 1aZ]3.
By (51), (52) implies
VAU + 82O + [ a%6() 3. ds < oc
(53)

t
— / IV26(s)|>.. ds < o.
0
We finally deal with

1d
53 (18%0]17, +1VAZ|3: ) + [|Vaty}, = /Aw, 7] - /A?’Z[Aw,w]
where we count the number of derivatives acting on (¢,%, Z) in (46) as (3,5, 2),
(2,5,3), and (4,4,2). Then, we obtain
1d
2dt
<Azl 4%},
1
+ OV} IVAZIG: + CIAZIL. V3] + 5 VA%

(Ila%ll7. + IVAZIE:) + [vay|],

< CIAZ|L [|A%] [ +C V20 [ IVAZIE: +C IAZIE [9AZ],
1
+ CIVAYIL 4% + 5 VA%
and so we have
d
9 (2] + 1vaziz.) + [vaz|?,

< C (V2] +18213:) IVAZIG: + C (IVAVIT: + 1AZ13:) [A%0]7,
(54)

By (51) and (53), (54) implies
t
1A25(0) %, + IVAZ(D)|2 +/0 IV A%(s)||%, ds < oo

t 2
— /0 IV26(5)|2.. ds < oo.
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5.2. Proof of Theorem 1.6. We recall (13):
¢t_A¢:[¢7Z]7 Zt+Z:[A¢7¢]

Since the uniqueness is already proved in Section 5.1.2 even without the damping
term, we only focus on the a priori bounds.
We first have

1d 2 2
57 19l + VY2 =0,
2 2 2 2
L2 (1961 + 1Z122) + 1AvI2s + 1213 =0.

We also have

1d
5o ([18%6]5. + 19AZI2.) + [VA2]L. + IVAZIE,
= /A4w[w7Z] —/A3Z[A¢,¢] =R

with the same R in (36). In this case, we also choose the the number of derivatives
acting on (v,v, Z) as (3,5,2), (2,5,3), and (4,4,2). Hence,

< (18%9]12, +198212.) + V2|2, + IV AZIE,
< C|V2Z . 182050 + CIVAZI 2 V2| VA%
+CIAZY L [Vl o [VAZ
< C|VZ|1E IVAZI [VAG] L [IVA2S] 1. + CIVAZ| s [0 [IVA%])
+CIAZIEIvAZIE 18l [va2y]L,
< O (IVZ13: IVAYIE: + 1AZI5: 1A¢]3: + V2 ) IVAZIE

+3 VA% ..
So, we obtain

& (1829112 + IVAZIZ) + Va2, + Ivaz),

< C (IV2I5: IVAGIE: + 1AZ13: 1avl: + V205 ) IVAZIE

By (55) and (56),
E'(t) + Na(t) < C (E() + E3(1)) Na(t).

So, if &y = ¢ is sufficiently small, we obtain

t
£(t) + (1 - cgo)/ No(s)ds < & for all £ > 0.
0
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