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Abstract. We derive von-Kármán plate theory from three dimensional, purely

atomistic models with classical particle interaction. This derivation is estab-
lished as a Γ-limit when considering the limit where the interatomic distance ε

as well as the thickness of the plate h tend to zero. In particular, our analysis
includes the ultrathin case where ε ∼ h, leading to a new von-Kármán plate

theory for finitely many layers.

1. Introduction. The aim of this work is to derive von-Kármán plate theory from
nonlinear, three-dimensional, atomistic models in a certain energy scaling as the
interatomic distance ε and the thickness of the material h both tend to zero.

The passage from atomistic interaction models to continuum mechanics (i.e., the
limit ε → 0) has been an active area of research over the last years. In particular,
this limit has been well studied for three-dimensional elasticity, cf., e.g., [3, 1, 19, 6,
10, 17, 5, 4]. At the same time, there have emerged rigorous results deriving effective
thin film theories from three-dimensional nonlinear (continuum) elasticity in the
limit of vanishing aspect ratio (i.e., the limit h → 0), cf. [15, 14, 13, 7, 16]. First
efforts to combine these passages and investigate the simultaneous limits ε→ 0 and
h→ 0 were made in [11, 20, 21] for membranes (whose energy scales as the thickness
h) and in [18] for Kirchhoff plates (whose energy scales like h3). In particular, this
left open the derivation of the von-Kármán plate theory, which describes plates
subject to small deflections with energy scale h5 and might even be the most widely
used model for thin structures in engineering. Though we do want to mention [2] for
a result regarding discrete von-Kármán plate theory that is motivated numerically
and not physically.

Our first aim is to close this gap. For thin films consisting of many atomic layers
one expects the scales ε and h to separate so that the limit ε, h→ 0 along h

ε →∞ is
equivalent to first passing to the continuum limit ε→ 0 and reducing the dimension
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from 3d to 2d in the limit h→ 0. We will show in Theorem 2.1a) that this is indeed
true.

By way of contrast, for ultrathin films consisting of only a few atomic layers, more
precisely, if ε, h→ 0 such that the number of layers ν = h

ε +1 remains bounded, the
classical von-Kármán theory turns out to capture the energy only to leading order
in 1

ν . The next aim is thus to derive a new finite layer version of the von-Kármán
plate theory featuring additional explicit correction terms, see Theorem 2.1b). In
view of the fabrication of extremely thin layers, such an analysis might be of some
interest also in engineering applications. An interesting question related to such
applications, which we do not address here, would be to extend our analysis to
heterogeneous structures as in [9, 8].

Our third aim concerns a more fundamental modelling point of view which is
based on the very low energy of the von-Kármán scaling: If the the plate is not

too thick (more precisely, if h5

ε3 → 0), we strengthen the previous results to allow
for a much wider range of interaction models, that allow for much more physically
realistic atomic interactions (compared to [14, 13]) as they can now be invariant
under reflections and no longer need to satisfy growth assumptions at infinity, see
Theorems 2.2 and 2.3. In particular, this includes Lennard-Jones-type interaction
models, see Example 3.

Finally, on a technical note, the proof of the our main result set forth in Section 4
elucidates the appearance and structure of the correction terms in the ultrathin film
regime. Both in [18] and the present contribution, at the core of the proof lies the
identification of the limiting strain, which in the discrete setting can be seen as a
3×8 matrix rather than a 3×3 matrix. In [18] this has been accomplished with the
help of ad hoc techniques that allowed to compare adjacent lattice unit cells. Now,
for the proof of Proposition 4 we introduce a more general and flexible scheme to
capture discreteness effects by splitting the deformation of a typical lattice unit cell
into affine and non-affine contributions and passing to weak limits of tailor-made
finite difference operators. While for h� ε these operators will tend to a differential
operator in the limit, if h ∼ ε, finite differences in the x3 direction will not become
infinitesimal and lead to lower order corrections in 1

ν .
This work is organized as follows: In Section 2, we first describe the atomistic

interaction model and then present our results. Our main theorem, Theorem 2.1,
details the Γ-limits for both the thin (ν →∞) and ultrathin (ν bounded) case. The-
orems 2.2 and 2.3 then extend these results to more general and more physically
realistic models. Section 3 contains a few technical tools to circumvent rigidity prob-
lems at the boundary and to compare continuous with discrete quantities. Using
these tools we then prove our results in Section 4.

2. Models and results.

2.1. Atomic model. Let S ⊂ R2 = R2 × {0} ⊂ R3 be an open, bounded, con-
nected, nonempty set with Lipschitz boundary. To keep the notation simple we
will only consider the cubic lattice. Let ε > 0 be a small parameter describing the
interatomic distance, then we consider the lattice εZ3. We denote the number of
atom layers in the film by ν ∈ N, ν ≥ 2 and the thickness of the film by h = (ν−1)ε.
In the following let us consider sequences hn, εn, νn, n ∈ N, such that εn, hn → 0.
The macroscopic reference region is Ωn = S × (0, hn) and so the (reference) atoms
of the film are Λn = Ωn ∩ εnZ3. We will assume that the energy can be written as
a sum of cell energies.
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More precisely, as in [18] we let z1, . . . , z8 be the corners of the unit cube centered
at 0 and write

Z = (z1, . . . , z8) =
1

2

−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1

 .

Furthermore, by Λ′n =
(⋃

x∈Λn
(x+ εn{z1, . . . , z8})

)
∩
(
R2 × (0, hn)

)
we denote the

set of midpoints of lattice cells x+[−εn/2, εn/2]3 contained in R2× [0, hn] for which
at least one corner lies in Λn. Additionally, let ~w(x) = 1

εn
(w(x + εnz

1), . . . , w(x +

εnz
8)) ∈ R3×8. Then, we assume that the atomic interaction energy for a deforma-

tion map w : Λn → R3 can be written as

Eatom(w) =
∑
x∈Λ′n

W (x, ~w(x)), (1)

where W (x, ·) : R3×8 → [0,∞) only depends on those ~wi with x+ εnz
i ∈ Λn, which

makes (1) meaningful even though w is only defined on Λn.
As a full interaction model with long-range interaction would be significantly

more complicated in terms of notation and would result in a much more complicated
limit for finitely many layers, we restrict ourselves to these cell energies.

In the following we will sometimes discuss the upper and lower part of a cell
separately. We write A = (A(1), A(2)) with A(1), A(2) ∈ R3×4 for a 3× 8 matrix A.

If the full cell is occupied by atoms, i.e., x+ εnz
i ∈ Λn for all i, then we assume

that W is is given by a homogeneous cell energy Wcell : R3×8 → [0,∞) with the
addition of a homogeneous surface energy Wsurf : R3×4 → [0,∞) at the top and
bottom. That means,

W (x, ~w) =


Wcell(~w) if x3 ∈ (εn/2, hn − εn/2),

Wcell(~w) +Wsurf(~w
(2)) if νn ≥ 3 and x3 = hn − εn/2,

Wcell(~w) +Wsurf(~w
(1)) if νn ≥ 3 and x3 = εn/2,

Wcell(~w) +
∑2
i=1Wsurf(~w

(i)) if νn = 2, and x3 = hn/2.

Example 1. A basic example is given by a mass-spring model with nearest and
next to nearest neighbor interaction:

Eatom(w) =
α

4

∑
x,x′∈Λn
|x−x′|=εn

( |w(x)− w(x′)|
εn

− 1
)2

+
β

4

∑
x,x′∈Λn

|x−x′|=
√

2εn

( |w(x)− w(x′)|
εn

−
√

2
)2

.

Eatom can be written in the form (1) by setting

Wcell(~w) =
α

16

∑
1≤i,j≤8

|zi−zj |=1

(
|wi − wj | − 1

)2
+
β

8

∑
1≤i,j≤8

|zi−zj |=
√

2

(
|wi − wj | −

√
2
)2

and

Wsurf(w1, w2, w3, w4) =
α

8

∑
1≤i,j≤4

|zi−zj |=1

(
|wi − wj | − 1

)2
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+
β

8

∑
1≤i,j≤4

|zi−zj |=
√

2

(
|wi − wj | −

√
2
)2
.

We will also allow for energy contributions from body forces fn : Λn → R3 given
by

Ebody(w) =
∑
x∈Λn

w(x) · fn(x).

We will assume that the fn do not depend on x3, that fn(x) = 0 for x in an atomistic
neighborhood of the lateral boundary, see (17), and that there is no net force or
first moment, ∑

x∈Λn

fn(x) = 0,
∑
x∈Λn

fn(x)⊗ (x1, x2)T = 0, (2)

to not give a preference to any specific rigid motion. At last, we assume that after
extension to functions f̄n which are piecewise constant on each x + (− εn2 ,

εn
2 )2,

x ∈ εnZ2, h−3
n f̄n → f in L2(S).

Overall, the energy is given as the sum

En(w) =
ε3
n

hn

(
Eatom(w) + Ebody(w)

)
. (3)

Due to the factor
ε3n
hn

this behaves like an energy per unit (undeformed) surface area.
Let us make some additional assumptions on the interaction energy. We assume

that Wcell, Wsurf , and all W (x, ·) are invariant under translations and rotations,
i.e., they satisfy

W (A) = W (A+ (c, . . . , c)) and W (RA) = W (A)

for any A ∈ R3×8 or A ∈ R3×4, respectively, and any c ∈ R3 and R ∈ SO(3).
Furthermore, we assume that Wcell(Z) = W (x, Z) = 0, which in particular implies
Wsurf(Z

(1)) = Wsurf(Z
(2)) = 0, where (Z(1), Z(2)) = Z. At last we assume that W

and Wcell are C2 in a neighborhood of Z, while Wsurf is C2 in neighborhood of Z(1).
Since our model is translationally invariant, it is then equivalent to consider the

discrete gradient

∇̄w(x) =
1

εn

(
w(x+ εnz

1)− 〈w〉, . . . , w(x+ εnz
8)− 〈w〉

)
with

〈w〉 =
1

8

8∑
i=1

w(x+ εnz
i)

instead of ~w(x) for any x with x + εnz
i ∈ Λn for all i. In particular, the discrete

gradient satisfies
8∑
i=1

(∇̄w(x))·i = 0.

The bulk term is also assumed to satisfy the following single well growth condition.

(G) Assume that there is a c0 > 0 such that

Wcell(A) ≥ c0 dist2(A,SO(3)Z)

for all A ∈ R3×8 with
∑8
i=1A·i = 0.
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2.2. Rescaling and convergence of displacements. In the same way as in a
pure continuum approach, it is convenient to rescale the reference sets to the fixed
domain Ω = S × (0, 1). For x ∈ R3 let us always write x = (x′, x3)T with x′ ∈ R2.

We define Λ̃n = H−1
n Λn and Λ̃′n = H−1

n Λ′n with the rescaling matrix

Hn =

1 0 0
0 1 0
0 0 hn

 .

A deformation w : Λn → R3 can be identified with the rescaled deformation
y : Λ̃n → R3 given by y(x) = w(Hnx). We then write En(y) for En(w). The
rescaled discrete gradient is then given by

(∇̄ny(x))·i :=
1

εn
(y(x′ + εn(zi)′, x3 +

εn
hn
zi3)− 〈y〉) = ∇̄w(Hnx)

for x ∈ Λ̃′n, where now

〈y〉 =
1

8

8∑
i=1

y(x′ + εn(zi)′, x3 +
εn
hn
zi3).

For a differentiable v : Ω→ Rk we analogously set ∇nv := ∇vH−1
n = (∇′v, 1

hn
∂3v).

In Section 3 we will discuss a suitable interpolation scheme with additional mod-
ifications at ∂S to arrive at a ˜̃yn ∈W 1,2(Ω;R3) corresponding to yn. Furthermore,
for sequences in the von-Kármán energy scaling we will expect yn and ˜̃yn to be close
to a rigid motion x 7→ R∗n(x + cn) for some R∗n, cn and will therefore be interested
in the normalized deformation

ỹn := R∗n
T ˜̃yn − cn, (4)

which would then be close to the identity. The von-Kármán displacements in the
limit will then be found as the limit objects of

un(x′) :=
1

h2
n

∫ 1

0

(ỹn)′ − x′ dx3, and (5)

vn(x′) :=
1

hn

∫ 1

0

(ỹn)3 dx3. (6)

2.3. The Γ-convergence result. To describe the limit energy, let Qcell(A) =
D2Wcell(Z)[A,A] for A ∈ R3×8 and Qsurf(A) = D2Wsurf(Z

(1))[A,A] for A ∈ R3×4.
As the reference configuration is stress free, frame indifference implies

D2Wcell(Z)[A,BZ] = 0, D2Wsurf(Z
(1))[A′, BZ(1)] = 0 (7)

for all A ∈ R3×8, A′ ∈ R3×4 and all skew symmetric B ∈ R3×3. As in continuum
elasticity theory this just follows from looking at 0 = ∂

∂t
∂
∂AWcell(e

tBA)|t=0,A=Z .
In particular,

Qcell(BZ + c⊗ (1, . . . , 1)) = Qsurf(BZ
(1) + c⊗ (1, 1, 1, 1)) = 0 (8)

for all c ∈ R3 and all skew symmetric B ∈ R3×3.
We introduce a relaxed quadratic form on R3×8 by

Qrel
cell(A) = min

b∈R3
Qcell

(
a1 − b

2 , . . . , a4 − b
2 , a5 + b

2 , . . . , a8 + b
2

)
= min
b∈R3

Qcell(A+ (b⊗ e3)Z) = min
b∈R3

Qcell(A+ sym(b⊗ e3)Z).
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By Assumption (G) Qcell is positive definite on (R3 ⊗ e3)Z. Therefore, for each
A ∈ R3×8 there exists a (unique) b = b(A) such that

Qrel
cell(A) = Qcell(A+ (b(A)⊗ e3)Z) = Qcell(A+ sym(b(A)⊗ e3)Z). (9)

Here we used (7) to arrive at the symmetric version. Furthermore, the mapping
A 7→ b(A) is linear. (If ((vi⊗e3)Z)i=1,2,3 is a Qcell-orthonormal basis of (R3⊗e3)Z,

then b(A) = −
∑3
i=1Qcell[(vi ⊗ e3)Z,A], where Qcell[·, ·] denotes the symmetric

bilinear form corresponding to the quadratic form Qcell(·).)
At last, let us write

Q2(A) = Qrel
cell

((
A 0
0 0

)
Z

)
, Q2,surf(A) = Qsurf

((
A 0
0 0

)
Z(1)

)
for any A ∈ R2×2.

We are now in place to state our main theorem in its first version.

Theorem 2.1. (a) If νn →∞, then 1
h4
n
En

Γ−→ EvK with

EvK(u, v,R∗) :=

∫
S

1
2Q2(G1(x′)) + 1

24Q2(G2(x′)) + f(x′) · v(x′)R∗e3 dx
′,

where G1(x′) = sym∇′u(x′) + 1
2∇
′v(x′)⊗∇′v(x′) and G2(x′) = −(∇′)2v(x′).

More precisely, for every sequence yn with bounded energy 1
h4
n
En(yn) ≤ C,

there exists a subsequence (not relabeled), a choice of R∗n ∈ SO(3), cn ∈ R3,
and maps u ∈ W 1,2(S;R2), v ∈ W 2,2(S) such that (un, vn) given by (5), (6)

and (4) satisfy un ⇀ u in W 1,2
loc (S;R2), vn → v in W 1,2

loc (S), R∗n → R∗, and

lim inf
n→∞

1

h4
n

En(yn) ≥ EvK(u, v,R∗).

On the other hand, this lower bound is sharp, as for every u ∈ W 1,2(S;R2),
v ∈ W 2,2(S), and R∗ ∈ SO(3) there is a sequence yn such that un ⇀ u in

W 1,2
loc (S;R2), vn → v in W 1,2

loc (S) (where we can take R∗n = R∗, cn = 0 without
loss of generality) and

lim
n→∞

1

h4
n

En(yn) = EvK(u, v,R∗).

(b) If νn ≡ ν ∈ N, then 1
h4
n
En

Γ−→ E
(ν)
vK , to be understood in exactly the same way

as in a), where

E
(ν)
vK (u, v,R∗) =

∫
S

1
2Q

rel
cell

((
G1(x′) 0

0 0

)
Z + 1

2(ν−1)G3(x′)

)
+ ν(ν−2)

24(ν−1)2Q2(G2(x′))

+ 1
ν−1Qsurf

((
G1(x′) 0

0 0

)
Z(1) +

∂12v(x′)

4(ν − 1)
M (1)

)
+ 1

4(ν−1)Q2,surf(G2(x))

+ ν
ν−1f(x′) · v(x′)R∗e3 dx

′.

Here,

G3(x′) =

(
G2(x′) 0

0 0

)
Z− + ∂12v(x′)M, (10)

M = (M (1),M (2)) = 1
2e3 ⊗ (+1,−1,+1,−1,+1,−1,+1,−1), (11)
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Z− = (−Z(1), Z(2)) = (−z1,−z2,−z3,−z4,+z5,+z6,+z7,+z8). (12)

In the following we use the notation EvK(u, v), respectively, E
(ν)
vK (u, v), for the

functionals without the force term.

Example 2. Theorem 2.1 applies to the interaction energy of Example 1 if Wcell is
augmented by an additional penalty term +χ(~w) which vanishes in a neighborhood
of SO(3)Z but is ≥ c > 0 in a neighborhood of O(3)Z \ SO(3)Z, so as to guarantee
orientation preservation.

Remark 1. 1. The result in a) is precisely the functional one obtains by first
applying the Cauchy-Born rule (in 3d) in order to pass from the discrete set-
up to a continuum model and afterwards computing the (purely continuum)
Γ-limit on the energy scale h5 as h → 0 as in [13]. Indeed, the Cauchy-Born
rule associates the continuum energy density

WCB(A) = Wcell(AZ)

to the atomic interaction Wcell, and so Qcell(AZ) = D2WCB(Z)[A,A] =:
QCB(A) for A ∈ R3×3, in particular,

Q2(A) = min
b∈R3

QCB

((
A 0
0 0

)
+ b⊗ e3

)
.

2. In contrast, for finite ν non-affine lattice cell deformations of the form AZ−+
aM , A ∈ R3×3, a ∈ R need to be taken into account. While AZ− is non-
affine in the out-of-plane direction, aM distorts a lattice unit cell in-plane in
a non-affine way.

3. Suppose that in addition Wcell and Wsurf satisfy the following antiplane sym-
metry condition:

Wcell(w1, . . . , w8) = Wcell(Pw5, . . . , Pw8, Pw1, . . . , Pw4),

Wsurf(w1, . . . , w4) = Wsurf(Pw1, . . . , Pw4),

where P is the reflection P (x′, x3) = (x′,−x3). This holds true, e.g., in mass-
spring models such as in Example 1. As both terms in G3 switch sign under
this transformation, while the affine terms with G1 and G2 remain unchanged,

one finds that the quadratic terms in E
(ν)
vK decouple in this case and we have

E
(ν)
vK (u, v) =

∫
S

1
2Q2(G1(x′)) + ν(ν−2)

24(ν−1)2Q2(G2(x′)) + 1
8(ν−1)2Q

rel
cell(G3(x′))

+ 1
ν−1Q2,surf(G1(x′)) + (∂12v(x′))2

16(ν−1)3 Qsurf(M
(1))

+ 1
4(ν−1)Q2,surf(G2(x′)) dx′

= EvK(u, v) +

∫
S

1
ν−1

[
Q2,surf(G1(x′)) + 1

4Q2,surf(G2(x))
]

+ 1
8(ν−1)2

[
Qrel

cell(G3(x′))− 1
3Q2(G2(x′))

]
+ 1

16(ν−1)3 (∂12v(x′))2Qsurf(M
(1)) dx′.

4. Standard arguments in the theory of Γ-convergence show that for a sequence
(yn) of almost minimizers of En the in-plane displacement un, the out-of-plane
displacement vn and the overall rotation R∗n converge (up to subsequences) to

a minimizer (u, v,R∗) of EvK, respectively, E
(ν)
vK .
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5. For the original sequence yn near the lateral boundary there can be lattice
cells for which only a subset of their corners belong to Λn. As a consequence
these deformation cannot be guaranteed to be rigid on such cells and the
scaled in-plane and out-of-plane displacements may blow up. We thus chose
to modify yn in an atomistic neighborhood of the lateral boundary so as to
pass to the globally well behaved quantities ỹn, see Section 3. For the original
sequence yn, Theorem 2.1 implies a Γ-convergence result with respect to weak
convergence in W 1,2

loc .

2.4. The Γ-convergence result under weaker assumptions. One physically
unsatisfying aspect of Theorem 2.1 is the strong growth assumption (G) which is
in line with the corresponding continuum results [13]. The problem is actually two-
fold. First, typical physical interaction potentials, like Lennard-Jones potentials,
do not grow at infinity but converge to a constant with derivatives going to 0. And
second, (G) also implies that Wcell(−Z) > Wcell(Z). In particular, the atomistic
interaction could not even be O(3)-invariant.

Contrary to the continuum case, it is actually possible to remove these restrictions
in our atomistic approach. Indeed, if one assumes ν5

nε
2
n → 0 or equivalently h5

n/ε
3
n →

0, then the von-Kármán energy scaling implies that the cell energy at every single
cell must be small. In terms of the number of atom layers ν, this condition includes
the case of fixed ν, as well as the case νn →∞ as long as this divergence is sufficiently

slow, namely νn � ε
−2/5
n .

In this case, growth assumptions at infinity should no longer be relevant. In fact,
we can replace (G) by the following much weaker assumption with no growth at
infinity and full O(3)-invariance.

(NG) Assume that Wcell(A) = Wcell(−A) and that there is some neighborhood U
of O(3)Z and a c0 > 0 such that

Wcell(A) ≥ c0 dist2(A,O(3)Z)

for all A ∈ U with
∑8
i=1A·i = 0 and

Wcell(A) ≥ c0

for all A /∈ U with
∑8
i=1A·i = 0.

One natural problem arising from this is that atoms that are further apart in
the reference configuration can end up at the same position after deforming. In
particular, due to the full O(3)-symmetry, neighboring cells can be flipped into
each other without any cost to the cell energies, which completely destroys any
rigidity that one expects in this problem.

As a remedy, whenever we assume (NG), we will add a rather mild non-pene-
tration term to the energy that can be thought of as a minimal term representing
interactions between atoms that are further apart in the reference configuration. To
make this precise, for small δ, γ > 0 let V : R3 × R3 → [0,∞] be any function with
V (v, w) ≥ γ if |v − w| < δ and V (v, w) = 0 if |v − w| ≥ 2δ. Then define

Enonpen(w) =
∑

x,x̄∈Λn

V
(w(x)

ε
,
w(x̄)

ε

)
.

Then, γ > 0 ensures that there is a positive energy contribution whenever two
atoms are closer than δε.
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The overall energy is then given by

En(w) =
ε3
n

hn

(
Eatom(w) + Ebody(w) + Enonpen(w)

)
. (13)

Theorem 2.2. Assume that ν5
nε

2
n → 0, that fn = 0, that En is given by (13), and

that (G) is replaced by (NG). Then all the statements of Theorem 2.1 remain true,
where now R∗n, R

∗ ∈ O(3).

Note that in this version, we assume fn = 0. Indeed, if one were to include
forces, one can typically reduce the energy by moving an atom infinitely far away
in a suitable direction. Without any growth assumption in the interaction energy
this can easily lead to inf En = −∞ and a loss of compactness. However, this is
just a problem about global energy minimization. Not only should there still be
well-behaved local minima of the energy, but the energy barrier in between should
become infinite in the von-Kármán energy scaling.

In the spirit of local Γ-convergence, we can thus consider the set of admissible
functions

Sδ = {w : Λn → R3 such that dist(∇̄w(x),SO(3)Z) < δ for all x ∈ Λ′n
◦},

where Λ′n
◦

labels ‘interior cells’ away from the lateral boundary, cf. Section 3. This
leads us to the total energy

En(w) =

{
ε3n
hn

(
Eatom(w) + Ebody(w)

)
if w ∈ Sδ,

∞ else.
(14)

We then have a version of the Γ-limit that does allow for forces.

Theorem 2.3. Assume that ν5
nε

2
n → 0, that En is given by (14) with δ > 0

sufficiently small, and that (G) is replaced by (NG). Then all the statements of
Theorem 2.1 remain true. Furthermore, there is an infinite energy barrier in the
sense that

lim
n→∞

inf
{ 1

h4
n

En(w) : w ∈ Sδ\Sδ/2
}

=∞.

Remark 2. 1. For n large enough, the energy barrier implies that minimizers of
the restricted energy (13) correspond to local minimizers of the unrestricted
energy (3). The results thus implies convergence of local minimizers of (3) in
Sδ.

2. To formulate it differently, if a sequence (wn) is not separated by a diverging
(unrestricted) energy barrier from the reference state id, i.e. each wn can be
connected by a continuous path of deformations (wtn)t∈[0,1] with equibounded
energy Eatom(wtn) + Ebody(wtn), then wn ∈ Sδ for large n. This implies con-
vergence of minimizers of the unrestricted energy under the assumption that
a diverging energy barrier cannot be overcome.

3. As the energy only has to be prescribed in Sδ, Theorem 2.3 also describes local
minimizers of energy functionals which are invariant under particle relabeling
for point configurations which after labeling with their nearest lattice site by
{w(x) : x ∈ Λn} belong to Sδ, where their energy can be written in the form
(14).
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Example 3. In the setting of Theorems 2.2 and 2.3, Example 2 can be generalized
to energies of the form

Eatom(w) =
α

4

∑
x,x′∈Λn
|x−x′|=εn

V1

( |w(x)− w(x′)|
εn

− 1
)

+
β

4

∑
x,x′∈Λn

|x−x′|=
√

2εn

V2

( |w(x)− w(x′)|
εn

−
√

2
)
,

where V1, V2 are pair interaction potentials with Vi(0) = 0, Vi C
2 in a neighborhood

of 0 and Vi(r) ≥ c0 min{r2, 1} for some c0 > 0. (This is satisfied, e.g., for the
Lennard-Jones potential r 7→ (1+r)−12−2(1+r)−6+1.) Due to the non-penetration
term in (13) no additional penalty terms for orientation preservation are necessary.
Most notably, it is not assumed that Vi(r)→∞ as r →∞.

3. Preparations. We first extend a lattice deformation slightly beyond Λn and
in doing so possibly modify it near the lateral boundary ∂S × [0, hn] where lattice
cells might not be completely contained in Ω̄n. Then we interpolate so as to obtain
continuum deformations to which the continuum theory set forth in [12, 13] applies.

For x ∈ Λ′n, with Λ′n as defined at the beginning of Section 2, we set

Qn(x) = x+ (− εn2 ,
εn
2 )3.

and also write Qn(ξ) = Qn(x) whenever ξ ∈ Qn(x).

3.1. Modification and extension. On a cell that has a corner outside of Λn
there is no analogue to (G) (or (NG)) and hence no control of ~w(x) in terms of
W (x, ~w(x)). For this reason we modify our discrete deformations w : Λn → R3 near
the lateral boundary of Ωn.

Let Sn = {x ∈ S : dist(x, ∂S) >
√

2εn} and note that, for εn > 0 sufficiently
small, Sn is connected with a Lipschitz boundary. (This follows from the fact that
∂S can be parameterized with finitely many Lipschitz charts.) If x ∈ Λ′n is such

that Qn(x) ∩ (Sn × R) 6= ∅, we call Qn(x) an inner cell and write x ∈ Λ′n
◦
. The

corners of these cells are the interior atom positions Λ◦n = Λ′n
◦

+ εn{z1, . . . , z8} and
the part of the specimen made of such inner cells is denoted

Ωin
n =

( ⋃
x∈Λ′n

◦

Qn(x)

)◦
.

Recall the definition of Λ′n from Section 2 and set

Λ̄n = Λ′n + {z1, . . . , z8}, Ωout
n =

( ⋃
x∈Λ′n

Qn(x)

)◦
.

The (lateral) boundary cells Qn(x) are those for which

x ∈ ∂Λ′n := Λ′n \ Λ′n
◦
.

Later we will also use the rescaled versions of these sets which are denoted Λ̃n =

H−1
n Λn, ˜̄Λn = H−1

n Λ̄n, Λ̃◦n = H−1
n Λ◦n, Λ̃′n = H−1

n Λ′n, (Λ̃′n)◦ = Λ′n
◦
. The rescaled

lattice cells are Q̃n(x) = H−1
n Qn(Hnx).

If w : Λn → R3 is a lattice deformation, following [19] we define a modification
and extension w′ : Λ̄n → R3 as follows. First we set w′(x) = w(x) if x ∈ Λ◦n. Now
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partition ∂Λ′n into the 8 sublattices ∂Λ′n,i = ∂Λ′n ∩ εn(zi + 2Z3). We apply the
following extension procedure consecutively for i = 1, . . . , 8:

For every cell Q = Qn(x) with x ∈ ∂Λ′n,i such that there exists a neighboring
cell Q′ = Qn(x′), i.e. sharing a face with Q, on the corners of which w′ has been
defined already, we extend w′ to all corners of Q by choosing an extension w′ such
that dist2(∇̄w(x),SO(3)Z) is minimal.

As a result of this procedure, w′ will be defined on every corner of each cell
neighboring an inner cell. Now we repeat this procedure until w′ is extended to Λ̄n,
i.e., to every corner of all inner and boundary cells. Since S is assumed to have a
Lipschitz boundary, the number of iterations needed to define w′ on all boundary
cells is bounded independently of ε.

Our modification scheme guarantees that the rigidity and displacements of bound-
ary cells can be controlled in terms of the displacements, respectively, rigidity of
inner cells, see [19, Lemmas 3.2 and 3.4]1:

Lemma 3.1. There exist constants c, C > 0 (independent of n) such that for any
w : Λn → R3 and R∗ ∈ SO(3)∑

x∈∂Λ′n

|∇̄w′(x)−R∗Z|2 ≤ C
∑
x∈Λ′n

◦

|∇̄w′(x)−R∗Z|2

as well as ∑
x∈∂Λ′n

dist2(∇̄w′(x),SO(3)Z) ≤ C
∑
x∈Λ′n

◦

dist2(∇̄w′(x),SO(3)Z).

For the sake of notational simplicity, we will sometimes write w instead of w′.

3.2. Interpolation. Let w : Λ̄n → R3 be a (modified and extended) lattice defor-
mation. We introduce two different interpolations: w̃ and w̄. w̃ ∈W 1,2(Ωout

n ;R3) is
obtained by a specific piecewise affine interpolation scheme as in [18, 19] which in
particular associates the exact average of atomic positions to the center and to the
faces of lattice cells. This will allow for a direct application of the results in [13] on
continuum plates. By way of contrast, w̄ is a piecewise constant interpolation on
the lattice Voronoi cells of Λ̄n. The advantage of this interpolation will be that a
discrete gradient of w translates into a continuum finite difference operator acting
on w̄.

Let x ∈ Λ′n. In order to define w̃ on the cube Q(x) we first set w̃(x) =
1
8

∑8
i=1 w(x + εnz

i). Next, for the six centers v1, . . . , v6 of the faces F 1, . . . , F 6

of [− 1
2 ,

1
2 ]3 we set w̃(x+ εnv

i) = 1
4

∑
j w(x+ εnz

j), where the sum runs over those

j such that zj is a corner of the face with center vi. Finally, we interpolate linearly
on each of the 24 simplices

co(x, x+ εnv
k, x+ εnz

i, x+ εnz
j)

with |zi − zj | = 1, |zi − vk| = |zj − vk| = 1√
2
, i.e., whose corners are given by the

cube center and the center and two neighboring vertices of one face. Note that for
this interpolation

w̃(x) = −
∫
Q(x)

w̃(ξ) dξ, (15)

1We apply these lemmas without a Dirichlet part of the boundary, i.e., ∂L′ε(Ω)∗ = ∅ in the
notation of [19]. Note also that there is a typo in the statement of these lemmas. The set Bε
should read {x̄ ∈ L′ε(Ω)◦ ∪ ∂L′ε(Ω)∗ : x̄ /∈ Vε}, which in our notation (and without Dirichlet part

of the boundary) is a subset of Λ′n
◦.
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w̃(x+ εnv
k) = −

∫
x+εnFk

w̃(ζ) dζ, (16)

for every face x+ εnF
k of Q(x).

For the second interpolation we first let V out
n :=

(⋃
x∈Λ̄n

(x + [− εn2 ,
εn
2 ]3)

)◦
and

then define w̄ ∈ L2(V out
n ;R3) by w̄(ξ) = w(x) for all ξ ∈ x + (− εn2 ,

εn
2 )3, x ∈ Λ̄n.

Note that

∇̄w̄(x) =
1

εn

(
w̄(x+ εnz

1)− 〈w̄〉, . . . , w̄(x+ εnz
8)− 〈w̄〉

)
with 〈w̄〉 = 1

8

∑8
i=1 w̄(x+ εnz

i) defines a piecewise constant mapping on Ωout
n such

that

∇̄w̄(ξ) = ∇̄w(x) whenever ξ ∈ Qn(x), x ∈ Λ′n.

It is not hard to see that the original function controls the interpolation and vice
versa.

Lemma 3.2. There exist constants c, C > 0 such that for any (modified, extended
and interpolated) lattice deformation w̃ : Ωout

n → R3 and any cell Q = Qn(x),
x ∈ Λ′n,

c|∇̄w(x)|2 ≤ ε−3
n

∫
Q

|∇w̃(ξ)|2 dξ ≤ C|∇̄w(x)|2.

Proof. After translation and rescaling we may without loss assume that εn = 1 and
Q = (0, 1)3, hence x = ( 1

2 ,
1
2 ,

1
2 )T . The claim then is an immediate consequence of

the fact that both

w̃ 7→ |∇̄w̃(x)| and w̃ 7→ ‖∇w̃‖L2(Q;R3×3)

are norms on the finite dimensional space of continuous mappings w̃ which are affine
on each co(x, x+ vk, x+ zi, εnz

j) with |zi− zj | = 1, |zi− vk| = |zj − vk| = 1√
2
, and

which have
∫
Q
w̃(ξ) dξ = 0.

Lemma 3.3. There exist constants c, C > 0 such that for any (modified, extended
and interpolated) lattice deformation w̃ : Ωout

n → R3 and any cell Q = Qn(x),
x ∈ Λ′n,

cdist2(∇̄w(x),SO(3)Z) ≤ ε−3
n

∫
Q

dist2(∇w̃(ξ),SO(3)) dξ

≤ C dist2(∇̄w(x),SO(3)Z).

This is in fact [19, Lemma 3.6]. We include a simplified proof.

Proof. After translation and rescaling we may without loss assume that εn = 1 and
Q = (0, 1)3. The geometric rigidity result [14, Theorem 3.1] (indeed, an elementary
version thereof) yields

c min
R∈SO(3)

‖∇w̃−R‖2L2(Q) ≤
∫
Q

dist2(∇w̃(ξ),SO(3)) dξ ≤ C min
R∈SO(3)

‖∇w̃−R‖2L2(Q).

By definition also

dist2(∇̄w(x),SO(3)Z) = min
R∈SO(3)

|∇̄w(x)−RZ|.

The claim then follows from applying Lemma 3.2 to ξ 7→ w̃(ξ) − Rξ for each R ∈
SO(3).
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For a sequence wn of (modified and extended) lattice deformations wn : Λ̄n → R3

with interpolations w̃n : Ωout
n → R3 and w̄n : V out

n → R3 we consider the rescaled

deformations ˜̃yn : Ω̃out
n → R3 defined by

˜̃yn(x) := w̃n(Hnx) with Ω̃out
n := H−1

n Ωout
n

and ¯̄yn : Ṽ out
n → R3 defined by

¯̄yn(x) := w̄n(Hnx) with Ṽ out
n := H−1

n V out
n .

(Later we will normalize by a rigid change of coordinates to obtain ỹn and ȳn.)
Their rescaled (discrete) gradients are

∇n ˜̃yn(x) := ∇w̃n(Hnx) and ∇̄n ¯̄yn(x) := ∇̄w̄n(Hnx)

for all x ∈ Ω̃out
n . Finally, the force fn after extension to Λ̄n is assumed to satisfy

fn(x) = 0 for x ∈ Λ̄n \ Λ◦n (17)

and its the piecewise constant interpolation is f̄n : Ṽ out
n → R3.

Remark 3. Suppose νn = ν constant. We note that for a sequence of mappings
yn : Λn → R3, if ˜̃yn → y in L2(Ω;R3) then y is continuous in x3 and affine in
x3 on the intervals ( i−1

ν−1 ,
i

ν−1 ), i = 1, . . . , ν. Similarly, if ¯̄yn → y∗ in L2(S ×
( −1

2(ν−1) ,
2ν−1

2(ν−1) );R3), then y∗ is constant in x3 on the intervals ( 2i−1
2(ν−1) ,

2i+1
2(ν−1) ),

i = 0, . . . , ν − 1.
Suppose y, y∗ ∈ L2(Ω;R3) are piecewise affine, respectively, constant in x3 as

detailed above with y∗(x′, x3) = y(x′, i
ν−1 ) if x3 ∈ ( 2i−1

2(ν−1) ,
2i+1

2(ν−1) ), i = 0, . . . , ν − 1.

It is not hard to see that the following are equivalent.

• ˜̃y → y in L2(Ω;R3).
• ¯̄y → y∗ in L2(S × ( −1

2(ν−1) ,
2ν−1

2(ν−1) );R3).

• ε3n
hn

∑
x∈Λ̃n

|yn(x)− −
∫
x+(− εn2 ,

εn
2 )2×(− εn

2hn
, εn2hn

)
y∗(ξ) dξ|2 → 0.

The same is true in case νn → ∞ for y = y∗ if in the second statement S ×
( −1

2(ν−1) ,
2ν−1

2(ν−1) ) is replaced by Ω.

In particular, limiting deformations do not depend on the interpolation scheme.

4. Proofs.

4.1. Compactness. For the compactness we will heavily use the corresponding
continuum rigidity theorem from [12, Theorem 3] and [13, Theorem 6]:

Theorem 4.1. Let y ∈ W 1,2(Ω;R3) and set I = I(y) =
∫

Ω
dist2(∇ny,SO(3)) dx.

Then there exists maps R : S → SO(3) and R̃ ∈ W 1,2(S;R3×3) with |R̃| ≤ C, and
a constant R∗ ∈ SO(3) such that

‖∇ny −R‖2L2(Ω) ≤ CI, (18)

‖R− R̃‖2L2(S) ≤ CI, (19)

‖∇R̃‖2L2(S) ≤
CI
h2
n

, (20)

‖∇ny −R∗‖2L2(Ω) ≤
CI
h2
n

, (21)

‖R−R∗‖2Lp(S) ≤
CpI
h2
n

, ∀p <∞. (22)
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Crucially, none of the constants depend on n, y, or I.

Furthermore, we will also use the continuum compactness result [12, Lemmas 4
and 5] and [13, Lemma 1, Eq. (96), and Lemma 2] based on the previous rigidity
result applied to some sequence (ŷn).

Theorem 4.2. Let ŷn ∈ W 1,2(Ω;R3) with I(ŷn) ≤ Ch4
n. Then there are R∗n ∈

SO(3), cn ∈ R3 as well as a u ∈ W 1,2(S;R2) and a v ∈ W 2,2(S) such that yn =

R∗n
T ŷn − cn satisfies

‖∇nyn −Rn‖2L2(Ω) ≤ Ch
4
n (23)

‖Rn − R̃n‖2L2(S) ≤ Ch
4
n (24)

‖∇R̃‖2L2(S) ≤ Ch
2
n (25)

‖∇nyn − Id‖2L2(Ω) ≤ Ch
2
n (26)∫

Ω

(∇nyn)12 − (∇nyn)21 dx = 0. (27)

And, up to extracting subsequences,

1

h2
n

∫ 1

0

y′n − x′ dx3 =: un ⇀ u in W 1,2(S;R2), i = 1, 2, (28)

1

hn

∫ 1

0

(yn)3 dx3 =: vn → v in W 1,2(S;R), (29)

∇nyn − Id

hn
=: An → A = e3 ⊗∇′v −∇′v ⊗ e3 in L2(Ω;R3×3), (30)

2
sym(Rn − Id)

h2
n

→ A2 in Lp(S;R3×3), ∀p <∞, (31)

RTn∇nyn − Id

h2
n

⇀ G in L2(Ω;R3×3), (32)

where the upper left 2× 2 submatrix G′′ of G is given by

G′′(x) = G1(x′) + (x3 − 1
2 )G2(x′), (33)

with

symG1 = 1
2 (∇′u+ (∇u)T ) +∇′v ⊗∇′v, G2 = −(∇′)2v. (34)

The following proposition allows us to apply these continuum results.

Proposition 1. In the setting of Theorem 2.1, consider a sequence wn with

En(wn) ≤ Ch4
n (35)

Then,

0 ≤ I(˜̃yn) =

∫
Ω

dist2(∇n ˜̃yn,SO(3)) dx ≤ Ch4
n. (36)

Here, ˜̃yn ∈ W 1,2(Ω;R3) is the rescaled, modified, and interpolated version of wn
according to Section 3.

In the setting of Theorem 2.3 the statement remains is true as well, while in the
setting of Theorem 2.2 (36) is still true but now ˜̃yn is the rescaled, modified, and
interpolated version of either wn or −wn where the correct sign does depend on wn.
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Proof. Rescaling the wn and applying the modification and interpolation steps from
Section 3, we have sequences ˜̃yn ∈ W 1,2(Ω;R3) and ¯̄yn ∈ L2(Ω;R3). In particular,
we can use Theorem 4.1 for this sequence.

Take R∗n according to Theorem 4.2. Then by Lemmas 3.1 and 3.3,

ε3
n

hn

∑
x∈Λ̃′n

|∇̄n ¯̄yn(x)−R∗nZ|2 ≤ C
∫

Ω

|∇n ˜̃y(x)−R∗n|2 dx ≤ C
In
h2
n

.

A standard discrete Poincaré-inequality then shows

ε3
n

hn

∑
x∈Λ̃◦n

∣∣∣¯̄yn(x)−R∗n
(
x′

hx3

)
− c̄n

∣∣∣2 ≤ ε3
n

hn

∑
x∈Λ̃′n

|∇̄n ¯̄yn(x)−R∗nZ|2 ≤ C
In
h2
n

for a suitable c̄n ∈ R3. Now fn does not depend on x3, vanishes close to ∂S where the
modification takes place, and satisfies

∑
x∈Λn

fn = 0, as well as
∑
x∈Λn

fn⊗x′ = 0.
Hence, we see that

ε3
n

hn
Ebody(wn) =

ε3
n

hn

∑
x∈Λ̃◦n

fn(x′) · yn(x)

=
ε3
n

hn

∑
x∈Λ̃◦n

fn(x′) ·
(

¯̄yn(x)−R∗n
(
x′

hx3

)
− c̄n

)
.

Using ‖f̄n‖L2(S) ≤ Ch3
n and abbreviating I(˜̃yn) = In, we thus find∣∣∣ ε3

n

hn
Ebody(wn)

∣∣∣ ≤ C√Inh2
n.

On the other hand, due to (G) and Lemmas 3.1 and 3.3 we have

ε3
n

hn
Eatom(wn) ≥ c0

ε3
n

hn

∑
x∈(Λ̃′n)◦

dist2(∇̄nyn(x),SO(3)Z)

≥ c ε
3
n

hn

∑
x∈Λ̃′n

dist2(∇̄n ¯̄yn(x),SO(3)Z) ≥ cIn.

Hence,

0 ≤ In ≤ C
ε3
n

hn
Eatom(wn) ≤ Ch4

n + C
ε3
n

hn
|Ebody(wn)| ≤ Ch4

n + C
√
Inh2

n.

We thus have

0 ≤ In ≤ Ch4
n.

All these statements remain true in the setting of Theorem 2.3 as the Assump-
tions (G) and (NG) are equivalent on Sδ.

Now, consider the setting of Theorem 2.2 with Assumption (NG) instead of (G),
as well as fn = 0 and ν5

nε
2
n → 0 with the energy given by (13). Using (35), we find

0 ≤Wcell(∇̄w(x)) ≤ Ch
5
n

ε3
n

for every x ∈ Λ′n
◦

and

0 ≤ V
(wn(x̄)

εn
,
wn(¯̄x)

εn

)
≤ Ch

5
n

ε3
n
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for all x̄, ¯̄x ∈ Λn. As
h5
n

ε3n
→ 0, for n large enough, the right hand side is strictly

smaller then c0 or γ, respectively. Therefore, for all n large enough we have

∇̄wn(x) ∈ U for all x ∈ Λ′n
◦

and

|wn(x̄)− wn(¯̄x)| > εnδ (37)

for all x̄, ¯̄x ∈ Λn.
∇̄wn(x) ∈ U implies Wcell(∇̄wn(x)) ≥ c0 dist2(∇̄wn(x),O(3)Z). In particular,

we thus find

dist2(∇̄wn(x),O(3)Z) ≤ Ch
5
n

ε3
n

.

Again, for n large enough, this means that every x ∈ Λ′n
◦

the discrete gradient
∇̄wn(x) is arbitrarily close to O(3)Z and thus very close to σn(x) SO(3)Z with a
unique σn(x) ∈ {±1}. We now want to show that the sign σn(x) is the same for all
x in the interior cells. As the interior of the union of all these cells is connected,
it suffices to show that σn is the same on any two cells that share a (d − 1)-face.
Indeed, if that were false, we would have some x, x′ in cells that share a (d−1)-face
such that

dist2(∇̄wn(x),O(3)Z) = |∇̄wn(x)−QZ|2 ≤ Ch
5
n

ε3
n

,

and

dist2(∇̄wn(x′),O(3)Z) = |∇̄wn(x′) +Q′Z|2 ≤ Ch
5
n

ε3
n

,

with Q,Q′ ∈ SO(3). Without loss of generality assume x = x′ + εne3. Then

∇̄wn(x′)(0, b)T = ∇̄wn(x)(b, 0)T

for all b ∈ R4 with
∑
i bi = 0. In particular choosing b = (−1,+1,+1,−1) and

b = (−1,−1,+1,+1), we get |(Q+Q′)ei| ≤ C h5
n

ε3n
for i = 1, 2. As Q,Q′ ∈ SO(3), we

find |(Q − Q′)e3| ≤ C
h5
n

ε3n
. Overall, we see that both deformed cells are almost on

top of each other. More specifically,

|w(x′ + εnz
1)− w(x+ εnz

5)|
= |w(x+ εnz

5)− w(x+ εnz
1) + w(x′ + εnz

5)− w(x′ + εnz
1)|

≤ εn
(
|Qz5 −Qz1 −Q′z1 +Q′z5|+ C

h5
n

ε3
n

)
= εn

(
|(Q−Q′)e3|+ C

h5
n

ε3
n

)
≤ εnC

h5
n

ε3
n

≤ δεn

for n large enough. This is a contradiction to the non-penetration condition (37).
That means, we have

ε3
n

hn

∑
x∈Λ′n

◦

dist2(σn∇̄wn(x),SO(3)Z) ≤ Ch4
n

for an x-independent σn ∈ {±1}. Applying the modification and interpolation
procedure from Section 3 to σnwn as in the case (G) above, we find∫

Ω

dist2(∇n ˜̃y(x),SO(3)Z) dx ≤ Ch4
n.
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Now we can directly apply Theorems 4.1 and 4.2 for the continuum objects ˜̃yn.
In particular, for ỹn = R∗n

T ˜̃yn − cn as defined in (4) and corresponding un and vn
as in (5), respectively, (6), after extracting a subsequence from (28) and (29) we get
that

un ⇀ u in W 1,2(S;R2), vn → v in W 1,2(S;R). (38)

For later we also introduce ȳn = R∗n
T ¯̄yn − cn.

We will also use the following finer statement.

Proposition 2. In the setting of Theorem 4.2, applied to ˜̃yn and with ỹn =
R∗n

T ˜̃yn − cn, we have

1

h2
n

(
(ỹn)′ − x′

)
=: ûn ⇀ û in W 1,2(Ω;R2), (39)

1

hn
(ỹn)3 =: v̂n ⇀ v̂ in W 1,2(Ω), (40)

where

û(x) = u(x′)− (x3 − 1
2 )∇′v(x′), (41)

v̂(x) = v(x′) + (x3 − 1
2 ). (42)

Proof. According to Korn’s inequality

‖ûn‖W 1,2(Ω;R2) ≤ C
(
‖sym∇′ûn‖L2(Ω;R2×2) +

∥∥∥∂ûn
∂x3

∥∥∥
L2(Ω;R2)

+
∣∣∣ ∫

Ω

skew∇′ûn dx
∣∣∣+
∣∣∣ ∫

Ω

ûn dx
∣∣∣).

According to Theorem 4.2, sym∇′ûn is bounded in L2 by (23) and (31). Further-
more,

∫
skew∇′ûn dx = 0 by (27), and

∫
ûn dx is bounded due to (28). As

∂(ûn)i
∂x3

=
1

hn
(∇nỹn − Id)i3,

i = 1, 2, this term is bounded in L2 as well. This shows compactness. To identify
the limit and thus show convergence of the entire sequence, note that∫ 1

0

ûn dx3 ⇀ u in W 1,2(S;R2),

by (28) and
∂(ûn)i
∂x3

=
1

hn
(∇nỹn − Id)i3 → −

∂v

∂xi
in L2(Ω),

for i = 1, 2 by (30).
(26) and (29) in Theorem 4.2 also show that v̂n is bounded in W 1,2(Ω) with

∂v̂n
∂x3
→ 1 and ∫ 1

0

v̂n dx3 → v.

As a first consequence, we will now describe the limiting behavior of the force
term Ebody(wn) = Ebody(yn) =

∑
x∈ ˜̄Λn

fn(x) · yn(x), where fn(x) = fn(x′) satisfies

(2), (17) and h−3
n f̄n → f in L2(S).

Note that the forces considered are a bit more general than in [13].
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Proposition 3. Let yn be a sequence with En(yn) ≤ Ch4
n and suppose that (38)

holds true for ỹn, un, vn as defined in (4), (5), (6). Assume that R∗n → R∗. Then

ε3
n

h5
n

Ebody(yn)→

{∫
S
f(x′) · v(x′)R∗e3 dx

′, if νn →∞,
ν
ν−1

∫
S
f(x′) · v(x′)R∗e3 dx

′, if νn = ν constant,

as n→∞.

Proof. In terms of the extended and interpolated force density we have

ε3
n

h5
n

Ebody(yn) =
1

h4
n

∫
Ṽ out
n

f̄n(x) · ¯̄yn(x) dx

=
1

h4
n

∫
Ṽ out
n

f̄n(x) ·
(

¯̄yn(x)−R∗n
(
x′

0

)
−R∗ncn

)
dx

=

∫
Ṽ out
n

h−3
n R∗n

T f̄n(x) · h−1
n

(
ȳn −

(
x′

0

))
dx.

By Proposition 2, h−1
n

(
ỹn −

(
x′

0

))
→ v̂e3 in L2(Ω;R3) with v̂ as in (40) and so

Remark 3 shows that

ε3
n

h5
n

Ebody(yn)→
∫

Ω

R∗T f(x) · v̂(x)e3 dx =

∫
Ω

f(x′) · v(x′)R∗e3 dx
′

if νn →∞, where in the last step we have used that (2) together with fn(x) = fn(x′)
also implies that

∑
x∈Λn

x3fn(x) = 0. If νn = ν constant, then Remark 3 gives

ε3
n

h5
n

Ebody(yn)→ 1

ν − 1

ν−1∑
j=0

∫
S

R∗T f(x′) · v̂(x′, j
ν−1 )e3 dx

′

=
ν

ν − 1

∫
S

f(x′) · v(x′)R∗e3 dx
′

with an analogous argument for the last step.

4.2. Lower bounds. To show the lower bounds in our Γ-convergence results, we
have to understand the limit of the discrete strain. Let (yn) satisfy En(yn) ≤ Ch4

n

and set

Ḡn :=
1

h2
n

(RTn ∇̄nȳn − Z).

By Proposition 1 (˜̃yn) satisfies the assumptions of Theorem 4.2 and Proposition 2
so that, after a rigid change of coordinates, ỹn satisfies (23)–(34) and (39)–(42). In
particular, by (32) we know that for a subsequence the continuum strain converges
as

1

h2
n

(RTn∇nỹn − Id) ⇀ G in L2(Ω;R3×3),

where G satisfies (33) and (34).
For the discussion of discrete strains, recall that we defined

Z− = (−z1,−z2,−z3,−z4,+z5,+z6,+z7,+z8),

M =
1

2
e3 ⊗ (+1,−1,+1,−1,+1,−1,+1,−1).
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We define a projection P acting on maps via

Pf(x) = −
∫ k/(ν−1)

(k−1)/(ν−1)

f(x′, t) dt if k−1
ν−1 ≤ x3 <

k
ν−1

in case νn ≡ ν <∞ and P = id in case νn →∞.

Proposition 4. Let (yn)n satisfy En(yn) ≤ Ch4
n with 1

h2
n

(RTn∇nỹn − Id) ⇀ G in

L2(Ω;R3×3). Then,

Ḡn ⇀ Ḡ :=

{
GZ, if νn →∞,
PGZ + 1

2(ν−1)G3, if νn ≡ ν ∈ N,

in L2(Ω;R3×8), where G3 is as in Theorem 2.1.

Proof. The compactness follows from Theorem 4.2. On a subsequence (not rela-
beled) we thus find Ḡn ⇀ Ḡ. As Rn → Id in L2 while being uniformly bounded,
we also find

RnḠn =
1

h2
n

(∇̄nȳn −RnZ) ⇀ Ḡ.

We have

lim
n→∞

1

h2
n

(RTn∇nỹn − Id) = lim
n→∞

1

h2
n

(∇nỹn −Rn) = G,

weakly in L2(Ω;R3×3) where G satisfies (33) and (34).
In order to discuss the discrete strains in more detail, we separate affine and non-

affine contributions. We say that a b ∈ R8 is affine if it is an element of the linear
span of b0, b1, b2, b3, where b0 = (1, . . . , 1) and bi = ZT ei, i = 1, 2, 3. Any b ∈ R8

which is perpendicular to all affine vectors is called non-affine. I.e., a non-affine b
is characterized by

∑8
i=1 bi = 0 and Zb = 0.

We begin by identifying the easier to handle affine part of the limiting strain. By
construction we have RnḠnb

0 ≡ 0 and so Ḡb0 = 0 = GZb0. For i ∈ {1, 2, 3} we use

that on any Q̃n(x), x ∈ Λ̃′n,

∇̄nȳn(x)b1 =
1

2εn

(
(y2 + y3 + y6 + y7)− (y1 + y4 + y5 + y8)

)
,

where yi = ỹn(x′ + εn(zi)′, x3 + εn
hn
zi3). So, using (16) for ỹn,

∇̄nȳn(x)b1 =
2

εn
−
∫
x+{− εn2 }×(− εn2 ,

εn
2 )×(− εn

2hn
, εn2hn

)

ỹn(ξ + εne1)− ỹn(ξ) dξ

= 2−
∫
Q̃n(x)

∂1ỹn(ξ) dξ.

Analogous arguments yield

∇̄nȳn(x)b2 = 2−
∫
Q̃n(x)

∂2ỹn(ξ) dξ and

∇̄nȳn(x)b3 =
2

hn
−
∫
Q̃n(x)

∂3ỹn(ξ) dξ.

By Pn we denote the projection which maps functions to piecewise constant func-
tions via Pnf(x) = −

∫
Q̃n(x)

f(ξ) dξ on Q̃n(x). Then Pn[RnḠn] ⇀ Ḡ. On the other

hand, observing that ZZT = 2 Id3×3, we find

Pn[RnḠn]bi =
2

h2
n

Pn
[
∂iỹn −Rnei

]
⇀ 2PGei = PGZbi, i = 1, 2
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and

Pn[RnḠn]b3 =
2

h2
n

Pn
[
h−1
n ∂3ỹn −Rne3

]
⇀ 2PGe3 = PGZb3.

In summary we get that for every affine b ∈ R8

Ḡb = PGZb. (43)

For the discussion of the non-affine part of the strain we fix a non-affine b ∈ R8,
i.e., a b satisfying

∑8
i=1 bi = 0, Zb = 0, and write bT = ((b(1))T , (b(2))T ), where

b(1), b(2) ∈ R4. Let Z2dim := ((z1)′, (z2)′, (z3)′, (z4)′) ∈ R2×4 be the matrix of two-

dimensional directions. Then Z2dim(b(1) + b(2)) = 0 and
∑4
i=1 b

(1)
i =

∑4
i=1 b

(2)
i = 0.

We introduce the difference operator

∇̄2dimf(x) :=
1

εn

(
f(x′ + εn(zi)′, x3)− 1

4

4∑
j=1

f(x′ + εn(zj)′, x3)
)
i=1,2,3,4

.

The idea is now to separate differences into in-plane and out-of-plane differences,
as all in-plane differences are infinitesimal, while out-of-plane differences stay non-
trivial if νn ≡ ν and have to be treated more carefully.

Using

∇̄nȳn(x) =
(
∇̄2dim
n ȳn

(
x− εn

2hn
e3

)
, ∇̄2dim

n ȳn
(
x+

εn
2hn

e3

))
+

1

2hn
−
∫
Q̃n(x)

∂3ỹn(ξ) dξ ⊗ (−1,−1,−1,−1,+1,+1,+1,+1)

we find

RnḠn(x)b =
1

h2
n

∇̄nȳn(x)b

=
1

h2
n

(
∇̄2dim
n ȳn

(
x+

εn
2hn

e3

)
− ∇̄2dim

n ȳn
(
x− εn

2hn
e3

))
b(2) (44)

+
1

h2
n

∇̄2dim
n ȳn

(
x− εn

2hn
e3

)
(b(1) + b(2)), (45)

where we have used that
∑4
i=1 b

(1)
i =

∑4
i=1 b

(2)
i = 0.

First consider the term (45). Since ∇̄2dim
n īd(x− εn

2hn
e3) = Z2dim and Z2dim(b(1) +

b(2)) = 0, for any ϕ ∈ C∞c (Ω) and i = 1, 2 by (39) and Remark 3 we have

1

h2
n

eTi

∫
Ω

∇̄2dim
n (ȳn − īd)

(
x− εn

2hn
e3

)
(b(1) + b(2))ϕ(x) dx

=
1

h2
n

eTi

∫
Ω

(ȳn − īd)
(
x− εn

2hn
e3

)
(∇̄2dim

n )∗ϕ(x)(b(1) + b(2)) dx

→ −
∫

Ω

ûi(x̃)∇′ϕ(x)Z2dim(b(1) + b(2)) dx = 0, (46)

where, either x̃ = x (if νn →∞), or x̃ = (x′, b(ν−1)x3c
ν−1 ) (if νn = ν is constant).

For the third component, we instead have

1

h2
n

eT3

∫
Ω

∇̄2dim
n ȳn

(
x− εn

2hn
e3

)
(b(1) + b(2))ϕ(x) dx

=
1

hnεn(νn − 1)
eT3

∫
Ω

(
∇̄2dim
n ȳn

(
x− εn

2hn
e3

)
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−∇′nȳn
(
x− εn

2hn
e3

)
Z2dim

)
(b(1) + b(2))ϕ(x) dx

=
1

(νn − 1)εn

∫
Ω

(ȳn)3(x− εn
2hn

e3)

hn

(
(∇̄2dim

n )∗ϕ(x)

+∇′nϕ(x)Z2dim
)
(b(1) + b(2)) dx.

Now,

1

εn

(
(∇̄2dim

n )∗ϕ(x) +∇′nϕ(x)Z2dim
)

→
(

1
2∇
′2ϕ(x)[(zi)′, (zi)′]− 1

8

4∑
j=1

∇′2ϕ(x)[(zj)′, (zj)′]
)
i=1,...,4

uniformly. Therefore, (40) gives

1

h2
n

eT3

∫
Ω

∇̄2dim
n ȳn

(
x− εn

2hn
e3

)
(b(1) + b(2))ϕ(x) dx→ 0, (47)

if νn →∞. For νn = ν constant however, using (40) and (42) we find

1

h2
n

eT3

∫
Ω

∇̄2dim
n ȳn

(
x− εn

2hn
e3

)
(b(1) + b(2))ϕ(x) dx

→ 1

(ν − 1)

∫
Ω

v̂
(
x′,
b(ν − 1)x3c

ν − 1

)(
1
2∇
′2ϕ(x)[(zi)′, (zi)′]

)
i=1,...,4

(b(1) + b(2)) dx

=
1

(ν − 1)

∫
Ω

(
1
2∇
′2v(x′)[(zi)′, (zi)′]

)
i=1,...,4

(b(1) + b(2))ϕ(x) dx, (48)

where we have used that
∑8
i=1 bi = 0.

We still need to find the limit of (44). For any test function ϕ ∈ C∞c (Ω;R3) we
find∫

Ω

1

h2
n

(
∇̄2dim
n ȳn

(
x+

εn
2hn

e3

)
− ∇̄2dim

n ȳn
(
x− εn

2hn
e3

))
b(2) · ϕ(x) dx

=
εn
hn

∫
Ω

1

εnhn

(
ȳn
(
x+

εn
2hn

e3)− ȳn
(
x− εn

2hn
e3

))
· (∇̄2dim

n )∗Pnϕ(x)b(2) dx

=
1

h2
n

∫
Ω

−
∫
Q̃n(x)

(
ȳn
(
ξ +

εn
2hn

e3)− ȳn
(
ξ − εn

2hn
e3

))
dξ · (∇̄2dim

n )∗Pnϕ(x)b(2) dx

=
εn
h3
n

∫
Ω

∂3ỹn(x) · (∇̄2dim
n )∗Pnϕ(x)b(2) dx

=
εn
hn

∫
Ω

PnAn(x)e3 · (∇̄2dim
n )∗ϕ(x)b(2) dx.

Here the penultimate step is true by our specific choice of interpolation to define
ỹn, whereas the last step follows from (30) and ∇̄2dim

n
1
hn
e3 = 0. If νn → ∞ this

converges to 0. In case νn = ν constant we obtain from (30)

lim
n→∞

∫
Ω

1

h2
n

(
∇̄2dim
n ȳn

(
x+

εn
2hn

e3

)
− ∇̄2dim

n ȳn
(
x− εn

2hn
e3

))
b(2) · ϕ(x) dx

= − 1

ν − 1

∫
Ω

PA(x)e3 · ∇′ϕ(x)Z2dimb(2) dx

=
1

ν − 1

∫
Ω

(∂1v(x′), ∂2v(x′), 0)∇′ϕ(x)Z2dimb(2) dx



634 JULIAN BRAUN AND BERND SCHMIDT

= − 1

ν − 1

∫
Ω

(
∇′2v(x′)Z2dimb(2)

0

)
· ϕ(x) dx. (49)

Summarizing (46), (47), (48), and (49), we see that for non-affine b we have
Ḡb = 0 in case νn →∞ and

Ḡb =

(
− 1
ν−1∇

′2v(x′)Z2dimb(2)

1
ν−1

∑4
i=1

1
2∇
′2v(x′)[(zi)′, (zi)′](b(1) + b(2))i

)

=

(
− 1

2(ν−1)∇
′2v(x′)Z2dim(b(2) − b(1))

1
2(ν−1)

∑8
i=1∇′2v(x′)[(zi)′, (zi)′]bi

)
− 1

8(ν − 1)
∆v(x′)

8∑
j=1

bje3

as
∑8
j=1 bj = 0, if νn ≡ ν.

Elementary computations show that for the affine basis vectors bk, k ∈ {0, 1, 2, 3},

Z2dim((bk)2 − (bk)1) = 0

and also

8∑
i=1

∇′2v(x′)[(zi)′, (zi)′]bki −
1

4
∆v(x′)

8∑
j=1

bkj = 0.

Thus combining with (43), for every b ∈ R8 we get

Ḡb = GZb

if νn →∞ and

Ḡb = PGZb+

(
− 1

2(ν−1)∇
′2v(x′)Z2dim(b(2) − b(1))

1
2(ν−1)

∑8
i=1∇′2v(x′)[(zi)′, (zi)′]bi

)
− 1

8(ν − 1)
∆v(x′)

8∑
j=1

bje3.

if νn = ν is constant. So Ḡ = GZ if νn →∞ and

Ḡ = PGZ

− 1

2(ν − 1)

(
∇′2v(x′)0

0 0

)
Z− +

1

2(ν − 1)
e3 ⊗ (∇′2v(x′)[(zi)′, (zi)′])i=1,...,8

− 1

8(ν − 1)
∆v(x′))e3 ⊗ (1, . . . , 1).

with Z− as in (12) if νn = ν is constant. Noting that

∇′2v(x′)[(zi)′, (zi)′] =

{
1
4 (∂11v(x′) + 2∂12v(x′) + ∂22v(x′)) if i ∈ {1, 3, 5, 7},
1
4 (∂11v(x′)− 2∂12v(x′) + ∂22v(x′)) if i ∈ {2, 4, 6, 8},

with M as in (11) this can be written as

Ḡ = PGZ − 1

2(ν − 1)

(
∇′2v(x′) 0

0 0

)
Z− +

1

2(ν − 1)
∂12v(x′)M.

Last, we note that subsequences were indeed not necessary, as the limit is charac-
terized uniquely.

Having established convergence of the strain, the lim inf inequality in Theo-
rems 2.1, 2.2 and 2.3 can now be shown by a careful Taylor expansion of W (x, ·),
cf. [14, 13, 18].
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Proof of the lim inf inequality in Theorems 2.1, 2.2 and 2.3. The lim inf inequality
in Theorem 2.3 is an immediate consequence of the lim inf inequality in Theorem 2.1
applied to a cell energy W ′cell of the form

W ′cell(A) =

{
Wcell(A), if dist(A,SO(3)Z) < δ,

dist2(A,SO(3)Z), if dist(A,SO(3)Z) ≥ δ.

Furthermore, in view of Proposition 3 it suffices to establish the lower bound for
fn = 0.

Assume that (yn) is a sequence of atomistic deformations such that

sup
n
En(yn) <∞

so that by Proposition 1 its modification and interpolation (ỹn) verifies the asser-
tions of Theorem 4.2. Set

Ḡn :=
1

h2
n

(RTn ∇̄nȳn − Z).

By frame indifference and nonnegativity of the cell energy we have

ε3
n

h5
n

En(yn) ≥ ε3
n

h5
n

∑
x∈(Λ̃′n)◦

W ((x′, hnx3), ∇̄nȳn(x))

=
1

h4
n

∫
Ωin
n

W
(
εn(bx1

εn
c+ 1

2 , b
x2

εn
c+ 1

2 , b
hnx3

εn
c+ 1

2 ), Z + h2
nḠn(x)

)
dx.

First assume that νn → ∞ as n → ∞. Due to nonnegativity of Wsurf we can
estimate

ε3
n

h5
n

En(yn) ≥ 1

h4
n

∫
Ω

χn(x)Wcell(Z + h2
nḠn(x)) dx

=

∫
Ω

1

2
Qcell

(
χn(x)Ḡn(x)

)
− h−4

n χn(x)ω
(
|h2
nḠn(x)|

)
dx,

where χn is the characteristic function of {x ∈ Ωin
n : Ḡ ≤ h−1

n } ⊂ Ω and

ω(t) := sup
{
| 12Qcell(F )−Wcell(Z + F )| : F ∈ R3×8 with |F | ≤ t

}
so that t−2ω(t)→ 0 as t→ 0. Since Ḡ2

n is bounded in L1(Ω;R3×8) and

χn(h2
nḠn)−2ω(h2

nḠn)→ 0

uniformly,

h−4
n χnω

(
h2
nḠn

)
= Ḡ2

nχn(h2
nḠn)−2ω(h2

nḠn)→ 0 in L1(Ω;R3×8).

Moreover, χn → 1 boundedly in measure and so by Proposition 4 χnḠn ⇀ Ḡ = GZ,
where G satisfies (33) and (34). By lower semicontinuity it follows that

lim inf
n→∞

ε3
n

h5
n

En(yn) ≥ 1

2

∫
Ω

Qcell

(
Ḡ(x)

)
dx ≥ 1

2

∫
Ω

Qrel
cell

(
Ḡ(x)

)
dx

=
1

2

∫
Ω

Qrel
cell

((
G1(x′) + (x3 − 1

2 )G2(x′) 0
0 0

)
Z

)
dx.

Integrating the last expression over x3 ∈ (0, 1) and noting that the integral of the
cross terms vanish we obtain

lim inf
n→∞

ε3
n

h5
n

En(yn) ≥ EvK(u, v).
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Now suppose that νn ≡ ν ∈ N. We let χn as above but now define

ω(t) := sup
{
| 12Qcell(F )−Wcell(Z + F )| : F ∈ R3×8 with |F | ≤ t

}
+ 2 sup

{
| 12Qsurf(F )−Wsurf(Z

(1) + F )| : F ∈ R3×4 with |F | ≤ t
}

so that still t−2ω(t)→ 0 as t→ 0. With Ḡ(x) = (Ḡ(1)(x), Ḡ(2)(x)) we have

lim inf
n→∞

ε3
n

h5
n

En(yn) ≥ 1

2

∫
Ω

Qcell

(
Ḡ(x)

)
dx+

1

2(ν − 1)

∫
S

Qsurf

(
Ḡ(1)(x′, 1

2(ν−1) )
)

+Qsurf

(
Ḡ(2)(x′, 2ν−3

2ν−2 )
)
dx,

where we have used that Ḡ is constant on S × (0, 1
ν−1 ) and on S × (ν−2

ν−1 , 1). Here

(see Eq. (10) for G3),

Ḡ(1)(x′, 1
2ν−2 ) = −

∫ 1
ν−1

0

G(x′, x3) dx3 Z
(1) + 1

2(ν−1)G
(1)
3 (x′),

Ḡ(2)(x′, 2ν−3
2ν−2 ) = −

∫ 1

ν−2
ν−1

G(x′, x3) dx3 Z
(2) + 1

2(ν−1)G
(2)
3 (x′).

The bulk part is estimated as

1

2

∫ 1
2

− 1
2

Qcell

(
Ḡ(x)

)
dx3

≥ 1

2(ν − 1)

ν−1∑
k=1

Qrel
cell

((
sym(PG′′)(x′, 2k−1

2ν−2 ) 0

0 0

)
Z + 1

2(ν−1)G3(x′)

)

=
1

2(ν − 1)

ν−1∑
k=1

Qrel
cell

((
symG1(x′) + 2k−ν

2ν−2G2(x′) 0

0 0

)
Z + 1

2(ν−1)G3(x′)

)

=
1

2(ν − 1)

ν−1∑
k=1

[
Qrel

cell

((
symG1(x′) 0

0 0

)
Z + 1

2(ν−1)G3(x′)

)
+ (2k−ν)2

(2ν−2)2Q
rel
cell

((
G2(x′) 0

0 0

)
Z

)]
=

1

2
Qrel

cell

((
symG1(x′) 0

0 0

)
Z + 1

2(ν−1)G3(x′)

)
+ ν(ν−2)

24(ν−1)2Q
rel
cell

((
G2(x′) 0

0 0

)
Z

)
,

where we have used that
∑ν−1
k=1

(2k−ν)2

(2ν−2)3 = ν(ν−2)
24(ν−1)2 .

For the surface part first note that by (8), for any A = (aij) ∈ R3×3 and B ∈ R3×4

we have

Qsurf(AZ
(1) +B)

= Qsurf

(
AZ(1) +B + (a3· ⊗ e3 − e3 ⊗ a3·)Z

(1) + (a·3 + a3·)⊗ (1, 1, 1, 1)
)

= Qsurf

((
A′′ 0
0 0

)
Z(1) +B

)
= Qsurf

((
symA′′ 0

0 0

)
Z(1) +B

)
,

where a·3 denotes the third column, a3· the third row and A′′ = (aij)1≤i,j≤2 the
upper left 2× 2 part of A. Thus also

Qsurf(AZ
(2) +B) = Qsurf

(
AZ(1) + a·3 ⊗ (1, 1, 1, 1) +B

)
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= Qsurf

((
symA′′ 0

0 0

)
Z(1) +B

)
.

It follows that

Qsurf(Ḡ1(x′, 1
2ν−2 ))

= Qsurf

((
symG1(x′)− ν−2

2ν−2G2(x′) 0

0 0

)
Z(1) + 1

2(ν−1)G
(1)
3 (x′)

)
= Qsurf

((
symG1(x′)− 1

2G2(x′) 0
0 0

)
Z(1) +

∂12v(x′)

4(ν − 1)
M (1)

)
,

Qsurf(Ḡ2(x′, 2ν−3
2ν−2 ))

= Qsurf

((
symG1(x′) + ν−2

2ν−2G2(x′) 0

0 0

)
Z(1) + 1

2(ν−1)G
(2)
3 (x′)

)
= Qsurf

((
symG1(x′) + 1

2G2(x′) 0
0 0

)
Z(1) +

∂12v(x′)

4(ν − 1)
M (1)

))
,

and so

Qsurf(Ḡ1(x′, 1
2ν−2 )) +Qsurf(Ḡ2(x′, 2ν−3

2ν−2 ))

= 2Qsurf

((
symG1(x′) 0

0 0

)
Z(1) +

∂12v(x′)

4(ν − 1)
M (1)

)
+ 1

2Qsurf

((
G2(x′) 0

0 0

)
Z(1)

)
,

Adding bulk and surface contributions and integrating over x′ we arrive at

lim inf
n→∞

ε3
n

h5
n

En(yn) ≥
∫
S

1

2
Qrel

cell

((
symG1(x′) 0

0 0

)
Z + 1

2(ν−1)G3(x′)

)
+ ν(ν−2)

24(ν−1)2Q
rel
cell

((
G2(x′) 0

0 0

)
Z

)
+ 1

ν−1Qsurf

((
symG1(x′) 0

0 0

)
Z(1) +

∂12v(x′)

4(ν − 1)
M (1)

)
+ 1

4(ν−1)Qsurf

((
G2(x′) 0

0 0

)
Z(1)

)
dx′

= E
(ν)
vK (u, v).

Note that in the Theorem 2.1 the skew symmetric part of G1 is then just set to be
zero as it does not impact the energy.

4.3. Upper bounds. Without loss of generality we assume that R∗ = Id. (For
general R∗ one just considers the sequence R∗yn with yn as in (50) and R∗n = R∗

below.
If u : S → R2 and v : S → R are smooth up to the boundary, we choose a smooth

extension to a neighborhood of S and define the lattice deformations yn : ˜̄Λn → R3

by restricting to ˜̄Λn the mapping yn : Ω̃out
n → R3, defined by

yn(x) =

(
x′

hnx3

)
+

(
h2
nu(x′)
hnv(x′)

)
− h2

n(x3 − 1
2 )

(
(∇′v(x′))T

0

)
+ h3

nd(x′, x3) (50)
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for all x ∈ Ω̃out
n . Here d : Ω̃out

n → R3 will be determined later, see (55) and (56)
for films with many, respectively, a bounded number of layers. In both cases, d is

smooth and bounded in W 1,∞(Ω̃out
n ;R3) uniformly in n.

We let R∗n = Id and cn = 0 for all n and define ỹn ∈W 1,2(Ω̃out
n ;R3) as in (4) by

interpolating as in Section 3 (more precisely, descaling to wn and then interpolating
and rescaling) to obtain ỹn = ˜̃yn. Analogously we let ȳ = ¯̄y. We define un and vn
as in (5) and (6), respectively. It is straightforward to check that indeed un → u in
W 1,2(S;R2) and vn → v in W 1,2(S).

In order to estimate the energy of yn we need to compute its discrete gradient.
Instead of directly calculating ∇̄ȳn = (∂̄1ȳn, . . . , ∂̄8ȳn) it is more convenient to first

determine D̄yn = (D̄1yn, . . . , D̄8yn) which for each x ∈ Λ̃′n− ( εn2 ,
εn
2 ,

εn
2hn

) is defined
by

D̄iyn(x) =
1

εn

[
yn
(
x̂+ εn((ai)′, h−1

n ai3)
)
− yn(x̂)

]
,

where for x ∈ Ω̃out
n we have set

x̂ =
(
εnbx1

εn
c, εnbx2

εn
c, b(νn−1)x3c

νn−1

)
,

so that Q̃n(x) = x̂ + (0, εn)2 × (0, (νn − 1)). We set ai = 1
2 (1, 1, 1)T + zi ∈ {0, 1}3

and write A := (a1, . . . , a8) = Z + 1
2 (1, 1, 1)T ⊗ (1, 1, 1, 1, 1, 1, 1, 1)T . Note that

D̄iyn(x) = ∂̄iȳn(x)− ∂̄1ȳn(x) and ∂̄iȳn(x) = D̄iyn(x)− 1

8

8∑
j=1

D̄jyn(x). (51)

In particular, if D̄yn(x) is affine, i.e., D̄yn(x) = FA for some F ∈ R3×3, then

∂̄iȳn(x) = Fai − 1

8

8∑
j=1

Faj = F
(
ai − 1

2
(1, 1, 1)T

)
= Fzi (52)

and so ∇̄ȳn(x) = FZ.

For x in a fixed cell Q̃n(x) = x̂+ (0, εn)2 × (0, (νn − 1)), Taylor expansion of yn

(restricted to Q̃n(x)) yields

D̄iyn(x) = ∇′yn(x̂)(ai)′ + h−1
n ∂3yn(x̂)ai3 +

εn
2

(∇′)2yn(x̂)[(ai)′, (ai)′]

+ εnh
−1
n

2∑
j=1

∂j3yn(x̂)aija
i
3 +

εnh
−2
n

2
∂33yn(x̂)(ai3)2

+
ε2
n

6
∇3
(
(yn)1(ζ1

εn), (yn)2(ζ2
εn), (yn)2(ζ2

εn)
)T

[((ai)′, h−1
n ai3), ((ai)′, h−1

n ai3), ((ai)′, h−1
n ai3)]

for some ζεn ∈ x̂+ [0, εn]2 × [0, εnh
−1
n ]. Plugging in (50) we get

D̄iyn(x) =

((
Id2×2

0

)
+

(
h2
n∇′u(x̂′)
hn∇′v(x̂′)

)
− h2

n(x̂3 − 1
2 )

(
∇′(∇′v(x̂′))T

0

)
+ h3

n∇′d(x̂)

)
(ai)′

+ h−1
n

((
0
hn

)
+ 0− h2

n

(
(∇′v(x̂′))T

0

)
+ h3

n∂3d(x̂)

)
ai3
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+
εnhn

2

(
0

(∇′)2v(x̂′)[(ai)′, (ai)′]

)
+O(εnh

2
n)

− εnhn
(
∇′(∇′v(x̂′))T

0

)
(ai)′ai3 +O(εnh

2
n)

+
εnhn

2
∂33d(x̂)(ai3)2

+
ε2
n

6
∂333

(
d1(ζ1

εn), d2(ζ2
εn), d3(ζ3

εn)
)T

(ai3)3 +O(ε2
nhn).

It follows that

D̄iyn(x) =

(
Id3×3 +hn

(
hn∇′u(x̂′) −(∇′v(x̂′))T

∇′v(x̂′) 0

)
− h2

n(x̂3 − 1
2 )

(
(∇′)2v(x̂′) 0

0 0

)
+ h2

n

(
03×2 ∂3d(x̂)

))
ai

+ εnhn

((
−(∇′)2v(x̂′)(ai)′ai3

1
2 (∇′)2v(x̂′)[(ai)′, (ai)′]

)
+ 1

2∂33d(x̂)(ai3)2

)
+
ε2
n

6
∂333

(
d1(ζ1

εn), d2(ζ2
εn), d3(ζ3

εn)
)T

(ai3)3 +O(εnh
2
n + ε2

nhn).

We define the skew symmetric matrix B(x̂) = Bn(x̂) by

B(x̂) =

(
h2
n

2 (∇′u(x̂′)− (∇′u(x̂′))T ) −hn(∇′v(x̂′))T

hn∇′v(x̂) 0

)

+
h2
n

2

(
02×2 ∂3d

′(x̂)
−(∂3d

′(x̂))T 0

)
,

where we have written d′ = (d1, d2)T for d = (d1, d2, d3)T , and consider the special
orthogonal matrix

e−B(x̂) = Id3×3−B(x̂) +
1

2
B2(x̂) +O(|B(x̂)|3)

= Id3×3−hn
(

02×2 −(∇′v(x̂′))T

∇′v(x̂′) 0

)
− h2

n

2

(
∇′u(x̂′)− (∇′u(x̂′))T +∇′v(x̂′)⊗∇′v(x̂′) ∂3d

′(x̂)
−(∂3d

′(x̂))T |∇′v(x̂′)|2
)

+O(|hn|3).

Now compute

e−B(x̂)D̄iyn(x) = D̄iyn(x)− hn

(
02×2 −(∇′v(x̂′))T

∇′v(x̂′) 0

)
(

Id3×3 +hn

(
02×2 −(∇′v(x̂′))T

∇′v(x̂′) 0

))
ai

− h2
n

2

(
∇′u(x̂′)− (∇′u(x̂′))T +∇′v(x̂′)⊗∇′v(x̂′) ∂3d

′(x̂)
−(∂3d

′(x̂))T |∇′v(x̂′)|2
)
ai

+O(h3
n + εnh

2
n + ε2nhn)
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=

(
Id3×3 +h2

n

(
sym∇′u(x̂′) + 1

2
∇′v(x̂′)⊗∇′v(x̂′) 0
0 1

2
|∇′v(x̂′)|2

)
− h2

n(x̂3 − 1
2
)

(
(∇′)2v(x̂′) 0

0 0

)
+ h2

n

(
02×2

1
2
∂3d
′(x̂)

1
2
(∂3d

′(x̂))T ∂3d3(x̂)

))
ai

+ εnhn

((
−(∇′)2v(x̂′)(ai)′ai3

1
2
(∇′)2v(x̂′)[(ai)′, (ai)′]

)
+ 1

2
∂33d(x̂)(ai3)2

)
+
ε2n
6
∂333

(
d1(ζ1εn), d2(ζ2εn), d3(ζ3εn)

)T
(ai3)3 +O(h3

n + εnh
2
n + ε2nhn).

(53)

Here, the error term is uniform in x̂.
We can now conclude the proof of Theorems 2.1, 2.2 and 2.3.

Proof of the lim sup inequality in Theorems 2.1, 2.2 and 2.3. As the discrete gradi-
ent ∇̄nȳn is uniformly close to SO(3)Z, the following arguments apply to show that
yn defined by (50) serves as a recovery sequence in all three theorems. Moreover,
in view of Proposition 3 it suffices to construct recovery sequences for fn = 0.

We first specialize now to the case νn →∞. For

G(x) = G1(x′) + (x3 − 1
2 )G2(x′)

= sym∇′u(x′) + 1
2∇
′v(x′)⊗∇′v(x′)− (x3 − 1

2 )(∇′)2v(x′).
(54)

choosing d(x) = x3d0(x′) +
x2

3−x3

2 d1(x′) with

d0(x′) = arg min
b∈R3

Qcell

[(
G1(x′) 0

0 1
2 |∇

′v(x′)|2
)
Z + (b⊗ e3)Z

]
,

d1(x′) = arg min
b∈R3

Qcell

[(
G2(x′) 0

0 0

)
Z + (b⊗ e3)Z

] (55)

according to (9), from (52) and (53) we obtain

e−B(x̂)∇̄ȳn(x) =

(
Id3×3 +h2

n

(
G(x̂) 0

0 1
2 |∇

′v(x̂′)|2
)

+ h2
nsym

(
(d0(x̂) + (x̂3 − 1

2 )d1(x̂))⊗ e3

))
Z +O(h3

n + εnhn)

and, Taylor expanding Wcell, we see that due to the smoothness of u and v the
piecewise constant mappings x 7→ h−4

n Wcell(∇̄ȳn(x)) = h−4
n Wcell(e

−B(x̂)∇̄ȳn(x))
converge uniformly to

1

2
Qrel

cell

((
G 0
0 0

)
Z

)
=

1

2
Q2(G).

This shows that

lim
n→∞

h−4
n En(yn) =

1

2

∫
S

Q2(G(x)) dx

=

∫
S

1

2
Q2(G1(x′)) +

1

24
Q2(G2(x′)) dx′ = EvK(u, v)

and thus finishes the proof in case νn →∞.
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Now suppose that εn
hn
≡ 1

ν−1 . Abbreviating (∇′)2v(x̂′) = −G2(x̂′) = −G2 =

(fij) ∈ R2×2, we observe that(
2G2(ai)′ai3
−(ai)′TG2(ai)′

)
i=1,...,8

=

0 0 0 0 0 −2f11 −2f11 − 2f12 −2f12

0 0 0 0 0 −2f21 −2f21 − 2f22 −2f22

0 f11

∑
µ,ν fµν f22 0 f11

∑
µ,ν fµν f22

 ,

and hence, with b = b(x̂′) =
(
(∂11+∂12)v(x̂′), (∂21+∂22)v(x̂′), 0

)T
= (f11+f12, f21+

f22, 0)T ,(
2G2(ai)′ai3
−(ai)′TG2(ai)′

)
i=1,...,8

− (e3 ⊗ b− b⊗ e3)A

=

0 0 0 0 f11 + f12 −f11 + f12 −f11 − f12 +f11 − f12

0 0 0 0 f21 + f22 −f21 + f22 −f21 − f22 f21 − f22

0 −f12 0 −f21 0 −f12 0 −f21

 ,

=

(
G2 0
0 0

)
(Z + Z−) +

1

2
f12

(
2M − e3 ⊗ (1, . . . , 1)

)
=

(
G2 0
0 0

)
A− 1

2
b⊗ (1, . . . , 1) +

(
G2 0
0 0

)
Z− +

f12

2

(
2M − e3 ⊗ (1, . . . , 1)

)
.

This shows that(
−(∇′)2v(x̂′)(ai)′ai3

1
2 (∇′)2v(x̂′)[(ai)′, (ai)′]

)
i=1,...,8

=
1

2

(
e3 ⊗ b− b⊗ e3 +

(
G2 0
0 0

))
A− 1

4
(b+ e3)⊗ (1, . . . , 1)

+
1

2

(
G2 0
0 0

)
Z− +

1

2
f12M.

We define the affine part of the strain G(x) = G1(x′)+(x3− 1
2 )G2(x′) as in (54).

The non-affine part is abbreviated by 1
2(ν−1)G3(x′) as in (10). Then using (53) we

can write

e−B(x̂)∇̄ȳn(x)

=

[
Id3×3 +h2

n

(
G(x̂′, x̂3 + 1

2(ν−1) ) 0

0 1
2 |∇

′v(x̂′)|2

)
+ h2

nsym
(
∂3d(x̂))⊗ e3

)
+

h2
n

2(ν − 1)

(
e3 ⊗ b(x̂′)− b(x̂′)⊗ e3

)]
Z +

h2
n

2(ν − 1)
G3(x̂′) +O(h3

n)

+
[εnhn

2
∂33d(x̂) +

ε2
n

6
∂333

(
d1(ζ1

εn), d2(ζ2
εn), d3(ζ3

εn)
)T ]⊗ (z1

3 , . . . , z
8
3),

where we have used (52) and (51).
We set

d0(x′) = arg min
d∈R3

Qcell

[(
G1(x′) 0

0 1
2 |∇

′v(x′)|2
)
Z + sym(d⊗ e3)Z

+
1

2(ν − 1)
G3(x′)

]
,
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d1(x′) = arg min
d∈R3

Qcell

[(
G2(x′) 0

0 0

)
Z + sym(d⊗ e3)Z

]
according to (9) and define d : S′ × [0, 1]→ R, S′ a neighborhood of S, inductively
by d(x, 0) = 0 and

d(x′, j−1
ν−1 + t) = d(x′, j−1

ν−1 ) + td0(x′) + t 2j−ν
2(ν−1)d1(x′) if t ∈ [ j−1

ν−1 ,
j

ν−1 ], (56)

for j = 1, . . . , ν−1. Then d is smooth in x′ and piecewise linear in x3, more precisely,
affine in x3 in between two atomic layers: On S′ × [ j−1

ν−1 ,
j

ν−1 ], j ∈ {1, . . . , ν − 1}, it
satisfies

∂3d(x) = d0(x′) + 2j−ν
2(ν−1)d1(x′) = d0(x′) + (x̂3 − 1

2 + 1
2(ν−1) )d1(x′)

since x̂3 = x̂3(x) = j−1
ν−1 . Taylor expanding Wcell, we see that the piecewise constant

mappings x 7→ h−4
n Wcell(∇̄ȳn(x)) = h−4

n Wcell(e
−B(x̂)∇̄ȳn(x)) converge uniformly on

S′ × [ j−1
ν−1 ,

j
ν−1 ] to

1

2
Qrel

cell

((
G1(x′) + 2j−ν

2(ν−1)G2(x′) 0

0 0

)
Z +

1

2(ν − 1)
G3(x′)

)
for each j ∈ {1, . . . , ν − 1}. Since 1

ν−1

∑ν−1
j=1

2j−ν
2(ν−1) = 0 and 1

ν−1

∑ν−1
j=1

(
2j−ν

2(ν−1)

)2
=

ν(ν−2)
12(ν−1)2 , this shows

1

h4
n

∫
Ω̃out
n

Wcell(∇̄ȳn(x)) dx→
∫
S

1

2
Qrel

cell

((
G1(x′) 0

0 0

)
Z +

1

2(ν − 1)
G3(x′)

)
+

ν(ν − 2)

24(ν − 1)2
Qrel

cell

((
G2(x′) 0

0 0

)
Z

)
dx′.

(57)

For the surface part we write ∇̄ȳn = ([∇̄ȳn](1), [∇̄ȳn](2)) and use that the piece-
wise constant mappings S′ × [0, 1

ν−1 ]→ R,

x 7→ h−4
n Wsurf([∇̄ȳn(x)](1)) = h−4

n Wsurf([e
−B(x̂)∇̄ȳn(x)](1)),

converge uniformly to

1

2
Qsurf

((
G1(x′)− ν−2

2(ν−1)G2(x′) 0

0 0

)
Z +

1

2(ν − 1)
G3(x′)

)
=

1

2
Qsurf

((
symG1(x′)− 1

2G2(x) 0
0 0

)
Z(1) +

∂12v(x′)

4(ν − 1)
M (1)

)
.

Similarly, the mappings S′ × [ν−2
ν−1 , 1]→ R,

x 7→ h−4
n Wsurf([∇̄ȳn(x)](2)) = h−4

n Wsurf([e
−B(x̂)∇̄ȳn(x)](2)),

converge uniformly to

1

2
Qsurf

((
symG1(x′) + 1

2G2(x) 0
0 0

)
Z(1) +

∂12v(x′)

4(ν − 1)
M (1)

)
.
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So with Sout
n such that Ω̃out

n = Sout
n × (0, 1),

1

h4
n(ν − 1)

∫
Sout
n

Wsurf

(
[∇̄ȳn(x′, 1

2(ν−1) )](1)
)

+Wsurf

(
[∇̄ȳn(x′, 2ν−3

2(ν−1) )](2)
)
dx′

→
∫
S

1
ν−1Qsurf

((
symG1(x′) 0

0 0

)
Z(1) +

∂12v(x′)

4(ν − 1)
M (1)

)
+

1

4(ν − 1)
Qsurf

((
G2(x) 0

0 0

)
Z(1)

)
dx′.

(58)

Summarizing (58) and (57), we have shown that

lim
n→∞

h−4
n En(yn) = lim

n→∞
ε3
nh
−5
n

∑
x∈Λ̃′n

W
(
x, ∇̄yn(x)

)
= E

(ν)
vK (u, v)

as n → ∞, where we have also used that the contribution of the lateral boundary
cells ε3

nh
−5
n

∑
x∈∂Λ̃′n

W (x, ∇̄yn(x)) is negligible in the limit n→∞.

Proof of the energy barrier in Theorem 2.3. If a sequence of wn ∈ Sδ satisfies the

energy bound En(wn) ≤ Ch4
n, then the proof of Proposition 1 shows

ε3n
hn
Eatom(wn) ≤

Ch4
n. Hence,

dist2(∇̄wn(x),SO(3)Z) ≤ CEatom(wn) ≤ Ch5
nε
−3
n = C(νn − 1)5ε2

n,

which tends to 0 by assumption. This implies that wn ∈ Sδ/2 for n large enough.
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