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Abstract. We consider a homogenization problem for the diffusion equation

− div (aε∇uε) = f when the coefficient aε is a non-local perturbation of a peri-
odic coefficient. The perturbation does not vanish but becomes rare at infinity

in a sense made precise in the text. We prove the existence of a corrector,

identify the homogenized limit and study the convergence rates of uε to its
homogenized limit.

1. Introduction.

1.1. Motivation. The purpose of this paper is to address the homogenization prob-
lem for a second order elliptic equation in divergence form with a certain class of
oscillating coefficients: {

− div(a(x/ε)∇uε) = f in Ω,
uε(x) = 0 in ∂Ω,

(1)

where Ω is a bounded domain of Rd (d ≥ 1) sufficiently regular (the regularity will
be made precise later on) and f is a function in L2(Ω). The class of (matrix-valued)
coefficients a considered is that of the form

aper + ã, (2)

which describes a periodic geometry encoded in the coefficient aper and perturbed by
a coefficient ã that represents a non-local perturbation (a “defect”) that, although
it does not vanish at infinity, becomes rare at infinity. More specifically, we consider
coefficients ã that locally behave like L2(Rd) functions in the neighborhood of a set
of points localized at an exponentially increasing distance from the origin. Formally,
the coefficient ã is an infinite sum of localized perturbations, increasingly distant
from one another. A prototypical one-dimensional example of such a defect reads

as
∑
k∈Z

φ(x − sign(k)2|k|) for some fixed φ ∈ D(R), where |k| denotes the absolute

value of k and sign(k) denotes its sign. It is depicted in Figure 1.

2020 Mathematics Subject Classification. Primary: 35B27, 35J15; Secondary: 74Q15.
Key words and phrases. Homogenization, elliptic PDEs, defects, corrector equation, conver-

gence estimates.

547

http://dx.doi.org/10.3934/nhm.2022014
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Figure 1. Prototype perturbation in dimension d = 1.

Homogenization theory for the unperturbed periodic problem (1)-(2) when ã = 0
is well-known (see for instance [5, 19]). The solution uε converges strongly in L2(Ω)
and weakly in H1(Ω) to u∗, solution to the homogenized problem:{

−div(a∗∇u∗) = f in Ω,
u∗(x) = 0 in ∂Ω,

(3)

where a∗ is a constant matrix. The convergence in the H1(Ω) norm is obtained
upon introducing a corrector wper,p defined for all p in Rd as the periodic solution
(unique up to the addition of a constant) to:

−div(aper(∇wper,p + p)) = 0 in Rd. (4)

This corrector allows to both make explicit the homogenized coefficient

(a∗)i,j =

∫
Q

eTi aper(y)
(
ej +∇wper,ej (y)

)
dy, (5)

(where Q denotes the d-dimensional unit cube, (ei) the canonical basis of Rd) and
define the approximation

uε,1 = u∗(.) + ε

d∑
i=1

∂iu
∗(.)wper,ei(./ε), (6)

such that uε,1 − uε strongly converges to 0 in H1(Ω) (see [1] for more details). In
addition, convergence rates can be made precise, with in particular:

‖∇uε −∇uε,1‖L2(Ω) ≤ C
√
ε‖f‖L2(Ω),

‖∇uε −∇uε,1‖L2(Ω1) ≤ Cε‖f‖L2(Ω) for every Ω1 ⊂⊂ Ω,

for some constants independent of f .
Our purpose here is to extend the above results to the setting of the perturbed

problem (1)-(2). The main difficulty is that the corrector equation

−div ((aper + ã) (∇wp + p)) = 0,

(formally obtained by a two-scale expansion (see again [1] for the details) and anal-
ogous to (4) in the periodic case) is defined on the whole space Rd and cannot
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be reduced to an equation posed on a bounded domain, as is the case in periodic
context in particular. This prevents us from using classical techniques. The present
work follows up on some previous works [6, 8, 9, 10] where the authors have devel-
oped an homogenization theory in the case where ã ∈ Lp(Rd) for p ∈]1,∞[. The
existence and uniqueness (again up to an additive constant) of a corrector, the gra-
dient of which shares the same structure “periodic + Lp” as the coefficient a, is
established. Convergence rates are also made precise. Similarly to [6, 8, 9, 10], we
aim to show here, in a context of a perturbation rare at infinity, there also exists a
corrector (unique up to the addition of a constant), and such that its gradient has
the structure (2) of the diffusion coefficient: it can be decomposed as a sum of the
gradient of a periodic corrector and a gradient that becomes rare at infinity (in a
sense similar to that for ã, and made precise below).

1.2. Functional setting. We introduce here a suitable functional setting to de-
scribe the class of defects we consider.

In order to formalize our mathematical setting, we first define a generic infinite
discrete set of points denoted by G = {xp}p∈Zd . In the sequel, each point xp actually

models the presence of a defect in the periodic background modeled by aper and
our aim is to ensure these defects are sufficiently rare at infinity.

We next introduce the Voronoi diagram associated with our set of points. For
xp ∈ G, we denote by Vxp the Voronoi cell containing the point xp and defined by

Vxp =
⋂

xq∈G\{xp}

{
x ∈ Rd

∣∣|x− xp| ≤ |x− xq|} . (7)

We now consider three geometric assumptions that ensure an appropriate dis-
tribution of the points in the space. The set G is required to satisfy the following
three conditions :

∀xp ∈ G,
∣∣Vxp ∣∣ <∞, (H1)

∃C1 > 0, C2 > 0, ∀xp ∈ G, C1 ≤
1 + |xp|

D (xp,G \ {xp})
≤ C2, (H2)

∃C3 > 0,∀xp ∈ G,
Diam

(
Vxp
)

D (xp,G \ {xp})
≤ C3, (H3)

where |A| denotes the volume of a subset A ⊂ Rd, Diam(A) the diameter of A and
D(., .) the euclidean distance.

Assumption (H2) is the most significant assumption in our case since it implies
that the points are increasingly distant from one another far from the origin. It in
particular implies

lim
xp∈G, |xp|→∞

D (xp,G \ {xp}) = +∞.

More precisely, it ensures the distance between a point xp and the others has the
same growth as the norm |xp| and, therefore, requires the Voronoi cell Vxp (which

contains a ball of radius
D (xp,G \ {xp})

2
as a consequence of its definition) to be

sufficiently large. This assumption actually ensures that the defects modeled by
the points xp are sufficiently rare at infinity. In particular, we show in Section 2
that Assumption (H2) implies that the number of points xp contained in a ball BR
of radius R > 0 is bounded by the logarithm of R. This property is an essential
element for the methods used in the proof of this article.
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In contrast to (H2), Assumptions (H1) and (H3) are only technical and not
very restrictive. They limit the size of the Voronoi cells. In the case where these
assumptions are not satisfied, our main results of Theorems 1.1 and 1.2 stated
below still hold. Their proofs have to be adapted, upon splitting the Voronoi cells
in several subsets such that each subset satisfies geometric constraints similar to
(H1), (H2) and (H3). To some extent, our assumptions (H1) and (H3) ensure we
consider the worst case scenario, where the set G contains as many points as possible
while satisfying (H2).

Figure 2. Example of points in ambient dimension 2 that satisfy
our assumptions along with their associated Voronoi diagram.

In addition, although we establish in Section 2 all the geometric properties sat-
isfied by the Voronoi cells Vxp which are required in our approach to study the
homogenization problem (1) with the whole generality of Assumptions (H1), (H2)
and (H3), we choose, for the sake of illustration and for pedagogic purposes, to
work with a particular set of points (for which the coordinates are powers of 2)
and to establish our main results of homogenization in this specific setting. There
are, of course, many alternative sets that satisfy (H1), (H2) and (H3) but our spe-
cific choice is convenient. To define our specific set of points, we first introduce a
constant C0 > 1 and a set of indices PC0

defined by:

PC0 =

{
p ∈ Zd

∣∣∣∣ max
pi 6=0
{|pi|} ≤ C0 + min

pi 6=0
{|pi|}

}
. (8)

Our specific set of points (see Figure 2) is then defined by:

GC0 =

{
xp =

(
sign(pi)2

|pi|
)
i∈{1,...d}

∣∣∣∣ (p1, ..., pd) ∈ PC0

}
. (9)

We use here the convention sign(0) = 0. The set of indices (8) contains only
the points with integer coordinates on the axes Span (ei) and the points close to
each diagonal of the form Span (ei1 + ...+ eik) for k ∈ {2, .., d} and (i1, ..., ik) ∈
{1, ..., d}k. In this way, the points of GC0 are exponentially distant from each other



HOMOGENIZATION WITH DEFECTS RARE AT INFINITY 551

with respect to the norm of p. In Section 2, we show that the set GC0 defined by
(9) indeed satisfies Assumptions (H1), (H2) and (H3).

In the sequel, we use the following notation:

• BR: the ball of radius R > 0 centered at the origin; BR(x): the ball of radius
R > 0 and center x ∈ Rd; AR,R′ : the set BR \BR′ for R > R′ > 0.

• QR(x): the set
{
y ∈ Rd

∣∣∣ max
i
|yi − xi| ≤ R

}
for R > 0 and x ∈ Rd; QR: the

set QR(0).
• ]B: the cardinality of a discrete set B.
• 2p: the point xp ∈ GC0

for p ∈ PC0
; τp: the translation τ2p where we denote

τxf = f(.+ x) for x ∈ Rd; Vp: the Voronoi cell V2p .
• |p|: the norm defined by max

i∈{1,...,d}
|pi| for p ∈ PC0

.

In addition, for a normed vector space (X, ‖.‖X) and a matrix-valued function
f ∈ Xn, n ∈ N, we use the notation ‖f‖X ≡ ‖f‖Xn when the context is clear.

We associate to (8)-(9) the following functional space:

B2(Rd) =

{
f ∈ L2

unif (Rd)
∣∣∣∣ ∃f∞ ∈ L2(Rd), lim

|p|→∞
‖f − τ−pf∞‖L2(Vp) = 0

}
, (10)

equipped with the norm

‖f‖B2(Rd) = ‖f∞‖L2(Rd) + ‖f‖L2
unif (Rd) + sup

p∈PC0

‖f − τ−pf∞‖L2(Vp). (11)

In (10), (11) we have denoted by:

L2
unif (Rd) =

{
f ∈ L2

loc(Rd), sup
x∈Rd

‖f‖L2(B1(x)) <∞
}
,

and

‖f‖L2
unif (Rd) = sup

x∈Rd
‖f‖L2(B1(x)).

Intuitively, a function in B2(Rd) behaves, locally at the “vicinity” of each point
xp, as a fixed L2 function truncated over the domain Vp. We show several properties
of the functional space B2(Rd) in Section 3.

As specified above, in the sequel we focus on homogenization problem (1) with
non-local perturbations induced by the particular setting (8)-(9)-(10). We note,
however, that the definition of B2(Rd) can be naturally adapted to the generality
of Assumptions (H1)-(H2)-(H3) and the homogenization results established in the
present study can of course be extended to this general setting. More precisely, most
of our proofs only involve the general structure of the functional space B2(Rd) and
several geometric properties related to the rarity of the points xp that are established
under our general assumptions in Section 2. The specific geometric properties of the
set (9) are only explicitly used to study the equation −div(aper∇u) = div(f) when
f ∈ B2(Rd), particularly to establish the convergence of several sums involving the
asymptotic behavior of the Green function of the Laplacian operator (see Lemmas
4.3, 4.4 and 5.2). However, these results are not specific to the set (9). We explain
how to adapt their proofs under our general assumptions in Remarks 4 and 8.

1.3. Main results. We henceforth assume that the ambient dimension d is equal
to or larger than 3. The one-dimensional and two-dimensional contexts are specific.
Some results or proofs must be adapted in these particular cases but we will not
proceed in that direction in all details. This is due to the asymptotic behavior of
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the Green function of the Laplacian operator in these two dimensions. In these
two particular cases, we claim that it is still possible to show the existence of the
corrector defined by Theorem 1.1 below. However, the method used in Lemmas 4.3
and 4.4, both useful for the proof of Theorem 1.1, need to be adapted. The one-
dimensional context can be addressed easily because the solution to (14) is explicit.
The two-dimensional case requires more work. We explain how to adapt our proof
in Remark 5. In contrast, in dimensions d = 1 and d = 2, the convergence rates
of Theorem 1.2 no longer hold. Indeed, the corrector wp is then not necessarily
bounded (see Lemma 5.2 for details). We are only able to prove weaker results in
these cases. Additional details about these cases may be found in Remarks 5, 7,
and 9.

For α ∈]0, 1[, we denote by C0,α(Rd) the space of uniformly Hölder continuous
and bounded functions with exponent α, that is:

C0,α(Rd) =
{
f ∈ L1

loc(Rd)
∣∣ ‖f‖C0,α(Rd) <∞

}
,

where

‖f‖C0,α(Rd) = ‖f‖L∞(Rd) + sup
x,y∈Rd, x 6=y

|f(x)− f(y)|
|x− y|α

.

We consider a matrix-valued coefficient of the form (2) with aper ∈ L2
per(Rd)d×d

and ã ∈ B2(Rd)d×d. We denote by ã∞ the matrix-valued limit L2-function associ-
ated with ã, where each coefficient (ã∞)i,j is the limit L2-function associated with
(ã)i,j ∈ B2(Rd) and defined in (10). We assume that aper, ã and ã∞ satisfy:

∃λ > 0, ∀x, ξ ∈ Rd λ|ξ|2 ≤ 〈a(x)ξ, ξ〉, λ|ξ|2 ≤ 〈aper(x)ξ, ξ〉, (12)

and

aper, ã, ã∞ ∈ C0,α(Rd)d×d, α ∈]0, 1[. (13)

The coercivity (12) and the L∞ bound on a ensure that the sequence of solutions
(uε)ε>0 to (1) converges in weak −H1(Ω) and strong − L2(Ω) up to an extraction
when ε → 0. Classical results of homogenization show the limit u∗ is a solution
to a diffusion equation of the form (3) for some matrix-valued coefficient a∗ to be
determined. The questions that we examine in this paper are: What is the diffusion
coefficient a∗ of the homogenized equation? Is it possible to define an approximate
sequence of solutions uε,1 as in (6)? For which topologies does this approximation
correctly describe the behavior of uε? What is the convergence rate?

In answer to our first question, we prove in Proposition 13 that the homogenized
coefficient a∗ is constant and is the same as in the periodic case. This result is a
direct consequence of Proposition 10 which ensures that the perturbations of B2(Rd)
have a zero average in a strong sense. Consequently, our perturbations are “small”
at the macroscopic scale and do not affect the homogenization that occurs in the
periodic case associated with the periodic coefficient aper. In reply to the other
questions, our main results are contained in the following two theorems:

Theorem 1.1. For every p ∈ Rd, there exists a unique (up to an additive constant)

function wp ∈ H1
loc(Rd) such that ∇wp ∈

(
L2
per(Rd) + B2(Rd)

)d∩C0,α(Rd)d, solution
to: 

−div((aper + ã)(p+∇wp)) = 0 in Rd,

lim
|x|→∞

|wp(x)|
1 + |x|

= 0.
(14)
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Theorem 1.2. Assume Ω is a C2,1-bounded domain. Let Ω1 ⊂⊂ Ω. We define

uε,1 = u∗ + ε

d∑
i=1

∂iu
∗wei(./ε) where wei is defined by Theorem 1.1 for p = ei and

u∗ is the solution to (3). Then Rε = uε − uε,1 satisfies the following estimates:

‖Rε‖L2(Ω) ≤ C1ε‖f‖L2(Ω), (15)

‖∇Rε‖L2(Ω1) ≤ C2ε‖f‖L2(Ω), (16)

where C1 and C2 are two positive constants independent of f and ε.

Our article is organized as follows. In Section 2 we prove some geometric prop-
erties satisfied by our set of points GC0

, in particular we show that it satisfies
Assumptions (H1), (H2) and (H3). In section 3 we study the properties of B2(Rd)
and its elements. In Section 4 we prove Theorem 1.1. Finally, in Section 5 we obtain
the expected homogenization convergences stated in Theorem 1.2. We conclude this
introduction section with some comments.

1.4. Extensions and perspectives. A first possible extension of the above re-
sults, which is studied in [16, Appendix A], consists in considering the functional
spaces Br for r 6= 2, 1 < r <∞, defined similarly to B2, but using the Lr topology.
In this case the convergence rates of Theorem 1.2 are modified and depend upon
the value of r and the ambient dimension d. Indeed, some results related to the
strict sub-linearity of the corrector allow to show that the convergence rate of Rε

is ε
d
r | log(ε)| 1r if r > d and ε else.

In addition, although we have not pursued in these directions, we believe it is
possible to extend the above results in several other manners.

1) First, under additional assumptions satisfied by the function f , we expect
the estimates of Theorem 1.2 to hold, with possibly different rates, in other
norms than L2 such as Lq, for 1 < q < ∞ or C0,α, for α ∈]0, 1[. It seems
that such questions could be addressed by adapting the proofs of Section 5
and consider the methods employed in [6] using the behavior of the Green
function associated with problem (1).

2) We also believe that it is possible to show results analogous to that of The-
orems 1.1 and 1.2 in the case of equations not in divergence form, instead of
(1),

−aij∂iju = f,

where a is a periodic coefficients perturbed by a defect in B2(Rd) of the form
(2). One way to address this question could be to adapt the methods of [8,
Section 3] in the case of local perturbations, that is, to show the existence of
an invariant measure m = mper + m̃ in L2

per + B2(Rd) solution to:

−∂i,j (ai,jmi,j) = 0 in Rd,

such that inf m > 0. Indeed, using the method presented in [3], this study
could be then reduced to a problem of divergence form operator as soon as
such a measure m exists and the results established in this article could allow
to conclude.

3) In the same way, another possible generalization concerns advection-diffusion
equation in the form:

−aij∂iju+ bj∂ju = f in Rd,
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where a and b are two periodic coefficients perturbed by a defect in B2(Rd).
The method [7] is likely to be adapted to this case, showing the existence of
an invariant measure m in L2

per + B2(Rd) solution to

−∂i (∂j (ai,jmi,j) + bimi,j) = 0 in Rd.

2. Geometric properties of the Voronoi cells. We start by studying the geo-
metric properties of the Voronoi cells associated to every sets of points G satisfying
the general Assumptions (H1), (H2) and (H3). In particular, we show these assump-
tions ensure the rarity of the points xp in the space proving, in Proposition 3 and
Corollary 1, that the number of points of G contained in a ball of radius R > 0 is
bounded by the logarithm of R. In Propositions 2 and 4, we also show two technical
properties regarding the size and the structure of the cells. All these properties are
actually fundamental for the rest of our work since they allow us to prove several
results regarding the existence and uniqueness of solutions to the class (31) of diffu-
sion equations −div(a∇u) = div(f) studied in Section 4. In particular, as we shall
see in the proof of Lemma 4.3, we use these geometric properties to bound several
integrals in order to define a solution to equation (35), that is (31) with a = aper,
using the associated Green function. To conclude this section, we also show that
our specific set of points GC0

, defined by (9), satisfies (H1), (H2) and (H3).

2.1. General properties. In this subsection only, we proceed with the whole gen-
erality of Assumptions (H1), (H2) and (H3) and we introduce several useful geomet-
ric properties satisfied by every sets of points G satisfying these assumptions. These
properties relate to the size of the Voronoi cells, their volume and their distribution
in the space Rd.

To start with, we show two properties regarding the volume of the Voronoi cells.

Proposition 1. There exist C1 > 0 and C2 > 0 such that for every x ∈ G, we have
the following bounds:

C1|x|d ≤ |Vx| ≤ C2|x|d.

Proof. For every x ∈ G, using the definition of the Voronöı diagram, we have the
following inclusion:

BD(x,G\{x})/2(x) ⊂ Vx.
Therefore, there exists a constant C(d) > 0 such that:

C(d)D(x,G \ {x})d =
∣∣BD(x,G\{x})/2(x)

∣∣ ≤ |Vx| ≤ Diam(Vx)d.

We conclude using (H2) and (H3).

Proposition 2. There exists a sequence (xn)n∈N ∈ GN such that (Vxn − xn) is an
increasing sequence of sets and:⋃

n∈N
(Vxn − xn) = Rd.

Proof. We consider a sequence (xn)n∈N ∈ GN such that the sequence |xn| is increas-
ing and lim

n→∞
|xn| =∞ (such a choice is always possible according to Assumptions

(H1) and (H2)). Since we have assumed that G satisfies (H2), there exists C > 0
such that for all n ∈ N:

D(xn,G \ {xn}) ≥ C|xn|.
Therefore, as a consequence of the definition of the Voronoi cells, the ball BC|xn|/2
(xn) is included in Vxn and, by translation, the ball BC|xn|/2 is included in Vxn−xn.



HOMOGENIZATION WITH DEFECTS RARE AT INFINITY 555

Since (xn)n∈N is an increasing sequence such that lim
n→∞

|xn| =∞, we use (H1) and

we obtain, up to an extraction, that Vxn is included in BC|xn+1|/2(xn). Thus

∀n ∈ N, Vxn − xn ⊂ BC|xn+1|/2 ⊂ Vxn+1
− xn+1.

The sequence (Vxn−xn) is therefore an increasing sequence of sets and, in addition,

Rd =
⋃
n∈N

BC|xn|/2 ⊂
⋃
n∈N

(Vxn − xn) .

We directly deduce that Rd =
⋃
n∈N

(Vxn − xn).

The next results ensure a certain distribution of the Voronoi cells in the space.
In particular, we prove that the number of cells contained in a ball of radius R > 0
increases at most as the logarithm of this radius. This property reflects the rarity
of our points far from the origin and is essential in our approach.

Proposition 3. There exists a constant C(d) > 0 that depends only of the ambient
dimension d such that:

]
{
x ∈ G

∣∣x ∈ A2n,2n+1

}
≤ C(d).

Proof. Let x ∈ G such that x ∈ A2n,2n+1 . The definition of the Voronoi cells ensures

that the distance D(x, ∂Vx) is equal to D(x,G\{x})
2 . Property (H2) gives the existence

of a constant C1 > 0 independent of x such that:

D (x,G \ {x})
2

≥ C1
|x|
2
≥ C12n−1.

Then, the ball BC12n−1(x) is contained in Vx, that is x is the only element of G in
this ball. In addition, since |x| ≤ 2n+1, we obtain the following inclusion using a
triangle inequality :

BC12n−1(x) ⊂ B(C1+4)2n−1 .

Since this inclusion is valid for every x ∈ G ∩A2n,2n+1 we obtain:⋃
x∈G∩A2n,2n+1

BC12n−1(x) ⊂ B(C1+4)2n−1 .

Therefore, there exists C2(d) > 0 such that:∣∣∣∣∣∣
⋃

x∈G∩A2n,2n+1

BC12n−1(x)

∣∣∣∣∣∣ ≤ ∣∣B(C1+4)2n−1

∣∣ ≤ C2(d)2d(n−1). (17)

Next, we know that the Voronoi cells are disjoint and, therefore, the collection of
balls (BC12n−1(x))x∈G∩A2n,2n+1

is also disjoint. Thus, there exists C3(d) > 0 such

that: ∣∣∣∣∣∣
⋃

x∈G∩A2n,2n+1

BC12n−1(x)

∣∣∣∣∣∣ = ]
{
x ∈ G

∣∣x ∈ A2n,2n+1

}
|BC12n−1 |

= ]
{
x ∈ G

∣∣x ∈ A2n,2n+1

}
C3(d)2d(n−1). (18)

With (17) and (18), we conclude that:

]
{
x ∈ G

∣∣x ∈ A2n,2n+1

}
≤ C2(d)

C3(d)
.
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Corollary 1. There exists C > 0 such that for every R > 0 and x0 ∈ Rd:

] {x ∈ G|Vx ∩BR(x0) 6= ∅} < C log(R). (19)

Proof. We start by proving the result if R = 2n for n ∈ N∗. Without loss of
generality, we can assume that n is sufficiently large to ensure there exists x in
G ∩B2n(x0). Using a triangle inequality, we remark that if y ∈ B2n(x0) we have:

|x− y| ≤ |x− x0|+ |y − x0| ≤ 2n+1 ≤ D
(
y,Rd \B2n+3(x0)

)
.

That is, if x̃ ∈ G is such that x̃ /∈ B2n+3(x0), every point y ∈ B2n(x0) is closer to x
than to x̃, that is Vx̃ ∩B2n(x0) = ∅. Therefore, we have

] {x ∈ G|Vx ∩B2n(x0) 6= ∅} ≤ ] {x ∈ G|x ∈ B2n+3(x0)} .

Next, if |x0| ≤ 2n+4, we have B2n+3(x0) ⊂ B22n+7 and we use Proposition 3 to obtain
the existence of a constant C > 0 independent of n such that:

] {x ∈ G|x ∈ B2n+3(x0)} ≤ ] {x ∈ G|x ∈ B22n+7}

=

2n+6∑
k=0

]
{
x ∈ G

∣∣x ∈ A2k,2k+1

}
+ ] {x ∈ G|x ∈ B1}

≤ Cn.

If |x0| > 2n+4, we denote by m ≥ n + 4 the unique integer such that 2m < |x0|
and |x0| ≤ 2m+1. In this case, we use a triangle inequality and we have

B2n+3(x0) ⊂ A|x0|+2n+3,|x0|−2n+3 ⊂ A2m+2,2m−1 .

Proposition 3 gives the existence of C > 0 independent of x0 and n such that:

] {x ∈ G|x ∈ B2n+3(x0)} ≤ ]
{
x ∈ G

∣∣x ∈ A2m+2,2m−1

}
=

1∑
k=−1

]
{
x ∈ G

∣∣x ∈ A2m+k,2m+k+1

}
≤ C.

Finally, we have estimate (19) in the particular case R = 2n.
Next, for any R > 0, we have:

R = 2log2(R) ≤ 2[log2(R)]+1,

where [.] denotes the integer part. Thus, we obtain the following upper bound:

] {x ∈ G|Vx ∩BR(x0) 6= ∅} ≤ ] {x ∈ G|Vx ∩B2[log2(R)]+1(x0) 6= ∅}
≤ C ([log2(R)] + 1) ,

and we can conclude.

To conclude this section, we now introduce a particular set (denoted by Wx in
the proposition below) containing a point x ∈ G which is both bigger than the cell
Vx and far from all the others points of G. As we shall see in Lemmas 4.3 and
4.4, this set is actually a technical tool that allows us to show the existence of the
corrector stated in Theorem 1.1.
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Proposition 4. For every x ∈ G, there exists a convex open set Wx of Rd and C1,
C2, C3, C4 and C5 five positive constants independent of x such that:

•Vx ⊂Wx, (i)

•Diam(Wx) ≤ C1|x| and D(Vx, ∂Wx) ≥ C2|x|, (ii)

• ∀y ∈ G \ {x}, D(y,Wx) ≥ C3|x|, (iii)

• ] {y ∈ G|Vy ∩Wx 6= ∅} ≤ C4, (iv)

• ∀y ∈ G \ {x}, D(Vy \Wx, Vx) ≥ C5|y|. (v)

Proof. Let x be in G. In the sequel, we denote Ix,y =
{
z ∈ Rd

∣∣ |z − x| ≤ |z − y|}
and ϕx the homothety of center x and ratio 3

2 . For y ∈ G \ {x}, we denote by Hx,y

the set defined by:
Hx,y = ϕx (Ix,y) .

The set Hx,y can be easily determined, it is the half-space defined by:

Hx,y =
{
z ∈ Rd

∣∣ |z − x| ≤ |z − y|}+
1

4
−→xy = Ix,y +

1

4
−→xy.

We finally consider:

Wx =
⋂

y∈G\{x}

Hx,y,

which is actually the image of the cell Vx by the homothety ϕx (see figure 3).

Figure 3. Example for the choice of the open subset Wx when d = 2.

We next prove that Wx satisfies (i), (ii), (iii), (iv) and (v).

(i): For every y ∈ G \ {x} we have Ix,y ⊂ Hx,y and therefore, we obtain using
definition (7) of Vx:

Vx =
⋂

y∈G\{x}

Ix,y ⊂
⋂

y∈G\{x}

Hx,y = Wx,

and we have the first inclusion.
(ii): Wx is a 3

2 -dilation of Vx, thus we have Diam(Wx) = 3
2Diam(Vx). We use

(H2) and (H3) to obtain the first estimate. Next, the definitions of the sets
Hx,y and Wx give:

D(Vx, ∂Wx) =
1

4
inf

y∈G\{x}
|x− y| = 1

4
D (x,G \ {x}) .
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We conclude using (H2).
(iii): Let y be in G \{x}. By definition, for every v ∈Wx, there exists u ∈ Ix,y such

that v = u+ 1
4
−→xy. Therefore, we use the triangle inequality and we have:

|v − y| ≥ D (y, Ix,y)− 1

4
|x− y| = 1

2
|x− y| − 1

4
|x− y| = 1

4
|x− y|.

Taking the infimum over all v ∈ Wx in the above inequality and using (H2),
we finally obtain:

D(y,Wx) ≥ 1

4
|x− y| ≥ 1

4
D (x,G \ {x}) ≥ C 1

4
|x|,

where C > 0 is independent of x and y.
(iv): First, we have proved there exists a constant C1 ≥ 1 independent of x such that

Diam (Wx) ≤ C1|x|. Second, using Assumption (H2), we know there exists
a constant C2 > 0 such that for every y ∈ G we have D (y,G \ {y}) ≥ C2|y|.
Let k > 2 be an integer such that:

C22k−2 − 1 > 4C1. (20)

We denote n ∈ N, the unique integer such that x ∈ A2n,2n+1 . Here, it is
sufficient to establish a bound for x sufficiently large, thus without loss of
generality, we can assume that n > k. We next show that if y ∈ G satisfies
|y| ≤ 2−k−1|x| ≤ 2n−k or |y| ≥ 2k|x| ≥ 2n+k, then Wx ∩ Vy = ∅.

We start by assuming that y ∈ G ∩
(
Rd \B2n+k

)
. Since

Diam (Wx) ≤ C1|x| ≤ C12n+1,

we have Wx ⊂ BC12n+1(x). Therefore, using a triangle inequality we obtain
Wx ⊂ BC12n+2 . Our aim here is to prove that Iy,x ∩ BC12n+2 = ∅ in order to
deduce Iy,x ∩Wx = ∅. For every z ∈ Iy,x:

|z| ≥ |z − x| − |x| ≥ D (x, Ix,y)− |x|.

In addition, for every y ∈ G\{y}, we have D (x, Ix,y) =
1

2
|x−y| ≥ 1

2
D (y,G \ {y})

and we deduce that:

|z| ≥ D (y,G \ {y})− |x|

≥ C2

2
|y| − |x|

≥ C22n+k−1 − 2n+1

≥ 2n+1
(
C22k−2 − 1

)
≥ C12n+3.

Therefore, Ix,y ⊂
(
Rd \BC12n+3

)
and we obtain Wx ∩ Ix,y = ∅. Since, Vy =⋂

z∈G\{y}

Iz,y, we deduce that Vy ∩Wx = ∅.

Next we assume that y ∈ B2n−k and we want to prove that Vy ∩Hx,y = ∅.
As above, we can show that Vy ⊂ BC12n−k+1 and for every z ∈ Hx,y:

|z| ≥ 1

4
|x− y| − |y|

≥ 1

4
C2|x| − |y|

≥ 2n−k
(
C22k−2 − 1

)
≥ C12n−k+2.
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Therefore Hx,y ⊂ BC12n−k+2 and we have Vy ∩ Hx,y = ∅. We deduce that
Vy ∩Wx = ∅.

To conclude, we use Proposition 3 and we obtain the existence of a constant
C3 > 0 independent of n such that:

]
{
x ∈ G

∣∣x ∈ A2n,2n+1

}
≤ C3,

and therefore:

] {y ∈ G|Vy ∩Wx 6= ∅} ≤
k∑

m=−k

{
x ∈ G

∣∣x ∈ A2m,2m+1

}
≤

n+k∑
m=n−k

C3 = (2k + 1)C3.

We have finally proved (iv).
(v) : Let y be in G \ {x}. We first assume that 2−k−1|y| > |x|, where k is defined

as in (20) and is independent of x. In the proof of (iv) above, we have shown
that Wy ∩ Vx = ∅. Therefore, using Properties (i) and (ii) of Wy we easily
obtain that there exists a constant M1 > 0 independent of x and y such that
D(Vx, Vy) > M1|y| and we can conclude. Next, we assume that 2−k−1|y| ≤ |x|.
Using again Properties (i) and (ii) of Wx, we obtain the existence of M2 > 0
independent of x and y such that D (Vx, Vy \Wx) ≥ M2|x| ≥ M22−k−1|y|.
Finally, we have proved (v) with C5 = min(M1,M22−k−1).

2.2. The particular case of the “2p”. We next prove that the set GC0
defined

by (9) satisfies Assumptions (H1), (H2) and (H3). In order to avoid many unnec-
essary technical details, we study here the Voronoi diagram only for d = 3 and, in
the sequel, we admit that these properties still hold in higher dimension. We also

consider the cell Vp only for p = (p1, p2, p3) ∈ (R+∗)
3
. Since the distribution of the

points 2p is symmetric with respect to the origin, the other cases are similar and
we omit them.

Proof of (H1). Let p = (p1, p2, p3) be in PC0
∩ (R+∗)

3
. We first prove the following

inclusion:

Vp ⊂
3∏
i=1

[
2pi−1, 2|p|+3

]
. (21)

To this aim, we want to show that if (x, y, z) /∈
3∏
i=1

[
2pi−1, 2|p|+3

]
, then there exists

xq ∈ PC0 \ {xp} such that the point (x, y, z) is closer to xq than to xp and there-

fore (x, y, z) /∈ Vp. We consider (x, y, z) ∈ (R+)
3

and we start by assuming that
x < 2p1−1. We have

D((x, y, z), xp)
2 = |x− 2p1 |2 + |y − 2p2 |2 + |z − 2p3 |2,

and

D((x, y, z), (0, 2p2 , 2p3))2 = |x|2 + |y − 2p2 |2 + |z − 2p3 |2.
Since x < 2p1−1, we use a triangle inequality and

|x− 2p1 | > 2p1 − 2p1−1 = 2p1−1 > |x|.
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We obtain that D((x, y, z), xp)
2 > D((x, y, z), (0, 2p2 , 2p3))2. That is, (x, y, z) is

closer to (0, 2p2 , 2p3) ∈ GC0 than to xp and we deduce that (x, y, z) /∈ Vp. We can
therefore conclude that Vp is included in

{
(x, y, z) ∈ R3

∣∣ 2p1−1 ≤ x
}

.

We next assume that x > 2|p|+3. Since |p| ≥ p1, we have:

|x− 2p1 |2 =
(
x− 2|p|+1 + 2|p|+1 − 2p1

)2

≥
(
x− 2|p|+1 + 2|p|+1 − 2|p|

)2

= |x− 2|p|+1|2 + 2|p|+1(x− 2|p|+1) + 22|p|.

Using x > 2|p|+3, it follows:

|x− 2p1 |2 > |x− 2|p|+1|2 + 13× 22|p|. (22)

On the other hand, we have

|y − 2p2 |2 = |y|2 − 2p2+1y + 22p2 ,

|y − 2p2+1|2 = |y|2 − 2p2+2y + 22p2+2.

We obtain

|y − 2p2 |2 ≥ |y − 2p2+1|2 − 3× 2p2 ≥ |y − 2p2+1|2 − 3× 22|p|.

Similarly, we can show that |z − 2p3 |2 ≥ |z − 2p3+1|2 − 3× 2|p| and, using (22), we
have

D((x, y, z), xp)
2 > |x− 2|p|+1|2 + |y − 2p2+1|2 + |z − 2p3+1|2 + 7× 2|p|

> D((x, y, z), (2|p|+1, 2p2+1, 2p3+1))2.

Now we claim that (2|p|+1, 2p2+1, 2p3+1) ∈ GC0 . Indeed, since (p1, p2, p3) ∈ PC0 , we
have using (8) :

max {|p|+ 1, p2 + 1, p3 + 1} = max {p1 + 1, p2 + 1, p3 + 1}
≤ min {p1 + 1, p2 + 1, p3 + 1}+ C0

≤ min {|p|+ 1, p2 + 1, p3 + 1}+ C0.

Since D((x, y, z), xp)
2 > D((x, y, z), (2|p|+1, 2p2+1, 2p3+1))2, we therefore conclude

that (x, y, z) is closer to (2|p|+1, 2p2+1, 2p3+1) than to xp and that (x, y, z) /∈ Vp.
Using the symmetry of the distribution, we can use exactly the same argumen-

tation to treat the cases y < 2p2−1, y > 2|p|+3, z < 2p3−1 and z > 2|p|+3. We have

finally established inclusion (21). Since the volume of the cube

3∏
i=1

[
2pi−1, 2|p|+3

]
is

bounded by 83.23|p|, we can deduce that:

|Vp| ≤ 83.23|p|.

(H1) is proved.

Proof of (H2). Let p be in PC0
∩ (R+∗)

3
. We have:

D (xp,GC0
\ {xp}) ≤ D(xp, 0) = |xp|,

and therefore:

1 ≤ 1 + |xp|
D (xp,GC0

\ {xp})
.
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To show the upper bound, we consider xq ∈ GC0 \ {xp}. Without loss of generality,
we can assume |p1| = |p| and there are three cases:

• If |q1| 6= |p1|, then:

D(xp, xq) ≥
∣∣∣sign(p1)2|p1| − sign(q1)2|q1|

∣∣∣
≥
∣∣∣2|p1| − 2|q1|

∣∣∣ = 2|p1|
∣∣∣1− 2|q1|−|p1|

∣∣∣
≥ 2|p1|

1

2
= 2|p|−1.

• If p1 = q1, since p ∈ PC0
, we have max(|p2|, |p3|) ≥ |p| − C0. Since xq 6= xp,

we obtain as above:

D(xp, xq) ≥ max
(

2|p2|
∣∣∣1− 2|q2|−|p2|

∣∣∣ , 2|p3| ∣∣∣1− 2|q3|−|p3|
∣∣∣) ≥ 2|p|−C0−1.

• If p1 = −q1, we have:

D(xp, xq) ≥
∣∣∣sign(p1)2|p1| − sign(q1)2|q1|

∣∣∣ = 2|p|+1.

In the three cases we conclude there exists C > 0 independent of q such that

D(xp, xq) ≥ C2|p|. Finally, since |xp| =
(
22p1 + 22p2 + 22p3

)1/2 ≤ √3.2|p|, we obtain
the existence of a constant C1 > 0 independent of p such that:

1 + |xp|
D (xp,GC0 \ {xp})

≤ C1.

Proof of (H3). Let p = (p1, p2, p3) be in PC0
∩ (R+∗)

3
. We use (21) to bound the

diameter of Vp by the diameter of the cube [0, 2|p|+3]3, that is:

Diam (Vp) ≤
√

3.2|p|+3.

In addition, (H2) shows the existence of C > 0 such that for every xp ∈ G, we have :

D (xp,GC0
\ {xp}) ≥ C|xp| ≥ C2|p|,

and we obtain (H3).

We finally conclude this section establishing an estimate regarding the norm of
each element xp of GC0

. Using Proposition 1, the next property shall be useful to
estimate the volume of the Voronoi cells in our particular case.

Proposition 5. There exists C1 > 0 and C2 > 0 such that for every p in PC0 , we
have:

C12|p| ≤ |xp| ≤ C22|p|. (23)

Proof. For p ∈ PC0
, we have:

|xp| =

 ∑
i∈1,...,d

22|pi|

1/2

.

We first use the inequality |pi| ≤ |p| to obtain the upper bound. That is:

|xp| ≤

 ∑
i∈1,...,d

22|p|

1/2

≤
√
d2|p|.
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For the lower bound, we denote j = argmaxi∈{1,...,d} |pi| and we have:

|xp| ≥ 2|pj | = 2|p|.

We have established the norm estimate (23).

In the sequel of this work, we only consider the specific set GC0
, defined by (9),

for a fixed arbitrary constant C0 > 1. Therefore, for the sake of clarity and without
loss of generality, we will denote G and P instead of GC0 and PC0 .

3. Properties of the functional space B2(Rd). In this section we prove some
properties satisfied by the functional space B2(Rd). The following results are heavily
based upon the geometric distribution of the xp. They are key for the understanding
of the structure of B2 and to establish the homogenization of problem (1).

To start with, we show the uniqueness of a limit L2-function f∞ in L2(Rd)
defined in (10) and characterizing each element of B2(Rd). This result ensures that
the definition of the function space B2(Rd) is consistent.

Proposition 6. Let f be a function of B2(Rd). Then, the limit function f∞ of
L2(Rd) defined in (10) is unique.

Proof. We assume there exist two functions f∞ and g∞ in L2(Rd) such that

lim
|p|→∞

‖f − τ−pf∞‖L2(Vp) = lim
|p|→∞

‖f − τ−pg∞‖L2(Vp) = 0.

By a triangle inequality, we obtain for every p ∈ P:

‖τ−pf∞ − τ−pg∞‖L2(Vp) ≤ ‖f − τ−pf∞‖L2(Vp) + ‖f − τ−pg∞‖L2(Vp) −→
|p|→+∞

0.

In addition, we have ‖τ−pf∞ − τ−pg∞‖L2(Vp) = ‖f∞ − g∞‖L2(Vp−2p). According to
Proposition 2, we can find a sequence (pn)n∈N ∈ P such that lim

n→∞
|pn| =∞ and:⋃

n∈N
(Vpn − 2pn) = Rd.

We can finally conclude that ‖f∞− g∞‖L2(Rd) = 0, that is f∞ = g∞ in L2(Rd).

We next study the structure of the space B2(Rd) showing two essential properties
that shall allow us to establish the existence of the corrector in Section 4. In
particular, we prove in Proposition 7 that B2(Rd) is a Banach space.

Proposition 7. The space B2(Rd) equipped with the norm defined by (11), is a
Banach space.

Proof. Let (fn)n∈N be a Cauchy sequence in B2(Rd). Definitions (10) and (11)
ensure the existence of a Cauchy sequence fn,∞ in L2(Rd) such that for every
n ∈ N,

lim
|p|→∞

‖fn − τ−pfn,∞‖L2(Vp) = 0.

Then, for any ε > 0, there exists N ∈ N such that for all n > N , k > 0:

‖fn+k − fn‖L2
unif
≤ ε,

‖fn+k,∞ − fn,∞‖L2(Rd) ≤ ε,

sup
p∈P
‖ (fn+k − τ−pfn+k,∞)− (fn − τ−pfn,∞) ‖L2(Vp) ≤

ε

2
. (24)
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Since L2 and L2
unif are Banach spaces, there exist f ∈ L2

unif (Rd) and f∞ ∈ L2(Rd)
such that fn −→

n→+∞
f in L2

unif (Rd) and fn,∞ −→
n→+∞

f∞ in L2(Rd). We consider the

limit in (24) when k →∞ and we obtain:

sup
p∈P
‖ (f − τ−pf∞)− (fn − τ−pfn,∞) ‖L2(Vp) ≤

ε

2
.

Since ε can be chosen arbitrary small, we deduce:

lim
n→∞

sup
p∈P
‖ (f − τ−pf∞)− (fn − τ−pfn,∞) ‖L2(Vp) = 0.

The function f is therefore the limit of fn for the norm (11). We just have to show
that f ∈ B2(Rd) to conclude. Indeed, for a fixed n > N and for p sufficiently large,
we have:

‖fn − τ−pfn,∞‖L2(Vp) ≤
ε

2
.

Using a triangle inequality, it follows:

‖f − τ−pf∞‖L2(Vp) ≤ ‖fn − τ−pfn,∞‖L2(Vp)

+ sup
p∈P
‖ (f − τ−pf∞)− (fn − τ−pfn,∞) ‖L2(Vp)

≤ ε.

Finally, we obtain lim
|p|→∞

‖f − τ−pf∞‖L2(Vp) = 0.

Proposition 8. Let α ∈]0, 1[, then C0,α(Rd)∩B2(Rd) is dense in
(
B2(Rd), ‖.‖B2(Rd)

)
.

Proof. We consider f ∈ B2(Rd) and f∞ ∈ L2(Rd) the associated limit function
defined by (10). First, for any ε > 0, there exists φ ∈ D(Rd) such that ‖φ −
f∞‖L2(Rd) <

ε

3
, thus ‖τ−pφ − τ−pf∞‖L2(Vp) ≤

ε

3
for all p ∈ P. Second, since

f ∈ B2(Rd):

∃P ∗ ∈ N, ∀p ∈ P, |p| > P ∗ ⇒ ‖f − τ−pf∞‖L2(Vp) <
ε

3
.

Since φ is compactly supported there also exists P , which we can always assume
larger than P ∗, such that for every |p| > P and for all q 6= p, we have (τ−qφ)|Vp = 0.

The finite sum
∑
|q|≤P

1Vqf (where 1A denotes the indicator function of A) is

compactly supported and then belongs to L2(Rd). Again, we can find ψ ∈ D(Rd)

such that

∥∥∥∥∥∥ψ −
∑
|q|≤P

1Vqf

∥∥∥∥∥∥
L2(Rd)

≤ ε

3
. We fix g = ψ +

∑
|p|>P

τ−pφ and we want to

show that g is a good approximation of f in B2(Rd)∩C0,α(Rd), that is g is close to
f on each Vp, uniformly in p. First, we have:

g|Vp =

{
ψ if |p| ≤ P,

ψ + τ−pφ else.

Therefore g is bounded and we can easily prove that g ∈ B2(Rd) ∩ C∞(Rd) where
the associated limit function in L2(Rd) is given by g∞ = φ. Furthermore, g is in
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C0,α(Rd) since it is a C∞ function and all of its derivatives are bounded. Indeed,
for every k in Nd, we denote ∂k = ∂k1x1

∂k2x2
...∂kdxd and we have:

(∂kg)|Vp =

{
∂kψ if |p| ≤ P,

∂kψ + τ−p∂kφ else.

and ∂kg is clearly bounded.
Let p ∈ P, we consider two cases. If |p| ≤ P , then:

‖g − f‖L2(Vp) =

∥∥∥∥∥∥ψ −
∑
|q|≤P

1Vqf

∥∥∥∥∥∥
L2(Vp)

≤ ε.

Else, if |p| > P , using that
∑
|q|≤P

1Vqf has support in
⋃
|q|≤P

Vq we have:

‖ψ‖L2(Vp) =

∥∥∥∥∥∥ψ −
∑
|q|≤P

1Vqf

∥∥∥∥∥∥
L2(Vp)

≤

∥∥∥∥∥∥ψ −
∑
|q|≤P

1Vqf

∥∥∥∥∥∥
L2(Rd)

≤ ε

3
.

We obtain:

‖g − f‖L2(Vp) = ‖ψ + τ−pφ− f‖L2(Vp)

≤ ‖ψ‖L2(Vp) + ‖τ−pφ− τ−pf∞‖L2(Vp) + ‖τ−pf∞ − f‖L2(Vp)

≤ ε,

and we can conclude.

We now establish a property regarding multiplication of elements of B2(Rd).

Proposition 9. Let g and h be in B2(Rd) ∩ L∞(Rd). We assume the associated
L2 function of g, denoted by g∞, is in L∞(Rd), then hg ∈ B2(Rd).

Proof. Since g∞ ∈ L∞(Rd), we clearly have g∞h∞ ∈ L2(Rd). Using that for all
p ∈ P:

gh− τ−p(g∞h∞) = (h− τ−ph∞)τ−pg∞ + (g − τ−pg∞)h.

We have by the triangle inequality:

‖gh− τ−p(g∞h∞)‖L2(Vp) ≤ ‖h− τ−ph∞‖L2(Vp)‖g∞‖L∞(Rd)

+ ‖g − τ−pg∞‖L2(Vp)‖h‖L∞(Rd).

It follows, taking the limit for |p| → ∞, that gh ∈ B2(Rd) and that (gh)∞ =
g∞h∞.

Our next result is one of the most important properties for the sequel. As
we shall see in section 5, it first implies that the homogenized coefficient in our
setting is the same as the homogenized coefficient in the periodic case, that is,
without perturbation. In addition, it gives some information about the growth of
the corrector defined in Theorem 1.1 (in particular, we give a proof in Proposition 11
of the strict sublinearity of the corrector). We will use all of these properties to
prove the convergence stated in Theorem 1.2 in our case.

Proposition 10. Let u ∈ B2(Rd). Then, for every x0 ∈ Rd:

lim
R→∞

1

|BR|

∫
BR(x0)

|u(x)|dx = 0, (25)
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with the following convergence rate:

1

|BR|

∫
BR(x0)

|u(x)|dx ≤ C
(

logR

Rd

) 1
2

, (26)

where C > 0 is independent of R and x0.

Proof. We fix R > 0. Using the Cauchy-Schwarz inequality, we have:

1

|BR|

∫
BR(x0)

|u(x)|dx ≤ 1√
|BR|

(∫
BR(x0)

|u(x)|2dx

) 1
2

=
1√
|BR|

∑
p∈P

∫
Vp∩BR(x0)

|u(x)|2dx

 1
2

.

Since the number of Vp such that BR(x0) ∩ Vp 6= ∅ is bounded by log(R) according
to Corollary 1, we obtain:

1

|BR|

∫
BR(x0)

|u(x)|dx ≤ (logR)
1
2√

|BR|
sup
p
‖u‖L2(Vp) ≤ C(d)

(
log(R)

Rd

) 1
2

sup
p
‖u‖L2(Vp).

Here, C(d) depends only on the ambient dimension d. The last inequality yields
(26) and conclude the proof.

Corollary 2. Let u ∈ B2(Rd) ∩ L∞(Rd), then |u(./ε)| is convergent to 0 in the
weak*-L∞ topology when ε→ 0.

Proof. We fix R > 0 and we first consider ϕ = 1BR . For any ε > 0, we have:∣∣∣∣∫
Rd
|u(x/ε)|ϕ(x)dx

∣∣∣∣ ≤ ∫
BR

|u(x/ε)| dx

y=x/ε
= εd

∫
BR/ε

|u(y)| dy

= |BR|
εd

|BR|

∫
BR/ε

|u(y)| dy

= ‖ϕ‖L1(Rd)

εd

|BR|

∫
BR/ε

|u(y)| dy.

We next use (26) in the right-hand term and we obtain the existence of C > 0
independent of ε and ϕ such that:∣∣∣∣∫

Rd
u(x/ε)ϕ(x)dx

∣∣∣∣ ≤ C‖ϕ‖L1(Rd)

(
εd log(1/ε)

) 1
2 −→
ε→0

0.

We conclude using the density of simple functions in L1(Rd).

We next introduce the notion of sub-linearity which is actually a fundamental
property in homogenization. Indeed, in order to precise the convergence of the
approximated sequence of solutions (6), we have to study the behavior of the se-
quences εwei(./ε) when ε→ 0. The convergence to zero of these sequences and the
understanding of the rate of convergence are key for establishing estimates (15) and
(16) stated in Theorem 1.2. In the sequel, we therefore study this phenomenon for
the functions with a gradient in B2(Rd).
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Definition 3.1. A function u is strictly sub-linear at infinity if:

lim
|x|→∞

|u(x)|
1 + |x|

= 0.

In the next proposition we prove the sub-linearity of all the functions u such that

∇u ∈
(
B2(Rd) ∩ L∞(Rd)

)d
. We assume, for this general property only, that d ≥ 2.

Proposition 11. Assume d ≥ 2. Let u ∈ H1
loc(Rd) with ∇u ∈

(
B2(Rd) ∩ L∞(Rd)

)d
.

Then u is strictly sub-linear at infinity and for all s > d, there exists C > 0 such
that for every x, y ∈ Rd with x 6= y:

|u(x)− u(y)| ≤ C |log(|x− y|)|
1
s |x− y|1−

d
s . (27)

Proof. Let x, y ∈ Rd with x 6= y and fix r = |x − y|. Since ∇u ∈ L∞(Rd)d, we
have ∇u ∈ Lsloc(Rd)d for every s ≥ 1. We next fix s > d. We know there exists a
constant C > 0, depending only on d, such that:

|u(x)− u(y)| ≤ Cr

(
1

rd

∫
Br(x)

|∇u(z)|s dz

) 1
s

.

This estimate is established for instance in [13, Remark p.268] as corollary of the
Morrey’s inequality ([13, Theorem 4 p.266]). Since s > d ≥ 2, we use the bounded-
ness of ∇u to obtain:

|u(x)− u(y)| ≤ C‖∇u‖(s−2)/s

L∞(Rd)
r

(
1

rd

∫
Br(x)

|∇u(z)|2 dz

) 1
s

. (28)

We next split the integral of (28) on each Vp such that Vp∩Br(x) 6= ∅ and we have :

|u(x)− u(y)| ≤ C‖∇u‖(s−2)/s

L∞(Rd)
r

 1

rd

∑
p∈P

∫
Br(x)∩Vp

|∇u(z)|2 dz

 1
s

.

We finally use Corollary 1 and we obtain the existence of a constant C1 > 0 such
that:

|u(x)− u(y)| ≤ C1‖∇u‖(s−2)/s

L∞(Rd)
‖∇u‖2/sB2(Rd)

|log(r)|
1
s r1− ds .

This inequality is true for all s > d, which allows us to conclude. In addition,
the sub-linearity of u is obtained fixing y = 0 and letting |x| go to the infinity in
estimate (27).

Remark 1. In the case d = 1, since s ≥ 2, the above proof gives:

|u(x)− u(y)| ≤ C |log |x− y||
1
2 |x− y|

1
2 .

The last proposition of this section gives an uniform estimate of the integral
remainders of the functions of B2(Rd). The idea here is that the functions of B2(Rd)
behave like a fixed L2-functions at the vicinity of the points of G and therefore, have
to be small in a L2 sense far from these points. This property will be used in the
proof of Lemma 4.3 in next section to establish an estimate in B2(Rd) satisfied by
the solutions to diffusion equation (35).
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Proposition 12. Let f be in B2(Rd) and f∞ the associated limit function in
L2(Rd). For any ε > 0, there exists R∗ > 0 such that for every R > R∗ and
every p, q ∈ P: (∫

Vq∩BR(2q)c
|f − τ−pf∞|2

)1/2

< ε,

where BR(2q)c denotes the set Rd \BR(2q). Therefore, we have the following limit:

lim
R→∞

sup
(p,q)∈P2

p 6=q

(∫
Vq∩BR(2q)c

|f − τ−pf∞|2
)1/2

= 0.

Proof. Let ε > 0. First, for every R > 0, p, q ∈ P we use a triangle inequality and
we obtain the following upper bound:(∫

Vq∩BR(2q)c
|f − τ−pf∞|2

)1/2

≤

(∫
Vq∩BR(2q)c

|f − τ−qf∞|2
)1/2

+

(∫
Vq∩BR(2q)c

|τ−qf∞|2
)1/2

+

(∫
Vq∩BR(2q)c

|τ−pf∞|2
)1/2

= Ip,q1 (R) + Ip,q2 (R) + Ip,q3 (R).

We want to bound the three terms Ip,q1 (R), Ip,q2 (R) and Ip,q3 (R) by ε uniformly in
p, q.

We start by considering Ip,q1 . We have assumed that f ∈ B2(Rd), then, by
definition, there exists P > 0 such that for every q ∈ P satisfying |q| > P , we have:(∫

Vq

|f − τ−qf∞|2
)1/2

<
ε

3
.

In addition, since the volume of each Vq is finite according to assumption (H1),
there exists R1 > 0 such that for every |q| ≤ P , BR1

(2q)c ∩ Vq = ∅. Therefore, as
soon as |q| ≤ P and R ≥ R1, we have Ip,q(R) = 0. Finally, considering successively
the case |q| ≤ P and the case |q| > P , we obtain for every q, p ∈ P and R ≥ R1:

Ip,q1 (R) <
ε

3
.

We next study the second term Ip,q2 . Since f∞ is in L2(Rd), there exists R2 > 0,
which we can always assume larger than R1, such that for every q ∈ P:(∫

BR2
(2q)c

|τ−qf∞(y)|2 dy

)1/2

x=y−2q

=

(∫
BcR2

|f∞(x)|2 dx

)1/2

<
ε

3
. (29)

And we directly obtain, for every R ≥ R2:

Ip,q2 (R) <
ε

3
.

Finally, in order to bound the last term, we know that lim
|l|→∞

D
(
2l,G \ {2l}

)
= +∞

as a consequence of Assumption (H2). Therefore, there exists a finite number of
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indices l such that:

D
(
Vl,G \

{
2l
})
≤ R2. (30)

Thus, we deduce the existence of a positive radius R3 independent of q, p such that
for every l satisfying (30) we have BR3

(2l)c ∩ Vl = ∅. Again we can always assume
R3 larger than R2. There are two cases depending on the value of q:

1) If q satisfies (30), we have BR3
(2q)c ∩ Vq = ∅ and we obtain Ip,q3 (R3) = 0

2) Else, for every y ∈ Vq, we have |y − 2p| > R2. Therefore:

Ip,q3 (R3) ≤

(∫
Vq

|τ−pf∞|2
)1/2

x=y−2p

=

(∫
Vq−2p

|f∞|2
)1/2

≤

(∫
BcR2

|f∞|2
)1/2

.

Using (29), we have for every R ≥ R3, Ip,q3 (R) ≤ ε
3 .

In the two cases , we obtain for R ≥ R3:

Ip,q3 (R) ≤ ε

3
.

Since the values of R3 is independent of p and q we can conclude the proof for
R∗ = R3.

4. Existence result for the corrector equation. This section is devoted to the
proof of Theorem 1.1. Equation (14) being posed on the whole space Rd, we need
to use here the geometric distribution of the 2p and introduce some constructive
techniques involving the fundamental solution of the operator −div(a∇.) to solve
it. To start with, we establish some general results on equations

−div(a∇u) = div(f) in Rd, (31)

for coercive coefficients a of the form (2) and right hand side f in B2(Rd)d in
order to deduce the existence of the corrector stated in Theorem 1.1. For this
purpose, we consider the following strategy adapted from [8]: we first study diffusion
problem (35) in the periodic context, that is, when the diffusion coefficient a =
aper is periodic. Secondly we show in Lemma 4.5 the continuity of the associated

reciprocal linear operator ∇ (−div a∇)
−1

div from B2(Rd) to B2(Rd). Finally, we
use this continuity in order to generalize the existence results of the periodic context
to the general context when a is a perturbed coefficient of the form (2). To this
end, we apply a method based on the connexity of the set I = [0, 1] as we shall see
in the proof of Lemma 4.6.

4.1. Preliminary uniqueness results. We begin by establishing the uniqueness
of a solution u to (31) such that ∇u ∈ B2(Rd)d. This result is actually essential
in the proof of Theorem 1.1 since it both ensures the uniqueness of the corrector
solution to (14) and also allows us to establish the continuity estimate of Lemma
4.5 which is key in our approach to show the existence of a solution to (31).

Lemma 4.1. Let a be an elliptic and bounded coefficient, and u ∈ H1
loc(Rd), such

that sup
p∈P

∫
Vp

|∇u|2 <∞, be a solution to:

− div(a∇u) = 0 in Rd, (32)

in the sense of distribution. Then ∇u = 0.
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Proof. we consider u ∈ H1
loc(Rd) solution to (32). Since u is a solution to (32),

there exists C > 0 such that for every R > 0, we have the following estimate (for
details see for instance [14, Proposition 2.1 p.76] and [14, Remark 2.1 p.77] ):∫

BR

|∇u|2 ≤ C

R2

∫
AR,2R

|u− 〈u〉AR,2R |2,

where:

〈u〉AR,2R =
1

|AR,2R|

∫
AR,2R

u(x)dx.

We use the Poincaré-Wirtinger inequality on the right-hand side and we obtain:∫
BR

|∇u|2 ≤ C
∫
AR,2R

|∇u|2.

Furthermore, we can write this inequality in the following form:∫
BR

|∇u|2 ≤ C

1 + C

∫
B2R

|∇u|2. (33)

In addition, using Corollary (1), we know there exists a constant C1 > 0 independent
of R such that:∫

B2R

|∇u|2 =
∑

Vp∩B2R 6=∅

∫
Vp∩B2R

|∇u|2 ≤ C1 log(2R) sup
p

∫
Vp

|∇u|2. (34)

Next, we define F (R) =

∫
BR

|∇u|2. The inequalities (33) and (34) yield for all

R > 0 and for every n ∈ N∗, we obtain

F (R) ≤
( C

1 + C

)n
F (2nR) ≤ C1

( C

1 + C

)n
log(2nR) sup

p

∫
Vp

|∇u|2.

Since
C

1 + C
< 1, we have:

lim
n→∞

( C

1 + C

)n
log(2nR) = 0,

and it therefore follows, letting n go to infinity, that F (R) = 0 for all R > 0, thus
∇u = 0.

Corollary 3. Let f ∈ B2(Rd)d, then a solution u to (31) with ∇u ∈ B2(Rd)d is
unique up to an additive constant.

Remark 2. Here the restriction made on the dimension is actually not necessary.
The result and the proof of Lemma 4.1 of uniqueness still hold if we assume d = 1
or d = 2.

Remark 3. We remark that Assumptions (2) and (13) regarding the structure and
the regularity of the coefficient a are not required to establish the uniqueness result
of Lemma 4.1. In the proof, we only use the “Hilbert” structure of L2, induced by
the assumptions satisfied by u, and the fact that a is elliptic and bounded.
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4.2. Existence results in the periodic problem. Now that uniqueness has been
dealt with, we turn to the existence of the solution to (31). We need to first establish
it for a periodic coefficient considering the equation:

−div(aper∇u) = div(f) in D′(Rd). (35)

We start by introducing the Green function Gper : Rd×Rd → R associated with
the operator −div (aper∇.) on Rd. That is, the unique solution to{

−divx (aper(x)∇xGper(x, y)) = δy(x) in D′(Rd),
lim

|x−y|→∞
Gper(x, y) = 0.

According to the results established in [4, Section 2] about the asymptotic growth
of the Green function (see also [2, Theorem 13, proof of Lemma 17] and [18] for
bounded domain or [11, Proposition 8] for additional details), there exists C1 > 0,
C2 > 0 and C3 > 0 such that for every x, y ∈ Rd with x 6= y:

|∇yGper(x, y)| ≤ C1
1

|x− y|d−1
, (36)

|∇xGper(x, y)| ≤ C2
1

|x− y|d−1
, (37)

|∇x∇yGper(x, y)| ≤ C3
1

|x− y|d
. (38)

We first introduce a result of existence in the L2(Rd) case. The following lemma
allows us to define a solution to (35) using the Green function when f belongs to
L2(Rd)d. The proof of this result is established in [4].

Lemma 4.2. Let f be in L2(Rd)d, then the function:

u =

∫
Rd
∇yGper(., y).f(y)dy, (39)

is a solution in H1
loc(Rd) to (35) such that ∇u ∈ L2(Rd)d.

Our aim is now to generalize the above result to our case and, in particular, to
give a sense to the function u define by (39) when f ∈ B2(Rd)d. The idea here is
to split the function f into a sum of L2-functions fp compactly supported in each
Vp for p ∈ P. Using Lemma 4.2, we shall obtain the existence of a collection up of
solution to (35) when f = fp. The main difficulty here is to show that the function
u defined as the sum of the up is bounded.

Lemma 4.3. Let f ∈ L2
loc(Rd)d such that sup

p∈P
‖f‖L2(Vp) <∞, then the function u

defined by

u =

∫
Rd
∇yGper(., y)f(y)dy (40)

is a solution in H1
loc(Rd) to (35). In addition, u is the unique solution to (35) which

satisfies sup
p∈P
‖∇u‖L2(Vp) < ∞ and there exists C > 0 independent of f and u such

that we have the following estimate:

sup
p∈P
‖∇u‖L2(Vp) ≤ C sup

p∈P
‖f‖L2(Vp). (41)
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Proof. Step 1: u is well defined
We start by proving that definition (40) makes sense and, in particular, that the

above integral defines a function u solution to (35) in H1
loc(Rd). In the sequel the

letter C denotes a generic constant that may change for one line to another. For
every q ∈ P, we first introduce a set Wq and five constants C1, C2, C3, C4 and C5

independent of q and defined by Proposition 4 such that:

•Vq ⊂Wq, (i)

•Diam(Wq) ≤ C12|q| and D(Vq, ∂Wq) ≥ C22|q|, (ii)

• ∀r ∈ P \ {q}, Dist(2r,Wq) ≥ C32|q|, (iii)

• ] {r ∈ P|Vr ∩Wq 6= ∅} ≤ C4, (iv)

• ∀r ∈ P \ {q}, D (Vq, Vr \Wq) ≥ C52|r|. (v)

To start with, we define for each q ∈ P the function:

uq =

∫
Rd
∇yGper(., y)f(y)1Vq (y)dy. (42)

Lemma 4.2 ensures this function is a solution in H1
loc(Rd) to:{

−div(aper∇uq) = div(f1Vp) in Rd,
∇uq ∈ L2(Rd)d.

Considering the gradient of (42), we have for every x ∈ Rd \ Vq:

∇uq(x) =

∫
Rd
∇x∇yGper(x, y)f(y)1Vq (y)dy.

Next, for every N ∈ N∗, we define:

UN =
∑

q∈P, |q|≤N

uq,

and
SN = ∇UN =

∑
q∈P, |q|≤N

∇uq. (43)

We next show that the two series UN ans SN are convergent in L2
loc(Rd). To

this aim, since the collection (Vp)p∈P is a partition of Rd, it is sufficient to prove

that they normally converge in L2(Vp) for every p ∈ P. We fix p ∈ P and for every
q ∈ P such that Vq ∩Wp = ∅, we use the Cauchy-Schwarz inequality to obtain:

‖uq‖L2(Vp) =

∫
Vp

∣∣∣∣∣
∫
Vq

∇yGper(x, y)f(y)dy

∣∣∣∣∣
2

dx

1/2

≤

(∫
Vp

∫
Vq

|∇yGper(x, y)|2 dy
∫
Vq

|f(y)|2 dy dx

)1/2

.

Next, estimate (36) gives:

‖uq‖L2(Vp) ≤ C sup
r∈P
‖f‖L2(Vr)

(∫
Vp

∫
Vq

1

|x− y|2d−2
dy dx

)1/2

. (44)

Since Vq ∩Wp = ∅, Property (v) gives the existence of C > 0 such that for every

x ∈ Vp and y ∈ Vq, we have |x − y| ≥ C2|q|. We next use Propositions 1 and 5
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to obtain the existence of a constant C > 0 independent of p and q such that
|Vq| ≤ C2d|q|. Finally:

‖uq‖L2(Vp) ≤ C sup
r∈P
‖f‖L2(Vr)

(∫
Vp

∫
Vq

1

2(2d−2)|q| dy dx

)1/2

≤ C sup
r∈P
‖f‖L2(Vr)

(∫
Vp

|Vq|
2(2d−2)|q| dx

)1/2

≤ C sup
r∈P
‖f‖L2(Vr)

|Vp|1/2

2|q|(d/2−1)
.

We thus obtain the following upper bound:∑
q∈P
‖uq‖L2(Vp) =

∑
q∈P,

Vq∩Wp 6=∅

‖uq‖L2(Vp) +
∑
q∈P,

Vq∩Wp=∅

‖uq‖L2(Vp)

≤
∑
q∈P,

Vq∩Wp 6=∅

‖uq‖L2(Vp) + C
∑
q∈P

1

2|q|(d/2−1)
.

The first sum is finite according to Property (iv) and we only have to prove the
convergence of the second one. We have assumed d > 2 and consequently d/2−1 >
0. In addition, since the number of q ∈ P such that |q| = n ∈ N is bounded
independently of n (as a consequence of Proposition 3), we have:∑

q∈P

1

2|q|(d/2−1)
≤ C

∑
n∈N

1

2n(d/2−1)
<∞. (45)

Therefore, for every p ∈ P, the absolute convergence of UN to u in L2(Vp) is proved.
That is, since the sequence of the sets Vq defines a partition of Rd, UN converges
to u in L2

loc(Rd). Using asymptotic estimate (38) for ∇x∇yGper we can conclude
with the same arguments to prove the convergence of SN in L2

loc(Rd). In addition,
the gradient operator being continuous in D′(Rd), we have:∑

q∈P
∇uq = lim

N→∞
SN = lim

N→∞
∇UN = ∇u.

To complete the proof, we have to show that u is a solution to (35). Let N be in
N. By linearity of the operator div(aper∇. ), UN is a solution in H1

loc(Rd) to:

−div (aper∇UN ) = div

 ∑
q∈P, |q|≤N

1Vqf

 in Rd. (46)

We take the L2
loc-limit when N →∞ in (46) and we obtain:

−div(aper∇u) = div(f) in Rd.

Therefore, u is a solution to (35) in D′(Rd).
Step 2: Proof of estimate (41)

Let p be in P, we want to split u in two parts. For every x ∈ Vp, we write:

u(x) =

∫
Wp

∇yGper(x, y)f(y)dy +

∫
Rd\Wp

∇yGper(x, y)f(y)dy

= I1,p(x) + I2,p(x).
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I1,p and I2,p are two distributions (they are in L2
loc(Rd)), so we can consider their

gradients in a distribution sense. In addition, I2,p is a differentiable function on Vp
and

∇I2,p(x) =

∫
Rd\Wp

∇x∇yGper(x, y)f(y)dy.

We start by establishing a bound for ‖∇I1,p‖L2(Vp). First, we use estimate (36) for
∇yGper and we obtain:

‖I1,p‖2L2(Wp) ≤ C
∫
Wp

(∫
Wp

1

|x− y|d−1
|f(y)|dy

)2

dx.

We next apply the Cauchy-Schwarz inequality:

‖I1,p‖2L2(Wp) ≤ C
∫
Wp

(∫
Wp

1

|x− y|d−1
dy

)(∫
Wp

1

|x− y|d−1
|f(y)|2dy

)
dx.

Property (ii) implies that Wp ⊂ QC12|p|(2
p). Therefore, for every x ∈ Wp and

y ∈Wp, we have by a triangle inequality that x− y ∈ QC2|p|+1 and then:∫
Wp

1

|x− y|d−1
dy ≤

∫
Q
C2|p|+1

1

|y|d−1
dy ≤ C2|p|. (47)

Using (47) and the Fubini theorem, we finally obtain:

‖I1,p‖2L2(Wp) ≤ C2|p|
∫
Wp

|f(y)|2
∫
Q
C12|p|+1 (2p)

1

|x− y|d−1
dxdy ≤ C22|p|‖f‖2L2(Wp).

(48)

Lemma 4.2 ensures that I1,p is a solution in D′(Rd) to:

−div(aper∇I1,p) = div(f1Wp
). (49)

Since Property (ii) ensures D(∂Vp,Wp) ≥ C2|p|, we can apply a classical inequality
of elliptic regularity (see for instance [15, Theorem 4.4 p.63]) to equation (49) in
order to establish the following estimate:

‖∇I1,p‖2L2(Vp) ≤ C
(

1

22|p| ‖I1,p‖
2
L2(Wp) + ‖f‖2L2(Wp)

)
, (50)

and we deduce from previous inequalities (48) and (50) that:

‖∇I1,p‖2L2(Vp) ≤ C‖f‖
2
L2(Wp). (51)

In addition, we have:

‖f‖2L2(Wp) ≤
∑
q∈P,

Vq∩Wp 6=∅

‖f‖2L2(Vq)
≤

∑
q∈P,

Vq∩Wp 6=∅

sup
r∈P
‖f‖2L2(Vr).

Next, we use a triangle inequality and Property (iv) of Wp to obtain:

‖f‖2L2(Wp) ≤ C sup
r∈P
‖f‖2L2(Vr).

We apply this inequality in (51) and we finally obtain:

‖∇I1,p‖L2(Vp) ≤ C sup
r∈P
‖f‖L2(Vr), (52)

where C > 0 is independent of p.
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We next prove a similar bound for ‖∇I2,p‖L2(Vp). To start with, we want to show
there exists a constant C > 0 such that:

‖∇I2,p‖L∞(Vp) ≤ C
1

2d|p|/2
sup
r∈P
‖f‖L2(Vr). (53)

To this aim, we fix x ∈ Vp and we use estimate (38) for ∇x∇yGper to obtain:

|∇I2,p(x)| ≤ C
∑
q 6=p

∫
Vq\Wp

1

|x− y|d
|f(y)|dy

≤ C
∑
q 6=p

(∫
Vq\Wp

1

|x− y|2d
dy

)1/2(∫
Vq\Wp

|f(y)|2dy

)1/2

≤ C
∑
q 6=p

(∫
Vq\Wp

1

|x− y|2d
dy

)1/2

sup
r∈P
‖f‖L2(Vr).

Next, using Property (ii) of Wp, there exists C > 0 such that for every q 6= p,

D(Vq \Wp, Vp) > C2|p|,

and it follows:∑
|q|<|p|

(∫
Vq\Wp

1

|x− y|2d
dy

)1/2

≤ C
∑
|q|<|p|

(∫
Vq\Wp

1

2|p|2d
dy

)1/2

≤ C
∑
|q|<|p|

(
|Vq|

2|p|2d

)1/2

≤ C
∑
|q|<|p|

2|q|d/2

2|p|d
.

The last inequality is actually a direct consequence of Propositions 1 and 5. In
addition, we have proved in Proposition 3 there exists a constant C > 0 such that
for every n ∈ N, the number of q ∈ P such that |q| = n is bounded by C. Therefore
we have:∑

|q|<|p|

2|q|d/2

2|p|d
=

|p|∑
n=0

∑
q∈P,|q|=n

2|q|d/2

2|p|d
≤ C

|p|∑
n=0

2nd/2

2|p|d
= C

2|p|d/2

2|p|d
= C

1

2|p|d/2
.

And finally : ∑
|q|<|p|

(∫
Vq\Wp

1

|x− y|2d
dy

)1/2

≤ C 1

2|p|d/2
. (54)

Furthermore, we have with similar arguments:∑
|q|≥|p|

(∫
Vq\Wp

1

|x− y|2d
dy

)1/2

≤ C
∑
|q|≥|p|

(∫
Vq\Wp

1

2|q|2d
dy

)1/2

≤ C
∑
|q|≥|p|

(
|Vq|

2|q|2d

)1/2

≤ C
∑
|q|≥|p|

1

2|q|d/2
.
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And we obtain again: ∑
|q|≥|p|

1

2|q|d/2
≤ C

∑
n≥|p|

1

2nd/2
= C

1

2|p|d/2
.

That is: ∑
|q|≥|p|

(∫
Vq\Wp

1

|x− y|2d
dy

)1/2

≤ C 1

2|p|d/2
. (55)

Using estimates (54) and (55), we have finally proved (53) and it follows:

‖∇I2,p‖L2(Vp) ≤ |Vp|
1/2 ‖∇I2,p‖L∞(Vp)

≤ C2|p|d/2
1

2|p|d/2
sup
r∈P
‖f‖L2(Vr).

Therefore we have the existence of a constant C > 0 independent of p such that:

‖∇I2,p‖L2(Vp) ≤ C sup
r∈P
‖f‖L2(Vr). (56)

For every p ∈ P, using estimates (52) and (56) and a triangle inequality, we conclude
that:

‖∇u‖L2(Vp) ≤ ‖∇I1,p‖L2(Vp) + ‖∇I2,p‖L2(Vp) ≤ C sup
r∈P
‖f‖L2(Vr).

We finally obtain expected estimate (41) taking the supremum over all p ∈ P in the
above inequality.

To conclude the study of problem (35) with a periodic coefficient, we next show
that the solution to (40) given in Lemma 4.3 has a gradient in B2(Rd).

Lemma 4.4. Let f ∈ B2(Rd)d, then the function u defined by (40) is the unique
solution to (35) such that ∇u ∈ B2(Rd)d.

Proof. We want to prove there exists a function g ∈ L2(Rd)d such that

lim
|p|→∞

‖∇u− τ−pg‖L2(Vp) = 0.

In this proof, the letter C also denotes a generic constant independent of p, u and f
that may change from one line to another. Using the result of Lemma 4.2, we can
define a function u∞ ∈ L2

loc(Rd) by:

u∞(x) =

∫
Rd
∇yGper(x, y)f∞(y)dy

solution in D′(Rd) to:

−div(aper∇u∞) = div(f∞) in Rd, (57)

such that ∇u∞ ∈ L2(Rd)d. For every p ∈ P, by subtracting a 2p-translation of (57)
from (35), the periodicity of aper implies:

−div (aper∇ (u− τ−pu∞)) = div (f − τ−pf∞) .

For every p ∈ P, in the sequel we denote up = u− τ−pu∞ and fp = f − τ−pf∞. In

order to prove ∇u ∈ B2(Rd)d, the idea is to show that lim
|p|→∞

∫
Vp

|∇up|2dx = 0. We
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start by fixing ε > 0. Since f ∈ B2(Rd)d, Proposition 12 gives the existence of a
radius R > 0, such that for every p, q ∈ P,(∫

Vq∩BR(2q)c
|f − τ−pf∞|2

)1/2

< ε. (58)

In the sequel, the idea is to repeat step by step the method used in the proof of
Lemma 4.3. For p ∈ P, we thus introduce the set Wp as in the previous proof and
we split up in two parts. For every x ∈ Vp, we can write:

up(x) =

∫
Wp

∇yGper(x, y)fp(y)dy +

∫
Rd\Wp

∇yGper(x, y)fp(y)dy

= I1,p(x) + I2,p(x).

In the sequel, we denote Ap the set Wp \ Vp. As in the previous proof (see the
details of the proof of estimate (51)) we can show that:

‖∇I1,p‖2L2(Vp) ≤ C‖fp‖
2
L2(Wp),

and we next prove that lim
|p|→∞

‖fp‖2L2(Wp) = 0. First, since f ∈ B(Rd)d, we already

know that lim
|p|→∞

∫
Vp

|fp|2 = 0 and we only have to treat the integration term on

Ap. Using Property (iii) of Wp, we know that the distance D(2q,Wp), for q 6= p, is

bounded from below by 2|p|. Therefore, if 2|p| > R, we obtains:

Ap =
⋃

q∈P\{p}
Vq∩Wp 6=∅

Vq ∩Wp ⊂
⋃

q∈P\{p}
Vq∩Wp 6=∅

Vq ∩BR(2q)c.

In addition, Property (iv) of Wp gives the existence of a constant C > 0 such that
the cardinality of the set of q satisfying Vq ∩Wp 6= ∅ is bounded by C. Estimate
(58) therefore implies that∫

Ap

|fp|2 ≤
∑

q∈P\{p}
Vq∩Wp 6=∅

∫
Vq∩BR(2q)c

|fp|2 ≤ Cε.

Since ε can be chosen arbitrarily small, we finally obtain lim
|p|→∞

∫
Ap

|fp|2 = 0, that

is

lim
|p|→∞

‖∇I1,p‖2L2(Vp) = 0.

We next prove that lim
|p|→∞

‖∇I2,p‖2L2(Vp) = 0. We split ∇I2,p in two parts such

that for every x ∈ Vp:

∇I2,p(x) =
∑
q∈P
q 6=p

∫
(Vq\Wp)∩BR(2q)c

∇x∇yGper(x, y)fp(y)dy

+
∑
q∈P
q 6=p

∫
(Vq\Wp)∩BR(2q)

∇x∇yGper(x, y)fp(y)dy

= J1,p(x) + J2,p(x).



HOMOGENIZATION WITH DEFECTS RARE AT INFINITY 577

We want to estimate ‖J1,p‖L2(Vp) and ‖J1,p‖L2(Vp). We proceed exactly in the
same way as in the previous proof (see the details of estimate (53)) and, using
estimate (58), we obtain the following inequalities:

‖J1,p‖L∞(Vp) ≤ C
1

2d|p|/2
sup
q∈P
‖fp‖L2(Vq∩BR(2q)c) ≤ C

1

2d|p|/2
ε, (59)

and

‖J2,p‖L∞(Vp) ≤ CRd
|p|

2|p|d
sup
q∈P
‖fp‖L2(Vq). (60)

To conclude, we consider P > 0 such that for every p ∈ P satisfying |p| > P , we
have:

Rd
|p|

2|p|d/2
< ε.

Therefore, for every |p| > P , we use (59) and (60) and we obtain:

‖∇I2,p‖L2(Vp) ≤ ‖J1,p‖L2(Vp) + ‖J2,p‖L2(Vp)

≤ |Vp|1/2
(
‖J1,p‖L∞(Vp) + ‖J2,p‖L∞(Vp)

)
≤ C2|p|d/2

(
1

2|p|d/2
ε+Rd

|p|
2|p|d

)
≤ Cε.

Since we can choose ε arbitrarily small, we conclude that lim
|p|→∞

‖∇I2,p‖L2(Vp) = 0.

Finally, by a triangle inequality we have lim
|p|→∞

‖∇up‖L2(Vp) = 0, that is ∇u ∈

B2(Rd)d.

Remark 4. It is important to note that the essential point of the two above proofs is

the convergence of the sums of the form
∑
q∈P

∫
Vq

1

|x− y|d
f(y)dy given in estimates

(44), (54) and (55). Although we use here the particular distribution of the 2p,
these convergence results are not specific to the set (9) considered in this study.
They are actually ensured by Assumptions (H1), (H2) and (H3), particularly by
the logarithmic bound given in Proposition 3 and Corollary 1. Indeed, with the
notations of Section 1.2 and given Assumptions (H1)-(H2)-(H3), we could similarly
argue to obtain estimates such as in (54)-(55) by splitting the sums over each

annulus An := A2n,2n+1 and studying
∑
n∈N

∑
xq∈G∩An

∫
Vxq

1

|x− y|d
f(y)dy. The results

of existence stated in this section therefore still hold if we consider a generic set G
satisfying our general assumptions.

Remark 5. In the two-dimensional context, the results of Lemmas 4.2, 4.3 and
4.4 remain true since estimates (36), (37) and (36) still hold. However the proof
requires some additional technicalities, in particular to prove that the function u
defined by (40) makes sense. In this case the series (45) does not actually converge
but it is still possible to prove that the series of the gradients (43) converges. Here,
the difficulty is to show that the limit of (43), denoted by T here, is the gradient
in a distribution sense of a solution to (35). To this end, it is actually sufficient to
show that ∂iTj = ∂jTi for every i, j ∈ {1, ..., d}. This result is obtained considering
the property of the limit of (43) in D(Rd).



578 RÉMI GOUDEY

4.3. Existence results in the general problem. Our aim is now to generalize
the results established in the case of periodic coefficients to our original problem
(31). Here, our approach is to prove in Lemma 4.5 the continuity of the linear

operator ∇ (− div a∇)
−1

div from B2(Rd)d to B2(Rd)d in order to apply a method
adapted from [8] and based on the connexity of the set [0, 1]. This method is used
in the proof of existence of Lemma 4.6. Finally, this result allows us to prove the
existence of a corrector stated in Theorem 1.1.

Actually, we could have proved Lemmas 4.5 and 4.6 simultaneously but, in the
interest of clarity, we first prove a priori estimate (61) and next, we establish the
existence result in the general case.

Lemma 4.5. There exists a constant C > 0 such that for every f in B2(Rd)d and
u solution in D′(Rd) to (31) with ∇u in B2(Rd)d, we have the following estimate:

‖∇u‖B2(Rd) ≤ C‖f‖B2(Rd). (61)

Proof. We give here a proof by contradiction using a compactness-concentration
method. We assume that there exists a sequence fn in B2(Rd)d and an associated
sequence of solutions un such that ∇un is in B2(Rd)d and:

−div((aper + ã)∇un) = div(fn), (62)

lim
n→∞

‖fn‖B2(Rd) = 0, (63)

∀n ∈ N ‖∇un‖B2(Rd) = 1. (64)

First of all, a property of the supremum bound ensures that for every n ∈ N, there
exists xn ∈ Rd such that:

‖∇un‖L2
unif
≥ ‖∇un‖L2(B1(xn)) ≥ ‖∇un‖L2

unif
− 1

n
.

Next, in the spirit of the method of concentration-compactness [20], we denote
ūn = τxnun, f̄n = τxnfn, ān = τxna and ¯̃an = τxn ã and we have for every n ∈ N:

‖∇un‖L2
unif
≥ ‖∇ūn‖L2(B1) ≥ ‖∇un‖L2

unif
− 1

n
. (65)

Next, for every n ∈ N, ūn is a solution to:

−div(ān∇ūn) = div(f̄n) in Rd.

Since the norm of L2
unif is invariant by translation, (63) and (64) ensure that f̄n

strongly converges to 0 in L2
unif (Rd) and that the sequence (∇ūn)n∈N is bounded

in L2
unif (Rd). Therefore, up to an extraction, ∇ūn weakly converges to a function

∇ū in L2
loc(Rd).

The idea is now to study the limit of ān. To start with, we denote

xn = (xn,i mod(1))i∈{1,...,d} .

Since aper is periodic, we have τxnaper = τxnaper. In addition, the sequence xn
belongs to the unit cube of Rd and, therefore, it converges (up to an extraction)
to x ∈ Rd. Since aper is Holder continuous, τxnaper converges uniformly to τxaper,

which also belongs to
(
L2
per(Rd) ∩ C0,α(Rd)

)d×d
.

In order to study the convergence of ¯̃an, we consider several cases depending on
xn:



HOMOGENIZATION WITH DEFECTS RARE AT INFINITY 579

1. If xn is bounded, it converges (up to an extraction) to xlim ∈ Rd. Then, since ã
is Holder-continuous, ¯̃an strongly converges in L2

loc(Rd) to τxlim ã ∈ B2(Rd)d×d.

2. If xn is not bounded, since (Vp)p∈P is a partition of Rd, there exists an un-

bounded sequence (pn)n in P such that xn = 2pn + tn with tn ∈ Vpn − 2pn .

– If tn is bounded, it converges (up to an extraction) to tlim ∈ Rd. In this
case, for any compact subset K of Rd, we have

‖¯̃an − ã∞(.+ tlim)‖L2(K) ≤ ‖ã(.+ 2pn + tn)− ã∞(.+ tn)‖L2(K)

+ ‖ã∞(.+ tn)− ã∞(.+ tlim)‖L2(K)

= ‖ã− τ−pn ã∞‖L2(K+2pn+tn)

+ ‖ã∞(.+ tn)− ã∞(.+ tlim)‖L2(K).

First, since tn is bounded and pn is unbounded, we have K+2pn+tn is in-
cluded in Vpn for n sufficiently large. Therefore, ‖ã−τ−pn ã∞‖L2(K+2pn+tn)

converges to 0 when n → ∞. Second, ã∞ is Holder-continuous and tn
converges to tlim. Thus, ã∞(. + tn) converges uniformly to ã∞(. + tlim)
and ‖ã∞(.+ tn)− ã∞(.+ tlim)‖L2(K) converges to 0. Finally, ¯̃an converges

to ã∞(.+ tlim) in L2(K) for every compact subset K.

– If tn is unbounded, we can always assume that |tn| → ∞ up to an extrac-
tion. We have for every K compact of Rd,

‖¯̃an‖L2(K) ≤ ‖ã(.+ 2pn + tn)− ã∞(.+ tn)‖L2(K) + ‖ã∞(.+ tn)‖L2(K)

= ‖ã− τ−pn ã∞‖L2(K+2pn+tn) + ‖ã∞‖L2(K+tn).

First, since ã∞ belongs to L2(Rd)d×d and tn is unbounded we have that
‖ã∞‖L2(K+tn) converges to 0 when n → ∞. Secondly, we introduce the
set W2pn defined as in Proposition 4. For every R > 0, the properties of
W2pn allow to show that there exists N ∈ N such that for all n > N , we
have K + 2pn + tn ⊂W2pn and:

K + 2pn + tn ⊂
⋃
q∈P

Vq∩W2pn 6=∅

Vq \BR(2q).

Using Proposition 4, we know that the number of q such that Vq∩W2pn is
not empty, is uniformly bounded with respect to n. Proposition 12 finally
ensures that ‖ã − τ−pn ã∞‖L2(K+2pn+tn) → 0. Therefore, ¯̃an strongly

converges to 0 in L2
loc(Rd).

In any case, the sequence aper+¯̃an therefore converges to a coefficient A = τxaper+

Ã, where Ã is of the form

Ã =

 τxlim ã ∈ B2(Rd)d×d, if xn is bounded,
τtlim ã∞ ∈ L2(Rd)d×d, if xn = 2pn + tn, pn is not bounded, tn is bounded,

0, if xn = 2pn + tn, pn and tn are not bounded.

In the three cases, as a consequence of Assumptions (12) and (13), the coefficient A is

clearly bounded, elliptic and belongs to
(
C0,α(Rd)

)d×d
. Moreover, as a consequence

of the uniform Holder-continuity (with respect to n) of ān −A, the convergence of
ān to A is also valid in L∞loc(Rd).
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The next step of the proof is to study the limit ∇ū of ∇ūn in these three cases.
First, since ān strongly converges to A in L2

loc(Rd), considering the weak limit in
(62) when n→∞, we obtain

−div(A∇ū) = 0 in Rd. (66)

We now state that ∇ū = 0. Indeed,

1. if xn is bounded, assumption (64) ensures that there exists a constant C > 0
such that for all n ∈ N and p ∈ P, we have:

‖∇ūn‖L2(Vp) = ‖∇un‖L2(Vp+xn) ≤ C.

Therefore, the property of lower semi-continuity satisfied by the norm ‖.‖L2

implies

∀p ∈ P, ‖∇ū‖L2(Vp) ≤ lim inf
n→∞

‖∇ūn‖L2(Vp) < C.

And we obtain sup
p
‖∇ū‖L2(Vp) <∞. Finally, since A is elliptic and bounded

and ū is solution to (66), the uniqueness results of Lemma 4.1 gives ∇ū = 0
on Rd.

2. if xn is not bounded, we know that xn = 2pn + tn where |pn| → ∞. For every
n ∈ N:

‖∇ūn‖L2(Vpn−xn) = ‖∇un‖L2(Vpn ) ≤ 1.

Up to an extraction, the sequence Vpn − xn is an increasing sequence of sets,

and we can show that
⋃
n∈N

(Vpn − xn) = Rd (see the proof of Proposition 2).

Consequently, for every R > 0, there exists N ∈ N such that BR ⊂ (VpN − xN )
and

∀n > N, ‖∇ūn‖L2(BR) ≤ 1.

Using again lower semi-continuity, we have for every R > 0:

‖∇ū‖L2(BR) ≤ lim inf
n→∞

‖∇ūn‖L2(BR) ≤ 1.

We obtain that ∇ū ∈ L2(Rd). Since A is bounded and elliptic, a result of
uniqueness established in [10, Lemma 1] finally ensures that ∇ū = 0.

We are now able to show that ∇ūn strongly converges to 0 in L2(B1). To this aim,
we note that, for every n, the addition of a constant to ūn does not affect ∇ūn.

Then, without loss of generality, we can always assume that

∫
B2

ūn = 0 and the

Poincaré-Wirtinger inequality gives the existence of a constant C > 0 independent
of n such that:

‖ūn‖L2(B2) ≤ C‖∇ūn‖L2(B2).

ūn is therefore bounded in H1(B2) according to Assumption (64). The Rellich
theorem ensures that, up to an extraction, ūn strongly converges to ū, that is to 0,
in L2(B2). Since ūn is solution to (62), a classical inequality of elliptic regularity
gives the following estimate (see for instance [15, Theorem 4.4 p.63]):∫

B1

|∇ūn|2 ≤ C
(∫

B2

|ūn|2 +

∫
B2

|f̄n|2
)
,
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where C depends only of a and the ambient dimension d. We therefore consider the
limit when n → ∞ to conclude that ∇ūn strongly converges to 0 in L2(B1). We
next use (65) and the strong convergence of ∇ūn to 0 in L2(B1) to conclude that

lim
n→∞

‖∇un‖L2
unif(Rd) = 0.

That is, ∇un strongly converges to 0 in L2
unif (Rd).

In order to conclude this proof, we will show that ∇un actually converges to 0
in B2(Rd) and obtain a contradiction.

First of all, we study the behavior of the sequence ∇un,∞. For p ∈ P, we consider
the 2p-translation of (62) and we have

−div((aper + τ−pã)τ−p∇un) = div(τ−pfn).

Letting |p| go to the infinity, for every n ∈ N, we obtain that ∇un,∞ is a solution
to:

−div((aper + ã∞)∇un,∞) = div(fn,∞) in Rd.
An estimate established in [8, Proposition 2.1], gives the existence of a constant
C > 0 independent of n such that:

‖∇un,∞‖L2(Rd) ≤ C‖fn,∞‖L2(Rd).

By assumption, we have lim
n→∞

‖fn,∞‖L2(Rd) = 0 and we deduce that ∇un,∞ strongly

converges to 0 in L2(Rd), that is:

lim
n→∞

‖∇un,∞‖L2(Rd) = 0.

The last step is to establish that:

lim
n→∞

sup
p
‖∇un‖L2(Vp) = 0.

Let ε > 0. Since ã belongs to
(
B2(Rd)

)d×d
and is uniformly continuous, a direct

consequence of Proposition 12 gives the existence of R > 0 such that:

∀q ∈ P, ‖ã‖L∞(Vq∩BR(2q)c) <
ε

2
.

In addition, since ∇un strongly converges to 0 in L2
unif , there exists N ∈ N such

that:

∀n > N, ‖∇un‖L2
unif(Rd) <

ε

2|BR|‖ã‖L∞(Rd)

.

Using the last two inequalities, we obtain for every q ∈ P:∫
Vq

|ã(x)∇un(x)|2dx ≤
∫
Vq∩BR(2q)c

|ã(x)∇un(x)|2dx

+

∫
Vq∩BR(2q)

|ã(x)∇un(x)|2dx

≤ ‖ã‖L∞(Vq∩BR(2q)c)

∫
Vq∩BR(2q)c

|∇un(x)|2dx

+ ‖ã‖L∞(Rd)

∫
Vp∩BR(2q)

|∇un(x)|2dx

≤ ‖ã‖L∞(Vq∩BR(2q)c) sup
p
‖∇un‖L2(Vp)

+ ‖ã‖L∞(Rd)|BR|‖∇un‖L2
unif(Rd)
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≤ ε

2
+
ε

2
= ε.

Therefore:

lim
n→∞

sup
p

∫
Vp

|ã(x)∇un(x)|2dx = 0.

We next consider equation (62) and we use Lemma 4.1 to ensure that, up to the
addition of a constant, un is the unique solution to:

−div(aper∇un) = div(fn + ã∇un) in Rd.
such that sup

p
‖∇un‖L2(Vp) < ∞. Then, estimate (41) established in Lemma 4.3

gives the existence of a constant C > 0 independent of n such that:

sup
p
‖∇un‖L2(Vp) ≤ C

(
sup
p
‖fn‖L2(Vp) + sup

p
‖ã∇un‖L2(Vp)

)
.

Letting n go to the infinity, we deduce that lim
n→∞

sup
p
‖∇un‖L2(Vp) = 0. We can

finally conclude that
lim
n→∞

‖∇un‖B2(Rd) = 0,

and, since ∇un satisfies (64), we have a contradiction.

Lemma 4.6. Let f ∈ B2(Rd)d, there exists u ∈ H1
loc(Rd) solution to (31) such that

∇u ∈ B2(Rd)d.

Proof. First of all, we remark that it is sufficient to prove this existence result

when f ∈
(
B2(Rd) ∩ C0,α(Rd)

)d
. Indeed, if we denote Φ = ∇ (− div a∇)

−1
div

the reciprocal linear operator from
(
B2(Rd) ∩ C0,α(Rd)

)d
to
(
B2(Rd)

)d
associated

with equation (31) and we assume that Φ is well defined, Lemma 4.5 ensures it is
continuous with respect to the norm of B2(Rd). Then, we are able to conclude in
the general case using the density result stated in Proposition 8. In the sequel of
this proof, we therefore assume that f belongs to C0,α(Rd)d.

To start with, we show a preliminary result of regularity satisfied by the solutions

to (31). Assuming f ∈
(
B2(Rd) ∩ C0,α(Rd)

)d
, we want to prove that a solution u

to (31) such that ∇u ∈ B2(Rd)d also satisfies ∇u ∈ C0,α(Rd)d. Indeed, if u is such
a solution to (31), a consequence of a regularity result established in [15, Theorem
5.19 p.87] (see also [14, Theorem 3.2 p.88]) gives the existence of C > 0 such that
for all x ∈ Rd:

‖∇u‖C0,α(B1(x)) ≤ C
(
‖∇u‖L2

unif (Rd) + ‖f‖C0,α(Rd)

)
. (67)

Therefore, ∇u belongs to
(
C0,α(Rd) ∩ B2(Rd)

)d
.

In the sequel of the proof, we use an argument of connexity adapted from [8].
Let P(a) the following assertion: “There exists a solution u ∈ D′(Rd) to:

− div (a∇u) = div(f) in Rd

such that ∇u ∈
(
B2(Rd) ∩ C0,α(Rd)

)d
.”

For t ∈ [0, 1], we denote at = aper + tã and we define the following set:

I = {t ∈ [0, 1] | ∀s ∈ [0, t],P(as) is true} .
Our aim is to show that P(a1) = P(a) is true. To this end, we will prove that I is
non empty, closed and open for the topology of [0, 1] and conclude that I = [0, 1].
I is not empty



HOMOGENIZATION WITH DEFECTS RARE AT INFINITY 583

For t = 0, the existence of a solution u such that ∇u ∈ B2(Rd)d is a direct
consequence of Lemma 4.4. We just have to use (67) to show the uniform Holder
continuity of the gradient of the solution.
I is open
We assume there exists t ∈ I and we will find ε > 0 such that [t, t+ ε] ⊂ I. For

f ∈
(
B2(Rd) ∩ C0,α(Rd)

)d
, we want to solve:

−div((at + εã)∇u) = div(f) in Rd, (68)

where ∇u ∈
(
B2(Rd) ∩ C0,α(Rd)

)d
. According to Proposition 9, for such a solution,

we have εã∇u ∈
(
B2(Rd) ∩ C0,α(Rd)

)d
. Next, we remark that equation (68) is

equivalent to:

∇u = Φt(εã∇u+ f), (69)

where Φt is the reciprocal linear operator associated with the equation when a = at.

Lemma 4.5 and estimate (67) imply the continuity of Φt from
(
B2(Rd) ∩ C0,α(Rd)

)d
to
(
B2(Rd) ∩ C0,α(Rd)

)d
for the norm ‖.‖B2(Rd) + ‖.‖C0,α(Rd). We fix ε such that:

ε
(
‖ã‖L∞(Rd) + ‖ã∞‖L∞(Rd)

)
‖Φt‖L((B2(Rd)∩C0,α(Rd))d) < 1.

Therefore g → Φt(εãg+f) ∈ L
((
B2(Rd) ∩ C0,α(Rd)

)d)
is a contraction in a Banach

space. Finally, we can apply the Banach fixed-point theorem to obtain the existence
and the uniqueness of a solution to (69) and we deduce that [t, t+ ε] ⊂ I.
I is closed
We assume there exist a sequence (tn) ∈ IN and t ∈ [0, 1] such that limn→∞ tn = t

and tn < t. For every tn, there exists un solution to:

−div(atn∇un) = f in Rd,

such that ∇un ∈ B2(Rd)d. For every n ∈ N, Lemma 4.5 gives the existence of a
constant Cn such that:

‖∇un‖B2(Rd) ≤ Cn‖f‖B2(Rd).

We first assume that Cn is bounded independently of n by a constant C > 0.
Therefore, up to an extraction, ∇un weakly converges to a gradient ∇u in L2

loc(Rd)
and, using the lower semi-continuity of the L2-norm, we have

‖∇u‖L2
unif (Rd) + sup

p
‖∇u‖L2(Vp) ≤ lim inf

n→∞
‖∇un‖L2

unif (Rd) + sup
p
‖∇un‖L2(Vp)

≤ C‖f‖B2(Rd).

In addition, for every n ∈ N, un is a solution to the equivalent equation:

−div(at∇un) = div(f + (atn − at)∇un). (70)

Next, since tn converges to t, we directly obtain that atn converges to at in B2(Rd).
In addition, since ∇un is bounded by a constant independent of n in L2

unif (Rd),
the sequence (atn − at)∇un strongly converges to 0 in L2

loc(Rd). We can therefore
consider the limit in (70) when n→∞ and deduce that u is a solution to:

−div(at∇u) = div(f).

We have to prove that ∇u ∈ B2(Rd). For every m, n ∈ N, un − um is a solution
to:

−div(at(∇un −∇um)) = div((atn − at)∇un − (atm − at)∇um),
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and we have the following estimate:

‖∇un −∇um‖B2(Rd) ≤ C‖(atn − at)∇un − (atm − at)∇um‖B2(Rd).

Therefore, ∇un is a Cauchy-sequence in B2(Rd)d and since this space is a Banach
space, we directly obtain that ∇u belongs to B2(Rd)d and we have the expected
result.

Now, we want to prove that Cn is bounded independently of n using a proof
by contradiction. We assume there exist two sequences fn and un such that ∇un
belongs to B2(Rd)d and:

−div(atn∇un) = div(fn) in Rd,
lim
n→∞

‖fn‖B2(Rd) = 0,

∀n ∈ N ‖∇un‖B2(Rd) = 1.

For every n ∈ N, the above equation is equivalent to:

−div(at∇un) = div(fn + (atn − at)∇un).

We can next remark that the boundedness of ∇un in B2(Rd) ensures that the
sequence (atn − at)∇un is strongly convergent to 0 in B2(Rd). Finally, we can
conclude exactly as in the proof of Lemma 4.5.

Since [0, 1] is a connected space, we can finally conclude that I = [0, 1]. In
addition, if u ∈ D′(Rd) is such that ∇u ∈ B2(Rd)d ⊂ L2

loc(Rd)d, the result of [12,
Corollary 2.1] finally ensures that u ∈ L2

loc(Rd).

In the above proof, we have proved the following result:

Corollary 4. Let f ∈
(
B2(Rd) ∩ C0,α(Rd)

)d
and u ∈ H1

loc(Rd) solution to (31) such

that ∇u ∈ B2(Rd)d. Then ∇u ∈ C0,α(Rd)d.

Remark 6. Again, we do not need the restriction that we did on the dimension
to prove the existence results stated in this section and we can easily generalize the
existence of a solution to (31) in a two-dimensional context.

4.4. Existence of the corrector. To conclude this section, we finally give a proof
of Theorem 1.1 and, therefore, we obtain the existence of a unique corrector solution
to (14) such its gradient belongs to L2

per(Rd)+B2(Rd). To this end, we remark that
corrector equation (14) is equivalent to a an equation of the form (31) and we use
the preliminary results of uniqueness and existence proved in this section.

Proof of theorem 1.1. Existence
Let p be in Rd. We want to find a solution to (14) of the form wper,p + w̃p where

wper,p is the unique periodic corrector (that is the unique periodic solution to the
corrector equation (14) when ã = 0) and such that ∇w̃p ∈ B2(Rd)d. First of all, we
remark that equation (14) is equivalent to:

−div((aper + ã)∇w̃p) = div(ã(p+∇wper,p)) in Rd.

It is well known that ∇wper,p ∈
(
L2
per(Rd) ∩ C0,α(Rd)

)d
and therefore, using the pe-

riodicity of ∇wper,p, we can easily show that ã(p+∇wper,p) ∈
(
B2(Rd) ∩ C0,α(Rd)

)d
.

Then, the existence of w̃p such that ∇w̃p ∈
(
B2(Rd) ∩ C0,α(Rd)

)d
is given by

Lemma 4.6 and Corollary 4. Since ∇w̃p ∈
(
B2(Rd) ∩ L∞(Rd)

)d
, the sub-linearity

at infinity of w̃p is a direct consequence of Proposition 11.
Uniqueness
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We assume there exist two solutions u1 and u2 to (14) such that ∇u1 and ∇u2

belong to
(
L2
per(Rd) + B2(Rd)

)d
. We denote v = u1 − u2 and we have ∇v =

gper + g̃ where gper ∈ L2
per(Rd)d and g̃ ∈ B2(Rd)d. For every q ∈ P, we have

τq∇v = gper + τq g̃ by periodicity of gper. Since g̃ belongs to B2(Rd)d, there exists
g̃∞ ∈ L2(Rd)d such that τq∇v converges in D′(Rd) to ∇v∞ = gper + g̃∞ when
|q| → ∞. In addition, considering the limit in equation (14), we obtain that v∞ is
a solution to:

−div((aper + ã∞)∇v∞) = 0 in Rd.

Since a satisfies assumption (12) and (13), the coefficient aper+ã∞ is a bounded and
elliptic matrix-valued coefficient. Therefore, the result established in [10, Lemma
1] allows us to conclude that gper = 0 and finally, that ∇v = g̃ ∈ B2(Rd)d. Since v
is a solution to:

− div((aper + ã)∇v) = 0 in Rd,

we use Lemma 4.1 to obtain that ∇v = 0 and the uniqueness is proved.

5. Homogenization results and convergence rates. In this section we use the
corrector, solution to (14) and defined in Theorem 1.1, to establish an homoge-
nization theory similar to that established in [6] for the periodic case with local
perturbations. In Proposition 13 we first study the homogenized equation associ-
ated with (1) and we conclude showing estimates (15) and (16) stated in Theorem
1.2.

5.1. Homogenization results. To start with, we determine here the limit of the
sequence uε of solutions to (1). In Proposition 13 below we show the homogenized
equation is actually the diffusion equation (3) where the diffusion coefficient a∗ is
defined by (5), that is the homogenized coefficient is the same as in the periodic
case when a = aper. This phenomenon is similar to the results established in [8] in
the case of localized defects of Lp(Rd). It is a direct consequence of Proposition 10
regarding the average of the functions in B2(Rd) which is satisfied by our perturba-
tions. The idea is that, on average, the perturbations belonging to B2(Rd) therefore
do not impact the periodic background.

Proposition 13. Assume Ω is an open bounded set of Rd, let f ∈ L2(Ω) and
consider the sequence uε of solutions in H1

0 (Ω) to (1). Then the homogenized (weak-
H1(Ω) and strong-L2(Ω)) limit u∗ obtained when ε→ 0 is the solution to (3) where
the homogenized coefficient is identical to the periodic homogenized coefficient (5).

Proof. We denote w = (wei)i∈{1,...,d}, the correctors given by Theorem 1.1 for
p = ei. The general homogenization theory of equations in divergence form (see for
instance [21, Chapter 6, Chapter 13]), gives the convergence, up to an extraction,
of uε to a function u∗ solution to an equation in the form (3). In addition, for all
1 ≤ i, j ≤ d, the homogenized matrix a∗ associated with a is given by:

[a∗]i,j = weak lim
ε→0

a(./ε)(Id +∇w(./ε)),

where the weak limit is taken in L2(Ω)d×d. By assumption, we have a = aper + ã

and we know that ∇wei = ∇wper,ei +∇w̃ei where ã ∈
(
B2(Rd) ∩ L∞(Rd)

)d×d
and

∇w̃ei ∈
(
B2(Rd) ∩ L∞(Rd)

)d
. Therefore, Corollary 2 ensures that |ã(./ε)| and
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|∇w̃ei(./ε)| converge to 0 in weak∗ − L∞ and, since aper and ∇wper are bounded,
we can deduce that:

weak lim
ε→0

aper(./ε)∇w̃(./ε) + ã(./ε)(Id +∇w(./ε)) = 0.

Consequently, we have

[a∗]i,j = weak lim
ε→0

aper(./ε)(Id +∇wper(./ε)) =
[
a∗per

]
i,j
.

This limit being independent of the extraction, all the sequence uε converges to u∗

and we have the equality a∗ = a∗per.

5.2. Approximation of the homogenized solution and quantitative esti-
mates. The existence of the corrector established in Theorem 1.1 allows to con-
sider a sequence of approximated solutions defined by uε,1 = u∗+ε

∑d
i=1 ∂iu

∗wi(./ε)
where for every i in {1, ..., d}, we have denoted wi = wei . Our aim here is to esti-
mate the accuracy of this approximation for the topology of H1(Ω). In particular,
we want to prove the convergence to 0 of the sequence Rε defined by:

Rε(x) = uε(x)− u∗(x)− ε
d∑
j=1

wj

(x
ε

)
∂ju
∗(x),

and specify the convergence rate in H1(Ω).
A classical method in homogenization used to obtain some expected quantitative

estimates consists in defining a divergence-free matrix (as a consequence of corrector
equation (14)) by

M i
k(x) = a∗i,k −

d∑
j=1

ai,j(x)(δj,k + ∂jwk(x)),

and to find a potential B which formally solves M = curl(B). Knowing that both
the coefficient a and ∇w belong to L2

per + B2(Rd), we can split M in two terms

and obtain M = Mper + M̃ ∈
(
L2
per(Rd) + B2(Rd)

)d×d
. Therefore, we expect to

find a potential of the same form, that is B = Bper + B̃. Rigorously, for every
i, j ∈ {1, ..., d}, we want to solve the equation:

−∆Bi,jk = ∂jM
i
k − ∂iM

j
k in Rd. (71)

The existence of a periodic potential Bper solution to Mper = curl(Bper) is well
known since, component by component, Mper is divergence-free. Here, the main dif-

ficulty is to show the existence of the potential B̃ associated with the B2-
perturbation. This result is given by the following lemma.

Lemma 5.1. Let M̃ =
(
M̃ i
k

)
1≤i,k≤d ∈

(
B2(Rd)

)d×d
such that div(M̃k) = 0 for

every k ∈ {1, ..., d}. Then, the potential B̃i,jk defined by:

B̃i,jk (x) = C(d)

∫
Rd

(
xi − yi
|x− y|d

M̃ j
k(y)− xj − yj

|x− y|d
M̃ i
k(y)

)
dy, (72)
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where C(d) > 0 is a constant associated with the unit ball surface of Rd, satisfies

∇B̃i,jk ∈ B2(Rd)d and for all i, j, k ∈ {1, ..., d}:

−∆B̃i,jk = ∂jM̃
i
k − ∂iM̃

j
k , (73)

B̃i,jk = −B̃j,ik , (74)

d∑
i=1

∂iB̃
i,j
k = M̃ j

k . (75)

In addition, there exists a constant C1 > 0 which only depends of the ambient
dimension d such that:

‖∇B̃‖B2(Rd) ≤ C1‖M̃‖B2(Rd). (76)

Proof. First, for every i, j, k ∈ {1, ..., d}, equation (73) is equivalent to an equation
of the following form:

−∆B̃i,jk = div
(
Mi,j

k

)
,

where Mi,j
k is a vector function defined by:

(
Mi,j

k

)
l

=


M̃ i
k if l = j,

−M̃ j
k if l = i,

0 else.

Since Mi,j
k ∈ B2(Rd)d, the existence of B̃ and estimate (76) are given by Lemmas

4.3, 4.4 and 4.5 (here aper ≡ 1). Equality (74) is a direct consequence of the defi-

nition of B̃. Property (75) can be easily obtained applying the divergence operator
to (72).

Corollary 5. The potential B = Bper + B̃, where B̃ is given by Lemma 5.1, is
the expected potential solution to (71). In addition, the couple (M,B) satisfies the
following equalities:

Bi,jk = −Bj,ik ,

d∑
i=1

∂iB
i,j
k = M j

k .

Now that existence of the potential B has been dealt with, we can remark that
Rε is a solution to the following equation:

−div
(
a
(x
ε

)
∇Rε

)
= div(Hε) in Ω, (77)

where:

Hε
i (x) = ε

d∑
j,k=1

ai,j

(x
ε

)
wk

(x
ε

)
∂j∂ku

∗(x)− ε
d∑

j,k=1

Bi,jk

(x
ε

)
∂j∂ku

∗(x). (78)

For a complete proof of equality (77), we refer to [6, Proposition 2.5].
To conclude, we have to study the properties of Hε. In particular, we next

prove that both the corrector w̃ and the potential B̃ are bounded. This property is
essential for establishing the estimates of Theorem 1.2.

Lemma 5.2. The corrector w = (wi)i∈{1,...,d} defined by Theorem 1.1 and the

potential B solution to (71) are in L∞(Rd).
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Proof. First, it is well known that both wper and Bper belong to L∞(Rd). Next, for
all i ∈ {1, ..., d}, w̃i solves:

−div (aper∇w̃i) = div (ã (ei +∇wper,i +∇w̃i)) .

We know the gradient of the corrector defined in Theorem 1.1 is in C0,α(Rd)d.
A direct consequence of Assumption (13) and Proposition 9 ensures that f =

ã (ei +∇wper,i +∇w̃i) belongs to
(
L∞(Rd) ∩ B2(Rd)

)d
and the results of unique-

ness and existence established in Lemmas 4.1 and 4.4 imply we have the following
representation:

w̃i(x) =

∫
Rd
∇yGper(x, y)f(y)dy.

We want to prove that the integral is bounded independently of x. We take x ∈ Rd
and denote px the unique element of P such that x ∈ Vpx . We define Wpx = W2px

such as in Proposition 4 and we split the integral in three parts:∫
Rd
∇yGper(x, y)f(y)dy =

∫
B1(x)

∇yGper(x, y)f(y)dy

+

∫
Wpx\B1(x)

∇yGper(x, y)f(y)dy

+

∫
Rd\Wpx

∇yGper(x, y)f(y)dy = I1(x) + I2(x) + I3(x).

We start by finding a bound for I1(x). To this end, we use estimate (36) for the
Green function and we obtain

|I1(x)| ≤ ‖f‖L∞(Rd)

∫
B1(x)

|∇yGper(x, y)| dy

≤ C‖f‖L∞(Rd)

∫
B1(x)

1

|x− y|d−1
dy ≤ C‖f‖L∞(Rd).

Where C denotes a positive constant independent of x. Indeed, the value of the
integral in the last inequality depends only of the dimension d.

Next, using Proposition 4, we know there exists C1 > 0 and C2 > 0 independent
of x such that Wpx ⊂ BC12px (x) and the number of q ∈ P such that Vq ∩Wpx 6= ∅
is bounded by C2. Therefore, using the Cauchy-Schwarz inequality, we have:

|I2(x)| ≤
∫
Wpx\B1(x)

1

|x− y|(d−1)
|f(y)|dy

≤

(∫
Wpx\B1(x)

1

|x− y|2(d−1)
dy

)1/2(∫
Wpx\B1(x)

|f(y)|2dy

)1/2

≤ C2

(∫
BC12px (x)\B1(x)

1

|x− y|2(d−1)
dy

)1/2

sup
p∈P
‖f‖L2(Vq).

In addition since d > 2, we have:∫
BC12px (x)\B1(x)

1

|x− y|2(d−1)
dy =

∫
BC12px (0)\B1(0)

1

|y|2(d−1)
dy

≤ C
(

1− 1

2|px|(d−2)

)
,
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and therefore:

I2(x) ≤ C
(

1− 1

2|px|(d−2)

)1/2

≤ C.

Finally, to bound I3(x) we split the integral on each cell Vq for q ∈ P. Using the
Cauchy-Schwarz inequality, we obtain:

|I3(x)| ≤
∑
q∈P

∫
Vq\Wpx

|∇yGper(x, y)f(y)| dy

≤
∑
q∈P

(∫
Vq\Wpx

|∇yGper(x, y)|2 dy

) 1
2
(∫

Vq\Wpx

|f(y)|2 dy

) 1
2

≤ ‖f‖B2(Rd)

∑
q∈P

(∫
Vq\Wpx

|∇yGper(x, y)|2 dy

) 1
2

.

We proceed exactly as in the proof of Lemma 4.3 (see the proof of estimate (53)
for details) to obtain:

∑
q∈P

(∫
Vq\Wpx

|∇yGper(x, y)|2 dy

) 1
2

≤ C
∑
q∈P

(∫
Vq\Wpx

1

|x− y|2(d−1)
dy

) 1
2

≤ C
∑
q∈P

1

2|q|(d−2)/2
<∞.

Finally we have bounded the integral independently of x and we deduce that
w̃i ∈ L∞(Rd). With the same method we obtain the same result for B = Bper + B̃
which allows us to conclude.

Remark 7. The assumption d > 2 is essential in the above proof and the bound-
edness of w̃ in L∞(Rd) may be false if d = 1 or d = 2. If d = 1 we give a
counter-example in Remark 9. The case d = 2 is a critical case and we are not able
to conclude. This phenomenon is closely linked to the critical integrability of the
function |x|−1 in L2(R2).

Remark 8. As in the proofs of Lemmas 4.3 and 4.4, the above proof strongly
uses the specific behavior of the Green function Gper and our approach consists

in showing the convergence of a sum of the form
∑
q∈P

∫
Vq

1

|x− y|d−1
f(y)dy. Here,

we explicitly use the geometric properties satisfied by the 2p but, once again, this
convergence is not specific to the set (9) and also holds under the generality of (H1),
(H2) and (H3). We refer to Remark 4 for additional details.

We are now able to give a complete proof of Theorem 1.2.

Proof of Theorem 1.2. First, we use the explicit definition of Hε given by (78) and
a triangle inequality to obtain the following estimate:

‖Hε‖L2(Ω) ≤
(
1 + ‖a‖L∞(Rd)

)
‖D2u∗‖L2(Ω)

(
‖εw(./ε)‖L∞(Ω) + ‖εB(./ε)‖L∞(Ω)

)
.

Applying Lemma 5.2, we obtain the existence of C > 0 independent of ε such that

‖Hε‖L2(Ω) ≤ Cε‖D2u∗‖L2(Ω). (79)
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Next, we use the following two estimates satisfied by Rε:

‖Rε‖L2(Ω) ≤C1ε(‖w(./ε)‖L∞(Ω) + ‖B(./ε)‖L∞(Ω))‖f‖L2(Ω)

+ C1‖Hε‖L2(Ω),
(80)

and for every Ω1 ⊂⊂ Ω:

‖∇Rε‖L2(Ω1) ≤ C2

(
‖Hε‖L2(Ω) + ‖Rε‖L2(Ω)

)
, (81)

where C1 > 0 and C2 > 0 are independent of ε. These estimates are established for
instance in [6] where the authors use the elliptic regularity associated with equa-
tion (77) and the properties of the Green function associated with the operator
−div(a∗∇.) on Ω with homogeneous Dirichlet boundary condition. The first es-
timate is established in the proof of [6, Lemma 4.8] and the second estimate is a
classical inequality of elliptic regularity proved in [6, Proposition 4.2] and applied
to equation (77).

In addition, an application of elliptical regularity to equation (3) provides the
existence of C3 > 0 such that:

‖u∗‖H2(Ω) ≤ C3‖f‖L2(Ω). (82)

To conclude we use Lemma 5.2 to bound w and B and estimates (79), (80), (81)
and (82). We finally obtain:

‖Rε‖L2(Ω) ≤ Cε‖f‖L2(Ω),

and

‖∇Rε‖L2(Ω1) ≤ C̃ε‖f‖L2(Ω),

where C and C̃ are independent of ε. We have proved Theorem 2.

Remark 9. In the one-dimensional case, that is when d = 1, we are not able to
conclude in the same way. With an explicit calculation, we obtain:

(uε)′(x) = (aper + ã)
−1

(x/ε) (F (x) + Cε) ,

(u∗)′(x) = (a∗)
−1

(F (x) + C∗) ,

w(x) = −x+ a∗
∫ x

0

1

aper(y)
dy − a∗

∫ x

0

ã

aper (aper + ã)
(y)dy,

where:

F (x) =

∫ x

0

f(y)dy,

Cε = −
(∫ 1

0

(aper + ã)−1(y/ε)

)−1 ∫ 1

0

(aper + ã)−1(y/ε)F (y)dy,

C∗ = −
∫ 1

0

F (y)dy.

In this case,

wper(x) = −x+ a∗
∫ x

0

1

aper(y)
dy,

and

w̃(x) = −a∗
∫ x

0

ã

aper (aper + ã)
(y)dy,
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and we can show the corrector w is not necessarily bounded. However, the results
of Proposition 10, allow us to obtain the following estimate:

‖ (Rε)
′ ‖L2(Ω) ≤ Cε

1
2 |log(ε)|

1
2 .

As an illustration, we can consider Ω =]0, 1[, aper = 1 and ã =
∑
p∈Z

τ−2pϕ, where ϕ

is a positive function of D(R), ‖ϕ‖L∞ = 1,

∫
R
ϕ > 0 and Supp(ϕ) ∈ [0, 1/2]. With

these parameters, for every x ∈ Ω, we have:

|w̃(x/ε)| =
∫ x/ε

0

ã

1 + ã
(y)dy ≥ 1

2

∑
0≤p<[log2(x/ε)]

∫ 1/2

0

ϕ
ε→0−→ +∞.

And therefore, the corrector is actually not bounded.

Remark 10. The result of Theorem 1.2 ensures that the corrector introduced
in Theorem 1.1 allows to precisely describe the behavior of the sequence uε in H1

using the approximation defined by uε,1 = u∗+ε

d∑
i=1

∂iu
∗wi(./ε). However, since the

perturbations of B2(Rd) are “small” at the macroscopic scale (in the sense of average
given by (25)), we can naturally expect that it is also possible to approximate uε

in H1 considering the sequence uε,1per := u∗ + ε

d∑
i=1

∂iu
∗wper,i(./ε) which only uses

the periodic part wper of our corrector. To this aim, we can show that uε − uε,1per is
solution to

− div
(
a
( .
ε

)
∇(uε − uε,1per)

)
= div

(
Hε
per

)
on Ω,

where the right-hand side

Hε
per := −a

( .
ε

)(
∇
(
uε − uε,1

)
+ ε

d∑
i=1

∇∂iu∗w̃i(./ε) +

d∑
i=1

∂iu
∗∇w̃i(./ε)

)
, (83)

strongly converges to 0 in L2 when ε → 0. A method similar to that used in the
proof of Theorem 1.2 therefore allows to show the convergence to 0 of uε−uε,1per inH1.
It follows, at the macroscopic scale, that the choice of our adapted corrector instead
of the periodic corrector seems to be not necessarily relevant in order to calculate
an approximation of uε in H1. However, the choice of the periodic corrector is not
adapted if the idea is to approximate the behavior of uε at the microscopic scale ε.
Indeed, at this scale, the perturbations of the periodic background can be possibly
large and it is necessary to consider a corrector that take these perturbations into
account. Particularly, if Hε

per is the function defined by (83), we can easily show
that Hε

per(ε.) does not converge to 0 in any ball BR such that εBR ⊂ Ω, which

formally reflects a poor quality of the approximation of uε by uε,1per at the scale
ε. This fact particularly motivates the choice of our adapted corrector in order to
approximate uε. We refer to [17] for a rigorous formalization of the above argument.
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