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Abstract. This paper investigates the mathematical modeling and the sta-

bility of multi-lane traffic in the microscopic scale, studying a model based on

two interaction terms. To do this we propose simple lane changing conditions
and we study the stability of the steady states starting from the model in the

one-lane case and extending the results to the generic multi-lane case with the
careful design of the lane changing rules. We compare the results with numer-

ical tests, that confirm the predictions of the linear stability analysis and also

show that the model is able to reproduce stop & go waves, a typical feature of
congested traffic.

1. Introduction. In this paper we deal with microscopic modeling of traffic flow,
focusing on lane changing dynamics. In particular we study a second order model
for one lane that combines two different interaction terms and we describe the
extension to the multi-lane case giving particular attention at the two-lane case.

1.1. Related work. The interest in the dynamics of traffic flow dates back to the
first half of the twentieth century and the related mathematical literature is quite
large. An overall view can be found, for instance, in the book by Haberman [10]
and in the survey paper by Helbing [11].

There are various points of view for modeling traffic flow. In this paper we
concentrate on the microscopic approach that is based on the dynamics of individual
vehicles considering the individual behaviour of each driver. A typical microscopic
model is the Car Following model or Follow the Leader model (FtL) based on the
idea that the dynamics of each vehicle (follower) depends on the vehicle in front
(leader) and therefore the other vehicles do not affect it. These models are normally
for single-lane roads [4, 6, 14]. A typical Follow the Leader model can be described
as follows. In a single-lane with N vehicles where overtaking is not allowed, we
are interested in study the position xn(t) and the velocity vn(t) of each vehicle
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n = 1, . . . , N at different times t. This dynamics can be described by a system of
ordinary differential equations:

ẋn(t) = vn(t) n = 1, . . . , N

v̇n(t) = a(xn(t), xn+1(t), vn(t), vn+1(t)) n = 1, . . . , N − 1

v̇N = w(t)

(1)

where a(·) is a given acceleration function and w(·) is the dynamics of the leader
vehicle, independent from the other vehicles (followers).

Many single-lane car following models have been developed and applied to study
traffic dynamics. Here we recall some models that will be useful in the following.

The Follow the Leader model, introduced in [26, 27], assumes that each vehicle
modifies its velocity based on the distance (headway) xn+1−xn to the vehicle ahead,
the n+ 1-th, and to the difference in velocities between its own velocity vn and the
velocity of the vehicle ahead vn+1, multiplied by appropriate coefficients βn. This
model can be described by the following system{

ẋn(t) = vn

v̇n(t) = βn
vn+1−vn

(xn+1−xn)2
. (2)

The optimal velocity model (OVM) of Bando et al. [3, 2] in which a driver
aims to a desired velocity function V that depends on the headway with the vehicle
ahead. The equation of this model is given by{

ẋn(t) = vn

v̇n(t) = αn(V (xn+1 − xn)− vn)
(3)

with appropriate coefficients αn.
We mention also some interesting works. Pipes proposed [25] a traffic model

in which each vehicle maintains a certain prescribed “following distance” from the
preceding vehicle; the generalized force model (GFM) by Helbing and Tilch [13] in
which the optimal velocity function is obtained calibrating the parameters with the
observed data; the full velocity difference model (FVDM) by Jiang et al. [17] that
predicts delay time of car motion and kinematic wave speed at jam density; the
optimal velocity difference model (OVDM) by Peng et al. [24] where a new term is
introduced involving the optimal velocity functions and the vehicles n, n+ 1, n+ 2.
Aw et al. [1] studied the derivation of a continuum model starting from the FtL
model. We mention an analytical study for the OVM with a stepwise specification
of the optimal velocity function and a simple kind of perturbation in [12].

Another type of microscopic model is given by lane changing models which pro-
vide for the possibility of changing lanes according to the analysis of some factors
that intervene in the decision process, for example the need, opportunity and safety
of a lane change [7, 29]. The interest in modeling vehicle lane changing is due
to the effects that it induces in traffic flow, for instance in bottleneck discharge
rate and in the stop & go oscillations. Here we recall some works. Cassidy and
Rudjanakanoknad [5] showed that when traffic density upstream of a busy merge
increases beyond a critical value, vehicles manoeuvre toward faster lanes causing
traffic breakdown and “capacity drop” of the road; Zheng et al. [30] showed that lane
changing are responsible for transforming subtle localized oscillations to substan-
tial disturbances; Klar and Wegener [21, 20] developed a model based on reaction
thresholds from which they derived a kinetic model; Song and Karni [28] proposed
a macroscopic model in which the acceleration terms take lead from microscopic
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car-following models, and yield a non-linear hyperbolic system with viscous and re-
laxation terms; Herty et al. [15] proposed a macroscopic model, which accounts for
lane-changing on motorway, based on a two-dimensional extension of the Aw and
Rascle and Zhang macroscopic model for traffic flow; Gong et al. [9] presented a
finite dimensional hybrid system based on the continuous Bando-Follow-the-Leader
dynamics coupled with discrete events due to lane changing; Goatin and Rossi [8]
developed a macroscopic model for multi-lane road networks with discontinuities
both in the speed law and in the number of lanes; Hodas and Jagota presented in
[16] a microscopic model for multi-lane dynamics where each car experiences a force
resulting from a combination of the desire of the driver to attain a certain velocity
and change of the force due to cars interactions; Kesting et al. [19] proposed a
general model to derive lane changing rules for discretionary and mandatory lane
changes for a wide class of car following models; Lv et al. in [22] extended the
continuous single-lane models to simulate the lane changing behaviour on an urban
roadway with three lanes and in [23] proposed a model where lane changing is not
instantaneous but is a continuing process which can affect the following cars; Zheng
et al. in [31] analysed the effects of lane changing in the driver behaviour.

1.2. Goal and paper organization. This paper proposes the study of a second
order microscopic model combining models 2 and 3 for reproducing traffic flow and
its extension to the multi-lane case with simple lane changing conditions in order to
study its stability under perturbations . In Section 2 we introduce the model for a
single-lane and we study its stability in the linearized case, then we show numerical
tests making comparisons with model 3. In section 3 we describe the extension of
the model to the two-lane case studying its stability around the equilibrium when
a lane is perturbed. We present some numerical tests that confirm the predictions
of the linear stability analysis. Finally, in section 4, we illustrate the generalization
of the model to the generic multi-lane case.

2. Single-lane model.

2.1. Description. In this section we describe the main mathematical model we use
in this paper. Consider a homogeneous population of N ∈ N vehicles, and denote
by xn = xn(t) and vn = vn(t) the position and the velocity of the n-th vehicle at
time t ∈ R+. We want to describe the traffic flow in a road with a single-lane where
overtaking is not allowed.

The dynamical equations of the system are obtained combining two interaction
terms. The first one is the interaction term related to the model 3 [2, 3]. It
is a relaxation term towards a desired velocity function V (·) that depends only
on the headway ∆xn = xn+1 − xn > 0 between the vehicle n and the vehicle
ahead with index n + 1, as shown in Fig. 1. The acceleration of each vehicle
is regulated by the difference between its velocity and the optimal velocity. The
optimal velocity function is typically a monotonically increasing function of the
headway and it is bounded. It tends to zero for small headways and to a maximum
value V max for large headways. Furthermore we assume that V is non-negative.
This term is multiplied by a parameter αn denoting the speed of response of each
driver, with dimensions one over time. The second term is the classical Follow-the-
Leader interaction term [26, 27] from model 2, multiplied by a parameter βn with
dimensions length square over time. In this term the acceleration of a vehicle is
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directly proportional to the difference between the velocity of the vehicle in front
and its own and is inversely proportional to their mutual distance.

Since we are considering identical vehicles we assume αn = α and βn = β for all
n = 1, . . . , N .

The model is given byẋn = vn

v̇n = α(V (∆xn)− vn) + β
∆vn

(∆xn)2

(4)

with ∆xn = xn+1 − xn and ∆vn = vn+1 − vn.
In our study we usually refer to a circular road which means to solve 4 with

periodic boundary conditions, in this way the vehicle with index n = N+1 coincides
with vehicle with index n = 1. If we deal with a straight road we simply add an
equation describing the dynamics of the leader vehicle, which must be known.

. . . . . .1 n− 1 n+ 1n N →

Figure 1. Vehicles in single-lane road.

2.2. Stability. Let us characterize the equilibrium for the single-lane model.

Proposition 1. The equilibrium of the system 4 is given if all vehicles are equally
spaced and move with the same constant velocity.

In fact, let us indicate with h = L
N the constant spacing of two successive vehicles,

where L > 0 is the length of the road. Then solving 4 with initial conditions{
xn+1(0)− xn(0) = h

vn(0) = V (h) for n = 1, . . . , N
(5)

with xN+1(·) = x1(·) by boundary conditions, we easily obtain the solution of the
system that represents the steady state described above:

x̄n(t) = hn+ V (h)t. (6)

Note that the equation depends parametrically by the given number N of vehicles
which is constant due to the periodic boundary conditions.

Now we study the stability of model 4 around the equilibrium 6 by linearizing
the original system. Let yn be a small perturbation from the steady state 6 and
consider

xn = x̄n + yn. (7)

Disregarding terms higher than O(y2
n) we obtain the linearized equation of 4

ÿn = α(V ′(h)∆yn − ẏn) + β
∆ẏn
h2

(8)

where ∆yn = yn+1 − yn and ∆ẏn = ẏn+1 − ẏn, again vehicle with index n = N + 1
coincides with the vehicle with index n = 1.

We solve 8 looking for solutions

yk(n, t) = exp{iakn+ zt} (9)



STABILITY ANALYSIS OF MULTILANE MICROSCOPIC TRAFFIC MODELS 499

where eiakn is the Fourier coefficient with ak = 2π
N k, k = 0, . . . , N − 1 and z ∈ C.

Substituting in 8 we obtain an equation for z = u+ iv

z2 + z

(
α− β

h2
(eiak − 1)

)
− αV ′(h)(eiak − 1) = 0. (10)

If the amplitude of yk(n, t) blows up in time then the solution is unstable, so in
order to find stable solutions we require that <(z) = u < 0.

Let us write the two solutions of 10 as zj = uj+ivj for j = 1, 2, then the following
relations holds:

<(z1 + z2) = u1 + u2 = −α+ β
h2 (cos(ak)− 1)

=(z1 + z2) = v1 + v2 = β
h2 sin(ak)

<(z1 · z2) = u1 · u2 − v1 · v2 = −αV ′(h)(cos(ak)− 1)
=(z1 · z2) = u1 · v2 − v1 · u2 = −αV ′(h) sin(ak).

The boundary of the stability region is obtained when u1 = 0 then

v1 =
−αV ′(h) sin(ak)

−α+ β
h2 (cos(ak)− 1)

.

After some algebraic manipulations we get

V ′(h) =
α

2 cos2
(
ak
2

) +
β

h2
+ 2 tan2

(ak
2

)
· β
h2

(
β

αh2
+ 1

)
. (11)

We can study this problem with polar coordinates in the (αk, V
′(h)) plane as

shown in Fig. 2. The plane (V ′(h), ak) can be divided into two regions: a stable
region (u < 0) and an unstable one (u > 0) by the critical curve u(ak, V

′(h)) = 0
express by 11. We observe that equation 11 coincides with the curve found in [3]
if β = 0. The curve 11 is represented by the red line while the black curve is the
critical curve of model 3.

Figure 2. Red: curve 11 in the (αk, V
′(h)) polar coordinate plane.

Black: critical curve of model 3.

Thus we have proved the following result.
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Proposition 2. If

V ′(h) <
α

2
+

β

h2
(12)

the steady state 6 of model 4 is stable, because for all k we have u < 0; if V ′(h) =
α
2 + β

h2 we have a marginal state; while for V ′(h) > α
2 + β

h2 the model is unstable,
because there exists at least one index k such that u > 0.

For β = 0 the condition 12 is consistent with the stability condition derived in
[3]. Remembering that h = L

N the previous condition expresses that we gain more
stability with a large number of vehicles.

2.3. Numerical tests. Now we present some numerical tests of model 4 using the
Runge Kutta 5 method, with time step ∆t = 0.1 s.

Let us fix α = 1 s−1, β = 100 m2/s, L = 1500 m, and consider the desired
velocity function expressed by

V (∆x) = max{0, VHT (∆x)} (13)

see Fig 3, where

VHT (∆x) = V1 + V2 tanh(C1(∆x− lc)− C2) (14)

is the function given by Helbing and Tilch in [13] where they carried out a calibration
of model 3 respect to the empirical data, obtaining the optimal parameter values
V1 = 6.75 m/s, V2 = 7.91 m/s, C1 = 0.13 m−1, C2 = 1.57 and lc = 5 m is the
length of the vehicles. Velocity parameters V1, V2 determine the minimum expected
speed V1−V2 and the maximal expected speed V1 +V2, while C1, C2 are calibration
parameters. Thus V max = 14.66 m/s.
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Figure 3. V (·) function.

From condition 12 we obtain that the model 4 with velocity 13 is stable if h <
10.14 m and h > 24 m as shown in Fig.4. In terms of number of vehicles along the
circular road we have stability for N < 68 and N > 100. Note that, with the same
parameters, the model 3 is stable for N < 62 and N > 147.
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Figure 4. V ′(·) function in blue, model 4 stability condition in
red, model 3 stability condition in black.

In the next two simulations we show a comparison between model 4 and model 3,
perturbing the system adding or removing a vehicle. The initial number of vehicles
is chosen in such a way that the model 4 is stable while the model 3 is unstable
according their stability condition.

2.3.1. Test 1: Adding one vehicle in the road. In this simulation we consider N =
120 vehicles at the equilibrium 6, equispaced with distance L

N = 12.5 m and with

velocities equal to V ( LN ). At time t = 0 s we perturb the system adding a one new

vehicle inserting it in the position 1
2 (xN + L) with initial velocity equal to V ( LN ).

The final time is T = 1000 s.
Model 4:
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Figure 5. On the left: all vehicles trajectories, on the right: ve-
locity of vehicle 1.

Model 3:
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Figure 6. On the left: all vehicles trajectories, on the right: ve-
locity of vehicle 1.
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We can see how the perturbation is absorbed in the in first model while it causes
a creation of stop & go waves in the second model.

2.3.2. Test 2: Removing one vehicle from the road. In this simulation we consider
again N = 120 vehicles at the equilibrium 6, equispaced with distance L

N and with

velocities equal to V ( LN ). At time t = 0 s we perturb the system removing one
vehicle choosing the one with index N . We set the final time T = 1000 s.

Model 4:
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Figure 7. On the left: all vehicles trajectories, on the right: ve-
locity of vehicle 1.

Model 3:
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Figure 8. On the left: all vehicles trajectories, on the right: ve-
locity of vehicle 1.

Also in this test we can observe the differences when a perturbation occurs in
the two models.

2.3.3. Test 3: Stop & go waves. In this simulation we start with N = 90 vehicles at
the equilibrium 6, equispaced with distance L

N ' 16.66 m and with velocities equal

to V ( LN ). At time t = 0 s we perturb the system adding a new vehicle as in the
previous simulations. We set T = 1000 s.
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Model 4:
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Figure 9. On the left: all vehicles trajectories, on the right: ve-
locity of vehicle 1.

Model 3:
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Figure 10. On the left: all vehicles trajectories, on the right:
velocity of vehicle 1.

An example of instability for both models is reported. Although stop & go waves
occur we can appreciate the differences in the oscillations of the velocity in the two
models and the lack of region with zero speed in model 4.

3. Two-lane model.

3.1. Description. Here we study the extension of model 4 to a road with two
lanes, where lane changing is allowed: lane 1 is the driving lane, while lane 2 is the
fast lane. We consider a single population of homogeneous vehicles and we assume
that the coefficients α, β are the same for both lanes and for all vehicles.

Let N be the total number of vehicles in the road and Nj = Nj(t) the number
of vehicles in lane j = 1, 2 at time t; we have for all t, N1(t) + N2(t) = N ; we
recall we are assuming periodic boundary conditions. Each vehicle is identified by
an index n ∈ {1, . . . , N}, and it is associated with a vector Nn = (j, p1

n, p
2
n, s

1
n, s

2
n)

whose components are: the current index lane j ∈ {1, 2}, and the indices sjn of the
vehicle in front of vehicle n in the lane j (successive vehicle) and pjn of the vehicle
behind vehicle n in the lane j (previous vehicle) as shown in Fig. 11. If the n-th
vehicle does not have a successive or a previous vehicle in lane j we set sjn = −1 or
pjn = −1 respectively. In other words, the index −1 signifies that there is no such
vehicle; for instance s1

n = −1 means that the vehicle n has no vehicle in front in
lane 1. Whenever a lane change occurs, e.g. if the n-th vehicle changes lane, the
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vectors Nk for k ∈ {n, s1
n, s

2
n, p

1
n, p

2
n} affected by the change are updated with the

new indices.

lane 1

lane 2

p1
n

p2
n

s1
n

s2
n

n

Figure 11. Components of the vector Nn, containing information
on cell neighbours of the n-th vehicle.

Assuming that vehicle n is currently in lane j then ∆xjn = xsjn − xn and ∆vjn =
vsjn−vn denote the difference of positions and the difference of the velocities between

vehicle n and its successive in the same lane. Moreover we denote with Ij(t) = Ij
the set of indices of vehicles ordered by their position in lane j at time t. Note that
it is sufficient to update this set only after each lane changing.

The model can be written for j = 1, 2 as
ẋn = vn

v̇n = α(Vj(∆x
j
n)− vn) + β

∆vjn

(∆xjn)2
n ∈ Ij

+ lane changing conditions

(15)

where Vj(·) is the desired velocity function for lane j = 1, 2 with V max2 ≥ V max1 . In
particular we assume that the velocity functions are equal to zero up to a security
distance, then they monotonically increase up to their maximum value:

V1(∆x) = V2(∆x) = 0 ∆x 6 ds (security distance)
V1(∆x) 6 V2(∆x) otherwise.

(16)

The parameter ds is a fixed security distance that must be held by the vehicles in
order to avoid collisions.

The lane changing rules are based according essentially on two criteria: a vehicle
may change lane if it would travel at a faster speed in the new lane, which means that
is would have a higher acceleration (incentive criterion); and the changing action
must be safe in order to avoid collisions with the vehicles in the adjacent lane, which
means to held the security distance in every movement (security criterion).

For simplicity we introduce the compact notations:

d(n,m) = xm − xn, aj(n,m) = α(Vj(d(n,m))− vn) + β
vm − vn

(d(n,m))2
(17)

to denote the difference of positions between vehicles with indices n and m, and the
acceleration of vehicle n where vehicle m is its successive vehicle in lane j.

Thus the lane changing rules from lane j to lane j′ can be expressed as

aj′(n, s
j′

n ) > aj(n, s
j
n) (incentive criterion)

d(n, sj
′

n ) > ds and d(pj
′

n , n) > ds (security criterion)
(18)

In particular cases we have:

• if sj
′

n = −1 we consider only the security criterion;

• if pj
′

n = −1 we consider only the incentive criterion;

• if sj
′

n = −1 and pj
′

n = −1 we decide to change lane;
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• if sjn = −1 we decide to do not change lane.

Note that in this model lane changes are instantaneous and the velocity of the
vehicle remains the same after the changing action. The vehicles following in the
new lane adjust their velocities according to the distance from the new vehicle.

In order to reproduce a realistic description of traffic flow, we introduce a physi-
cal timer for lane changing because, as reported by experimental studies [18], lane
changing is not frequent. In other words, although a vehicle might have the oppor-
tunity and the advantage in changing lane, most often drivers prefer not to change
lane. Therefore we set an expected number of lane changes per second Nc and we
pick randomly Nc vehicles per second uniformly distributed on the set of vehicles.

3.2. Stability. In the following we will use to this characterization of a steady
state of model 15.

Proposition 3. A steady state of model 15 is obtained when both lanes are in
equilibrium and there are no lane changing. The equilibrium velocity is given by the
optimal velocity functions.

It is easy to show that such steady state for the two-lanes model 15 is given
when the vehicles moves with the same uniform headways hj = L

Nj
, for lane j =

1, 2 respectively, and with the optimal velocities Vj(hj). We also need to link the
velocities for preserve lane changes; the condition is satisfied provided

V1(h1) = V2(h2). (19)

Recalling that N = N1 +N2, where N is constant, we can write h2 in terms of h1

as

h2 =
Lh1

Nh1 − L
(20)

and if the equilibrium velocity is less than V max1 we can find a unique value for h1

from equation 19 that we denote by h̄1. Let N̄1 be the number of vehicles in lane
1 with headways h̄1 and in the same way we define h̄2 and N̄2. Thus

V eq := V1(h̄1) = V2(h̄2). (21)

Now we prove that if 21 holds we have no lane changes and both lanes remain at
equilibrium. Consider model 15 with N̄1 vehicles in lane 1 and with N̄2 vehicles in
lane 2, with initial conditions

∀n ∈ I1

{
xn(0) equally spaced with distance h̄1

vn(0) = V eq

∀n ∈ I2

{
xn(0) equally spaced with distance h̄2

vn(0) = V eq.

(22)

For the lane change from lane 1 to lane 2 we can show that the condition

a2(n, s2
n) > a1(n, s1

n) (23)
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is never verified because

a2(n, s2
n)− a1(n, s1

n) =

= α(V2(xs2n − xn)− vn) + β
vs2n − vn

(xs2n − xn)2
+

− α(V1(xs1n − xn)− vn)− β
vs1n − vn

(xs1n − xn)2

= V2(xs2n − xn)− V1(xs1n − xn).

(24)

Moreover h̄2 < h̄1 so the distance xs2n−xn ∈ (ds, h̄2−ds), but from the monotonicity

of the function we obtain that V2(h) < V1(h̄1) ∀h ∈ (ds, h̄2 − ds). In conclusion
24 is always negative. Similarly we can prove that there are not lane changes from
lane 2 to lane 1.

We have proved the following result.

Proposition 4. Consider the system 15 with initial conditions 21-22, then no lane
changing occurs.

In the following we study the stability of this equilibrium solution perturbing
the initial headways in a lane and analysing the possibility of lane changing in both
lanes. We start perturbing the slow lane (lane 1) and then the fast lane (lane 2).
Thus we start from an initial condition in which lane 1 is in a local equilibrium but
does not satisfy the global equilibrium we described above. This means that we
consider a uniform perturbation ε in the headways in lane 1 where we fix an initial
constant headway equal to h̄1 + ε and initial velocities equal to V1(h̄1 + ε). In lane
2 we consider initial headways h̄2 and initial velocities V2(h2). We would like to
study how this perturbation influences the equilibrium 22.

3.2.1. Case 1: Perturbation in lane 1 - lane changes from lane 1 to lane 2. We
study the possibility of lane changes from lane 1 to lane 2. Let us consider a vehicle
with index n in lane 1, we wonder if the acceleration in lane 2 could be greater than
the acceleration in lane 1

a2(n, s2
n)

?
> a1(n, s1

n)⇔ V2(d2)− V1(h̄1 + ε) +
γ

d2
2

(V2(h̄2)− V1(h̄1 + ε))
?
> 0 (25)

where d2 = d(n, s2
n) and γ = β

α . If ε > 0 we do not have lane changes because the
previous inequality is always false, in fact it means that in lane 1 there is now a
smaller number of vehicles.

lane 1

lane 2 p2
n

s1
n

s2
n

n

d2

h̄2

h̄1 + ε

Figure 12. Lane change from 1 to 2.
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Consider now the case ε < 0, assuming V1 is an invertible function, and denoted
with V −1

1 its inverse, we can write

ε < V −1
1

(
V2(d2) + γ

d22
V2(h̄2)

1 + γ
d22

)
− h̄1. (26)

Recalling the security criterion we have that an admissible distance d2 must
satisfy d2 ∈ (ds, h̄2−ds) and therefore the maximum of 26 is reached when d2 tends
to h̄2 − ds. We get so this threshold for ε:

ε < V −1
1

(
V2(h̄2 − ds) + γ

(h̄2−ds)2
V2(h̄2)

1 + γ
(h̄2−ds)2

)
− h̄1 < 0. (27)

Using a Taylor expansion for V1 and disregarding terms of order O(ε2) we can
also obtain an approximation at the first order of the threshold 27. In fact the
relation

V2(d2)− V2(h̄2)− ε
(

1 +
γ

d2
2

)
V ′1(h̄1)

?
> 0 (28)

is satisfied provided

ε <
V2(d2)− V2(h̄2)(
1 + γ

d22

)
V ′1(h̄1)

. (29)

Then using the monotonicity of the velocity function we get this a priori bound,
approximated at the first order respect to ε

ε <
V2(h̄2 − ds)− V2(h̄2)(
1 + γ

(h̄2−ds)2

)
V ′1(h̄1)

< 0. (30)

So if ε is smaller than this value we have lane changes from lane 1 to lane 2.

3.2.2. Case 2: Perturbation in lane 1 - lane changes from lane 2 to lane 1. Consider
a vehicle with index n in lane 2 as in Fig. 13. This vehicle will change to lane 1 if
the following condition is satisfied

a1(n, s1
n)

?
> a2(n, s2

n). (31)

lane 1

lane 2

p1
n s1

n

s2
nn

d1

h̄2

h̄1 + ε

Figure 13. Lane change from 2 to 1.
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In this case clearly we will not have lane changes if ε < 0. Thus we consider only
the case ε > 0 and we obtain

V1(d1)− V1(h̄1) +
γ

d2
1

V ′1(h̄1)ε
?
> 0 (32)

where d1 = d(n, s1
n) with admissible distance d1 ∈ (ds, h̄1 + ε − ds). If d1 > h̄1

the previous relation is always verified, while if d1 ≤ h̄1 considering the security
criterion we can conclude that the perturbation must be greater than the safety
distance in order to activate lane changes:

ε > ds. (33)

In fact the arrival of a vehicle from lane 2 modifies the initial perturbation ε, de-
creasing the headway in lane 1, and we go back to the case 1.

Now we repeat the same analysis adding a perturbation ε in the initial headways
in lane 2 starting from the equilibrium 22. Thus we consider an initial condition
where vehicles in lane 1 have initial headways h̄1 and initial velocities V1(h̄1), and
vehicles in lane 2 have initial headways h̄2 + ε and initial velocities V2(h̄2 + ε).

3.2.3. Case 3: Perturbation in lane 2 - lane changes from lane 1 to lane 2. In this
case a vehicle in lane 1 could clearly have a greater acceleration from lane 1 to the
lane perturbed if ε > 0, but from the security criterion the perturbation must be
satisfy the condition

ε > ds (34)

as seen in case 2.

3.2.4. Case 4: Perturbation in lane 2 - lane changes from lane 2 to lane 1. If the
perturbation ε is positive we expect no lane changes of this type. Therefore let us
consider the case ε < 0. Let n be the index of a vehicle in lane 1 we wonder if

a1(n, s1
n)

?
> a1(n, s2

n)⇔ V1(d1)− V2(h̄2 + ε) +
γ

d2
1

(V1(h̄1)− V2(h̄2) + ε))
?
> 0 (35)

with admissible distance d1 ∈ (ds, h̄1 − ds). Consider the maximum distance d1 =
h̄1 − ds, the previous inequality is satisfy if

ε < V −1
2

(
V1(d1) + γ

(d1)2V1(h̄1)

1 + γ
(d1)2

)
− h̄2 < 0 (36)

which can be linear approximated by

ε <
V1(d1)− V1(h̄1)(
1 + γ

d21

)
V ′2(h̄2)

. (37)

Then using the monotonicity of the velocity function we get this a priori bound,
approximated at the first order respect to ε

ε <
V1(h̄1 − ds)− V1(h̄1)(
1 + γ

(h̄1−ds)2

)
V ′2(h̄2)

< 0. (38)

We can summarize the results in the following proposition.

Proposition 5. Starting from the equilibrium, lane changing for system 15 are acti-
vated if a perturbation ε in the headways satisfies the thresholds in Tab. 1. Therefore
there are perturbations that do not affect the equilibrium of the system.
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from lane 1 to lane 2 from lane 2 to lane 1

perturbation ε in lane 1 (slow
lane)

ε <
V2(h̄2 − ds)− V2(h̄2)(
1 + γ

(h̄2−ds)2

)
V ′1(h̄1)

< 0 ε > ds > 0

perturbation ε in lane 2 (fast
lane)

ε > ds > 0 ε <
V1(h̄1 − ds)− V1(h̄1)(
1 + γ

(h̄1−ds)2

)
V ′2(h̄2)

< 0

Table 1. Thresholds and perturbations.

3.3. Numerical tests. Here we present some numerical tests for the two-lane
model 15, using the Runge Kutta 5 method. In the following simulations we set a
maximum number of lane changes per second equal to Nc = 1 and we fix ∆t = 0.1
s.

Let us set L = 1500 m, α = 5 s−1, β = 100 m2/s. We use the two optimal
velocity functions defined in 13 with parameters V1 = 0, V2 = 5, C1 = 0.02 m−1,
C2 = 0, lc = 5 m, thus

V1(h) =

{
5 tanh(0.02(h− 5)) if h > ds

0 otherwise
V2(h) = 2V1(h). (39)

with ds = 5 m. We make this choice in order to verify the stability condition 12 in
both single lanes for every value of N . We are interesting to study the stability of
the model due to the lane changes.

Figure 14. Optimal velocity functions.

3.3.1. Test 1: Perturbation in lane 1 and lane changing from lane 1 to lane 2. In this
simulation we want to study the perturbation of the lane one from the equilibrium
state. Let us fix N = 100. Solving equation 19 we get the values h̄1 = 45.4 m and
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h̄2 = 22.4 m for which the system remains at the equilibrium if we start from the
corresponding steady state. In this case N̄1 = 33 m and N̄2 = 67 m.

Now we want to perturb the lane 1 adding new vehicles. From bound 30 we
obtain that the perturbation ε in the headways of lane 1 that enables lane changing
from lane 1 to lane 2 must satisfy ε < −16.5 m, which means that lane changes
occur only if N1 > 51.7.

Thus fix ε̃ = −16.59 m in order to have N1(0) = 52 and set N2(0) = N̄2. We
consider the following initial data

∀n ∈ I1

{
xn(0) equally spaced with distance h̄1 + ε̃

vn(0) = V1(h̄1 + ε̃)

∀n ∈ I2

{
xn(0) equally spaced with distance h̄2

vn(0) = V1(h̄2)

(40)

Fig. 15 shows the simulation for T = 500 s. We can see how the perturbation
in lane 1 causes lane changes to lane 2 as expected, until the number of vehicles in
lane 1 is such that the headways become smaller than the value h̄1 + ε for which
we cannot have any more lane changes. In this particular case a new equilibrium
is reached with N1(T ) = 48 and the corresponding headways in lane 1 are equal
to L

N1(T ) = 31.25 = h̄1 − 13.48 m. This corresponds to a perturbation with ε =

−14.15 m which is greater than the threshold above. Thus no more lane changes
are expected and the system has acquired a new equilibrium with h1 = 31.25 m
h2 = 21.13 m and V1(h1) = 2.41 m/s, V2(h2) = 3.12 m/s.

Figure 15. Top: vehicle trajectories in the two lanes. Bottom:
number of vehicles versus time.

3.3.2. Test 2: Perturbation in lane 1 and lane changing from lane 2 to lane 1. Whit
this simulation we want to study the possibility of lane changes from lane 2 to lane
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1. We consider again the equilibrium found in Test 1, and we focus attention to
perturb the headways in lane 1 with a positive value of ε, which means to remove
some vehicles from the initial value N̄1.

From 33 we know that a perturbation that activates lane changes from lane 2 to
lane 1 must be greater that the security distance. In our case this is verify if we
consider N1 < 29.73 vehicles at initial time. Therefore we fix ε̃ = 6.27 m in order
to have N1(0) = 29 and set N2(0) = N̄2. Thus the initial conditions are given by

∀n ∈ I1

{
xn(0) equally spaced with distance h̄1 + ε̃

vn(0) = V1(h̄1 + ε̃)

∀n ∈ I2

{
xn(0) equally spaced with distance h̄2

vn(0) = V1(h̄2)

(41)

Figure 16. Top: vehicle trajectories in the two lanes. Bottom:
number of vehicles versus time.

Fig. 16 shows the simulation for T = 500 s. We can see how the perturbation in
lane 1 causes lane changes from lane 2 to lane 1 as predicted. A new equilibrium
is reached with N1(T ) = 31 and the corresponding headways in lane 1 are equal to
L

N1(T ) = 48.39 = h̄1 + 2.99 m. This corresponds to a perturbation with ε = 2.99 m

which is smaller than the threshold above. Thus no more lane changes are expected
and the system has acquired a new equilibrium with h1 = 48.38 m h2 = 23.07 m
and V1(h1) = 3.50 m/s, V2(h2) = 3.46 m/s.

3.3.3. Test 3: Evolution towards equilibrium. In this simulation we study the evolu-
tion towards equilibrium. We start with the same number of vehicles in both lanes
N1(0) = N2(0) = 50. At the initial time all vehicles are equally spaced with zero
velocity.
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Fig. 17 shows the simulation for T = 1000 s. We can see the presence of an initial
phase where vehicles change lane more frequently until arriving in a phase with few
lane changes that let the traffic more regular. Initially all vehicles accelerate and lane
1 is partially defected by lane changes towards lane 2 until N1(T ) = 38, N2(T ) = 62.
In this simulation lane changes from lane 1 to lane 2 are the 92.8% of the total lanes
changes.

Figure 17. Top: vehicle trajectories in the two lanes. Bottom:
number of vehicles versus time.

3.3.4. Test 4: Stop & go waves. In this simulation we use the two velocity functions
as in 13 in order to consider also the instability due to the number of vehicles as
seen in the single-lane case. We fix α = 1, β = 100 and

V1(∆x) =

{
6.75 + 7.91 tanh(0.13(∆x− 5)− 1.57) ∆x > 5

0 otherwise
V2(∆x) = 2V1(∆x).

The stability conditions for the single-lane 12 are in this case: for lane 1 stability for
N < 68 and N > 100, while for lane 2 we have stability for N < 57 and N > 130.

We start with the same number of vehicles in both lanes N1(0) = N2(0) = 90;
lane 2 is at the equilibrium while in lane 1 we add random perturbations rn in the
initial positions of the vehicles. Thus we have

∀n ∈ I1

{
xn(0)− xn−1(0) = L

N1(0) + rn

vn(0) = V1( L
N1(0) )

∀n ∈ I2

{
xn(0)− xn−1(0) = L

N2(0)

vn(0) = V2( L
N2(0) )

(42)

Fig. 18 shows the simulation for T = 500 s. We can see the creation of stop &
go waves in both lanes due to the frequently lane changes and to the instability of
the model.
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Figure 18. Top: vehicle trajectories in the two lanes. Bottom:
number of vehicles versus time.

4. Generalization to the multi-lane case. The model 15 can be easily general-
ized to the multi-lane case with a generic number of lanes. We can differentiate the
lanes by attributing different profiles of desired velocity, therefore let J be the num-
ber of lanes, we consider the velocities functions V1(·), . . . , VJ(·) with the property
Vi(·) 6 Vj(·) for i < j.

The model can be written as
ẋn = vn

v̇n = α(Vj(∆x
j
n)− vn) + β

∆vjn

(∆xjn)2
n ∈ Ij

+ lane changing conditions

for j = 1, . . . , J. (43)

We adopt the lane changing conditions as in 18. Note that, except for the cases
j = 1 or j = J , if j > 2 a vehicle might have the possibility to changes from lane j
to lane j− 1 or from lane j to lane j+ 1. Consequently if both changes are possible
we choose the most advantageous one in terms of acceleration.

As we done for the two-lane model we can define the steady state of model 43
in which all lane are at the equilibrium and lane changes do not occur. This is
provided for the values of the headways

h̄1, . . . , h̄J (44)

that verify the condition
V1(h̄1) = · · · = VJ(h̄J). (45)

In order to find this equilibrium we require also that the equilibrium velocity defined
in 45 must be smaller than the value V max1 , that is the maximum velocity value
allowed in the slower lane (j = 1).

4.1. An example with three lanes. Let us consider a three-lane road (J = 3).
The steady state is given by the three values of the headways h̄1, h̄2, h̄3 such that
V eq := V1(h̄1) = V2(h̄2) = V3(h̄3). Using the same previous techniques can be show
that with these conditions no lane changes occur and the system remains at the
equilibrium.
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We are now interested to add a perturbation in the middle lane and to study the
possibility of lane changing. More specifically let us consider the initial conditions

∀n ∈ I1

{
xn(0) equally spaced with distance h̄1

vn(0) = V eq

∀n ∈ I2

{
xn(0) equally spaced with distance h̄2 + ε

vn(0) = V2(h̄2 + ε)

∀n ∈ I3

{
xn(0) equally spaced with distance h̄3

vn(0) = V eq.

(46)

We can observe that the system is comparable to two subsystems: lane 1 - lane
2 and lane 2 - lane 3 where the lane changes are regulated by the thresholds in
Table 1. More specifically for the subsystem lane 2 - lane 3 we consider the case of
a perturbation in the slow lane (first row of the table) while for the subsystem lane
1 - lane 2 we refer to the case of a perturbation in the fast lane (second row of the
table). We add to this framework the possibility of choosing the best advantageous
change for a vehicle in the middle lane that might have two possibilities for change
lane. The thresholds that enable lane changes can be obtained from Table 1 with
the appropriate modifications. We have

1→ 2 & 3→ 2 2→ 1 2→ 3

pert. ε in lane 2 ε > ds > 0 ε <
V1(h̄1 − ds)− V1(h̄1)(
1 + γ

(h̄1−ds)2

)
V ′2(h̄2)

< 0 ε <
V3(h̄3 − ds)− V3(h̄3)(
1 + γ

(h̄3−ds)2

)
V ′2(h̄2)

< 0

Table 2. Thresholds and perturbations.

Here we propose a numerical example with a three-lane road, using the Runge
Kutta 5 method. Consider the velocity function V1(h) as in 39 and define V2(h) =
3
2V1(h) and V3(h) = 2V1(h). From the value h̄1 = 50 m we obtain that h̄2 = 31 m,

h̄3 = 23.7 m and V eq = 3.58 m/s as shown in Fig. 19. The corresponding number
of vehicles are: N̄1 = 30, N̄2 = 48, N̄3 = 63.
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Figure 19. Desired velocity functions.
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In order to add a perturbation in lane 2 we find the values of the perturbation
that allow lane changing. From Table 2 we obtain: ε > 5 m for lane changes from
lanes 1 and 3 to lane 2, ε < −2.25 m for lane changes from lane 2 to lane 1 and
ε < −7.74 m for lane changes from lane 2 to lane 3. In the following numerical
tests we use the initial conditions 46 with ε = −2.68 m in the test (a) and with
ε = −7.91 m in the test (b). We can observe that in the test (a) the perturbation
has produced lane changes from lane 2 to lane 1 while in the test (b) lane changes
from lane 2 to lane 3 occurred.

Figure 20. Test (a) - Top: vehicle trajectories in the three lanes.
Bottom: number of vehicles versus time.

Figure 21. Test (b) - Top: vehicle trajectories in the three lanes.
Bottom: number of vehicles versus time.
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In the following test we show an example of instability, comparing the results with
the test in section 3.3.4. Let us consider the function V1(h) as in the aforementioned
test, and define V2(h) = 3

2V1(h) and V3(h) = 2V1(h). We consider N1(0) = N3(0) =
90 and N2(0) = 0 with initial conditions with random perturbations rn.

∀n ∈ I1

{
xn(0)− xn−1(0) = L

N1(0) + rn

vn(0) = V1( L
N1(0) )

∀n ∈ I3

{
xn(0)− xn−1(0) = L

N3(0)

vn(0) = V2( L
N3(0) )

(47)

From Fig. 22 we can see that lane 1 gradually empties into lane 2. Due to
frequent lane changes, more pronounced stop & go waves occur in fast lanes, while
slow lane tends to stabilize. In test 3.3.4 we recall that the instabilities were evident
in both lanes.

Figure 22. Top: vehicle trajectories in the three lanes. Bottom:
number of vehicles versus time.

5. Conclusions. In this paper we have studied a microscopic model 4 for lane
changing proposing simple lane changing rules. We have computed global steady
states and we have investigated the linear stability of such solutions. The global
steady state of the multi-lane model is parametrized by the total number N of
vehicles in the road. All lanes are coupled by the lane changing conditions, and
the equilibrium is reached only when the crowding of each single lane is such that
no lane changing is convenient anymore. At that point the system can reach the
equilibrium lane by lane. We have proved that the model for the single-lane case
has a larger stability region than the model 3. In the multi-lane case we have proved
that is possible to determine conditions on perturbations in which the equilibrium
of the steady state is preserved and lane changing does not occur. We plan to derive
a macroscopic version of this model where each lane would be described by its own
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equation and the lane changes would appear as source terms for the macroscopic
equations. This study can be useful in applications for instance in the design of
velocity profiles to minimize lane changes in order to avoid jams and car accidents.
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