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Abstract. In classical epidemic models, a neglected aspect is the heterogene-
ity of disease transmission and progression linked to the viral load of each

infected individual. Here, we investigate the interplay between the evolution
of individuals’ viral load and the epidemic dynamics from a theoretical point

of view. We propose a stochastic particle model describing the infection trans-

mission and the individual physiological course of the disease. Agents have
a double microscopic state: a discrete label, that denotes the epidemiological

compartment to which they belong and switches in consequence of a Markovian

process, and a microscopic trait, measuring their viral load, that changes in
consequence of binary interactions or interactions with a background. Specif-

ically, we consider Susceptible–Infected–Removed–like dynamics where infec-

tious individuals may be isolated and the isolation rate may depend on the viral
load–sensitivity and frequency of tests. We derive kinetic evolution equations

for the distribution functions of the viral load of the individuals in each com-

partment, whence, via upscaling procedures, we obtain macroscopic equations
for the densities and viral load momentum. We perform then a qualitative

analysis of the ensuing macroscopic model. Finally, we present numerical tests
in the case of both constant and viral load–dependent isolation control.

1. Introduction. Mathematical models of infectious diseases spreading have played
a significant role in infection control. On one hand, they have given an important
contribution to the biological and epidemiological understanding of disease outbreak
patterns; on the other hand, they have helped to determine how and when to apply
control measures in order to quickly and most effectively contain epidemics [1]. Re-
search in this field is constantly evolving and ever new challenges are launched from
the real world (just think of the ongoing COVID–19 pandemic). One among the
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many increasingly attractive topics is the mutual influence between the individual
behaviours and choices and the disease dynamics [2, 30].

In mathematical epidemiology literature a prominent position is occupied by the
compartmental epidemic models. They are macroscopic models where the total
population is divided into disjoint compartments according to the individual status
with respect to the disease, and the switches from a compartment to another follow
given transition rules. The size of each compartment represents a state variable of
the model, whose rate of change is ruled by a balance differential equation. The
milestone of compartmental models is the well–known deterministic Susceptible–
Infected–Removed (SIR) model, proposed by Kermack and McKendrick in 1927
[18].

Like any mathematical model, also epidemic models postulate some simplifying
assumptions that are needed to make them analytically tractable and/or numeri-
cally solvable. Quantifying the impact of such simplifications is extremely important
to understand the model reliability and identify its range of application. For ex-
ample, deterministic compartmental models are valid for large populations. Hence,
they can hardly describe situations in which compartments are almost empty (for
example at the onset of an epidemic, when the infectious individuals are very few)
and, then, stochastic fluctuations cannot be disregarded.

A significant aspect neglected by classical epidemic models is the heterogeneity
of disease transmission and progression linked to the viral load of each infected
individual. Viral load is defined as a quantitative viral titre (e.g. copy number)
[11] and may represent a useful marker for assessing viral kinetics, disease severity
and prognosis. Indeed, symptoms and mortality induced by the infection may
depend on the individual viral load, like asserted, for example, by studies on seasonal
flu [21], measles [28] and COVID–19 disease [14]. The quantity of virus in the
organism can also influence the results by screening and diagnostic tests, which are
capable of detecting a different quantity of virus perml according to their sensitivity.
Hence, the viral load affects the probability for an individual of being diagnosed
and, consequently, home isolated or hospitalized, thus preventing the possibility of
him/her infecting other people. In this context, assessing the interplay between the
frequency of testing and sensitivity of the tests is crucial for planning prevention and
mitigation measures [20]. Also the timing of testing is fundamental: for example in
the case of acute rubella, in order to have laboratory confirmation of infection, viral
specimen should be collected as soon after symptom onset as possible, preferably
one to three days after onset, but no later than seven days post–onset [5]. Last
but not least, the viral load can be a strong determinant of transmission risk [15],
and the knowledge of the duration of viral shedding plays a key role in tracing the
evolution of the infectious disease [6]. For example, it is estimated that SARS–CoV–
2 viral load peaks just before the symptom onset, i.e. during the pre–symptomatic
stage of infection [17, 11], and pre–symptomatic patients are responsible of about
44% of secondary infections [17]. In the case of congenital rubella syndrome, infants
can shed the virus up to one year, but samples should be collected prior to three
months of age because by three months of age approximately 50% will no longer
shed virus [5].

The mathematical framework of multi–agent systems [27] allows one to introduce
a detailed microscopic description of the interactions between individuals, that are
generally called agents, within a population. One of the key aspects is that it allows
one to recover a statistical description of the system by introducing a probability
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density function accounting for the statistical distribution of some microscopic traits
of the individuals. Its evolution may be described by kinetic equations that also
permit to derive macroscopic equations, i.e. macroscopic models, that, thus, inherit
a large number of features of the original microscopic dynamics. In particular, the
authors in [22] introduced a particle model describing a microscopic dynamics in
which agents have a double microscopic state: a discrete label that switches as a
consequence of a Markovian process and a microscopic trait that changes as a con-
sequence of binary interactions or interactions with a background. The trait may
take into account the individual viral load, while the label denotes the compart-
ment to which the agent belongs. The authors then derived nonconservative kinetic
equations describing the evolution of the distribution of the microscopic trait for
each label and, eventually, macroscopic equations for the densities and momentum
of the microscopic trait of each compartment.

Kinetic equations have been applied to compartmental epidemic models in order
to take into account the role of wealth distribution during the spread of infectious
diseases, for example in [8, 9]. In these works, the authors described in more detail
social contacts among the individuals but still relied on an SIR–like structure to
model contagion dynamics. To our best knowledge, the only kinetic model taking
into account the spread of an infectious disease by means of interactions and in-
cluding the individuals’ viral load is the one proposed in [25], where, however, the
authors did not consider epidemiological compartments.

Motivated by the previous arguments, in the present work we propose a micro-
scopic stochastic model allowing one to describe the spread of an infectious disease
as a consequence of the interactions among individuals who are characterized by
means of their viral load. Once infected, the viral load of the individuals increases
up to a maximum peak and then decreases as a consequence of a physiological
process. Furthermore, the individuals are labelled in order to indicate their belong-
ing to one of the disjoint epidemiological compartments. Specifically, we consider
an SIR–like dynamics with an isolation mechanism that depends on the individual
viral load (Section 2). We derive kinetic evolution equations for the distribution
functions of the viral load of the individuals in each compartment and, eventu-
ally, a macroscopic model for the densities and viral load momentum (Section 3).
We perform then a qualitative analysis of the ensuing macroscopic model (Section
4), and we present some numerical tests of both the microscopic and the macro-
scopic models to show the matching between the aggregate trends obtained from the
macroscopic descriptions and the original particle dynamics simulated by a Monte
Carlo approach (Section 5). Finally, we draw some conclusions and we briefly sketch
possible research developments (Section 6).

2. A multi–agent system describing the disease spread through inter-
actions. Let us consider a large system of interacting individuals in presence of
an infectious disease that spreads through social contacts. The total population at
time t is divided into disjoint epidemiological compartments according to the health
status with respect to the disease, to each of which we associate a label x ∈ X . In-
dividuals, that we shall also call the agents, are characterized by the evolution stage
of the disease–related viral load, that is the number of viral particles present in the
organism. Let us denote with v ∈ [0, 1] a normalized measure of the individual
viral load at time t, where v = 1 represents the maximum observable value. We
want to describe the microscopic mechanisms modelling the interactions between
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individuals, which are the means of the transmission of the disease, and the switch
of compartment of each individual that follows from the disease progression.

Being our final aim the proposal of a macroscopic model, we derive as an in-
termediate stage a statistical description of our multi–agent system through kinetic
equations, by which we then derive macroscopic equations. In order to give a statis-
tical description of the multi–agent system, whose total mass is conserved in time,
we introduce a distribution function for describing the statistical distribution of the
agents characterized by the pair (x, v) ∈ X × [0, 1], as

f(t, x, v) =
∑
i∈X

δ(x− i)fi(t, v), (1)

where δ(x− i) is the Dirac delta distribution centred at x = i, and we assume that
f(t, x, v) is a probability distribution, namely∫ 1

0

∫
X
f(t, x, v)dxdv =

∑
i∈X

∫ 1

0

fi(t, v)dv = 1, ∀ t ≥ 0. (2)

In (1)–(2), fi = fi(t, v) ≥ 0 is the distribution function of the microscopic state v
of the agents that are in the ith compartment at time t. Hence, fi(t, v)dv is the
proportion of agents in the compartment i, whose microscopic state lies between
v and v + dv at time t. In general, the fi’s, i ∈ X , are not probability density
functions because their v–integral varies in time due to the fact that agents move
from one compartment to another. We denote by

ρi(t) =

∫ 1

0

fi(t, v)dv

the density of agents in the class i, thus 0 ≤ ρi(t) ≤ 1 and∑
i∈X

ρi(t) = 1, ∀ t ≥ 0.

Then, we define the viral load momentum of the ith compartment as the first mo-
ment of fi for each class i ∈ X , i.e.

ni(t) =

∫ 1

0

fi(t, v)vdv.

If ρi(t) > 0, then we can also define the mean viral load as the ratio ni(t)/ρi(t). We
observe that ρi(t) = 0 implies instead necessarily fi(t, v) = 0 and, therefore, ni(t) =
0. In such a case, the mean viral load is not defined because the corresponding
compartment is empty. We also remark that, if the compartment is almost empty,
then the mean viral load ni/ρi, i ∈ X , might not be fully consistent with the
empirical mean viral load resulting from the particle description because the law of
large numbers does not apply.

2.1. The compartmental structure. The individuals, labelled with x ∈ X , are
divided in the following disjoint epidemiological compartments:

• susceptible, x = S: individuals who are healthy but can contract the disease.
The susceptible population increases by a net inflow, incorporating new births
and immigration, and decreases due to disease transmission and natural death;

• infectious, I: individuals who are infected by the disease and can transmit
the virus to others. We assume that members of this class are asymptomatic
or mildly symptomatic, hence they move freely. Infectious individuals arise
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as the result of new infections of susceptible individuals and diminish due to
recovery and natural death or because they are identified and isolated from
the general population;

• isolated, H: infected individuals who have been identified and fully isolated
from the general population by home isolation or hospitalization. Members
of this class come from the infectious compartment I and get out due to
recovery or death. We assume that this class includes patients showing severe
symptoms, that can also die due to the disease;

• recovered, x = R: individuals who have recovered from the disease after the
infectious period. They come from the infected compartments I and H and
acquire long lasting immunity against the disease.

Specifically: susceptible individuals have v ≡ 0; once infected, an individual’s viral
load increases until reaching a peak value (that varies from person to person) and
then gradually decreases, see e.g. the representative plot of SARS–CoV–2 viral load
evolution given in [6], Fig. 2. Hence, for mathematical convenience, we assume that
members of classes I and H are further divided into:

• infectious, x = I1, and isolated, x = H1, with increasing viral load;
• infectious, x = I2, and isolated, x = H2, with decreasing viral load.

Note that new infections enter the class I1, while recovery may occur only during
the stages I2 or H2. Finally, after the infectious period, recovered individuals may
still have a positive viral load which however definitively approaches zero, as live
virus could no longer be cultured (see e.g. the studies [6, 17] on COVID–19 viral
shedding).

Also, since our model incorporates birth and death processes, we introduce the
following three auxiliary compartments: individuals that enter the susceptible class
by newborn or immigration, x = B; individuals who die of natural causes, x = Dµ;
and individuals who die from the disease, x = Dd. We assume that members of
class B have v ≡ 0, while those of classes Dµ and Dd retain the viral load value at
time they died.

2.2. Evolution of the viral load. Let us now focus on the mathematical mod-
elling of the evolution of an individual viral load v. We distinguish the two following
cases when v changes over time: i) a susceptible individual, having v = 0, acquires
a positive viral load (and get infected) by interaction with an infectious individual;
ii) the viral loads of infected (I1, I2, H1, H2) and recovered (R) individuals evolve
naturally in virtue of physiological processes.

Given an agent labelled with S, then the necessary condition for acquiring a
positive viral load is an encounter with an infectious individual (I1 or I2). Let us
denote with λβ > 0 the frequency of these interactions. Increasing [resp. decreasing]
λβ corresponds to increasing [resp. reducing] encounters among people: the lower
λβ the more strengthened social distancing.

By interacting with an infectious individual, a susceptible individual may or may
not get infected. In the first case his/her viral load after the interaction (say, v′) is
positive: v′ > 0; in the second case it remains null: v′ = 0. Specifically, we consider
the following microscopic rule:

v′ = Tνβv0,

where Tνβ is a Bernoulli random variable of parameter νβ ∈ (0, 1) describing the
case of successful contagion when Tνβ = 1 and the case of contact without contagion
when Tνβ = 0. We assume that new infected individuals enter the class I1 and they
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all acquire the same initial viral load, v0 (that can be interpreted as an average
initial value). We remark that this binary interaction process causes simultaneously
a change of the microscopic state v and a label switch, because as soon as v becomes
positive, i.e. if Tνβ = 1, the susceptible individual switches to the class I1.

Infectious, isolated and recovered individuals cannot change their viral load in
binary interactions, but the evolution reflects physiological processes. In particular,
starting from the initial positive value v = v0, the viral load increases until reaching
a given peak value and then it decreases towards zero. The peak can be reached
in either the stage I1 or H1, i.e. before or after an infectious individual is possibly
isolated.

In this framework, the microscopic state v varies as a consequence of an au-
tonomous process (also called interaction with a fixed background in the jargon of
multi–agent systems [27]). Specifically, given an agent (I1, v) or (H1, v), namely an
infected individual with increasing viral load, we consider a linear–affine expression
for the microscopic rule describing the evolution of v into a new viral load v′:

v′ = v + ν1(1− v). (3)

The latter is a prototype rule describing the fact that the viral load may increase
up to a certain threshold normalized to 1 by a factor proportional to (1 − v). In
particular, ν1 ∈ (0, 1) is the factor of increase of the viral load.

Similarly, given an agent (I2, v), (H2, v) or (R, v), namely an infected individ-
ual with decreasing viral load or a recovered individual, we consider the following
microscopic rule for the evolution of v:

v′ = v − ν2v, (4)

being the parameter ν2 ∈ (0, 1) the factor of decay of the viral load. These mi-
croscopic processes happen with frequency λγ > 0. We observe here that the
introduction of the sub–classes I1, I2 and H1, H2 is needed in order to implement
the microscopic rules (3)–(4) in a kinetic equation. These two rules are deliberately
generic and very simple: the only aim is to distinguish individuals based on whether
their viral load is increasing or decreasing and to implement two different factors
ν1 and ν2 accordingly.

2.3. A microscopic stochastic model. Let us now define a microscopic stochas-
tic process implementing the modelling assumptions defined so far. Let us consider
an agent characterized by the pair of random variables (Xt, Vt), where Xt ∈ X is
the label denoting the compartment to which the agent belongs and Vt ∈ [0, 1] is the
viral load. Then, the random variable Xt changes in consequence of a Markovian
jump process, while the microscopic state Vt may change either because of a binary
interaction with an agent characterized by (Yt,Wt), Yt ∈ X , Wt ∈ [0, 1] or because
of an autonomous process according to the discussion in Section 2.2. In particular,
two different types of stochastic processes may happen:

1. the agents may change their label according to a process that is independent
of the change of the viral load: birth and death processes, isolation process
for individuals whose viral load is increasing (I1 → H1), isolation process
for individuals whose viral load is decreasing (I2 → H2), where the notation
(j → i) indicates the switch from compartment j to compartment i;

2. the agents may change both their viral load and their label simultaneously:
(S → I1), (I1 → I2), (I2 → R), (H1 → H2), (H2 → R). This class of processes



AN SIR MODEL TRACKING INDIVIDUALS’ VIRAL LOAD 473

also includes the evolution of the viral load of individuals who remain in the
same compartment, i.e. (i→ i), ∀i ∈ X .

The two stochastic processes above may be expressed in the following rule describing
the variation of Xt and Vt of a generic representative agent of the system during a
time interval ∆t > 0:

(Xt+∆t,Vt+∆t) =

Σ
[
(1−Θ)(Xt, Vt) + Θ(JvXt , V

′
Xt)
]

+ Ψ
[
((1− Ξ)Xt, Vt) + (ΞJXt , Vt)

]
,

(5)

where Σ and Ψ are indicator functions. In particular, Σ = 1 if the agents of the
compartment labelled with Xt change both their viral load and label simultaneously
(Σ = 1 for the processes (S → I1), (I1 → I2), (I2 → R), (H1 → H2), (H2 → R))
and Ψ = 1 if the label of the agents in compartment Xt changes independently of the
viral load (for birth and death processes and for the processes (I1 → H1) and (I2 →
H2)). JXt is the new label of an agent performing a label switch independently
of the viral load and previously labelled with Xt. Moreover, V ′Xt , J

v
Xt

are the
new viral load and label of an agent with previous state (Xt, Vt) in the case of a
process in which the viral load and the label change simultaneously. Furthermore,
we assume that Θ and Ξ are two independent Bernoulli random variables describing
whether a process happens (Θ = 1, Ξ = 1) or not (Θ = 0, Ξ = 0). We suppose
that P (Θ = 1) = λXt∆t, being λXt the frequency of the microscopic process that
rules the change of the microscopic variable v for individuals labelled with Xt, while
P (Ξ = 1) = λJXt ,Xt∆t, where λJXt ,Xt is the frequency of the transition that causes
the independent label switch from Xt to JXt . In order for P to be well defined, we
must have that λXt∆t, λJXt ,Xt∆t ≤ 1. The latter models the assumption according
to which the larger the time interval, the higher the probability of having a label
switch and/or a change of the viral load.

Independent label switch. Let us denote with P (j → i) = P (JXt = i|Xt = j) the
conditional probability of switching from compartment j to compartment i, with
i, j ∈ X , independently of a change of the microscopic state v. This probability
concerns birth and death processes, and the isolation of infectious individuals, i.e.
the label switches (I1 → H1), (I2 → H2). Specifically, we consider the following
non–zero values for P :

• P (B → S) = b/ρB(t) ∈ [0, 1], where b is a non–negative constant;
• P (S → Dµ) = P (I1 → Dµ) = P (I2 → Dµ) = P (H1 → Dµ) = P (H2 →
Dµ) = P (R→ Dµ) = µ ∈ [0, 1];

• P (H1 → Dd) = P (H2 → Dd) = d ∈ [0, 1];
• P (I1 → H1) = P (I2 → H2) = αH(v) ∈ [0, 1], where αH(v) is an increasing

function of the viral load v. It accounts for the fact that infectious people
with a higher viral load are more likely to be identified. Indeed, performances
of screening and diagnostic tests increase with the actual number of viral
particles in the organism (see e.g. the interim guidance [32] on diagnostic
testing for SARS–CoV–2). Moreover, for some infectious diseases a higher
viral load is positively associated with a worse outcome and symptomatology
(like for seasonal flu [21]).

We remark that, in principle, the probability of dying from the disease, d, may
depend on the viral load v like the probability of being isolated, αH . In the present
work we assume that d is constant because we are mainly interested in investigating
the role of the viral load with respect to the isolation process.
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The frequencies of the Markovian processes describing the switch between the
different compartments may, in general, depend on both the departure and the
arrival classes. It means that the process of switching from class j to class i, that
happens with probability P (JXt = i|Xt = j), has frequency λJXt ,Xt = λi,j . In
particular, we consider:

• λS,B = λb, that is the frequency of new births or immigration;
• λDµ,j = λµ, j ∈ X \ {B,Dµ, Dd}, that is the frequency of natural deaths;
• λDd,H1 = λDd,H2 = λd, that is the frequency of disease–induced deaths;
• λH1,I1 , λH2,I2 , that are the frequencies at which infectious individuals are

isolated.

Simultaneous label switch. In our multi–agent system the first microscopic process
causing simultaneously both a label switch and a progression of the viral load is the
transition from susceptible (S) to infectious (I1) state. This process has frequency
λβ > 0. We express the corresponding transition probability as

P (JvXt = I1, V
′
Xt = v′|Xt = S)

that is the probability for an agent labelled with Xt = S to change his/her label and
zero viral load into (I1, v

′). Since this happens if a susceptible individual meets an
infectious individual, we may regard P (JvXt = I1, V

′
Xt

= v′|Xt = S) as a probability
density distribution of the joint random variables JvXt and V ′Xt , given the probability
ρI1(t) + ρI2(t) of encountering an infectious individual, i.e.

P (JvXt = I1, V
′
Xt = v′|Xt = S) = P (JvXt = I1, V

′
Xt = v′)(ρI1(t) + ρI2(t)),

that can be rewritten as

P (JvXt = I1, V
′
Xt = v′|Xt = S) = P (JvXt = I1|V ′Xt = v′)P (V ′Xt = v′)(ρI1(t) + ρI2(t)),

where P (JvXt = I1|V ′Xt = v′) is the probability density distribution of having an
agent labelled with I1 given that he/she has a viral load v′. In particular, P (JvXt =
I1|V ′Xt = v′) = 1 if v′ > 0, and P (JvXt = I1|V ′Xt = v′) = 0 if v′ = 0. P (V ′Xt = v′)
is the probability density distribution of the random variable V ′Xt = Tνβv0 and it
takes into account the microscopic rule describing the change of the state v in terms
of transition probabilities (see [23] for more details). It may be also expressed as
P (V ′Xt = v′) = νβPS(v′) where PS = δ(v′ − v0).

Analogously, we may express the transition probabilities concerning the au-
tonomous process and label switch as

P (JvXt = i, V ′Xt = v′|Xt = j, Vt = v) = P (JvXt = i|V ′Xt = v′)Pj(v → v′),

where P (JvXt = i|V ′Xt = v′) is the probability density distribution of having an
agent labelled with i given that he/she has a viral load v′, while Pj(v → v′) is the
transition probability describing the autonomous process of the viral load v′, given
the previous viral load v, for agents labelled with j.

Remark 1. If v′ is such that P (JvXt = i|V ′Xt = v′) = 1 and i = j, then P (JvXt =
i, V ′Xt = v′|Xt = j, Vt = v) = Pj(v → v′) is the transition probability that describes
the change of the microscopic state v′ alone according to the rules (3)–(4) (see [23]).

In our case, the transitions to take into account are:

• P (JvXt = I2, V
′
Xt

= v′|Xt = I1, Vt = v) = P (JvXt = I2|V ′Xt = v′)PI1(v →
v′) and P (JvXt = H2, V

′
Xt

= v′|Xt = H1, Vt = v) = P (JvXt = H2|V ′Xt =
v′)PH1

(v → v′), where P (JvXt = I2|V ′Xt = v′) = P (JvXt = H2|V ′Xt = v′) =
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η(v′). In principle, the probability η(v′) should increase by increasing the
viral load v′, since individuals with a higher viral load are more likely to have
reached the peak value. Here, for mathematical convenience, we approximate
η to the factor of viral load increase: η = ν1 ∈ [0, 1]. Both PI1(v → v′) and
PH1

(v → v′) have average v + ν1(1 − v). In particular, we choose PI1(v →
v′) = PH1(v → v′) = δ

(
v′ − (v + ν1(1− v))

)
.

• P (JvXt = R, V ′Xt = v′|Xt = I2, Vt = v) = P (JvXt = R|V ′Xt = v′)PI2(v → v′)
and P (JvXt = R, V ′Xt = v′|Xt = H2, Vt = v) = P (JvXt = R|V ′Xt = v′)PH2

(v →
v′), where P (JvXt = R|V ′Xt = v′) = γ(v′) describes the probability for an
infected individual of recovering. In principle, the probability γ(v′) should
increase by decreasing the viral load v′, since individuals with lower viral load
are more likely to have passed the infectious period. Similarly to what done
for η(v′), we approximate this probability to the factor of viral load decay:
γ = ν2 ∈ [0, 1]. PI2(v → v′) and PH2

(v → v′) have average v − ν2v. In
particular, we choose PI2(v → v′) = PH2(v → v′) = δ

(
v′ − v(1− ν2)

)
.

• P (JvXt = I1, V
′
Xt

= v′|Xt = I1, Vt = v) = PI1(v → v′), P (JvXt = H1, V
′
Xt

=
v′|Xt = H1, Vt = v) = PH1

(v → v′), while P (JvXt = I2, V
′
Xt

= v′|Xt = I2, Vt =
v) = PI2(v → v′), P (JvXt = H2, V

′
Xt

= v′|Xt = H2, Vt = v) = PH2
(v → v′).

• P (JvXt = R, V ′Xt = v′|Xt = R, Vt = v) = PR(v → v′) = δ
(
v′ − v(1− ν2)

)
.

The frequency of these transitions is the frequency of the corresponding microscopic
process, i.e. λXt = λγ for Xt ∈ {I1, I2, H1, H2, R}.

3. Aggregate description: from kinetic to macroscopic equations. The
kinetic equations describing the evolution of fi(t, v), i ∈ X , can be derived in the
same way as in [24]. Namely, the system of the weak equations for the fi’s is the
following:

d

dt

∫ 1

0

ϕ(v)fi(t, v)dv =

∫ 1

0

ϕ(v)

∑
j∈X

[λi,jP (j → i)fj(t, v)− λj,iP (i→ j)fi(t, v)]

 dv

+
∑
j∈X

∫ 1

0

∫ 1

0

[λjϕ(v′)P (i, v′|j, v)fj(t, v)− λiϕ(v)P (j, v′|i, v)fi(t, v)] dvdv′,

(6)

i ∈ X , where ϕ : [0, 1] → R is a test function. In (6), the second and third lines
account for the Markovian processes describing the label switches that happen,
respectively, independently of the evolution of the viral load, and simultaneously
with the evolution of the viral load. The frequency λi of the Markovian process due
to an interaction with a background corresponds to the frequency of changing the
microscopic state v and it is, as previously stated, λi = λγ , ∀i ∈ {I1, I2, H1, H2, R}.

From (6), we derive the kinetic equations describing the evolution of the distri-
bution functions fi’s, i ∈ X . For i ∈ X \ {B,Dd, Dµ}, namely the classes of living
individuals, we get:
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• susceptible individuals (i = S)

d

dt

∫ 1

0

ϕ(v)fS(t, v)dv =∫ 1

0

ϕ(v)

(
λb

b

ρB(t)
fB(t, v)− λµµfS(t, v)

)
dv

− λβνβ
∫ 1

0

∫ 1

0

ϕ(v′)PS(v′)ρS(t)δ(v − 0)(ρI1(t) + ρI2(t))dvdv′,

(7)

• infectious individuals with increasing viral load (i = I1)

d

dt

∫ 1

0

ϕ(v)fI1(t, v)dv =

−
∫ 1

0

ϕ(v) (λH1,I1(t)αH(v)fI1(t, v) + λµµfI1(t, v)) dv

+ λβνβ

∫ 1

0

∫ 1

0

ϕ(v′)PS(v′)ρS(t)δ(v − 0)(ρI1(t) + ρI2(t))dvdv′

− λγ
∫ 1

0

∫ 1

0

ϕ(v′)η(v′)PI1(v → v′)fI1(t, v)dvdv′

+ λγ

∫ 1

0

∫ 1

0

(ϕ(v′)PI1(v → v′)fI1(t, v)− ϕ(v)PI1(v → v′)fI1(t, v))dvdv′,

(8)

• infectious individuals with decreasing viral load (i = I2)

d

dt

∫ 1

0

ϕ(v)fI2(t, v)dv =

−
∫ 1

0

ϕ(v) (λH2,I2(t)αH(v)fI2(t, v) + λµµfI2(t, v)) dv

+ λγ

∫ 1

0

∫ 1

0

ϕ(v′)η(v′)PI1(v → v′)fI1(t, v)dvdv′

− λγ
∫ 1

0

∫ 1

0

ϕ(v′)γ(v′)PI2(v → v′)fI2(t, v)dvdv′

+ λγ

∫ 1

0

∫ 1

0

(ϕ(v′)PI2(v → v′)fI2(t, v)− ϕ(v)PI2(v → v′)fI2(t, v)) dvdv′,

(9)

• isolated individuals with increasing viral load (i = H1)

d

dt

∫ 1

0

ϕ(v)fH1
(t, v)dv =∫ 1

0

ϕ(v) (λH1,I1(t)αH(v)fI1(t, v)− λddfH1(t, v)− λµµfH1(t, v)) dv

− λγ
∫ 1

0

∫ 1

0

ϕ(v′)η(v′)PH1(v → v′)fH1(t, v)dvdv′

+ λγ

∫ 1

0

∫ 1

0

(ϕ(v′)PH1(v → v′)fH1(t, v)− ϕ(v)PH1(v → v′)fH1(t, v)) dvdv′,

(10)
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• isolated individuals with decreasing viral load (i = H2)

d

dt

∫ 1

0

ϕ(v)fH2
(t, v)dv =∫ 1

0

ϕ(v) (λH2,I2(t)αH(v)fI2(t, v)− λddfH2
(t, v)− λµµfH2

(t, v)) dv

+ λγ

∫ 1

0

∫ 1

0

ϕ(v′)η(v′)PH1
(v → v′)fH1

(t, v)dvdv′

− λγ
∫ 1

0

∫ 1

0

ϕ(v′)γ(v′)PH2(v → v′)fH2(t, v)dvdv′

+ λγ

∫ 1

0

∫ 1

0

(ϕ(v′)PH2(v → v′)fH2(t, v)− ϕ(v)PH2(v → v′)fH2(t, v)) dvdv′,

(11)

• recovered individuals (i = R)

d

dt

∫ 1

0

ϕ(v)fR(t, v)dv =

− λµµ
∫ 1

0

ϕ(v)fR(t, v)dv

+ λγ

∫ 1

0

∫ 1

0

ϕ(v′)γ(v′)PI2(v → v′)fI2(t, v)dvdv

+ λγ

∫ 1

0

∫ 1

0

ϕ(v′)γ(v′)PH2
(v → v′)fH2

(t, v)dvdv′

+ λγ

∫ 1

0

∫ 1

0

(ϕ(v′)PR(v → v′)fR(t, v)− ϕ(v)PR(v → v′)fR(t, v))dvdv′.

(12)

Equations (7)–(12) have to hold for every ϕ : [0, 1]→ R.
In order to obtain the equations for the macroscopic densities and viral load

momentum of each compartment, we set ϕ(v) = vn in (7)–(12), with n = 0, 1,
respectively. Since setting ϕ(v) = vn in the evolution equations (7)–(12) leads to

the appearance of the (n+ 1)th moment of fi, namely
∫ 1

0
fi(t, v)vn+1dv, we need to

find a closure. Specifically, for each compartment we consider a monokinetic closure
in the form

fi(t, v) = ρi(t)δ

(
v − ni(t)

ρi(t)

)
, i ∈ X , (13)

i.e. we assume that all the agents of the same compartment at a given time t have
the same viral load.

Remark 2. We consider that a monokinetic closure is appropriate in this frame-
work, as the microscopic rules describing the evolution of the viral load (3)–(4) are
deterministic, i.e. there is no diffusion related to stochastic fluctuations.

As already observed, if ρi(t) = 0, then the mean viral load is not well defined.
Notwithstanding, since fi is defined as a Dirac delta, we have that if ϕ(v) is a test
function, then ∫ 1

0

ϕ(v)fi(t, v)dv = ϕ

(
ni(t)

ρi(t)

)
ρi(t).
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Then, we consider test functions such that

ϕ

(
ni(t)

ρi(t)

)
ρi(t)→ 0, if ρi(t)→ 0. (14)

When ϕ(v) = 1 or ϕ(v) = v, namely the test functions allowing to recover the
densities and momentum, respectively, condition (14) is satisfied. Moreover, we
deal with terms in the form ∫ 1

0

ϕ(v)ψ(v)fi(t, v)dv (15)

with ψ = λγη, ψ = λγγ and ψ = λHj ,IjαH , j = 1, 2. Since we assumed that
the probabilities η, γ are constant, then the integral (15) with ψ = λγη or ψ =
λγγ is well defined – i.e. it is not divided by a vanishing density – for both test
functions ϕ(v) = 1 and ϕ(v) = v. As far as the isolation terms are concerned, i.e.
ψ(v) = λHj ,Ij (t)αH(v), j = 1, 2, we have that, applying the monokinetic closure,
the integral (15) reads

ϕ

(
nIj (t)

ρIj (t)

)
λHj ,Ij (t)αH

(
nIj (t)

ρIj (t)

)
ρIj (t), j = 1, 2.

Hence, we have to choose the isolation frequency and probability function in such
a way that the latter quantity is well defined.

The macroscopic model is given by the following system of non–linear ordinary
differential equations:

ρ̇S = λbb− λβνβρSρI − λµµρS

ρ̇I1 = λβνβρSρI − λH1,I1(t)αH

(
nI1
ρI1

)
ρI1 − λγν1ρI1 − λµµρI1

ρ̇I2 = λγν1ρI1 − λH2,I2(t)αH

(
nI2
ρI2

)
ρI2 − λγν2ρI2 − λµµρI2

ρ̇H1
= λH1,I1(t)αH

(
nI1
ρI1

)
ρI1 − λγν1ρH1

− λddρH1
− λµµρH1

ρ̇H2
= λγν1ρH1

+ λH2,I2(t)αH

(
nI2
ρI2

)
ρI2 − λγν2ρH2

− λddρH2
− λµµρH2

ρ̇R = λγν2ρI2 + λγν2ρH2
− λµµρR

ṅI1 = λβνβv0ρSρI − λH1,I1(t)αH

(
nI1
ρI1

)
nI1

− λγν1(nI1 + (ν1 − 1)(ρI1 − nI1))− λµµnI1

ṅI2 = λγν1(nI1 + ν1(ρI1 − nI1))− λH2,I2(t)αH

(
nI2
ρI2

)
nI2

− λγν2(2− ν2)nI2 − λµµnI2

ṅH1 = λH1,I1(t)αH

(
nI1
ρI1

)
nI1 − λγν1(nH1 + (ν1 − 1)(ρH1 − nH1))

− λddnH1
− λµµnH1

ṅH2 = λγν1(nH1 + ν1(ρH1 − nH1)) + λH2,I2(t)αH

(
nI2
ρI2

)
nI2

− λγν2(2− ν2)nH2
− λddnH2

− λµµnH2

ṅR = λγν2(1− ν2)nI2 + λγν2(1− ν2)nH2
− λγν2nR − λµµnR.

(16)
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For convenience of notation, in (16) we have denoted with the upper dot the time
derivative and omitted the explicit dependence on time of the state variables.

To model (16) we associate the following generic initial conditions

ρS(0) = ρS,0 > 0,

ρi(0) = ρi,0 ≥ 0, ni(0) = ni,0 ≥ 0, i ∈ {I1, I2, H1, H2, R}.
(17)

Remark 3. We observe that, by assuming γ(v) = ν2 and η(v) = ν1 (see Section
2.3), we are not keeping into account the dependence of the transitions (I2 → R),
(H2 → R), (I1 → I2), (H1 → H2) on the viral load value. However, with these
choices, the recovery rate of the infected individuals in classes I2 and H2 is λγν2,
that is the decay rate of the viral load. Analogously, the rate of transition from I1
[resp. H1] to I2 [resp. H2] is the increase rate of the viral load, λγν1.

As far as the products λHj ,Ij (t)αH(v), j = 1, 2, are concerned, let us note that,
if both the frequencies λHj ,Ij , j = 1, 2, and the probability αH(v) are assumed to
be constant, then from (16) we retrieve a classical SIR–like model with constant
isolation rate. The qualitative analysis of the ensuing model can be easily obtained
and is here omitted.

We focus instead on the impact of viral load–sensitivity of tests and frequency
of testing activities on the epidemic dynamics and consider the case that:

• the probability for infectious individuals to be isolated, αH(v), linearly in-
creases with their viral load: αH(v) = αv, where α ∈ [0, 1] is a constant;

• the frequencies λHj ,Ij (t) are linearly dependent on the densities of infectious
individuals: λHj ,Ij (t) = λαρIj (t), j = 1, 2, where λα is a non–negative con-
stant. Namely, we assume that the efforts made by public health authorities
in screening and diagnostic activities increase with the increase of infectious
presence in the community. Indeed, when infectious individuals are few, search
activities could be highly expensive and little effective.

With these choices, in system (16), the isolation terms become

λHj ,Ij (t)αH

(
nIj
ρIj

)
= λααnIj , j = 1, 2. (18)

Equilibria and stability properties of model (16)–(18) will be investigated in the
following section.

4. Qualitative analysis. Since in model (16)–(18) the differential equations for
ρS , ρI1 , ρI2 , nI1 , nI2 do not depend on ρH1 , ρH2 , ρR, nH1 , nH2 , nR, it is not
restrictive to limit our analysis to system

ρ̇S = λbb− λβνβρS(ρI1 + ρI2)− λµµρS (19a)

ρ̇I1 = λβνβρS(ρI1 + ρI2)− λααρI1nI1 − λγν1ρI1 − λµµρI1 (19b)

ρ̇I2 = λγν1ρI1 − λααρI2nI2 − λγν2ρI2 − λµµρI2 (19c)

ṅI1 = λβνβv0ρS(ρI1 + ρI2)− λααn2
I1

− λγν1(nI1 + (ν1 − 1)(ρI1 − nI1))− λµµnI1 (19d)

ṅI2 = λγν1(nI1 + ν1(ρI1 − nI1))− λααn2
I2 − λγν2(2− ν2)nI2 − λµµnI2 . (19e)
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It is straightforward to verify that the region

D =

(ρS , ρI1 , ρI2 , nI1 , nI2) ∈ [0, 1]5

∣∣∣∣∣ 0 < ρS + ρI1 + ρI2 ≤
λbb

λµµ
,

nI1 ≤ ρI1 , nI2 ≤ ρI2

 (20)

with initial conditions in (17) is positively invariant for model (19), namely any
solution of (19) starting in D remains in D for all t ≥ 0.

In the following, we search for model equilibria and derive suitable thresholds
ruling their local or global stability.

4.1. Disease–free equilibrium and its stability. The model (19) has a unique
disease–free equilibrium (DFE), given by

DFE =

(
λbb

λµµ
, 0, 0, 0, 0

)
.

It is obtained by setting the r.h.s. of equations (19) to zero and considering the
case ρI1 = ρI2 = 0.

Proposition 1. The DFE of system (19) is locally asymptotically stable (LAS) if
R0 < 1, where

R0 = λβνβ
λbb

λµµ

λγν1 + λγν2 + λµµ

(λγν1 + λµµ)(λγν2 + λµµ)
. (21)

Otherwise, if R0 > 1, then it is unstable.

Proof. The Jacobian matrix J of system (19) evaluated at the DFE reads

J(DFE) =

−λµµ −λβνβ
λbb

λµµ
−λβνβ

λbb

λµµ
0 0

0 λβνβ
λbb

λµµ
− λγν1 − λµµ λβνβ

λbb

λµµ
0 0

0 λγν1 −λγν2 − λµµ 0 0

0 λβνβv0
λbb

λµµ
+ λγν1(1− ν1) λβνβv0

λbb

λµµ
J4 0

0 λγν
2
1 0 λγν1(1− ν1) J5


,

with

J4 = −λγν1(2− ν1)− λµµ, J5 = −λγν2(2− ν2)− λµµ.
One can immediately get the eigenvalues l1 = −λµµ < 0, l2 = J4 < 0, l3 = J5 < 0,
while the other two are determined by the submatrix

J̄ =

 λβνβ
λbb

λµµ
− λγν1 − λµµ λβνβ

λbb

λµµ
λγν1 −λγν2 − λµµ

 .

From the sign of the entries of J̄ , it follows that det(J̄) ≥ 0 implies tr(J̄) < 0.
Hence, if det(J̄) > 0 or, equivalently, if R0 < 1, with R0 given in (21), then the
DFE is LAS. Otherwise, if R0 > 1, then it is unstable.

The threshold quantity R0 is the so–called basic reproduction number for model
(19), a frequently used indicator for measuring the potential spread of an infectious
disease in a community. Epidemiologically, it represents the average number of
secondary cases produced by one primary infection over the course of the infectious
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period in a fully susceptible population. One can easily verify that the same quantity
can be obtained as the spectral radius of the so–called next generation matrix [29].

As far as the global stability of the DFE, we prove the following theorem.

Theorem 4.1. The DFE of system (19) is globally asymptotically stable if R0 < 1.

Proof. Consider the following function

L =
λγν1 + λγν2 + λµµ

λγν1 + λµµ
ρI1 + ρI2 .

It is easily seen that the L is non–negative in D (see (20)) and also L = 0 if and
only if ρI1 = ρI2 = 0. The time derivative of L along the solutions of system (19)
in D reads

L̇ =
λγν1 + λγν2 + λµµ

λγν1 + λµµ
ρ̇I1 + ρ̇I2

=
λγν1 + λγν2 + λµµ

λγν1 + λµµ
(λβνβρS(ρI1 + ρI2)− λααρI1nI1)

− λααρI2nI2 − (λγν2 + λµµ)(ρI1 + ρI2)

≤(λγν2 + λµµ)

(
λβνβρS

λγν1 + λγν2 + λµµ

(λγν1 + λµµ)(λγν2 + λµµ)
− 1

)
(ρI1 + ρI2)

≤(λγν2 + λµµ) (R0 − 1) (ρI1 + ρI2).

It follows that L̇ ≤ 0 for R0 < 1 with L̇ = 0 only if ρI1 = ρI2 = 0. Hence, L is a Lya-
punov function onD and the largest compact invariant set in {(ρS , ρI1 , ρI2 , nI1 , nI2) ∈
D : L̇ = 0} is the singleton {DFE}. Therefore, from the La Salle’s invariance prin-
ciple [19], every solution to system (19) with initial conditions in (17) approaches
the DFE, as t→ +∞.

As an alternative proof, one may adopt the approach developed by Castillo–
Chavez et al. in [3].

4.2. Endemic equilibria. Let us denote with

EE =
(
ρES , ρ

E
I1 , ρ

E
I2 , n

E
I1 , n

E
I2

)
the generic endemic equilibrium of model (19), obtained by setting the r.h.s. of
equations (19) to zero and considering the case ρI1 + ρI2 > 0. Note that, if it were
ρEI1 = 0 [resp. ρEI2 = 0], then from (19c) it would follow that ρEI2 = 0 [resp. ρEI1 = 0].

Hence, it must be ρEI1 , ρ
E
I2
> 0.

More precisely, by rearranging equations (19a)–(19b)–(19c)–(19d), one obtains

ρES =
λbb− (λααn

E
I1

+ λγν1 + λµµ)ρEI1
λµµ

ρEI1 = nEI1
λααn

E
I1

+ λγν1(2− ν1) + λµµ

λγν1(1− ν1) + v0(λααnEI1 + λγν1 + λµµ)

ρEI2 =
λbb− λβνβρES ρEI1 − λµµρ

E
S

λβνβρES

nEI2 =
λγν1ρ

E
I1
− (λγν2 + λµµ)ρEI2
λααρEI2

.

(22)
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Substituting the expressions (22) into (19e), one gets nEI1 as a positive root of the
equation

λγν1(nEI1 + ν1(ρEI1 − n
E
I1))− λαα(nEI2)2 − λγν2(2− ν2)nEI2 − λµµn

E
I2 = 0. (23)

Due to the complexity of equation (23), we renounce to get an explicit expression for
nE1 and, hence, to derive the existence conditions and number of endemic equilibria.
However, we will make use of bifurcation analysis to show that a unique branch
corresponding to a unique endemic equilibrium emerges from the criticality, namely
at DFE and R0 = 1.

4.3. Central manifold analysis. To derive a sufficient condition for the occur-
rence of a transcritical bifurcation at R0 = 1, we can use a bifurcation theory
approach. We adopt the approach developed in [10, 29], which is based on the
general center manifold theory [16]. In short, it establishes that the normal form
representing the dynamics of the system on the central manifold is, for u sufficiently
small, given by:

u̇ = Au2 +Bλβνβu,

where

A =
z

2
·DxxF(DFE, λβνβ)w2 ≡ 1

2

5∑
k,i,j=1

zkwiwj
∂2Fk(DFE, λβνβ)

∂xi∂xj
(24)

and

B = z ·Dx(λβνβ)F(DFE, λβνβ)w ≡
5∑

k,i=1

zkwi
∂2Fk(DFE, λβνβ)

∂xi∂(λβνβ)
. (25)

Note that in (24) and (25) the product λβνβ has been chosen as bifurcation pa-

rameter, λβνβ is the critical value of λβνβ , x = (ρS , ρI1 , ρI2 , nI1 , nI2) is the state
variables vector, F is the right–hand side of system (19), and z and w denote, re-
spectively, the left and right eigenvectors corresponding to the null eigenvalue of
the Jacobian matrix evaluated at criticality (i.e. at DFE and λβνβ = λβνβ).

Observe that R0 = 1 is equivalent to:

λβνβ = λβνβ =
λµµ

λbb

(λγν1 + λµµ)(λγν2 + λµµ)

λγν1 + λγν2 + λµµ

so that the disease–free equilibrium is stable if λβνβ < λβνβ , and it is unstable

when λβνβ > λβνβ .

The direction of the bifurcation occurring at λβνβ = λβνβ can be derived from
the sign of coefficients (24) and (25). More precisely, if A > 0 [resp. A < 0] and
B > 0, then at λβνβ = λβνβ there is a backward [resp. forward] bifurcation.

For our model, we prove the following theorem.

Theorem 4.2. System (19) exhibits a forward bifurcation at DFE and R0 = 1.

Proof. From the proof of Proposition 1, one can verify that, when λβνβ = λβνβ (or,
equivalently, when R0 = 1), the Jacobian matrix J(DFE) admits a simple zero
eigenvalue and the other eigenvalues have negative real part. Hence, the DFE is a
non–hyperbolic equilibrium.



AN SIR MODEL TRACKING INDIVIDUALS’ VIRAL LOAD 483

It can be easily checked that a left and a right eigenvector associated with the zero
eigenvalue so that z·w = 1 are:

z =

(
0, z2,

(λγν1 + λµµ)(λγν2 + λµµ)

λγν1(λγν1 + λµµ) + (λγν2 + λµµ)(λγν1 + λγν2 + λµµ)
, 0, 0

)
,

w =

(
−λγν1 + λµµ

λµµ
, 1,

λγν1

λγν2 + λµµ
,
v0(λγν1 + λµµ) + λγν1(1− ν1)

λγν1 (2− ν1) + λµµ
,w5

)T
,

with

z2 =
(λγν2 + λµµ)(λγν1 + λγν2 + λµµ)

λγν1(λγν1 + λµµ) + (λγν2 + λµµ)(λγν1 + λγν2 + λµµ)

and

w5 = λγν1
ν1 (λγ + λµµ) + v0 (1− ν1) (λγν1 + λµµ)

(λγν1 (2− ν1) + λµµ) (λγν2 (2− ν2) + λµµ)
.

The coefficients A and B may be now explicitly computed. Considering only the
non–zero components of the eigenvectors and computing the corresponding second
derivative of F, it follows that:

A = z2w1

[
w2
∂2F2(DFE, λβνβ)

∂ρS∂ρI1
+ w3

∂2F2(DFE, λβνβ)

∂ρS∂ρI2

]
+ z2w2w4

∂2F2(DFE, λβνβ)

∂ρI1∂nI1
+ z3w3w5

∂2F3(DFE, λβνβ)

∂ρI2∂nI2

= z2w1(1 + w3)λβνβ − (z2w2w4 + z3w3w5)λαα

and

B = z2

(
w2
∂2F2(DFE, λβνβ)

∂ρI1∂(λβνβ)
+ w3

∂2F2(DFE, λβνβ)

∂ρI2∂(λβνβ)

)
= z2(1 + w3)

λbb

λµµ

where z2, z3, w2, w3, w4, w5 > 0 and w1 < 0. Then, A < 0 < B. Namely, when
λβνβ−λβνβ changes from negative to positive, DFE changes its stability from stable
to unstable; correspondingly a negative unstable equilibrium becomes positive and
locally asymptotically stable. This completes the proof.

5. Numerical simulations. In this section, we present and compare some numer-
ical solutions of both the stochastic particle model (5) and the macroscopic model
(16).

Our aim is to qualitatively assess the interplay between the evolution of individ-
uals’ viral load and the disease spread and isolation control. Hence, demographic
and epidemiological parameters values do not address a specific infectious disease
and/or spatial area. They refer to a generic epidemic outbreak where control strate-
gies rely on isolation of infectious individuals, as typically happens for new emerging
infectious diseases (e.g., 2003–2004 SARS outbreak [31], 2014–2016 Western African
Ebola virus epidemic [4], the first phase of the ongoing COVID–19 pandemic [33]).

Numerical simulations are performed in Matlab® [26]. We implement a Monte
Carlo algorithm to simulate the stochastic particle model (5) and the 4th or-
der Runge–Kutta method with constant step size for integrating the system (16).
Platform–integrated functions are used for getting the plots.



484 R. DELLA MARCA, N. LOY AND A. TOSIN

Parameter Description Baseline value
λb Frequency of new births or immigration 1 days−1

b Newborns probability parameter 2.58 · 10−5

λµ Frequency of natural deaths 0.01 days−1

µ Probability of dying of natural causes 2.79 · 10−3

λβ Frequency of binary interactions 1 days−1

νβ Transmission probability parameter 0.29
v0 Initial viral load of infected individuals 0.01

λH1,I1(t) Frequency of isolation for I1 members See Section 5.3
λH2,I2(t) Frequency of isolation for I2 members See Section 5.3
αH(v) Probability for an infectious individual to be isolated See Section 5.3
λγ Frequency of viral load evolution 0.50 days−1

ν1 Factor of increase of the viral load 0.40
ν2 Factor of decay of the viral load 0.20
η(v) Probability of having passed the viral load peak ν1

γ(v) Probability of recovering ν2

λd Frequency of disease–induced deaths 0.01 days−1

d Probability of dying from the disease 0.10
Table 1. List of model parameters with corresponding description
and baseline value.

5.1. Parametrization. The time span of our numerical simulations is set to tf = 1
year. We are considering an SIR–like model with demography and constant net
inflow of susceptibles λbb. Since travel restrictions are usually implemented during
epidemic outbreaks, we assume that λbb accounts only for new births (which can be
assumed to be approximately constant due to the short time span of our analyses).
Therefore, the net inflow of susceptibles is given by

λbb = br
N̄

Ntot
,

where br is the birth rate, N̄ denotes the total resident population at the beginning
of the epidemic, and Ntot is the total system size. Note that Ntot accounts for
agents belonging to all model compartments X (including B, Dµ, Dd), whereas N̄
refers only to living individuals.

We assume a population of N̄ = 106 individuals, representing, for example, the
inhabitants of a European metropolis. Fluctuations in a time window of just over
a year are considered negligible. The most recent data by European Statistics refer
to 2019 and provide an average crude birth rate br = 9.5/1, 000 years−1 [13] and
an average crude death rate λµµ = 10.2/1, 000 years−1 [12]. The total (constant)
system size Ntot is set to Ntot = N̄/(1−λbbtf ), in such a way Ntot = N̄ +λbbtfNtot
is given by the sum of the initial population, N̄ , and the total inflow of individuals
during the time span considered, λbbtfNtot.

For the epidemiological parameters we take the following baseline values:

R0 = 4, λγ = 1/2 days−1, ν1 = 1/(5λγ), ν2 = ν1/2, λdd = 9.997 · 10−4 days−1.

In particular, the product λγν1 can be interpreted as the inverse of the average time
from exposure to viral load peak, whilst λγν2 as the inverse of the average time
from viral load peak to recovery. The disease–induced death rate λdd is estimated
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through the formula given by Day [7]:

λdd = (1− λµµT )
CF
T
,

where CF is the fatality rate and T is the expected time from isolation until death.
We assume CF = 1% and T = 1/(λγν2) = 10 days. As far as the initial viral load
of infected individuals, v0, is concerned, we assume that it is 1% of the maximum
reachable value (v = 1), namely v0 = 0.01. Finally, for the Monte Carlo simulation
of the particle model (5), we further assume λb = λβ = 1 days−1 and λµ = λd = 0.01
days−1.

Initial data are set to the beginning of the epidemic, namely we consider a single
infectious individual in a totally susceptible population:

ρS,0 = (N̄ − 1)/Ntot, ρI1,0 = 1/Ntot, nI1,0 = v0ρI1,0,

ρi,0 = ni,0 = 0, i ∈ {I2, H1, H2, R}.
(26)

All the parameters of the model as well as their baseline values are reported in
Table 1.

5.2. The uncontrolled epidemic outbreak. First, we numerically investigate
the impact of the epidemiological parameters on the basic reproduction number
R0, see (21). By considering the baseline parameters values, we obtain that the
ratio between R0 and the transmission rate λβνβ is about 13.83. Fig. 1 displays
the contour plot of R0 versus λγν1 (x–axis values) and λγν2 (y–axis values). We
vary the average period of viral load increase, 1/(λγν1), in the range [2, 14] days
and the average period of viral load decay, 1/(λγν2), in the range [5, 25] days. We
obtain that R0 decreases with both λγν1 and λγν2, from a maximum of R0 = 10.39
for λγν1 = 1/14 days−1 and λγν1 = 1/25 days−1 to a minimum of R0 = 1.87 for
λγν1 = 1/2 days−1 and λγν2 = 1/5 days−1.
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Figure 1. Contour plot of the basic reproduction number R0, as
given in (21), versus the decay rate of viral load, λγν1, and the
increase rate of viral load, λγν2. Intersection between dotted black
lines indicates the value corresponding to the baseline scenario.
Other parameters values are given in Table 1.
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Figure 2. Epidemic dynamics in absence of isolation control
(αH ≡ 0). Compartment sizes (grey scale colour) and mean viral
loads (blue scale colour) as predicted by the model (16) (solid lines)
and by the particle model (5) (markers). Panel (a): susceptible, S.
Panel (b): recovered, R. Panel (c): infectious with increasing viral
load, I1. Panel (d): infectious with decreasing viral load, I2. Initial
conditions and other parameters values are given in (26) and Table
1, respectively.

Let us now set the basic reproduction number to the baseline value R0 = 4
and investigate the epidemic dynamics in absence of isolation control (αH ≡ 0).
Numerical simulations are displayed in Fig. 2. We compare densities and viral
load means. Specifically, solid lines refer to the solutions of the macroscopic model
(16) and markers to those of the stochastic particle model (5). We note a good
match between the two approaches in predicting the dynamics of compartment sizes
ρiNtot, i ∈ X (grey scale colour): an epidemic outbreak invades the population, by
reaching a prevalence peak of approximately (ρI1 + ρI2)Ntot = 531, 000 in 61 days;
after 1 year the prevalence is almost zero and susceptible individuals are just about
21, 700. On the contrary, the dynamics of compartment mean viral loads ni/ρi,
i ∈ X (blue scale colour), may be different in the particle w.r.t. the macroscopic
model: the match is good as long as the corresponding compartment size is not
so small to make the effect of stochasticity relevant. This discrepancy is evident
at the beginning [resp. at the end] of the time horizon, namely when the density
of infectious and recovered [resp. of infectious] individuals is almost zero, see Fig.
2(b)–(c)–(d) [resp. Fig. 2(c)–(d))]. In particular, from Fig. 2(c)–(d), we see that,
at the end of the epidemic wave, according to the particle model (blue markers)
the mean viral loads of infectious individuals fluctuate until approaching zero when
the corresponding compartment becomes empty. Instead, the macroscopic model
predicts that the same means remain approximately constant at a positive value
(blue solid lines), suggesting that the first moment nI1 [resp. nI2 ] and the density
ρI1 [resp. ρI2 ] go to zero with the same speed. This is due to the inconsistency of
average quantities, like the mean viral loads, when the number of particles is very
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small. In that case, the deterministic macroscopic model cannot be justified by
means of the law of large numbers and statistical fluctuations must be taken into
account.

5.3. Viral load–dependent vs. constant isolation control. Here, we intro-
duce the isolation control in the epidemic model and assess how the frequency of
testing and the viral load–sensitivity of tests can affect epidemic dynamics. To this
aim, we compare the following simulation scenarios:

S1 viral load–dependent isolation, as studied here: λHj ,Ij (t) = λαρIj (t), j = 1, 2,
and αH(v) = αv;

S2 constant isolation, as in classical epidemic models: λHj ,Ij (t) = λα, j = 1, 2,
and αH(v) = α.

In order to make the two scenarios properly comparable, we make the following con-
siderations. In the case S2, the product λαα represents the rate at which infectious
individuals are isolated in the unit of time. In the case S1, in the microscopic model,
the same rate is given by λαα multiplied by the individual microscopic viral load v
and by the densities ρIj , j = 1, 2; whereas, in the macroscopic model (16), due to
the monokinetic closure, this rate is given by λαα multiplied by the momentum nIj ,
j = 1, 2, related to the corresponding compartment (see (18)). Thus, we assume
that the value of λαα in scenario S1 (say, λαα |S1) is given by the value adopted in
scenario S2 (λαα |S2) rescaled by a normalization factor M :

λαα |S1 =
λαα |S2

M
,

where M represents an average quantity for the nIj ’s, j = 1, 2. In order to esti-
mate M , we consider the model (16) in absence of isolation control (αH ≡ 0) and
denote by nuncI1

(t) and nuncI2
(t) the corresponding solutions for nI1(t) and nI2(t),

respectively. Then, M is set to

M =
n̄I1 + n̄I2

2
,

where n̄Ij are the average values of nuncIj
(t) over [0, tf ], namely

n̄Ij =
1

tf

∫ tf

0

nuncIj (t)dt, j = 1, 2.

The numerical value for λαα |S2 is set to λαα |S2 = 0.1 days−1. For the Monte
Carlo simulation we set λα = 15 days−1 in scenario S1 and λα = 1 days−1 in
scenario S2.

Figs. 3 and 4 display the numerical simulations in scenarios S1 (grey scale colour)
and S2 (blue scale colour). Specifically, solid lines refer to the solutions of the
macroscopic model (16) and markers to those of the stochastic particle model (5).
As far as the match between the two approaches is concerned, we note that in
the case of constant control S2 considerations similar to those made in Section 5.2
apply. Instead, in the case of viral load–dependent control S1, solutions by particle
and macroscopic models are qualitatively similar but quantitatively different. This
is an expected result because the derivation of the macroscopic model relies on an
approximation through the monokinetic closure (13), which acts by levelling the
viral loads of all agents belonging to a given class to their average value. However,
notwithstanding the postulated monokinetic closure, the matching is quite good, as
the peak given by the macroscopic model is only mildly underestimated. Again,
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Figure 3. Viral load–dependent vs. constant isolation control.
Numerical solutions as predicted by the model (16) (solid lines)
and by the particle model (5) (markers) in scenarios S1 (grey scale
colour) and S2 (blue scale colour). Panel (a): compartment size
of infectious individuals with increasing viral load, I1. Panel (b):
compartment size of infectious individuals with decreasing viral
load, I2. Panel (c): compartment size of isolated individuals with
increasing viral load, H1. Panel (d): compartment size of isolated
individuals with decreasing viral load, H2. Initial conditions and
other parameters values are given in (26) and Table 1, respectively.

we remark that the macroscopic model may not well reproduce the compartment
mean viral loads as predicted by the stochastic model (Fig. 4). This happens at
the beginning and at the end of the time horizon when some compartments are
almost empty (e.g., those of infectious and isolated individuals). In such cases, the
law of large numbers does not apply and the concept of theoretical mean departs
consistently from that of empirical mean.

As far as the comparison between scenarios S1 and S2 is concerned, from Fig. 3
we note that in the first case (grey scale colour) the epidemic outbreak occurs earlier
and with a lower peak w.r.t. the second case (blue scale colour), but the tails of
the infected curves are longer. In order to investigate these differences more deeply,
we consider the solutions by the macroscopic model (16) and report in Table 2
some relevant epidemiological quantities, including the value of infectious prevalence
peak and the time it occurs, and the endemic value of infectious prevalence, (ρEI1 +

ρEI2)Ntot. In scenario S1, the endemic components ρEI1
∣∣
S1

, ρEI2
∣∣
S1

are computed

through the expressions in (22). In particular, in our numerical set, equation (23)
admits three positive roots, but just one of them makes all the other endemic
components (22) positive, hence a unique endemic equilibrium exists. In scenario
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Figure 4. Viral load–dependent vs. constant isolation control.
Numerical solutions as predicted by the model (16) (solid lines)
and by the particle model (5) (markers) in scenarios S1 (grey scale
colour) and S2 (blue scale colour). Panel (a): mean viral load of in-
fectious individuals with increasing viral load, I1. Panel (b): mean
viral load of infectious individuals with decreasing viral load, I2.
Panel (c): mean viral load of isolated individuals with increasing
viral load, H1. Panel (d): mean viral load of isolated individuals
with decreasing viral load, H2. Initial conditions and other param-
eters values are given in (26) and Table 1, respectively.

S2, one can easily verify that the unique endemic equilibrium has

ρEI1
∣∣
S2

=
λbb

(λαα+ λγν1 + λµµ)
− λµµ (λαα+ λγν2 + λµµ)

λβνβ (λαα+ λγν1 + λγν2 + λµµ)

ρEI2
∣∣
S2

=
λγν1

λαα+ λγν2 + λµµ
ρEI1
∣∣
S2
.

We also compute the value at the final time tf = 1 year of three cumulative quanti-
ties: the cumulative incidence CI(t), i.e. the total number of new cases in [0, t]; the
cumulative isolated individuals, i.e. the total number of infectious individuals that
tested positive in [0, t], and the cumulative deaths CD(t), i.e. the disease–induced
deaths in [0, t]. In our model we have, respectively:

CI(t) = Ntot

∫ t

0

λβνβρS(τ)(ρI1(τ) + ρI2(τ))dτ,

CH(t) =

Ntot

∫ t

0

(
λH1,I1(τ)αH

(
nI1(τ)

ρI1(τ)

)
ρI1(τ) + λH2,I2(τ)αH

(
nI2(τ)

ρI2(τ)

)
ρI2(τ)

)
dτ,

CD(t) = Ntot

∫ t

0

λdd(ρH1(τ) + ρH2(τ))dτ.
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Scenario S1 Scenario S2
max(ρI1 + ρI2)Ntot 8.20 · 104 15.60 · 104

argmax(ρI1 + ρI2) 55.08 days 90.62 days
CI(tf ) 7.87 · 105 7.70 · 105

CH(tf ) 5.14 · 105 5.13 · 105

CD(tf ) 6.33 · 103 6.34 · 103

(ρEI1 + ρEI2)Ntot 289.35 75.92

Table 2. Relevant quantities as predicted by the model (16) in the
case of viral load–dependent isolation S1 (first column) and in the
case of constant isolation S2 (second column). First line: infectious
prevalence peak, max(ρI1 + ρI2)Ntot. Second line: time of infec-
tious prevalence peak, argmax(ρI1 + ρI2). Third line: cumulative
incidence at tf = 1 year, CI(tf ). Fourth line: cumulative isolated
individuals at tf = 1 year, CH(tf ). Fifth line: cumulative deaths
at tf = 1 year, CD(tf ). Sixth line: endemic infectious prevalence,
(ρEI1 + ρEI2)Ntot. Initial conditions and other parameters values are
given in (26) and Table 1, respectively.

From Table 2, we note that the epidemic peak in scenario S1 is almost halved
compared to the scenario S2 and occurs 36 days before. By contrast, the endemic
infectious prevalence is much greater in scenario S1 w.r.t. S2: 289 vs. 76. Inter-
estingly, the differences in the cumulative quantities CI(tf ), CH(tf ), CD(tf ) are,
instead, minimal: in case of viral load–dependent isolation the cumulative incidence
at 1 year is approximately 2% greater than the corresponding quantity in the case
of constant isolation, while the cumulative isolated individuals [resp. deaths] are
about 0.2% greater [resp. smaller].

The viral load–dependent isolation function reflects the assumption that an infec-
tious individual with high viral load is more likely to be identified: it may represent
the efficiency of the test that, according to its sensitivity, is capable of detecting
different concentrations of virus particles per ml [20]. Assuming a constant isolation
function means, instead, that all infectious individuals have the same probability
of being detected and diagnosed. In other words, infectious individuals with suffi-
ciently low [resp. high] viral load have a probability of being diagnosed higher [resp.
lower] in scenario S2 with respect to S1.

5.4. Tracking individuals’ viral load. One of the advantages of a particle model
is the possibility to track the trends of all the agents of the system. Here, we are
interested in tracking the evolution of individuals’ viral load during the simulation
time span. To this aim, we consider the particle model (5) with viral load–dependent
isolation control (scenario S1) and retrieve the viral load evolution of every single
agent. In Fig. 5, we report the temporal dynamics of v for five selected agents,
who show different courses of the disease. Different line markers and/or colours
refer to the different epidemiological compartments the agents pass through; the
meaning is specified in the figure legend. Note that two agents die after having
acquired the infection: one of natural causes (first curve from the left), the other
one from the disease (second curve from the left). The other three agents survive and
finally recover from the infection: two of them are identified and isolated during
the infectious period (third and fourth curve from the left), while the last one
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Figure 5. Viral load evolution from the time of infection exposure
to the final time tf = 1 year for five system agents, as predicted by
the stochastic particle model (5) with viral load–dependent isola-
tion control (scenario S1). Different line markers and/or colours re-
fer to the different epidemiological compartments the agent passes
trough; the meaning is specified in the legend. Initial conditions
and other parameters values are given in (26) and Table 1, respec-
tively.

remains free to move (fifth curve from the left). We also remark that individuals
may recover before their viral load becomes null and that it may take a long time
after recovering for v to completely vanish. Such a trend is linked to the choice of
a constant probability of recovery, γ = ν2. This is in agreement with experimental
observations of viral load curves, that show that individuals are no longer infectious
before the complete disappearance of the virus [5, 6, 15, 17, 21]. Nonetheless, the
mathematical description could be refined by setting a v−dependent and decreasing
probability of recovering, γ(v).

6. Discussion and conclusion. In this work, we have proposed a microscopic
stochastic model allowing one to describe the spread of an infectious disease through
social contacts. Each individual is identified by the epidemiological compartment
to which he/she belongs and by his/her viral load. Binary interactions between
susceptible and infectious individuals may cause the susceptible to acquire a positive
viral load v and, as a consequence, to get infected. The viral load progression
due to physiological processes is different from person to person, it determines the
health status of the individuals and, therefore, the epidemiological compartment to
which they belong. In particular, we have here considered the case that the viral
load influences explicitly the isolation mechanism, i.e. the switch from Ii to Hi,
i = 1, 2. In this sense, the present work manages to deal with the heterogeneity
of the individuals’ viral load, that is explicitly encoded in the individual viral load
progression and in the probability of being diagnosed.

We have derived from the stochastic particle model a kinetic description by means
of evolution equations of the distribution of the viral load in each compartment.
Finally, by making use of a monokinetic closure, we have obtained a macroscopic



492 R. DELLA MARCA, N. LOY AND A. TOSIN

description. The ensuing macroscopic model is a system of non–linear ordinary
differential equations for the macroscopic densities and viral load momentum of the
compartments. We have performed a qualitative analysis allowing to state that our
system has a unique disease–free equilibrium (DFE) that is globally asymptotically
stable ifR0 < 1 and that the system (16) exhibits a transcritical forward bifurcation
at DFE and R0 = 1.

Our numerical tests have allowed us to compare the predictions yielded by the
particle and the macroscopic models. In particular, concerning the densities of
the compartments, the numerical tests have confirmed the matching between the
two approaches in the case that the probability of being isolated, αH , is constant,
thereby validating the macroscopic model as a reliable approximation of the particle
model more amenable to analytical investigations and quick numerical solutions. In
the case of a viral load–dependent isolation, i.e. αH(v) = αv, along with a density–
dependent frequency of testing, we have seen that the qualitative trends of the
compartment densities predicted by the particle (5) and the macroscopic (16) mod-
els are close but do not coincide exactly: this is a consequence of the approximation
made through the monokinetic closure. Concerning instead the mean viral loads
of the compartments, they are well reproduced when the density of the compart-
ment is high enough: this is a consequence of the law of large numbers. Instead,
when the compartment is almost empty and there are few incoming and outgoing
individuals, the statistical average described by the macroscopic model is no longer
reliable. Therefore, while the macroscopic model permits quicker numerical solu-
tions, the particle model allows one to compute more accurately the viral load of
the individuals. Moreover, the particle model allows one to track the viral load of
every single agent and to investigate different possible individual evolutions of the
disease.

Deliberately, we have not tried to match real scenarios by calibrating or com-
paring the results of our models with empirical data. In fact, our aim was first to
propose a simple compartmental model including the viral load as microscopic vari-
able. As a consequence, we wanted to explore prototypical scenarios and to compare
them to those predicted by classical epidemic models, by focusing on the impact of
having a viral load–dependent isolation in place of a constant isolation rate. We
have seen that in the case of a viral load–dependent isolation the epidemic outbreak
occurs earlier and with a lower peak (almost halved) w.r.t. to the constant isolation
case. However, the cumulative disease–related quantities one year after the onset
of the epidemic are comparable, while the endemic infectious prevalence is much
greater in the viral load–dependent isolation scenario. This may be explained in
terms of the viral load–sensitivity and frequency of the testing activities that are
embodied in the choice of the functions αH(v) and λH1,I1(t), λH2,I2(t), respectively.

In the proposed framework, the description of the microscopic mechanisms and
the heterogeneity of the viral load at the microscopic level allows one to derive a
macroscopic model (more amenable, of course, to analytical and numerical investi-
gations), that provides for a richer description of the disease spreading in the host
population. Here we only considered the explicit influence of the viral load on the
isolation mechanism, but, in principle, other switches of individuals between com-
partments may depend on the viral load at the microscopic level, and on the viral
load mean at the macroscopic level. Therefore, more complex situations, such as
super–spreading events, that have been proved to be of the utmost importance for
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example during the COVID–19 pandemic [15], could be addressed. The heterogene-
ity of transmission could be included by making the disease transmission rate from
infectious to susceptible individuals dependent on the viral load. Also, in such a
way, different initial viral loads of the infectious individual first introduced in the
community may give rise to different epidemic scenarios.
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