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Abstract. During the Covid-19 pandemic a key role is played by vaccination
to combat the virus. There are many possible policies for prioritizing vaccines,

and different criteria for optimization: minimize death, time to herd immunity,

functioning of the health system. Using an age-structured population compart-
mental finite-dimensional optimal control model, our results suggest that the

eldest to youngest vaccination policy is optimal to minimize deaths. Our model
includes the possible infection of vaccinated populations. We apply our model
to real-life data from the US Census for New Jersey and Florida, which have a

significantly different population structure. We also provide various estimates
of the number of lives saved by optimizing the vaccine schedule and compared

to no vaccination.

2020 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. COVID-19; SARS-CoV-2; SEIR compartmental models; vaccine; op-

timal control.
The authors acknowledge the support of the NSF CMMI project # 2033580 “Managing pan-

demic by managing mobility”. R.W., S.T.M. and B.P. acknowledge the support of the Joseph and
Loretta Lopez Chair endowment.

443

http://dx.doi.org/10.3934/nhm.2022016


444 LUO, WEIGHTMAN, MCQUADE AND ET AL.

1. Introduction.

1.1. Background. Coronavirus disease 2019 (COVID-19) has changed the world
in such a massive way that a predictable influx of epidemiological models has been
racing to accurately describe the movement of the disease since onset. As the first
wave of vaccines hit the general public in early 2021, so did a new wave of models
attempting to describe vaccine distribution and the different strategies followed
around the world. Vaccination specifically helps develop immunity to the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and possibly limits the
spreading of the disease through communities (the restriction of disease spread by
vaccine has not been made clear at this point in time). However, decisions regarding
who should be offered COVID-19 vaccines first when supplies are limited remain
debatable.

The institution tasked with minimizing negative outcomes due to disease in the
US is the Center for Disease Control and Prevention (CDC). The phase allocation
plans of COVID-19 vaccines provided by the CDC have addressed the importance
of keeping a balance between the prevention of morbidity and mortality and the
preservation of societal functioning [26]. The residents of long-term care facilities
are at the highest risk for infection and severe illness from COVID-19, which lists
them on the top of vaccination plans to prevent morbidity and mortality. While less
prone to severe infections, healthcare and other front-line essential workers are at
higher risk of infection, and their well being is critical for the continuity of essential
functions of the society. As a result, different social groups are given priority for
vaccinations globally. For example, most states in the U.S. and Europe prioritize the
senior groups, but Indonesia first gives vaccines to essential workers. Speculation
about whom to prioritize differs vastly as the general consensus is that healthcare
workers and the elderly should come first, but there are many confounding factors.
For example, disadvantaged communities can have trouble accessing the vaccine
and thus may need to be prioritized as well [66]. A closely related question is how
different vaccination plans affect the transmission of a disease over a period of time
and the achievement of herd immunity (resistance to the spread of an infectious
disease within a population due to large amount of immunity caused by previous
infection or vaccination). For example, a leading question is the following: does the
vaccination of communities with heightened interaction rates but a lower mortality
rate cause less fatalities in the long run? In this paper we put a novel spin on an
existing method of modeling disease spread. We couple an extended SIR model with
an optimization problem in order to show that through such a method, not only
can one test possible outcomes, but a model like this can also directly inform policy
decisions such as what subset of people to vaccinate first. Our approach couples
an age based interaction matrix with public US job records in order to develop
vaccination schedules for various states in the United States.

1.2. Related works. Epidemiological models date back to 1932. The seminal work
[36] of Kermack and McKendrick subdivided populations into compartments, and
provided differential equations driven by infection and recovery rates. The model
is also called SEIR because of the name of compartments: susceptible, exposed, in-
fected and removed. Many generalizations were proposed, including: 1) considering
time-dependent parameters, travel and zoonotic infections [19, 60]; 2) increasing
the number of compartments to capture disease progression [32]; 3) considering
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age-structure and spatially distributed populations [14, 21, 22, 35, 73, 72], 4) con-
sidering in-host dynamics [6]. For the specific case of New Jersey, a compartmental
model was instrumental in quickly identifying the hospital beds need [2] by county,
and was cited in a letter from New Jersey Governor Phil Murphy [48]. Compart-
mental models are useful for large-scale optimization, a fact we take advantage of in
the optimization of vaccine schedule using our model. However, they have limita-
tions in lacking description of in-host dynamics, based only on aggregated data, and
difficulties in representing spatial component of the dynamics [38]. Various work
discussed the usefulness of mathematical epidemiological models [47, 46, 70].

From onset of the virus, researchers raced to build models describing how popula-
tions could slow the disease using Non-Pharmaceutical Interventions (NPIs). With
uncertainty surrounding vaccine efficacy’s duration, the modeling of different possi-
ble futures allows us a glimpse at the policy decisions that should be made. In [10]
a model is developed to estimate future case counts in the United States by varying
projected vaccine efficacy and NPI policies such as social distancing, mask wearing,
and testing. In [42], a spacial epidemic model is coupled with an optimization tech-
nique to resolve safety-and-mobility trade-offs in epidemic response plans.
In June 2020, [7] built an agent–based model to predict the effects of social distanc-
ing and isolation on transmission of a virus. Another agent-based model developed
by [54] is used in order to simulate different vaccination strategies based on pro-
jected efficacy of a vaccine in fighting the virus in North Carolina. It is important
to note that most of these models are considering the minimization of deaths. As
seen by the United States Stimulus programs, which are programs developed by
the US government in order to jump start the economy through direct payments to
citizens, loans to companies and more[51], this pandemic has had a huge economic
impact in many countries as well. In [62], rather than using deaths as the cost, a
model is developed in order to minimize economic cost to the governments of the
United Kingdom, Canada, and the United States.

In late 2020, as vaccinations started to become available, it became clear that
this would be the driving intervention to the COVID–19 pandemic. In [45], an age
based model was developed before the release of the vaccines to predict the impact
on the virus. Effectiveness for full vaccine coverage in preventing hospitalization
in the age group 65 − 75 for example was estimated at 96% for Pfizer-BioNTech,
96% for Moderna, and 84% for Janssen according to [27]. In [15], a study in Israel,
it is shown that patients with more comorbidities are much more likely than the
average to develop serious infection. Researchers also looked for optimal vaccination
strategies and estimate the affect the vaccine would have on certain populations. In
fact in [58] it is mentioned that the effects of the vaccine on a given population are
not observable for quite some time. Therefore models are imperative in predicting
and optimizing a best strategy. In [34], a model was made to examine how long it
would take vaccination to be a strong enough intervention to raise all NPIs.

While evaluating the efficacy of vaccines is important, determining a vaccine
schedule is crucial for each governing body during a pandemic. In [17], a compart-
mental model is used to address age-based questions about vaccination distribu-
tion. The seemingly strongest strategy to minimize deaths is the obvious one of
vaccinating from the oldest down to the youngest populations. Similarly, in [29] a
compartmental model is developed in order to answer the question of how to dis-
tribute vaccines in India. One key difference in the model presented in this paper
is the stages at which a person is vaccinated. In [29], the vaccine is given to only
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susceptible while in our model we allow the vaccine to be distributed to exposed
and infected populations as well.

Previous work in control of pandemic also includes: quantifying the effect of
containment measures [30], determining the controllability using daily data [18],
considering individual reaction to non-pharmaceutical interventions [41], determin-
ing best timing of interventions [31, 55], including testing and quarantining [5].
Moreover, some of the considered interventions were already modeled for other
viruses such as human papillomavirus [16, 61]. Finally, some papers focused on the
economic cost considering uncertainty in data [33], cost of lockdown [1, 3], hospital
and intensive care unit occupancy [20, 64].

1.3. Contribution of the paper. The focus of this paper is to develop a finite-
dimensional model which couples a system of ordinary differential equations with a
numerical optimizer to design optimal vaccination strategies to minimize the mor-
tality amongst a population due to the spread of COVID-19. The control in question
is the vaccination strategy and the objective the minimization of mortality amongst
the populations. There were many NPIs developed early during the pandemic to
curb the spread of the virus, such as social distancing, contact tracing and test-
ing. While these methods are extremely beneficial, their economic costs rise almost
linearly with their frequency of use. Furthermore, if policies are lifted before the
disease is all but eradicated, we see an uptick in both cases and deaths soon af-
ter. Therefore it seems the most beneficial intervention both in mortality rate and
economically will be the vaccine. Not only have the most prevalent vaccines been
shown to be very effective, but also a vaccinated person seems to hold a relatively
good immunity to sickness and even possibly a lower rate of transmission and in-
fectivity for a much longer time than a government can financially afford to keep
the other interventions in policy.

Four key factors distinguish our approach from others:
1) By splitting the population into age ranges, we are able to develop very specific
interaction matrices by age group.
2) Using CDC work data [52], we are able to split our age groups into essential
worker and non-essential worker categories to get a more realistic picture of inter-
actions in the United States.
3) Our model allows vaccinated people to become infected (but not seriously sick).
This decision was made after it became clear that while a vaccinated person has
strong immunity to sickness, it is unclear how strong the vaccine is in preventing
transmission of the virus.
4) Our model is coupled with a complete optimization approach thanks to the
Casadi software [4], thus finding the true optimal solution to our model rather than
running various simulations with preset schedules.

This project began with an augmented age-based SEIRV (Susceptible, Exposed,
Infected, Removed, Vaccinated) model which uses an interaction matrix to describe
interactions between age groups. This decision was made based on the ample data
suggesting that mortality rate for the COVID-19 pandemic is (as expected) closely
tied to age. With “work from home orders” and “social distancing mandates” being
put in place, and conversely, the essential worker’s inability to follow such mandates,
to model these interactions, a simple idea is to put the essential workers of each
group into their own categories for which interactions are less affected by mandates.
The time horizon is chosen to be 180 days as this seems to be a realistic amount of
time to vaccinate the majority of the eligible population (with the optimistic point
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of view that the entire population would like to be vaccinated). This point of view
has been proven in many countries to be very optimistic as has been made clear
by vaccine hesitancy and outright opposition in many parts of the world (including
in the United States). As a booster shot is being developed and approved at the
government level, one sees that human consequences are leading to a lag in herd
immunity. Our interaction matrices are developed using data from [57]. We use
age-based death rates developed from [52] in order to estimate the expected number
of deaths for a given vaccination schedule.

We then adjust the model slightly to become an augmented age-work-based
SEIRV model. The big question amongst policy makers seems to be whether it
is optimal to prioritize essential workers or to prioritize the oldest populations first.
We capture the competition between these two ideas by breaking our model up
using labor force statistics from the Bureau of Labor [50]. We split all working age
populations into categories “essential” and “non-essential” in order to see if there is
a difference in optimal policy if the interactions of essential workers are scaled up.

We then further develop the model by removing the vaccinated compartment and
instead including a vaccinated compartment for each of the usual compartments:
Susceptible Vaccinated, Exposed Vaccinated, Infected Vaccinated and Removed
Vaccinated. This decision was made in order to make the model better fit the phys-
ical properties of the population; a vaccinated person has a high enough probability
to become infectious and spread the virus that we felt it crucial to include such
dynamics. With this change, the user can capture the real life implications of an
unknowing exposed or infected individual (or knowing if there is a perceived health
benefit) getting vaccinated. This new model also allows a user the ability to capture
an elusive interaction: vaccinated infected-vaccinated susceptible. While there is
not much literature about the transference of virus amongst vaccinated susceptible
populations for COVID-19, it is more clear than ever that there are two driving
forces to a virus: spreadiblity and mortality. If a virus is spread with ease through-
out the vaccinated compartments, while those in the vaccinated compartments are
assumed safe from serious illness, they are not safe from being hosts through which
the virus can travel to a more vulnerable host, thus causing serious illness. Our
model opens the door to tests which could show how these interactions between the
vulnerable and the vaccinated spreader affect the population as a whole.

Once our model is built, we tune the parameters to state specific data (in this pa-
per we show results from both New Jersey and Florida) in order to test vaccination
schedules. We then formulate an optimal control problem, consisting of minimizing
the total number of deaths over the time horizon that we numerically solve by a
direct transcription using [4], an open-source tool for nonlinear optimization and
algorithmic differentiation. Our numerical simulations produce an optimal vaccina-
tion schedule for the given parameters and data set. As will be mentioned later, it
is uncertain what exactly constitutes an “essential-worker” in each state, a value as
elusive as the initial replication rate and the scaling of the interaction matrix. Be-
cause of this, we test several scenarios with various choices as a sensitivity analysis
in order to paint a broader picture.

The most striking yet comforting result is that in every case, the optimal solution
seems to be the one chosen by most policy makers during this pandemic; to vaccinate
the oldest population first and then work down the list, vaccinating based on age
while always vaccinating the essential worker population first. While this policy
seems to be robust, such a choice is not always easy, as seen by countries who chose
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to vaccinate essential workers first at the onset of vaccine production. The tool
that we have designed could be useful in not only the vaccination distribution for
this pandemic, but also could be used as a blueprint for future vaccination schedule
optimization questions.

2. Discussion on agent based and compartmental models. There are gener-
ally two types of epidemiological models used to examine the trends and fluctuations
of populations due to a disease; agent-based models (ABM) and compartmental
models (CM). These models differ in a few ways, starting with how they organize
a population: a CM focuses on capturing the collective behavior of a population
or sub-population as a whole. For example in a standard SIR CM we have three
compartments: Susceptible, Infected and Removed. We define differential equations
which govern the movements of the population amongst these three compartments.
At each time step, the entire population is defined as the sum of the three categories
with each member of the populations’ only defining characteristic being the com-
partment that they are in. CMs were extensively used to model infectious diseases,
including pertussis [59, 24], measles [8], Ebola [40, 44], HIV [53, 25], tuberculo-
sis [63, 11], cholera [23] and others. CM models were successfully used also for
COVID-19, for instance in [74, 12, 28, 32, 30].

In contrast, an ABM, as the name may suggest, focuses on the behavior of each
individual in the system. Each individual in this case would be considered an
“agent” and the state of an agent is governed by probabilities based on interactions
with other agents. One immediately sees both the merits and the restrictions of
an ABM. In considering each agent and all of their defining characteristics, we are
able to gain a very detailed view of the progression of a disease all the way down
to knowing a few defining characteristics about each and every agent. However, the
restriction here is that in order to get such a detailed view, one must input many
details about the system. This type of model works best for a population which the
researcher is able to describe using many choices and consequences made by each
agent and the probabilities which govern these choices on a large scale. As such, an
ABM requires large amounts of precise data in order to paint an accurate picture
of real world dynamics. This brings up concerns about robustness of a model both
in accuracy of inputs and transfer-ability to different data sets.

This highlights another key difference between the two model types, namely the
use of probability. An ABM is at essence a stochastic model using probabilities
to govern behavior. Therefore, when using an ABM one must complete multiple
simulations and take the average of the solutions in order to ensure an outlier
solution has not been found. For example, in [34], an ABM is used to model
vaccine strategy strength, testing whether the vaccines would be robust enough to
allow for the removal of non-pharmaceutical interventions in the country of France.
The model is run 200 times and results are averaged in order to paint the most
probable picture. An ABM, once built, has the capacity to adjust for micro-scale
policy changes in a population such as social distancing regulations or mask wearing
regulations in an efficient manner. In [37], they highlight the ease at which their
ABM can be adapted for policy change. However, requiring each member of a
population to have such complex characteristics requires the model to remember
the state of each individual at each time step and can result in a very costly model.
This is where the CM becomes more efficient. While a CM is less easily adapted to
new policy, it can scale to any population with much less cost than an ABM. This is
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because one must not worry about each individual in the population. For example,
in [34], the ABM being used only considers 500, 000 agents despite the population
of France being around 67 million people at the time. This need for scaling and
then re-scaling often still allows for an accurate model given realistic parameters,
but highlights the computational power needed to run an ABM at full capacity.

An advantage here for the CM is that the substitution of a different data set,
for example using the same model for two different states in the United States,
results in a very minor difference in cost. This is a reason why in this paper we will
describe the use of a CM to model vaccine distribution in the united states. While
different states have vastly different populations and age distributions, the same
optimization problem can be solved on them using the same CM with predictable
difference in cost. In this paper we use data from the 50 states, treating each state’s
vaccination schedule as its own optimization problem. Therefore, the fluctuating
populations suggests that a CM is better suited here and thus is what we employ.

3. An age-structured compartmental model. Conventional epidemiological
models assume the homogeneity of different social groups as well as the effective-
ness of vaccines. To personalize the vaccination phase allocation with a balance of
mortality prevention and societal function preservation, we first build an age-and-
work structured model. The entire population is divided into seven age groups,
and those groups of working age are further divided into essential and non-essential
workers. The dynamics of the system are described by an age-and-work structured
susceptible-exposed-infected-removed (AW-SEIR) model. Each susceptible individ-
ual undertakes the risk of interacting with an infected person, becoming exposed,
and after a latent exposed period ends up being recovered or deceased.

Essential workers are at higher risk of infection due to extended exposure to
a larger population of possibly infected people. They could also not be receiving
adequate access to personal protective equipment (PPE) in their workplaces early
on. The senior age groups are at higher risk of morbidity or mortality at the final
stage. Other groups may also have different social activity levels compared to the
pre-pandemic situation. Modeling interactions (i.e., social contacts [57]) between
different age-and-work groups is certainly a central task. The intensity of social
contacts within each group and between groups is primarily dependent on various
social-distancing measures and behavior changes. The locations of those contacts
are categorized as work, home, school, and others [57]. This compartmental model
is able to describe a variety of policies such as school closure, enforced work-from-
home for non-essential workers, or social-distancing in workplaces all through the
interaction matrices defined later.

The social contacts between different age or work groups could give rise to non-
trivial phase allocation plans for vaccine distribution during a pandemic. For in-
stance it is clear that a disease with extremely low morbidity, or less age-based mor-
bidity would require those with more interactions to be vaccinated early. However,
a higher age-based morbidity would require the more susceptible ages be vaccinated
first. The goal of models such as these is to find a precise plan which takes all factors
into account.

Considering the primary objective of preventing morbidity and mortality, one
would naturally assume that the senior-age groups should be given vaccines before
others. Nevertheless, due to the slow vaccination process, a considerable propor-
tion of essential workers being exposed to the disease may become super spreaders.
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Those super spreaders may bring the virus home and to workplaces so that the in-
fected population grows exponentially because of the failure of adequate protection.

Even if the mortality rate of those age groups is smaller than the mortality rate of
the seniors, the larger basis of population with severe symptoms may exhaust limited
healthcare resources and lead to unexpected consequences. This consideration is
valid especially when the basic reproduction number R0 is large. The interaction
between those vulnerable societal groups and active social groups plays a prominent
role in determining the weights on allocating the limited supply of vaccines.

The phase allocation of vaccines is formulated as an optimal control problem
based on this AW-SEIR model. In each time step, the decision-maker observes
the susceptible population of each societal group and determines the number of
vaccine doses that should be allocated for each group. For each societal group,
the vaccination decision made in the current period will not only affect the pre-
vented number of COVID-19 cases in this group but have a spillover effect on other
groups through social contacts; vaccination of any person reduces the chances of
that person to become infected, but also reduces the chances of that person infecting
others. Therefore, the controller must optimize the vaccination plans for all groups
synchronously with the objective of reducing the total mortality in the population
before reaching herd immunity.

The age structured epidemic model with vaccination divides the total population
into 11 groups in Table 1.

Name Description

Group 1 Age 0-4 population

Group 2 Age 5-14 population

Group 3 Age 15-19 population with no job or non-essential

Group 4 Age 20-39 population with no job or non-essential

Group 5 Age 40-59 population with no job or non-essential

Group 6 Age 60-69 population with no job or non-essential

Group 7 Age 70+ population

Group 8 Age 15-19 population who are essential workers

Group 9 Age 20-39 population who are essential workers

Group 10 Age 40-59 population who are essential workers

Group 11 Age 60-69 population who are essential workers

Table 1. Groups by Age

We use the subscript j to indicate a social group. we then indicate the total
population using the variable N, thus Nj is the number of people in age group
j ∈ {1, . . . , 11}. Thus we have:
• Sj the number of susceptible;
• Ej the number of latently infected or exposed;
• Ij the number of infectious people not isolated;
• Rj the number of removed;
• Vj the number of vaccinated.
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The dynamics of the age structured SEIR model is given by:

Ṡj = −u
Sj

11∑
k=1

lkj Ik

11∑
k=1

lkj Nk

− wj

Ėj = u

Sj

11∑
k=1

lkj Ik

11∑
k=1

lkj Nk

− δEj

İj = δEj − γIj
Ṙj = γIj

V̇j = wj

(1)

where u = R0 γ reflects the lockdown measures (and could be time-dependent);
L = (lkj) is the interaction matrix among age groups during pandemic. In this
matrix, the maximal eigenvalue is given by the basic reproduction number R0. wj

is the number of vaccinated people in age group j per day, so that
∑11

1 wj is the
number of vaccines available per day (and could be time-dependent); δ = 1/DE

with DE being the latent period in days; similarly, γ = 1/DI with DI denoting the
infectious period in days. Now it is also important to choose epidemiological con-
stants which are specific to the disease in question. These parameters are estimated
with CDC sources in Table 2.

Name Description Estimate Units

R0 Rate of infection 1.0-1.2 –

DI Infectious period 5-14 days

DE Latent period 4-7 days

Table 2. Description of Variables

After a few weeks of vaccinating, the notion began to spread that perhaps the
vaccine not only keeps a person from contracting the disease, but also from devel-
oping symptoms once infected and spreading disease if infection is contracted. In
[43], a driving question is whether the COVID-19 vaccine can stop one from being a
spreader of the disease after contracting the infection. In order to account for mod-
eling these possibilities, we further the complexity of the model by incorporating
an expansion of the vaccinated compartment; rather than including V, we add Sus-
ceptible Vaccinated (Sv), Exposed Vaccinated (Ev), Infected Vaccinated (Iv) and
Removed Vaccinated (Rv) in which we are able to change the parameters which
govern the ability of the vaccinated populations to transmit the virus, see Figure 1.

So in the end, our model is described by the system of equations (2).
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Figure 1. All possible paths through which populations may flow
into other populations.

Ṡj = −u
Sj

11∑
k=1

lkj Ik + 0.3 ∗ lkj Ivk

11∑
k=1

lkj Nk

− wj Sj

Sj + Ej + Ij

Ėj = u

Sj

11∑
k=1

lkj Ik + 0.3 ∗ lkj Ivk

11∑
k=1

lkj Nk

− δEj −
wj Ej

Sj + Ej + Ij

İj = δEj − γIj −
wj Ij

Sj + Ej + Ij

Ṙj = γIj

˙Svj = −u
Svj

11∑
k=1

0.3 ∗ lkj Ik + 0.09 ∗ lkj Ik

11∑
k=1

lkj Nk

+
wj Sj

Sj + Ej + Ij

˙Evj = u

Svj

11∑
k=1

0.3 ∗ lkj Ik + 0.09 ∗ lkj Ik

11∑
k=1

lkj Nk

− δEvj +
wj Ej

Sj + Ej + Ij

˙Ivj = δEvj − γIvj +
wj Ij

Sj + Ej + Ij
˙Rvj = γIvj

(2)
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In the final model our compartments include the usual SEIR with four additional
compartments representing vaccinated populations. we have the interaction matrix
lkj governing interactions, wj governing total vaccine allocation in a day, Nk being
the total population, δ being the virus mean latent period and γ being the mean
infectious period. There is reduced probability of an infected but vaccinated person
to transmit the disease. We chose to model this by a factor of 0.3. It is important to
note that this choice is an estimate as there is not much reliable data in the literature
about how the vaccine effects transmission. However, [65] claims that vaccination
was found to be effective in diminishing transmission inside of the household to
forty percent. Therefore thirty percent seems a reliable estimate for transmission
outside of the household with other non-pharmaceutical interventions at play.
As such, a vaccinated-vaccinated interaction has an estimated reduced chance of
transmission to 0.09. This new model accounts also for the ability to vaccinate

other compartments in addition to S (Susceptible): terms such as
wj Sj

Sj+Ej+Ij
show

the administration of the vaccines. This is because with the influx of vaccination
there was also a diminishing of testing. The result is that an “exposed” or “infected”
but asymptomatic person could get the vaccine.

4. Census data and interaction matrix. In order to test our model, we use
collected data to develop initial conditions for S, E, I and R, interaction matrices,
death rates, basic reproduction number and infection rates and recovery rates for
our age groups. The majority of the data used comes from the United States census.

We first take the raw population information from each state in the united states
and use the Age and Sex tables provided to break the population in each state down
by age group. From here we fit the populations into the age groups defined below for
our model. We then define the number of susceptibles to be the number of people
in each age group after removing the exposed infected and removed; the number of
exposed is set equal to a certain percent of the infected from the first 5 days of the
model (Dec 16,17,18,19,20); the number of infected is set to be the number of cases
from the first 5 days of the model minus exposed assigned proportionally based on
the number of people in each age group; the number of removed is set to be all cases
from January up to and including cases on Dec 15 assigned proportionally based
on the number of people in each age group.

As the definition of the term “essential worker” is a bit ambiguous, we must also
justify our percentages there. We begin with labor force statistics from the Bureau
of labor. We then decide which occupations count as essential. This decision was
based on descriptions of essential workers from [67]. We then sum the total workers
in each age group and reassign people to the essential worker category based on our
age groups (the age groups provided by the Bureau of Labor did not perfectly match
our age groups). Lastly we use the total population from the CDC age groups to
calculate an “essential worker rate” per age group.

The basic reproduction number (to be used to scale A) was found per state
at rt.live [49], a live Covid tracking website which recalculates and reports daily
replication numbers.

The total vaccine availability per day w was estimated by CDC sources. We
chose this number to be 10, 000 as this is both a rational assumption for a state
in the US and a good estimate for herd immunity by sixth months, which was a
goal of policy makers. Of course this is a simplification of the process as (what we
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are now seeing live) the number of vaccines administered is reduced after the more
eager portion of the population has been successfully vaccinated.

We construct the interaction matrix using A and B: α is chosen so that the
dominant eigenvalue (call this λmax) of the matrix α(A − B) + βB. The eleven
age groups are{1, 2, 3, 3E, 4, 4E, 5, 5E, 6, 6E, 7}. We use a combination of A the
interaction matrix, and B the working interaction matrix for groups 1 through 7 to
build a new interaction matrix which describes the interactions of nonessential and
essential age groups.

Matrices A and B are shown below. A gives the interaction coefficients which
represent how often members of different age groups are exposed to each other. B
gives the interactions only due to the working environment. Therefore, we subtract
the interaction coefficient given in B from that in A to describe the interaction
coefficient of a Non-essential worker in an age group, because they are assumed to
not have working interactions.

A =



2.5982 0.8003 0.3160 0.7934 0.3557 0.1548 0.0564

0.6473 4.1960 0.6603 0.5901 0.4665 0.1238 0.0515

0.1737 1.7500 11.1061 0.9782 0.7263 0.0815 0.0273

0.5504 0.5906 1.2004 1.8813 0.9165 0.1370 0.0397

0.3894 0.7848 1.3139 1.1414 1.3347 0.2260 0.0692

0.3610 0.3918 0.3738 0.5248 0.5140 0.7072 0.1469

0.1588 0.3367 0.3406 0.2286 0.3673 0.3392 0.3868



B =



0 0 0 0 0 0.0000 0.0000

0 0.0195 0.0094 0.0116 0.0115 0.0000 0.0000

0 0.0168 0.6441 0.3590 0.1893 0.0067 0.0000

0 0.0272 0.3060 0.8135 0.5203 0.0218 0.0000

0 0.0361 0.2103 0.6465 0.6465 0.0234 0.0000

0.0000 0.0079 0.0083 0.0585 0.0692 0.0035 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


We use A and B to build an 11×11 matrix for age groups

{1, 2, 3, 3E, 4, 4E, 5, 5E, 6, 6E, 7},

where 3 is the third youngest age group (age 15 to 19) excluding Essential workers
(“Non-Essential Workers”), and 3E is the group of Essential workers in this age
group. We define the Nonessential group to Nonessential group interactions as
α(A − B). This is an 11×11 matrix with zeros on the rows and columns with
essential workers ({3E, 4E, 5E, 6E}) and entries from α(A− B) on the other rows
and columns. The Nonessential to Essential interactions have entries from α(A −
B) + βB on For the total interactions matrix, we have:

I = [C1(A−B)] + [C1(A−B) +B] + [C1(A−B) +B] + [C1(A−B) +B],

where C1 is a scaling factor to add weight to the nonworking interactions.
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5. Optimization of vaccination schedule. We consider an optimal control prob-
lem for the system (2), with cost given by the total number of deaths over a time
horizon of 180 days. The model was tuned with data from New Jersey and Florida
on January 1st 2021. The number of available vaccines was set so in 180 days all
individuals above 15 years of age could be vaccinated.

In order to solve an optimal control problem numerically, it is usual and well
known to distinguish between direct and indirect methods.

Roughly speaking, direct methods (or direct transcription) consist in fully dis-
cretizing the optimal control problem under consideration, before applying an opti-
mization routine. Discretizing means: choose a discretization scheme for the differ-
ential equations (like Euler, Runge-Kutta); choose a discretization for the integral
cost criterion (like rectangle, Simpson). One can also approach the solutions glob-
ally in time by pseudo-spectral methods, by collocation. There are infinitely many
choices. In all cases, the full discretization yields a classical nonlinear optimization
problem under constraints, in finite dimension (this dimension being larger as the
discretization is finer). This high-dimensional nonlinear optimization problem can
then be solved thanks to numerical optimization: gradient methods, penalization,
Lagrange methods (Karusch-Kuhn-Tucker). There also, one has infinitely many
choices to design a numerical scheme. We note that, in direct methods, we first
discretize, then optimize (or dualize).

In the indirect approach, this is exactly the other way round: we first apply a
first-order necessary condition for optimality to the optimal control problem: we
apply the Pontryagin maximum principle (see [13, 39, 56, 68]), which leads to a
shooting problem that can then be solved, numerically, thanks to a Newton method
(see [9] for well-posedness of the shooting method, in relationship with conjugate
point theory). In other words, in the indirect approach, we first optimize (or dualize)
and then discretize.

We refer the reader to [69, 68] for a survey on the numerical methods in optimal
control and on the pros and cons of direct vs indirect approaches. Also, note that
many existing numerical methods are neither direct nor indirect but are rather of a
hybrid nature. The choice of such or such method depends on the context and on
the demanding issues.

Here, we choose the direct transcription approach because the optimal control
problem that we consider involves some state constraints that would be difficult to
handle in the indirect approach (indeed, using the Pontryagin maximum principle
when there are state constraints is much more involved). Moreover, direct methods
are much softer insofar they allow to easily perform modifications of the model.

We choose to discretize the control system with the implicit RK2 scheme and the
cost functional with the trapezoidal rule, on a regular subdivision of the time interval
(we take: one step = one day). Writing the control system as ẋ(t) = f(x(t), u(t))

and the cost functional as C(u) =
∫ T

0
f0(x(t), u(t)) dt, this means:

xk+1 = xk +
h

2
(f(xk, uk) + f(xk+1, uk+1)) , k = 0, . . . , N − 1

min
h

2

N∑
i=0

(
f0(xk, uk) + f0(xk+1, uk+1)

)
where h is the step of the (assumed) regular subdivision of the time frame [0, T ].
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Figure 2. Sample tests for New Jersey with a choice of R0 = 1.0
(mildest case) while varying percent of essential worker and beta.

As an optimization routine to solve the resulting (finite-dimensional) optimiza-
tion problem, we use the interior-point optimization routine IpOpt [71], combined
with the modeling language AMPL which performs automatic differentiation. It is
by now well known that the use of automatic differentiation is a real plus in solving
efficiently nonacademic, nonobvious optimal control problems that cannot be solved
so efficiently without this powerful tool.

To initialize the optimization, we just take constant (discretized) controls and
states, those constants, for the states, corresponding to their initial conditions.
This is a very rough initialization but it happens to be enough for our needs. The
execution on a standard desktop machine is almost instantaneous.

One of the goals is to compare the policy to vaccinate based on age (oldest to
youngest) opposed to work status (essential workers first) structure. Note that in
order to test the elasticity of our model, we test varying the initial replication rate
R0 (1.0, 1.1, 1.2), the percent of workers (PE) deemed “essential”(24%, 34%, 44%)
and the infection rate β (0.25,0.5, 0.75) of COVID-19.

One reassuring result which can be seen clearly in Figure 2 is that any amount
of vaccination greatly diminishes the number of deaths regardless of who is being
vaccinated, even in the case of a very mild disease. A case where R0 = 1.0 is a very
benign disease, yet we still see that a vaccine will save about 2000 lives even in the
non-optimal case.

However, if R0 = 1.2, we see in Figure 3 that the number of lives saved jumps to
23, 500 immediately regardless of other parameters. Therefore, it is very clear that
the vaccine, regardless of schedule, is extremely effective in minimizing mortality
across all categories. A small rise in R0 results in almost an exponential rise in
deaths in an unvaccinated population, but we see that any vaccination plan dimin-
ishes this jump significantly. This can be clearly seen in Table 3 where we keep the
number of essential workers and beta constant and vary the R0. Further, we see
that while varying the PE and β changes the number of deaths (increasing both
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Figure 3. Results using New Jersey data-set plotted by initial
replication rate.
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Figure 4. Results using Florida data-set plotted by initial repli-
cation rate.
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results in a rise in deaths), the driving factor behind the consequences of COVID-19
is indisputably the infectivity of the virus. This can be seen very strongly in Figure
4 where we see that raising the percent of essential workers raises the number of
deaths by less than one hundred in some cases and not much more in others, com-
pared to the few hundred lost when raising the replication rate of the virus even in
the optimal vaccination case.

Table 3. Deaths Projected with Varying R0

State R0 Projected Deaths With
No Vaccine

Projected Deaths With
Vaccine

New Jersey 1.0 9316 6710

New Jersey 1.1 15609 6906

New Jersey 1.2 31681 7289

Florida 1.0 28467 21678

Florida 1.1 44657 22287

Florida 1.2 87349 23298

Note that in the dynamics of our program such as the exposed population in
Figure 6 we see that the program terminates at 180 days. This decision to choose
a time-span of 180 days in our program is due to the simple fact that the most
susceptible populations are vaccinated by then and thus the virus is virtually non-
existent beyond this point. This can clearly be seen in the infected population in
Figure 6 where the infected populations are all but diminished and only those with
extremely low death rates are still infected. If this policy happened in reality, while
the virus may still permeate on a biological level, the sickness and death rates would
be so low that in the eye of the public it would be non-existent.

While this tool can be fit to any data given information about parameters, we
have chosen state data in the United States to test our model. See in Figure 5
an example of an optimal strategy for New Jersey. in Figures 6 and 7 are also
the accompanying plots of the S, E, I, R, Sv, Ev, Iv and Rv populations. We see
from the figures that the compartments act as expected. Notice in the infected
population in Figure 6 each infected population grows at the beginning of the time
span, but rapidly approaches zero as it is being vaccinated. This is because once
somebody is a member of this compartment, s/he can either move to removed
(by recovering from the disease or passing away) or to vaccinated infected. The
latter may occur since the model assumes that an infected person is able to become
vaccinated, an event very possible for asymptomatic carriers. As the compartment
empties, new infected do appear from the susceptible population, however, as we
rapidly vaccinate the susceptible populations, the infected diminish as they have no
source of vulnerable people.

This strategy seems robust not only amongst different values of beta, distribu-
tions of essential workers and chosen R0, but also amongst different states. It seems
as though for the COVID–19 pandemic, the optimal vaccination policy was the one
chosen by most countries: vaccinate the oldest population first and work down
based on age. In total we have 27 simulations from each of the states tested. In
every run, the optimizer chose to vaccinate the oldest population first.
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Figure 5. Optimal vaccination strategy for Reproduction number
1.2, Percent of workers considered essential 44.

The goal of this paper is to demonstrate how a compartmental epidemiological
model can be used in an optimal control problem to minimize casualties when vacci-
nating the general population. The main limitation of the results is the less realistic
assumption that a municipality be able to vaccinate an entire sub-population with
ease. See in the susceptible population in Figure 6 how the susceptible population
approaches zero because all people are either vaccinated or have been infected. The
reality is that breaking a threshold of something closer to 70% of a population being
fully vaccinated would be an optimistic goal for any age group. In fact, we see live
in the United States a slowing of vaccination despite the fact that we seemingly
have not yet achieved herd immunity.

Note that the cost here is the number of deaths which the population suffers in
our time range of 180 days starting vaccination at day one. In Figure 3 there is
a vaccination schedule for the same parameters as the above plots, with essential
workers of the largest working population being vaccinated first, a policy that many
may believe to be optimal. Notice that the number of deaths is larger if one were to
use this schedule rather than the optimal one. This is noteworthy as some countries
such as Indonesia chose to prioritize their essential workers over their elderly.

Despite these shortcomings, this program could be updated and adjusted to fit a
multitude of situations such as these simply by adjusting the equations of the model.
When the COVID-19 vaccine arrived, many countries chose this optimal solution of
vaccinated on an age-based schedule while others chose to vaccinate their essential
workers first. Programs such as ours set the framework to make a more informed
decision in future times of crisis.

All code used in the design and implementation of our epidemiological model is
placed on GitHub for free use, note that all programs are written in the Python
programming language.
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Figure 6. Population dynamics for the unvaccinated compart-
ments: Susceptible, Exposed, Infected, and Recovered.
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