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Abstract. This paper focuses on the multiscale modeling of the COVID-19

pandemic and presents further developments of the model [7] with the aim

of showing how relaxations of the confinement rules can generate sequential
waves. Subsequently, the dynamics of mutations into new variants can be

modeled. Simulations are developed also to support the decision making of
crisis managers.

1. Aims and plan of the paper. The onset of SARS–CoV–2, responsible for
the initial COVID-19 outbreak, has generated a subsequent pandemic all over the
globe and societies. A multiscale modeling approach has been developed in [7] that
involves many disciplines. In addition to applied mathematicians, also immunolo-
gists, economists and virologists contribute to the new approach. We refer to [26]
which, in addition to a detailed description of the biology of the virus dynamics,
provides useful indications on the world spread of a pandemic which has induced
huge problems affecting not only health and well being in general, but also complex
economical problems and has modified collective behaviors and social life. A concise
quotation extracted from [7] summarizes the aforementioned concepts:

SARS–CoV–2 is mainly transmitted via respiratory droplets that an in-
fected person expels. If the viral charge is high, the carrier is more
infective. The large spike protein forms a sort of crown on the surface
of the viral particles and acts as an anchor allowing the virus to bind
to the Angiotensin-Converting Enzyme 2 (ACE2) receptors on the host
cell. After binding, the host cell transmembrane proteases cut the Spike
proteins, allowing the virus surface to approach the cell membrane, fuse
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with it and the viral RNA enter the cell. The virus hijacks the cell ma-
chinery and the cell dies releasing millions of new viruses thus generating
a virus infection.

The interested reader is referred to [1, 38, 44, 49] for the origin and mutations
of the virus and to [46] for the RNA virus evolution. Modifications of the so-called
SIR models [33], for instance SEIR models, have been proposed to consider the
specificity of COVID-19 [31]. An interesting alternative is developed in [27] based
on individual-based Markov models. Space propagation on networks of nodes have
been developed in [14], where the dynamics within each node are modeled by SEIR
structures, while transport dynamics are modeled with a kinetic theory approach.
The general framework is the multiscale systems approach proposed in [7].

Various aspects of the immune competition are treated in [40, 49], a topic some-
how related to the search for vaccines [16, 29, 45]. Additional topics on the biology
of the virus are reported in [17, 21, 36, 41, 47]. Various aspects of contagion dynam-
ics have been studied in [30]. In addition, the impact on the economy of nations is
treated in various research contributions, e.g. [3, 5, 23, 24, 32]. These citations do
not claim to be exhaustive. Indeed, the research activity in the field keeps growing,
motivated by the impact that the virus spread is exerting on our society and a huge
flow of new results reaches daily the literature in the field.

A key indication from the literature in biology, is that infectivity is not a constant
parameter, but it depends on the viral charge. In addition, it is necessary to account
for the dynamics of the in-host immune competition which develops as the presence
of virus particles releases danger signals which activate the reaction of the host’s
innate immunity. Coronaviruses are successful at suppressing various mechanisms,
but not all of them, in the immune response.

Accordingly, the modeling approach should refer to general issues of the immune
response [42], specifically, of the activation of the system from the innate to the
activated immunity [18, 20]. Pioneering contributions on the mathematical mod-
eling of the immune competition are known in the literature, for instance [11] on
the interaction of immune and tumor cells, while [22] specifically focuses on virus
epidemics in the presence of mutations and selection.

Recently published articles have shown a rapidly growing interest towards a sys-
tems approach to social dynamics and behavioral economy, where the mathematical
sciences are charged with capturing the complex features of these systems under the
influence of individual and collective human behaviors. The objective of our paper
specifically focuses on this topic by further developing the model [7] with the aim
of depicting, firstly how relaxations of the confinement rules can generate sequen-
tial waves, and subsequently of describing how this specific action can modify the
dynamics of the pandemics. These objectives can show how mathematics may pro-
vide to crisis managers simulations describing the possible scenarios generated by
mathematical models and how external actions modify them thus contributing to
planning strategy of the aforementioned actions.

We do not naively claim that mathematics can solve problems of epidemiology
and virology as we are aware that the modeling approach cannot be developed by
standalone mathematicians, an interdisciplinary approach is necessary as shown
in [7]. Bearing all above in mind a detailed description of the contents of our paper
is given in the following.

Section 2 presents the derivation of a multiscale mathematical model which de-
scribes the onset and diffusion of a COVID-19 epidemic as a natural development
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of the model proposed in [7]. The new model includes a detailed description of
the confinement strategy on the epidemic dynamics and considers mutations into
new variants. A multiscale approach is developed to model these dynamics which
is followed by a in-host competition between virus and immune cells.

Section 3 presents first a set of simulations which aims at describing the scenarios
of onset of the virus diffusion and of the subsequent waves related to locking and
de-locking dynamics modeled by the parameters α` and αd, respectively. Simula-
tions are developed in absence of mutations to describe the dynamics of infected
individuals and of the progression of the pathology which might lead to full recovery
or to death.

Section 4 presents a second set of simulations which includes the dynamics of
mutations and Darwinist selection. The objective consists in studying how this
dynamic modifies the progression of the pathology with respect to that delivered in
Section 3.

Section 5 develops a critical analysis on the use of simulations and related inter-
pretation as a support to crisis managing and, out of this analysis, looks ahead to
research perspectives.

2. On a multiscale model of virus pandemics. A new class of mathematical
models is derived in this section within the framework of the rationale proposed
in [7]. Accordingly, we go beyond the approach of deterministic population dynam-
ics by considering various aspects of the heterogeneity of individuals and of their
reaction to the infection. The modeling is developed by a multiscale approach which
refers both to dynamics of contagion and to the in-host competition between virus
particles and the immune system. The two scales constantly interact, as the conta-
gion at the macro scale depends of the viral load of each individual which in turn
depends on the dynamics at the micro-scale. After contagion, the in-host dynamics
include the immune competition within each individual.

We consider also a detailed description of confinement rules, as well as virus
mutations and selection up to new variants. The contents are presented through a
sequence of subsections focused on a phenomenological description of the biological
system and its mathematical representation, derivation of a general mathematical
structure suitable to capture the main features of the system, followed by deriva-
tion of models by implementing into said structure the mathematical description
of multiscale interactions. The modeling is grounded on mathematical tools of the
so-called kinetic theory of active particles [8] which provides mathematical struc-
tures suitable to model systems of interacting living entities. Applications of kinetic
theory methods to living systems are critically analyzed in [2], where the main focus
refers to dynamics far from equilibrium.

2.1. Phenomenological description and representation. The following qual-
itative description of the biological dynamics is proposed to be transferred into
mathematical models.

1. Interacting entities are modeled as active particles which are carriers of an
internal state, called activity. These are divided into sub-populations called
functional subsystems, in short FSs.

2. Two scales are used, namely the macro-scale corresponding to individuals who
might be infected or not-infected and the micro-scale modeling the in-host
dynamics within infected individuals. The micro-scale description includes
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different levels of the proliferative properties of the virus and of the defence
ability of the immune system.

3. Contagion probability depends on the level of the infection, namely on the
so-called viral charge, as well as on the social distance between individuals
which might depend on time.

4. Within each infected individual, a competition occurs between the proliferative
virus and the immune system. The level of infection can progress (or regress)
in time due to a prevalence (or lack of prevalence) of the virus aggressiveness
over the immune defence ending up with full recovery or death.

5. Mutations and selection up to the onset of new variants of the virus are mod-
eled by post-Darwinist dynamics see [44] for general topics, while specialized
issues are treated in [1, 21, 38].

We consider a population of N0 individuals, which includes, at t = 0, a small
fraction n0 of infected individuals, namely a-particles. The time t is defined in a
bounded interval [0, T ]. All dependent variables, which represent the state of the
system, are referred (divided) to N0. The representation of the system, according
to our approach, is as follows:

• The population is subdivided into five sub-populations labeled by the subscripts
i = 1, . . . , 5. The abbreviation i-FS is used to denote the i-th population viewed
as a functional subsystem. The subscript denotes the following FSs: i = 1, healthy ;
i = 2, infected individuals; i = 3, recovered from the infection; i = 4, dead ; i = 5,
infected by a new variant.

• The micro-state of the FSs includes two variables u ∈ [0, 1] and w ∈ [0, 1] corre-
sponding to the progression of virus invasion and to the level of activation of the
immune defence, respectively. In more details, u = 0 represents the absence of the
viral infection, u > 0 characterizes the presence of the disease; while w = 0 and
w = 1 correspond, respectively, to the lowest (corresponding to the sentinel level),
and highest activation immune system.

• Increasing values of u and w correspond to increasing values of proliferative ac-
tivities of the virus and of the immune system. Discrete variables are used:

u = {uj =
j − 1

m− 1
} and w = {wk =

k − 1

m− 1
}, with j, k = 1, . . . ,m,

where the same number of nodes has been selected for both dynamics.

• The state of the 2-FS and 5-FS is defined by: f j,k2 (t, uj , wk), f j,k5 (t, uj , wk), with

1 < j < m. f j,k2 and f j,k5 can be further characterized into f j=2,k
2 , f j=2,k

5 and

f j≥3,k
2 , f j≥3,k

5 denoting, respectively, asymptomatic and symptomatic infection,
while symptomatic infected, corresponding to higher values of j, might require
hospitalization.

• The state of the 1, 3, 4-FSs is defined by: f1,k1 (t, u1, wk), f3 = f3(t) for individuals
who succeed to reach back to the state j = 1; f4 = f4(t) for infected individuals
who, by reaching the state j = m, do not successfully recover.
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Figure 1. Transfer diagram of the model. Boxes represent functional subsys-

tems and arrows indicate transition of individuals.

Remark 2.1. If birth events are not considered, the normalization, with respect
to N0, preserves, for all t ≥ 0 conservation of the number of individuals:

m∑
k=1

f1,k1 (t) +

m∑
k=1

m−1∑
j=2

f j,k2 (t) + f3(t) + f4(t) +

m∑
k=1

m−1∑
j=2

f j,k5 (t) = 1. (1)

Remark 2.2. It is useful introducing the density of each FS defined as the number
of individuals denoted, for each i-FS, by ni = ni(t):

n1(t) =

m∑
k=1

f1,k1 (t), n2(t) =

m∑
k=1

m−1∑
j=2

f j,k2 (t), n5(t) =
m∑
k=1

m−1∑
j=2

f j,k5 (t), (2)

while n3,4(t) = f3,4(t).

The dynamics of transition across FSs is shown in the flow chart of Fig. 1, where
each block identifies the specific FS.

2.2. On the derivation of models. Let us now transfer the aforementioned qual-
itative assumptions into a differential system according to detailed assumptions on
the interactions involving a-particles of all FSs. Interactions modify the internal
activity variables and, in addition, promote transition across FSs.

The kinetic theory of active particle with discrete states provides mathematical

tools to model the dynamics of the dependent variables f j,ki = f j,ki (t), where the
latter refers to the probability to find an a-particle of the i-FS in the state j, k. The
dynamics of interactions can be described by the following terms:
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• ηqspr(y, z) which denotes the interaction rate between the y-FS and z-FS, with
microstates p, r and q, s, respectively. Interactions promote transition from the
y-FS to the i-FS.

• Aqszpry(y → i, pr → jk) which denotes the transition probability into the i-FS with
microstate j, k from the y-FS with microstate p, r due to interactions with the z-FS
with microstate q, s.

The formal structure that provides the conceptual framework to derive models
that can be obtained by the superposition of kinetic type model, where the interac-
tion rate and the transition probability determine the dynamics of the dependent
variable, and a source term modeling transition across FSs and external actions, for
instance vaccines:

∂tf
j,k
i = Gj,ki [f ]− Lj,ki [f ] + Sj,ki [f ], (3)

where Gj,ki [f ] and Lj,ki [f ] denote the gain and loss terms of particles which, at time
t, gain the state j, k and which lose such a state, respectively, due to interactions

across FSs, while Sj,ki [f ] denotes a source term modeling the inlet/outlet related to
the i-FS due to the dynamics across FSs.

The kinetic theory of active particles provides the following expressions gain and
loss terms:

Gj,ki [f ] =

5∑
y,z=1

m∑
r,s=1

m∑
p,q=1

ηqspr(y, z)Aqszpry(y → i, pr → jk) fp,ry fq,sz , (4)

and

Lj,ki [f ] = f j,ki

5∑
z=1

m∑
s=1

m∑
q=1

ηqsjk(i, z) fq,sz , (5)

while the modeling of the source term S depends on the transitions across functional
subsystems. A phenomenological interpretation of biological reality can lead to a
detailed modeling of the various interaction terms to be substituted into Eq. (3)
thus obtaining specific models. In more details, we derive a model based on the
following assumptions:

1. Interactions between 1-FS and 2-FS or 5-FS and infection dynamics: Active 1-
FS particles interacting with a-particles from 2-FS and 5-FS might become, in
probability, infected. The rate of infection depends on the level of progression
uj of the infected individuals by a probability of infection which grows with
uj .

2. Interaction rate and social distance: The interaction rate depends on the local
density somehow related to a social distance depending on time. Interactions
do not modify the immune defence ability, while particles which move from
1-FS to 2-FS take the value u2, corresponding to low level of infection.

3. In-host immune competition: Virus particles progress (proliferate) thanks to
foraging of the surrounding tissues of the lung, while the immune defence
counteracts the progression by inducing a regression.

4. Onset of variants: The derivation of models can be developed by adding a
new population, namely a new FS, and which can generate infected individuals
with higher infectivity ability.

5. Transition across FSs: A-particles from 2-FS and 5-FS move to 3-FS if the
immune defence succeeds to obtain a regression down to u1, while a-particles
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from 2-FS and 5-FS move to 4-FS if the immune defence does not succeed to
obtain a regression. Individuals who succeed in recovering are supposed not
to be susceptible to a new infection.

The description in Items 1–5 can be transferred into a mathematical framework
by a detailed modeling of interactions which inserted them into the general structure
(3) leading to models of virus dynamics. In more details, we consider the following
models of interactions:

• Infection dynamics: Healthy individuals of the 1-FS, with state u1, interact
with an infected individual from 2-FS with state uj , j > 1, and becomes infected
with a probability which depends on a parameter α = α(t) and on the level of
infection of the individual from 2-FS.

• Interaction rate: The interaction rate is modeled by η = η0(ρ)α(t), where η0
depends on the local density of individuals ρ (it grows with increasing value of the
density thus reaching the maximal value in the case of maximal packing density).

• Loss of healthy people due to contagion: The dynamics refers to f1,k1 (t),
interactions generate the following loss term:

∂tf
1,k
1 (t) = −Lk1 [f ](t) = −

m∑
s=1

m−1∑
j=2

αuj f
1,k
1 (t) f j,s2 (t), (6)

for k = 1, . . . ,m, while we have put η0 = 1 that is inserted in the scaling of the
time variable. Analogous calculations, which are not repeated here, refer to the
interactions between 1-FS and 5-FS.

• In-host dynamics of infected individuals: Each infected individual is a carrier
of a struggle between virus particles and immune system. The virus takes advantage
from the foraging by surrounding tissues and increases its micro-state from each j-
level to the higher (j + 1)-level depending on a parameter β and on the j-th level.
The immune system acts to decrease the j-level to the lower (j−1)-level depending
on a parameter γk and on the k-th level. Individuals, whose virus progression levels
reach the values u1 and um move, respectively, to 3-FS and 4-FS.

The dynamics refers to f j,k2 (t) and it is governed by both gain and loss terms:

∂tf
j,k
2 (t) = Gj,k2 [f ](t)− Lj,k2 [f ](t). (7)

Two positive defined parameters β ∈ [0, 1] and γk ∈ [0, 1], where γk depends on
each k level, are introduced to model, respectively, the proliferative ability of the
virus and the defence ability of the immune system accounting also for the in-host
interaction rate. Detailed calculations yield:

Gj,k2 [f ](t) = δ2j Lk1 [f ](t) + β uj−1 f
j−1,k
2 (t) + γk wk f

j+1,k
2 (t), (8)

and
Lj,k2 [f ](t) = β uj f

j,k
2 (t) + γk wk f

j,k
2 (t) (9)

for j = 2, . . . ,m− 1, k = 1, . . . ,m, and δ denotes the Dirac delta function.

• Dynamics of new variants: The specific features of the new FS are labeled by
the subscript 5 as follows:

f j,k5 = f j,k5 (t) β5 = β(1 + λ),

where λ to be related to the distance, measured by an appropriate metric in a
vector space, at the molecular scale between the original virus and its variant.
The dynamics can be described by the same approach of the primary virus, i.e.
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∂tf
j,k
5 (t) = Gj,k5 [f ](t) − Lj,k5 [f ](t), where the gain and loss terms are computed as

(8) and (9) simply replacing f2 by f5 and β by β(1 + λ).

• Trend to recovering: The dynamics consider the inflow of individuals from
1-FS and 5-FS into 3-FS:

∂tf3(t) =

m∑
k=1

wk γk f
2,k
2 (t) +

m∑
k=1

wk γk f
2,k
5 (t). (10)

• Need of hospitalization: The need of hospitalization is given by

nj2(t) =

m∑
k=1

f j,k2 (t) and nj5(t) =

m∑
k=1

f j,k5 (t),

for high values of the level of progression of the virus, i.e. increasing values of j
denote increasing values of the pathology.

• Trend to death: The dynamics are caused by the inflow from 2-FS and 5-FS
into 4-FS:

∂tf4(t) = β um−1

m∑
k=1

fm−1,k
2 (t) + β(1 + λ)um−1

m∑
k=1

fm−1,k
5 (t). (11)

Collecting all equations into a differential system yields:

∂tf
1,k
1 (t) = −α(t)

m∑
s=1

m−1∑
j=2

uj f
1,k
1 (t) f j,s2 (t)

− α(t)

m∑
s=1

m−1∑
j=2

uj f
1,k
1 (t) f j,s5 (t),

∂tf
j,k
2 (t) = α(t)

m∑
s=1

m−1∑
r=2

ur f
1,k
1 (t) fr,s2 (t) δ2j + β uj−1 f

j−1,k
2 (t)

+ γk wk f
j+1,k
2 (t)− β uj f j,k2 (t)− γk wk f j,k2 (t),

∂tf3(t) = ∂tn3 =
m∑
k=1

γk wk f
2,k
2 (t) +

m∑
k=1

wk γk f
2,k
5 (t),

∂tf4(t) = ∂tn4 = β um−1

m∑
k=1

fm−1,k
2 (t) + β(1 + λ)um−1

m∑
k=1

fm−1,k
5 (t),

∂tf
j,k
5 (t) = α(t)

m∑
s=1

m−1∑
r=2

ur f
1,k
1 (t) fr,s5 (t) δ2j + β(1 + λ)uj−1 f

j−1,k
5 (t)

+ γk wk f
j+1,k
5 (t)− β(1 + λ)uj f

j,k
5 (t)− γk wk f j,k5 (t),

(12)

where j = 2, . . . ,m− 1 and k = 1, . . . ,m.
The mathematical model (12) accounts for mutations and selection into variants,

which act an important role in the spread and control of the pandemics. We are
interested in understanding how these two events modify the dynamics in absence
of them which is as follows:
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

∂tf
1,k
1 (t) = −α(t)

m∑
s=1

m−1∑
j=2

uj f
1,k
1 (t) f j,s2 (t),

∂tf
j,k
2 (t) = α(t)

m∑
s=1

m−1∑
r=2

ur f
1,k
1 (t) fr,s2 (t) δ2j + β uj−1 f

j−1,k
2 (t)

+ γk wk f
j+1,k
2 (t)− β uj f j,k2 (t)− γk wk f j,k2 (t),

∂tn3(t) =

m∑
k=1

γk wk f
2,k
2 (t),

∂tn4(t) = β um−1

m∑
k=1

fm−1,k
2 (t).

(13)

Remark 2.3. Equations (12) and (13) describe the dynamics of heterogeneous FSs.
The model can also predict the dynamics of individuals who need hospitalization
with respect to those whom home care might be sufficient to reach full recovery.
The superscript k considers different levels of the immune strength, that can be
related - for instance - to the range of age of individuals in the population. An
approximation of reality can be obtained by supposing that the immune strength
is the same for all individuals which corresponds to γ ∼= γk.

Remark 2.4. In absence of virus infection or total lack of awareness of the risk
of infection, the locking parameter, which may also be called social distancing, is
taken α = 1. Once the awareness of the risk of contagion appears then α is reduced
to α` < α by a “locking” action applied both by crisis managers and individual
awareness. After locking, the social distance might be decreased as modeled by a
parameter αd > α` with αd < 1.

3. Simulations in absence of variants. This section presents some simulations
selected with the aim of understanding how the dynamics of the epidemics develops
after a locking action. We consider the dynamics in absence of mutations corre-
sponding to model (13). In more details, we consider, for different values of the
locking parameter α`, firstly the study of the shape of a first wave generated by
an initial growth of the number of infected individuals which is followed by decay
related to locking. Subsequently, we investigate the onset and shape of a second
wave generated by a locking relaxation after the decay of the first wave. We study
the shape depending on the locking parameter αd. Simulations indicate that there
exists a critical value αc such that if αd > αc the height of the second wave is higher
than that of the first wave, while the opposite appears when αd < αc.

All simulations are developed for m = 11, while the time variable is normalized
with respect to the time T ∗ corresponding to full decay of the first wave correspond-
ing to the first simulation. We consider a primary virus which at initial time t = 0 is
identified with an initial condition ε small with respect to one, i.e. a small number
of infected among the whole populations. Simulations refer to different values of the
ratio κ = β

γ and of the locking parameters α` and αd, respectively. The preliminary

study in this section, completed with that of the next section, can contribute to a
detailed parameters sensitivity analysis which, at present, is still in progress.
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Figure 2. Infected population n2 = n2(t) : ε = 0.001, κ = 0.16, α` = 0.2

(red) and α` = 0.3 (black).

Figure 3. Infected population n2 = n2(t) : ε = 0.001, α` = 0.3, κ = 0.1
(blue), κ = 0.2 (black).

• Let us consider a locking dynamics applied at t = 0 following the onset of a virus
infection described by model (13) with initial conditions:

f1,k1 =
1− ε
m

, f2,k2 =
ε

m
, k = 1, . . . ,m, ε = 0.001. (14)

Figure 2 studies the influence of α` and shows time dynamics of the infected
population for α` = 0.2, 0.3, and κ = 0.16, while Figure 3 studies the influence of
β corresponding to α` = 0.3, and κ = 0.1, 0.2. As it is expected, increasing the
locking actions, i.e. decreasing α`, decreases the level of infection, while increasing
the proliferative ability of the virus, i.e. increasing κ, increases the level of infection.
The slope of the increasing dynamic is sharp, while the decay is smooth. i.e. there
is a loss of symmetry.

• Consider now the study of the onset of a second wave that is generated by a
relaxation of the locking parameter. We refer to model(13) with initial conditions
(14), with ε = 0.001, while the dynamical response is studied for κ = 0.1, de-locking
time Td = 1, and with α depending on time as follows:

α(t) = α` = 0.1, for t ∈ [0, Td] and α(t) = αd for t > Td, (15)

while different values of αd are selected.
Sample simulation are reported in Figs. 4,5 which report the dynamic of n2

versus time and show how a second wave appears when the locking parameter α` is
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Figure 4. Infected population n2 = n2(t) for ε = 0.001, κ = 0.1, Td = 1,

α` = 0.1, αd = 0.40 (black), αd = 0.45 (red), and αd = 0.50 (blue).

Figure 5. Infected population n2 = n2(t) for ε = 0.001, κ = 0.1, Td = 1,

α` = 0.1, αd = 0.20 (black), αd = 0.25 (red), and αd = 0.30 (blue).

substituted by αd > α`. In more details, simulation shows how the second wave can
rapidly reach levels worse than the first one, by a peak whose top increases with αd,
see Fig. 4. On the contrary, Fig. 5 shows how the second wave can be lower than the
first one if the locking is more restrictive, namely limited to αd = 0.20, 0.25.0, 30.

These simulations show an emergent behavior that has been effectively observed
in the real situation, namely that although a locking is applied and the virus is
brought to very low levels, apparently it has disappeared, but it remains at a latent
state ready to start again once the social confinement is relaxed. This emergent
behavior is confirmed by the onset of subsequent waves which always appear when
a de-locking action is applied. Therefore, an important indication to crisis managers
is that the locking parameter can be brought to a value αd > α`, but an excessive
increase of αd brings to a second wave much worse than the first one. An additional
feature shown by these simulations in the case of high values of αd the second wave
rapidly appears, while decreasing values of αd delay the onset of the second wave.
Additional simulations, which are not reported here, confirm what was already
observed in [7]. Namely if de-locking is applied during the descending phase of the
first wave before having reached minimum value of the infected people, then a new
wave rapidly appears with a peak that increases with increasing αd. This behavior
is studied in the next section for a dynamics which includes the onset of variants of
the primary virus.
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Figure 6. Infected population n2 = n2(t) and n5 = n5(t) for ε = 0.01, εv =

0.005, κ = 0.1, λ = 1.5, Td = 0.5, α` = 0.1, αd = 0.50.

Figure 7. Infected population n2 = n2(t) and n5 = n5(t) for ε = 0.01, εv =

0.005, κ = 0.1, λ = 1.5, Td = 1, α` = 0.1, αd = 0.50.

4. Simulation with mutations dynamics. This section presents a selection of
simulations which aim at understanding how the dynamics of the epidemics develops
in the presence of mutations. These generate the onset of variants, whose dynamic is
described by model (12), that modifies the dynamics of the primary virus described
by model (13). Simulations are referred to the locking strategy with the objective
of showing, by quantitative results, how the more aggressive variants end up with
replacing the primary virus. As in Section 3, simulations are developed for m = 11
referring to the locking parameters α` and αd, and to the parameter κ, while the
initial conditions include the initial state of the variant εv.

Empirical evidence shows that mutations can generate aggressive variants that
show an ability to infect greater than that of the primary virus. This general trend
can be explained by the model proposed in our paper as it is based on the assump-
tion that a virus with high proliferative ability produces a high viral charge which
increases the infectivity ability. Simulations show how far the variant increases the
number of infected people, as well as the death of those who do not succeed in
recovering.

• The dynamics of an early de-locking after the first wave is shown in Fig. 6, where
the dynamics of n2 and n5 are reported versus time for locking time Td = 0.5.
Simulations depict how the density of the primary virus is still at a high value when
the de-locking is applied hence it undergoes a high density second wave higher than
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Figure 8. Infected population n2 = n2(t) and n5 = n5(t) for ε = 0.01, εv =

0.005, κ = 0.1, λ = 1.5, Td = 0.75, α` = 0.1, αd = 0.50.

that of the variant. However, the variant becomes, when time increases, equivalent,
or even higher, than the primary. Figures 7 and 8 study the same dynamics of
n2 and n5 corresponding to different values of Td. In details, Fig. 7 shows how
for Td ∼= 1, the predominance of the variant is immediate, while Fig. 8 shows an
intermediate situation corresponding to the de-locking time Td ∼= 0.75, where the
trend of the variant to dominate and replace the primary virus is already enhanced
with respect to Fig. 6.

• Figures 9 and 10 show n4 = n4(t) which defines the increase versus of individuals
who are not able to contrast the progression of the virus and die. Figure 9 shows,
in the case of absence of mutations, how n4 grows during the first and second wave.
Simulations are developed at fixed locking time Td = 1, ε = 0.001 and κ = 0.1 and
indicate how the number of dead people increases with increasing de-locking action
for different levels of αd = 0.4, 0.5, 0.6. Figure 10 is somehow analogous, but it refers
to the case of presence of mutations. Simulations can be referred to those of Figure
8 as the same values Td = 1, ε = 0.01 and κ = 0.1 are used, while αd = 0.5. The
model shows that the presence of a variant anticipates the onset of the second wave
and increases the number of deaths. This number increases with the aggressiveness
of the variant which is modeled by the parameter λ.

Figure 9. Death in the case of absence of mutations: n4 = n4(t) for ε = 0.001,

κ = 0.1, Td = 1, α` = 0.1, αd = 0.40 (black), αd = 0.50 (red) and αd = 0.60

(blue).
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Figure 10. Death in the case of mutations: n4 = n4(t) for ε = 0.01, εv =

0.005, κ = 0.1, Td = 1, α` = 0.1, αd = 0.50 λ = 1.0 (red), λ = 1.5 (blue).

Simulations presented in this section do not claim that an exhaustive description
has been given. Indeed, further simulations accounting for a detailed parameters
sensitivity analysis should be developed. However, all simulations clearly show that
the onset of a new variant, more aggressive than the primary virus, generates a pro-
gressive prevalence of the variant over the firstly appeared virus. This overcoming
appears by different types of dynamics, but ultimately confirming the aforemen-
tioned trend. This is an important piece of information, as it contributes to the
amount of information necessary to design strategies to fight the virus. Further
reasonings follow in the critical analysis proposed in the next section.

5. Critical analysis. The mathematical model proposed in this paper consid-
ers the multiscale dynamics of the virus from the infection of individuals to the
within-host competition which may lead to recovery, but also to hospitalization,
or even death. In more details, our model includes virus mutations that generate,
by selection, new more aggressive variants and a multiscale modeling of the in-host
vaccination dynamics related to strategies to mitigate the damage of pandemics [37].

Without repeating concepts already stated in the first sections, we stress that
a multiscale approach is necessary to consider the aforementioned mutations and
selections. Indeed, more aggressive variants of the virus exhibit higher proliferative
ability which increases the infectivity properties of the virus. These dynamics are
related to the fact that increasing the number of virus particles in the lung, namely
the so-called viral load, makes the individual more infective when in contact with
other individuals. Unfortunately, these dynamics end up with increasing the number
of infected humans who need hospitalization or even die.

Comparing the present simulations to those developed for the simpler model [7],
we have used a higher number of collocation nodes to account in a more precise way
for the in-host dynamics and, specifically, the progression of the pathological state.
Computing the number of individuals that need hospitalization is an important
information to be delivered to crisis managers as in the pandemic time hospitals have
been obliged to face crisis situations related to lack of space for patients affected by
pathologies different from that of Covid19. Hence a higher number of internal states
can refine the indications by referring the number of people who need hospitalization
to their level of pathology.

The computational study has also allowed the study of emerging behaviors such
as the onset of new waves and their shape depending on the parameters of the
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model. In addition, hospitalization dynamics can be related to different levels of
progression of the pathology.

Therefore, the model appears to be able to provide a panorama of emerging
behaviors which may contribute to the activity of crisis managers. The main focus
of our simulations has been referring to the role of variants on the overall response
of the system. In particular, the following specific features of the model, as well as
of the plan of simulations, can be selected as appropriate to contribute to support
crisis management:

• Heterogeneity of the population corresponding to the label k with k = 1, . . . ,m
which can be related to different abilities of the immune defence. This feature can
be referred to different levels of the age of the populations corresponding to levels
of the ability to develop the immune defence against the virus.

• The study of locking and de-locking strategy can contribute to plan the applicable
strategies, i.e. the levels α` and αd, as well as the behavior versus time, by which
locking and de-locking are applied in order to reduce the spread of the epidemics.
In addition the study can be further specialized on the number of individuals who
need hospitalization and on their trend to death.

• Understanding how the onset of variants adds to the original virus. Simulations
have shown how variants can progressively take the place of the original virus and
produce an increase of hospitalization flux and death.

However, we do not naively claim that the sample simulations we have presented
in our paper do cover an exhaustive parameter sensitivity analysis. Simply, we have
shown that the model can provide a rich description of different scenarios that might
hopefully contribute to strategies that make lighter crisis situations related to the
pandemics. A program to develop a systematic sensitivity analysis is in progress in
order to design a database, where the broad variety of scenarios of dynamics of the
complex system can be tested.

Hopefully, new studies might take advantage of the indications given above and
contribute to further developing the model. The following specific modeling per-
spectives are selected among various possible ones:

(i) Heterogeneity referred not only to the ability of the immune defence, that can be
somehow referred to age, but also to the role of individuals in society. This means
accounting for both levels of contagion risk during work and of the economical
impact on society.

(ii) Contagion in crowds starting from the pioneering contributions [12, 34, 35]
towards development of models of crowd dynamics which include social aware-
ness [4, 9, 43], where one of the key problem consists of modeling the contagion
parameter [25]. Contagion in crowds described by a macroscopic equation derived
from the underlying description delivered by kinetic theory [6].

(iii) Modeling vaccination to improve the ability of immune defence and medi-
cal actions to weaken the proliferative and invasive ability of the virus. The
modeling approach should start from a knowledge of vaccine actions, for instance
from [16, 29, 37, 45] to the mathematical description of the dynamics within vacci-
nated individuals and viruses.

(iv) Modeling in-host space dynamics by reaction-diffusion equations [10], based on
micro-macro derivation [15].
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(v) Calibration of models based on empirical data referred to well defined regional
areas. Indeed, empirical data have reached a sufficient level of precision and, thanks
to this increase of reliability, an effective toning of SEIR appeared related to control
problems [39].

Further developments of the model proposed in our paper can contribute to tackle
the research perspectives that have been indicated above. These, as mentioned,
represent a selection based on our personal ideas and research past experience. A
common aspect of these perspectives is that a key dynamics, which is present in
all of them, is the dynamics of the immune competition which has been included
in our approach at a very primitive level. This topic definitely deserves further
developments and improvements.
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