
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2021016
©American Institute of Mathematical Sciences
Volume 16, Number 4, December 2021 pp. 535–552

RUMOR SPREADING DYNAMICS WITH AN ONLINE

RESERVOIR AND ITS ASYMPTOTIC STABILITY

Sun-Ho Choi and Hyowon Seo∗

Department of Applied Mathematics and the Institute of Natural Sciences
Kyung Hee University

Yongin, 17104, Republic of Korea

(Communicated by Feimin Huang)

Abstract. The spread of rumors is a phenomenon that has heavily impacted

society for a long time. Recently, there has been a huge change in rumor

dynamics, through the advent of the Internet. Today, online communication
has become as common as using a phone. At present, getting information from

the Internet does not require much effort or time. In this paper, the impact

of the Internet on rumor spreading will be considered through a simple SIR
type ordinary differential equation. Rumors spreading through the Internet are

similar to the spread of infectious diseases through water and air. From these

observations, we study a model with the additional principle that spreaders
lose interest and stop spreading, based on the SIWR model. We derive the

basic reproduction number for this model and demonstrate the existence and
global stability of rumor-free and endemic equilibriums.

1. Introduction. There are different patterns of rumor spreading depending on
the presence or absence of online media [7], for example, the emergence of influential
spreaders [2]. Before the development of online media, rumors were transmitted
from person to person. With the development of online media such as social network
service (SNS), personal broadcasting, blog, and group chatting, rumors can now
spread in a variety of ways. In the past, offline media was the starting point and an
important means of information delivery. Recently, it has become a social problem
that offline media reproduces and delivers rumors from online media. This is a sign
that information in online is rapidly being accepted by various social classes. In
this paper, we study how the combination of classical interpersonal rumor spreading
and online media influences rumor outbreak.

In order to consider the influence of online media, we denote by I the density of
people who do not know the rumor but are susceptible, S is the density of people
who spread the rumor, and W is the amount of rumor in online generated by the
group S, and R is the density of people who know the rumor but are not interested
in it or do not believe it. The process of rumor spreading is based on the following
assumptions. (1) The group I has an influx rate of b and a natural decay rate of
δi. (2) Suppose the group I meets S, then I is converted to S with an incidence
rate of λs, and when the group I encounters the rumor in online media, I is also
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converted to S with a rate of λw. (3) We assume that S occurs only from I and if S
encounters someone who knows the rumor, then they lose interest or do not believe
in the rumor. In this case, let σs and σr denote the contact rates at which S meets
S and R, respectively. (4) S decreases with a natural decay rate of δs and becomes
R with the transmission rate µ. (5) We assume that an online medium has its own
natural decay rate of δw and is generated in proportion to the size of S in offline.
From the above assumptions, we can derive the following mean field equation.

dI

dt
= b− λsIS − λwIW − δiI,

dS

dt
= λsIS + λwIW − σsSS − σrSR− µS − δsS,

dW

dt
= ξS − δwW,

dR

dt
= σsSS + σrSR+ µS − δrR.

(1)

Remark 1. (1) This rumor spreading process is a relatively short time process.
Thus, we do not consider vertical transmission. See [8].

(2) If we take b = δi = δs = δr and (I +S+R)(0) = 1, then the total population
density I + S +R is conserved. Thus our model is a generalization of the model in
[15].

Since the Daley-Kendall model [3], various studies on rumor spreading have been
conducted. We briefly state the history of rumor spreading models associated with
online media. See [12] for a general rumor spread, and [14] for threshold phenom-
ena for general epidemic models. Since information transmission via online media
developed in the late 1990s, intensive researches on rumors and online media began
mainly in the early 2000s. In [1], the authors focused on the spread of computer-
based rumors and analyzed the spread of rumors via computer-based communica-
tion in terms of information transmission. The authors in [7] noted the difference
between online-based media and offline media. The study in [17] considered the
spread of rumors through online networks by using the SIR model. The fast speed
and unprofessional communication of online media is considered in [13]. See also
[9]. In [11], a statistical rumor diffusion model is considered for online networks and
it contained positive and negative bipolar reinforcement factors. [4, 6, 18] studied
a rumor propagation model similar to the European fox rabies SIR model for the
situation of changing online community number. In [10], the authors studied the
rumor propagation phenomena for a model with two layers: online and offline. See
also [19] for the SEIR type online rumor model.

This paper is organized as follows. In Section 2, we present the nonnegativity
property of the solution to (1) and the stability of the rumor-free equilibrium. The
basic reproduction number R0 is calculated by using a next-generation matrix. In
Section 3, we provide the existence and uniqueness of endemic equilibrium and its
global stability. In Section 4, we perform several numerical simulations to verify
our analytical results.

2. Elementary properties of the SIWR system and stability for rumor-
free equilibrium. In this section, we consider the conservation of nonnegativity
of the densities I, S, W , R and the stability for a rumor-free equilibrium E0.
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2.1. Nonnegativity of I, S,W,R.

Lemma 2.1. Let (I, S,W,R) be the unique global solution to (1). Assume that σs
and σr are nonnegative constants and the rest of the coefficients are positive. If the
initial data (I(0), S(0),W (0), R(0)) has only nonnegative components and satisfies

S(0)2 +W (0)2 > 0,

then the solution is nonnegative for all t > 0 and S(t),W (t) > 0 for t > 0.

Proof. We take any positive T > 0. By the continuity of the solution, there is
C(T ) > 0 such that

|I(t)|, |S(t)|, |W (t)|, |R(t)| < C(T ).

By the first equation in (1) and the boundedness, if I(0) ≥ 0, then for 0 < t < T ,

I(t) = I(0)e−
∫ t
0
(λsS(s)+λwW (s)+δi)ds + b

∫ t

0

e−
∫ t
u
(λsS(s)+λwW (s)+δi)dsdu > 0.

We first prove that S is nonnegative for 0 < t < T . Assume not, i.e., there is
t−s ∈ (0, T ) such that

S(t−s ) < 0.

Let t0 ∈ (0, t−s ) be an entering time for S into the negative region such that S(t) ≥ 0
on [0, t0] and S(t) < 0 on (t0, t0 + ε), where ε > 0 is a small constant. Note that by
the second equation in (1),

S(t) =S(0)e
∫ t
0
(λsI(s)−σsS(s)−σrR(s)−µ−δs)ds

+

∫ t

0

λwI(u)W (u)e
∫ t
u
(λsI(s)−σsS(s)−σrR(s)−µ−δs)dsdu.

(2)

This and the positivity of I imply that if W (t) ≥ 0 on (0, s], S(t) is nonnegative
on (0, s]. Therefore, there is an entering time t′0 ∈ (0, t−s ) for W into the negative
region such that W (t) ≥ 0 on [0, t′0] and W (t) < 0 on (t′0, t

′
0 + ε′), where ε′ > 0 is

a small constant. If t′0 < t0, then S(t) ≥ 0 and W (t) < 0 on (t′0, t0) ∩ (t′0, t
′
0 + ε′).

Similarly, by the third equation in (1),

W (t) = W (0)e−δwt +

∫ t

0

ξS(u)e−δw(t−u)du. (3)

Thus, W (t) is nonnegative on (0, s] if S ≥ 0 on (0, s]. This is a contradiction and
we conclude that t0 ≥ t′0. Similarly, we can obtain that t0 ≤ t′0. Thus, t0 = t′0.

However, on t ∈ [t0,∞),

(I(t), S(t),W (t), R(t)) =

(
I(t0)e−δi(t−t0) +

b(1− e−δi(t−t0))
δi

, 0, 0, R(t0)e−δr(t−t0)
)

is a solution to (1). By uniqueness of the solution, there is no t−s > 0 such that
S(t−s ) < 0. Therefore, we prove that S is nonnegative.

Similarly, we can also easily obtain that there is no t−w > 0 such that W (t−w) < 0.
Thus, for all t > 0, I, S,W ≥ 0. By the fourth equation in (1) and nonnegativity
of I, S, W , we have that R is also nonnegative on (0,∞). Therefore, we prove that
the solution is nonnegative for all t > 0.

Moreover, if S(0) > 0, then for all t > 0, S(t) > 0 by (2). From (3), W (t) > 0 on
(0,∞). Similarly, if W (0) > 0, then for all t > 0, W (t) > 0 by (3). By the virtue of
the positivity of I and (2), S(t) > 0 on (0,∞). Thus, we conclude that if S(0) > 0
or W (0) > 0, then S(t) > 0 and W (t) > 0, t ∈ (0,∞).
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2.2. The basic reproduction number using a next-generation matrix. In
this part, we calculate the basic reproduction number using a next-generation ma-
trix. To consider the asymptotic behavior of the dynamics in (1), we determine the
equilibrium point such that

İ = Ṡ = Ẇ = Ṙ = 0. (4)

If we assume that there is no rumor (S = 0) in system (1) with (4), then the
equilibrium point is unique and

E0 = (Irf , Srf ,Wrf , Rrf ) =

(
b

δi
, 0, 0, 0

)
.

The basic reproduction number R0 is generally a measure of the transmission
of disease. This is usually expressed in terms of the rate of secondary transmission
(or infection) and no transmission. R0 for more complex systems was calculated in
[5, 16] using the next-generation matrix methodology. Here, we follow the method
of [16].

For the infected compartments, the next generation matrices at the rumor-free
state E0 = (b/δi, 0, 0, 0) are given by

F =
1

δi

(
bλs bλw
0 0

)
and V =

(
µ+ δs 0
−ξ δw

)
,

and hence

V −1 =
1

(µ+ δs)δw

(
δw 0
ξ µ+ δs

)
.

Here, F and V are related to the rate of new infections and transfer individuals,
respectively. This yields

FV −1 =

(
bλs

(µ+δs)δi
+ bλwξ

(µ+δs)δiδw
bλw

δiδw

0 0

)
.

Therefore, we obtain the following formula for the basic reproduction number:

R0 = ρ(FV −1) =
b

δi

(
λs

µ+ δs
+

λwξ

(µ+ δs)δw

)
.

Here, ρ(A) is the spectral radius of a matrix A.

2.3. Stability for rumor-free equilibrium. For the linear stability, we consider
the Jacobian matrix as follows.

J =


−λsS − λwW − δi −λsI −λwI 0

λsS + λwW λsI − 2σsS − σrR− µ− δs λwI −σrS
0 ξ −δw 0
0 2σsS + σrR+ µ 0 σrS − δr

 .

Since the rumor-free equilibrium is

E0 =

(
b

δi
, 0, 0, 0

)
,

the Jacobian matrix at the rumor-free equilibrium is given by

JE0
=


−δi −λs bδi −λw b

δi
0

0 λs
b
δi
− µ− δs λw

b
δi

0

0 ξ −δw 0
0 µ 0 −δr

 .
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Therefore, the corresponding characteristic equation is

p(x) =(x+ δr)(x+ δi)

×
(
x2 −

(bλs
δi
− µ− δs − δw

)
x− bδwλs

δi
+ µδw + δsδw −

bλwξ

δi

)
.

Assume that R0 < 1. Then by the definition of R0,

b

δi

λs
µ+ δs

<
b

δi

(
λs

µ+ δs
+

λwξ

(µ+ δs)δw

)
< 1.

Thus,

c1 := −
(bλs
δi
− µ− δs − δw

)
> δw > 0.

Note that

c2 := −bδwλs
δi

+ (µ+ δs)δw −
bλwξ

δi

= δw(µ+ δs)

(
− bλs
δi(µ+ δs)

− bλwξ

δiδw(µ+ δs)
+ 1

)
= δw(µ+ δs)(1−R0)

> 0.

Clearly, −δr and −δi are the eigenvalues of JE0
and are negative. The rest of the

eigenvalues are zeros of the following polynomial.

p0(x) = x2 −
(bλs
δi
− µ− δs − δw

)
x− bδwλs

δi
+ (µ+ δs)δw −

bλwξ

δi

= x2 + c1x+ c2.

Since c1 > 0 and c2 > 0, zeros of p0(x) have only negative real part. Therefore,
E0 = (b/δi, 0, 0, 0) is locally asymptotically stable if R0 < 1.

Clearly, if R0 = 1, then one of the eigenvalues has a zero real part. Thus, E0 is
locally stable but not asymptotically stable for the linearized system. Furthermore,
if R0 > 1, then c2 < 0. Therefore, E0 is linearly unstable. We summarize the above
argument to

Theorem 2.2. The rumor-free equilibrium E0 of the system in (1) is linearly stable
if R0 ≤ 1 and linearly unstable if if R0 > 1. Moreover, E0 is linearly asymptotically
stable if R0 < 1.

The rumor-free equilibrium E0 is also a global attractive basin. We can use the
standard methodology to obtain the global asymptotical behavior of the solution
to (1).

Theorem 2.3. If R0 < 1, the rumor-free equilibrium E0 is globally asymptotically
stable on

{(I, S,R,W ) : S > 0 or W > 0} ∩ {(I, S,W,R) : I, S,W,R ≥ 0}.

Proof. Let

V0(I, S,W ) =

[
I − Irf − Irf log

I

Irf

]
+ S + Irf

λs
δw
W,
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where Irf = b/δi. Since

I − Irf − Irf log
I

Irf
> 0, for I 6= Irf ,

and

I − Irf − Irf log
I

Irf
= 0, for I = Irf ,

we note that V0 is nonnegative and radially unbounded. Then by elementary cal-
culation,

dV0
dt

= (b− λsIS − λwIW − δiI)− b

δi

(
b

I
− λsS − λsW − δi

)
+ λsIS + λwIW − σsSS − σrSR− (µ+ δs)S +

bλs
δiδw

(ξS − δwW )

= b− δiI − σsSS − σrSR− (µ+ δs)S +
bλs
δiδw

(ξS − δwW )

− b

δi

(
b

I
− λsS − λsW − δi

)
= −b

(
b

δiI
+
δiI

b
− 2

)
− σsSS − σrSR− (µ+ δs)S

+
bλs
δiδw

(ξS − δwW ) +
b

δi
(λsS + λsW )

= −b
(
b

δiI
+
δiI

b
− 2

)
− σsSS − σrSR

− (µ+ δs)S

(
1− bλs

(µ+ δs)δi
− bλsξ

(µ+ δs)δiδw

)
.

Therefore, we have

dV0
dt

= −b
(
b

δiI
+
δiI

b
− 2

)
− σsSS − σrSR− (µ+ δs)S(1−R0). (5)

Note that by Lemma 2.1 in Section 2, I, S,R ≥ 0 and S(t) > 0 for all t > 0. This
nonnegativity and (5) imply that if (I(t), S(t)) 6= (Irf , 0) and R0 < 1, then

dV0
dt

< 0.

Therefore, (I(t), S(t)) converges to (Irf , 0) as t goes to ∞ by Lyapunov stability
theorem. By the third equation in (1), W (t) converges to zero as t goes to ∞.
Similarly, by the fourth equation in (1), R(t) converges to zero as t goes to ∞.

Therefore, the rumor-free equilibrium E0 is globally asymptotically stable.

3. Stability analysis for endemic states. In this section, we present the exis-
tence and stability of endemic steady states for the rumor spreading model with an
online reservoir. Endemic state refers to a nonzero steady state of S, i.e., the rumor
is sustained. Since there is an influx b for ignorant I, we can show that the unique
endemic state exists as follows.
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3.1. Existence and uniqueness of the endemic equilibrium. To obtain the
endemic equilibrium

E∗ = (I∗, S∗,W∗, R∗),

we consider the following steady state equation:

dI

dt
=
dS

dt
=
dW

dt
=
dR

dt
= 0.

Then the endemic equilibrium E∗ = (I∗, S∗,W∗, R∗) satisfies

0 = b− λsI∗S∗ − λwI∗W∗ − δiI∗,
0 = λsI∗S∗ + λwI∗W∗ − σsS∗S∗ − σrS∗R∗ − µS∗ − δsS∗,
0 = ξS∗ − δwW∗,
0 = σsS∗S∗ + σrS∗R∗ + µS∗ − δrR∗.

We set

U∗ =
δw
ξ
W∗, Ĩ∗ = δiI∗, S̃∗ = δsS∗, R̃∗ = δrR∗,

and

µ̃ =
µ

δs
, λ̃s =

λsδw + λwξ

δiδsδw
, σ̃s =

σs
δ2s
, σ̃r =

σr
δsδr

.

Then U∗ = S∗ and

0 = b− λ̃sĨ∗S̃∗ − Ĩ∗,

0 = λ̃sĨ∗S̃∗ − σ̃sS̃∗S̃∗ − σ̃rS̃∗R̃∗ − µ̃S̃∗ − S̃∗,

0 = σ̃sS̃∗S̃∗ + σ̃rS̃∗R̃∗ + µ̃S̃∗ − R̃∗.

(6)

Note that the basic reproduction number satisfies

R0 =
bλ̃s
µ̃+ 1

.

To find endemic equilibrium E∗, we set

S̃∗ > 0.

The sum of all equations in (6) implies that

R̃∗ = (b− Ĩ∗ − S̃∗). (7)

From the second equation in (6),(
λ̃sS̃∗ + σ̃rS̃∗

)
Ĩ∗ = σ̃sS̃∗S̃∗ − σ̃rS̃∗S̃∗ + (µ̃+ 1)S̃∗ + σ̃rbS̃∗. (8)

By (7)-(8),

Ĩ∗ =
σ̃s − σ̃r
λ̃s + σ̃r

S̃∗ +
µ̃+ 1 + σ̃rb

λ̃s + σ̃r
:= βS̃∗ + γ.

Substituting Ĩ∗ into the first equation in (6) gives

b− λ̃s(βS̃∗ + γ)S̃∗ − (βS̃∗ + γ) = 0.

Therefore, we have

βλ̃sS̃
2
∗ + (λ̃sγ + β)S̃∗ + γ − b = 0. (9)
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If we obtain positive S∗, then by the first and third equations, we can derive I∗ and
R∗ such that

Ĩ∗ =
b

λ̃sS̃∗ + 1

and

R̃∗ =
σ̃sS̃∗S̃∗ + µ̃S̃∗

1− σ̃rS̃∗
.

Thus, if all components are nonnegative,

S∗ <
1

σ̃r
. (10)

Theorem 3.1. If R0 > 1, then a unique positive endemic state E∗ exists, but if
R0 ≤ 1, then there is no positive endemic state.

Proof. Assume that R0 > 1. Then there are three cases as follows.

• Case 1 (σ̃s − σ̃r = 0): Since β = 0, we have

S̃∗ =
b− γ
λ̃sγ

=
b

bσ̃r + µ̃+ 1

R0 − 1

R0
<

1

σ̃r
.

Condition (10) holds, which implies that a positive endemic state E∗ exists
and is unique.

• Case 2 (σ̃s − σ̃r > 0): The equation (9) can be written as

S̃2
∗ +

(
bσ̃r + µ̃+ 1

σ̃s − σ̃r
+

1

λ̃s

)
S̃∗ +

b

σ̃s − σ̃r
1−R0

R0
= 0.

Since R0 − 1 > 0 and σ̃s − σ̃r > 0,

b

σ̃s − σ̃r
1−R0

R0
< 0.

Therefore, there is a unique positive real root of the equation. To check
the condition in (10), let

f(x) = x2 +

(
bσ̃r + µ̃+ 1

σ̃s − σ̃r
+

1

λ̃s

)
x+

b

σ̃s − σ̃r
1−R0

R0
. (11)

By elementary calculation,

f(1/σ̃r) =
(λ̃s + σ̃r)(µ̃σ̃r + σ̃s)

λ̃sσ̃2
r(σ̃s − σ̃r)

. (12)

Thus, f(1/σ̃r) > 0 and it follows that (10) holds, proving that there is a
unique positive endemic equilibrium E∗.

• Case 3 (σ̃s − σ̃r < 0): Clearly, S̃∗ is a positive root of f(x) in (11). The
discriminant is

D =

(
bσ̃r + µ̃+ 1

σ̃s − σ̃r
+

1

λ̃s

)2

− 4b

σ̃s − σ̃r
1−R0

R0
.

Since we assume that σ̃s − σ̃r < 0, we need further analytical calculations to
obtain D > 0.
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Let

g(x) = (x− σ̃r + λ̃s(1 + µ̃+ bσ̃r))
2 − 4λ̃s(−1− µ̃+ bλ̃s)(σ̃r − x).

Then the discriminant is represented as for 0 ≤ σ̃s < σ̃r,

D =
g(σ̃s)

(λ̃s + σ̃r)2
.

Note that g is a quadratic function, therefore, g has global minimum value at

x = −bσ̃rλ̃s + σ̃r − 2bλ̃2s + µ̃λ̃s + λ̃s.

Since we assume that R0 > 1,

−bσ̃rλ̃s + σ̃r − 2bλ̃2s + µ̃λ̃s + λ̃s < −(µ̃+ 1)σ̃r + σ̃r − 2bλ̃2s + µ̃λ̃s + λ̃s

= −µ̃σ̃r + λ̃s(−2bλ̃s + µ̃+ 1)

< 0.

Therefore, the minimum value of g on [0, σ̃r) occurs at x = 0, thus, for σ̃s ∈
[0, σ̃r),

g(σ̃s) ≥ g(0) =
(
λ̃s (bσ̃r + µ̃+ 1)− σ̃r

)2
+ 4σ̃rλ̃s

(
−bλ̃s + µ̃+ 1

)
=: h(σ̃r).

We consider g(0) as a function of σ̃r, say h(σ̃r). Then h(σ̃r) is also a quadratic
function of σ̃r. Thus, h(σ̃r) has a global minimum as follows:

h(σ̃r) ≥
4bµ̃λ̃3s

(
bλ̃s − µ̃− 1

)
(
bλ̃s − 1

)2 > 0.

Therefore, D > 0 and f has two distinct real roots. Note that

b

σ̃s − σ̃r
1−R0

R0
> 0.

Thus, f has two distinct positive roots or two distinct negative roots.
By (12) and σ̃s − σ̃r < 0,

f(1/σ̃r) =
(λ̃s + σ̃r)(µ̃σ̃r + σ̃s)

λ̃sσ̃2
r(σ̃s − σ̃r)

< 0.

Therefore, f has two distinct positive roots and one is less than 1/σ̃r and one

is greater than 1/σ̃r. For small root, R̃∗ is positive and for large root, R̃∗ is
negative.

For any case, we conclude that if R0 > 1, then a unique positive endemic state
E∗ exists.

For the remaining part, we assume that R0 ≤ 1. Similar to the previous proof,
we have three cases.

• Case 1′ (σ̃s − σ̃r = 0): From β = 0 and (9), it follows that

S̃∗ =
b− γ
λ̃sγ

=
b

bσ̃r + µ̃+ 1

R0 − 1

R0
≤ 0.

Thus there is no positive endemic state E∗.
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• Case 2′ (σ̃s − σ̃r > 0): Note that S̃∗ is a positive root of f(x) in (11). For
0 ≤ σ̃r < σ̃s, the discriminant is

D =
g(σ̃s)

(λ̃s + σ̃r)2

and g has a global minimum value of 4bλ2s (λs + σs) (−bλs + µ+ 1).
Since we assume that R0 < 1, the minimum value is positive, which yields

that D > 0. Moreover,

b

σ̃s − σ̃r
1−R0

R0
≥ 0,

this implies that if R0 < 1, f has two distinct positive roots or two distinct
negative roots, and if R0 = 1, 0 is a root of f .

Note that f has a global minimum value at

x = −bσrλs + µλs + λs + (σs − σr)
2λs (σs − σr)

< 0.

Thus, f has no positive root and there is no positive endemic equilibrium E∗.

• Case 3′ (σ̃s − σ̃r < 0): Note that

S̃2
∗ +

(
bσ̃r + µ̃+ 1

σ̃s − σ̃r
+

1

λ̃s

)
S̃∗ +

b

σ̃s − σ̃r
1−R0

R0
= 0.

Since R0 − 1 ≤ 0 and σ̃s − σ̃r < 0, we have

b

σ̃s − σ̃r
1−R0

R0
≥ 0.

Therefore, there is at most one positive real root of the equation. However,

f(1/σ̃r) =
(λ̃s + σ̃r)(µ̃σ̃r + σ̃s)

λ̃sσ̃2
r(σ̃s − σ̃r)

< 0.

Thus, (10) does not hold. This implies that there is no positive endemic
equilibrium E∗.

Therefore, we conclude that if R0 ≤ 1, then there is no positive endemic state.

3.2. Stability for endemic equilibrium. In this part, we consider asymptotic
stability for the endemic state E∗. Since the endemic state E∗ exists only forR0 > 1,
we consider the case of R0 > 1.

Theorem 3.2. If R0 > 1, then the endemic equilibrium E∗ is globally asymptoti-
cally stable on

{(I, S,R,W ) : S > 0 or W > 0} ∩ {(I, S,W,R) : I, S,W,R ≥ 0}.

Proof. Let

V∗(I, S,W,R) =

[
I − I∗ − I∗ log

I

I∗

]
+

[
S − S∗ − S∗ log

S

S∗

]
+
λw
δw
I∗

[
W −W∗ −W∗ log

W

W∗

]
+

R∗σr
µ+R∗σr

[
R−R∗ −R∗ log

R

R∗

]
=:J1 + J2 + J3 + J4.

In the same manner as Theorem 2.3, note that V∗ is nonnegative and radially
unbounded.
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We claim that if (I(t), S(t),W (t), R(t)) 6= (I∗, S∗,W∗, R∗) and S(t) > 0, then

dV∗
dt

< 0.

Since (I∗, S∗,W∗, R∗) is the steady state of (1),

(b− λsI∗S∗ − λwI∗W∗ − δiI∗) = 0.

Therefore,

dJ1
dt

= (b− λsIS − λwIW − δiI)

(
1− I∗

I

)
+ (b− λsI∗S∗ − λwI∗W∗ − δiI∗)

(
1− I

I∗

)
= b

(
2− I∗

I
− I

I∗

)
− λs (I∗ − I) (S∗ − S)− λw (I∗ − I) (W∗ −W ).

Similarly,

(λsI∗S∗ + λwI∗W∗ − σsS∗S∗ − σrS∗R∗ − µS∗) = 0.

This implies that

dJ2
dt

= (λsIS + λwIW − σsSS − σrSR− (µ+ δs)S)

(
1− S∗

S

)
+ (λsI∗S∗ + λwI∗W∗ − σsS∗S∗ − σrS∗R∗ − (µ+ δs)S∗)

(
1− S

S∗

)
= λs(I∗ − I) (S∗ − S)− σs(S∗ − S) (S∗ − S)− σr(R∗ −R) (S∗ − S)

+ λwIW

(
1− S∗

S

)
+ λwI∗W∗

(
1− S

S∗

)
.

Note that

dJ3
dt

=
λw
δw
I∗ (ξS − δwW )

(
1− W∗

W

)
.

We add the derivatives of J1,J2, and J3 to obtain

d(J1 + J2 + J3)

dt
− b

(
2− I∗

I
− I

I∗

)
+ σs(S∗ − S) (S∗ − S) + σr(R∗ −R) (S∗ − S)

= −λw (I∗ − I) (W∗ −W ) + λwIW

(
1− S∗

S

)
+ λwI∗W∗

(
1− S

S∗

)
+
λw
δw
I∗ (ξS − δwW )

(
1− W∗

W

)
= λwI∗W + λwIW∗ − λwI

S∗
S
W − λwI∗

S

S∗
W∗ +

λw
δw
I∗ (ξS − δwW )

(
1− W∗

W

)
.

Using δwW∗ = ξS∗,

d(J1 + J2 + J3)

dt
− b

(
2− I∗

I
− I

I∗

)
+ σs(S∗ − S) (S∗ − S) + σr(R∗ −R) (S∗ − S)

= λw

(
IW∗ − I

S∗
S
W − ξ

δw
I∗
W∗
W

S + I∗W∗

)
.

(13)
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Using δwW∗ = ξS∗ again,

IW∗ − I
S∗
S
W − ξ

δw
I∗
W∗
W

S + I∗W∗

=

(
IW∗ + I∗

I∗
I
W∗ − 2I∗W∗

)
−
(
ξ

δw
I∗S

W∗
W

+ I
S∗
S
W + I∗

I∗
I
W∗ − 3I∗W∗

)
= I∗W∗

(
I

I∗
+
I∗
I
− 2

)
− ξ

δw
I∗W∗

(
S

W
+
δ2w
ξ2
IW

I∗S
+
δw
ξ

I∗
I
− 3

δw
ξ

)
.

(14)

Combining (13) and (14) with δwW∗ = ξS∗,

d(J1 + J2 + J3)

dt
=

(
λwξ

δw
I∗S∗ − b

)(
I

I∗
+
I∗
I
− 2

)
− λwξ

2

δ2w
I∗S∗

(
S

W
+
δ2w
ξ2
IW

I∗S
+
δw
ξ

I∗
I
− 3

δw
ξ

)
− σs(SS + S∗S∗ − 2SS∗)− σr(SR+ S∗R∗ − S∗R−R∗S).

Since

σsS∗S∗ + σrS∗R∗ + µS∗ − δrR∗ = 0,

we have

µ+R∗σr
R∗σr

dJ4
dt

=
dR

dt

(
1− R∗

R

)
= (σsSS + σrSR+ µS − δrR)

(
1− R∗

R

)
+ (σsS∗S∗ + σrS∗R∗ + µS∗ − δrR∗)

(
1− R

R∗

)
= σs

(
SS + S∗S∗ −

R∗
R
SS − R

R∗
S∗S∗

)
+ σr

(
SR+ S∗R∗ −

R∗
R
RS − R

R∗
R∗S∗

)
+ µ

(
S + S∗ −

R∗
R
S − R

R∗
S∗

)
.

Then we have

dV∗
dt

=

(
λwξ

δw
I∗S∗ − b

)(
I

I∗
+
I∗
I
− 2

)
− λwξ

2

δ2w
I∗S∗

(
S

W
+
δ2w
ξ2
IW

I∗S
+
δw
ξ

I∗
I
− 3

δw
ξ

)
− σs(SS + S∗S∗ − 2SS∗)− σr(SR+ S∗R∗ − S∗R−R∗S)

+
R∗σr

µ+R∗σr
σs

(
SS + S∗S∗ −

R∗
R
SS − R

R∗
S∗S∗

)
+

R∗σr
µ+R∗σr

σr

(
SR+ S∗R∗ −

R∗
R
RS − R

R∗
R∗S∗

)
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+
R∗σr

µ+R∗σr
µ

(
S + S∗ −

R∗
R
S − R

R∗
S∗

)
.

Note that

− σs(SS + S∗S∗ − 2SS∗) +
R∗σr

µ+R∗σr
σs

(
SS + S∗S∗ −

R∗
R
SS − R

R∗
S∗S∗

)
= − µ

µ+R∗σr
σs(SS + S∗S∗ − 2SS∗)

− R∗σr
µ+R∗σr

σsS∗S

(
R∗
R

S

S∗
+

R

R∗

S∗
S
− 2

)
and

− σr(SR+ S∗R∗ − S∗R−R∗S)

+
R∗σr

µ+R∗σr
σr

(
SR+ S∗R∗ −

R∗
R
RS − R

R∗
R∗S∗

)
+

R∗σr
µ+R∗σr

µ

(
S + S∗ −

R∗
R
S − R

R∗
S∗

)
= − R∗σr

µ+R∗σr
µS

(
R

R∗
+
R∗
R
− 2

)
.

In conclusion, we have

dV∗
dt

=

(
λwξ

δw
I∗S∗ − b

)(
I

I∗
+
I∗
I
− 2

)
− λwξ

2

δ2w
I∗S∗

(
S

W
+
δ2w
ξ2
IW

I∗S
+
δw
ξ

I∗
I
− 3

δw
ξ

)
− µ

µ+R∗σr
σs(SS + S∗S∗ − 2SS∗)

− R∗σr
µ+R∗σr

σsS∗S

(
R∗
R

S

S∗
+

R

R∗

S∗
S
− 2

)
− R∗σr
µ+R∗σr

µS

(
R

R∗
+
R∗
R
− 2

)
.

From the first equation in (1), it follows that

b = λsI∗S∗ + λwI∗W∗ + δiI∗ = λsI∗S∗ +
λwξ

δw
I∗S∗ + δiI∗.

This implies that

λwξ

δw
I∗S∗ − b = −λsI∗S∗ − δiI∗ < 0.

By the relationship between arithmetic and geometric means, if

(I(t), S(t),W (t), R(t)) 6= (I∗, S∗,W∗, R∗) and S(t) > 0,

then

dV∗
dt

< 0.

If we assume that S(0) > 0 or W (0) > 0, then by the result in Section 2, S(t) > 0
for t > 0. Therefore, by Lyapunov stability theorem, we conclude that if S(0) > 0
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or W (0) > 0, then (I(t), S(t),W (t), R(t)) converges to E∗ as t goes to ∞ and this
implies that the endemic equilibrium E∗ is globally asymptotically stable on

{(I, S,R,W ) : S > 0 or W > 0} ∩ {(I, S,W,R) : I, S,W,R ≥ 0}.

4. Numerical simulation. In this section, we carry out some numerical simu-
lations to verify the theoretical results. We use the fourth-order Runge-Kutta
method with time step size ∆t = 0.01. We assume that the initial condition is
(I(0), S(0),W (0), R(0)) = (1, 1, 0, 0).

As shown before, the basic reproduction number is

R0 = ρ(FV −1) =
b

δi

(
λs

µ+ δs
+

λwξ

(µ+ δs)δw

)
.

We assume that the influx b is 1. Since the parameters σs, σr, and δr are not involved
in the basic reproduction numberR0, we fix these parameters as σs = σr = δr = 0.5.
If we take λs = λw = ξ = 0.5 and δi = δs = δw = µ = 1, then R0 = 0.375. In
this case, as we proved in Theorem 2.3, the rumor-free equilibrium is b/δi = 1 and
is globally asymptotically stable. As seen in Figure 1(A), the population density of
ignorants I(t) converges to 1 and the other densities S(t), W (t), and R(t) converge
to zero. On the other hand, if we set δi = δs = δw = µ = 0.5 and λs = λw = ξ = 1,
then R0 = 6. As we proved in Theorem 3.2, the endemic equilibrium exists and is
asymptotically stable. See Figure 1(B).
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(A) R0 = 0.375
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(B) R0 = 6

Figure 1. Numerical simulations when b = 1, σs = 0.5, and σr = 0.5

Now, we investigate the influence of an online reservoir. We change ξ from 0 to 2
and all other parameters are fixed as λs = λw = σs = σr = δi = δw = δr = µ = 0.5
and δi = 1. The final densities I(T ), S(T ), W (T ), and R(T ) when the final time
T = 103 are given in Figure 2(A). We observe the phase transition when R0 = 1.
That is, ξ = 0.5. We change λw from 0 to 2 and all the other parameters are
the same as the previous case. If we set ξ = 0.5, then we observe the effect of
the trust rate λw in Figure 2(B). In this case, the densities S(t) and R(t) are the
same since ξ = δw. As ξ and λw increase, the densities of the spreaders and stiflers
also increase. Therefore, as online reservoirs become more active, rumors are more
expansively spread.

Even though the contact rates σs and σr are not involved in R0, they affect the
behavior of the solutions. See Figure 3. We choose σs and σr between 0.1 and 2.
All other parameters are fixed to 0.5. That is, λs = λw = δi = δs = µ = ξ = δw =
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(A) Final densities when T = 103
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(B) Final densities when T = 103

Figure 2. Final densities I(T ), S(T ), W (T ), and R(T ) with T = 103

δr = 0.5 and hence R0 = 2. Since R0 > 1, the final time T = 30 is large enough.
The bigger contact rates lead to a sharp reduction in the density of spreaders in a
short time. Therefore, the final densities of the spreaders and stiflers are low if the
contact rates are high. Furthermore, we confirm that the aggressive activity of the
stiflers has an immense influence on the spread of a rumor. In Figure 4, we change
(σs, σr) on [0, 1]× [0, 1] and display the final densities I(T ), S(T ), W (T ), and R(T )
with T = 30.
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(A) σs = σr = 0.1
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(B) σs = 0.1 and σr = 2
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(C) σs = 2 and σr = 0.1
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(D) σs = σr = 2

Figure 3. Evolution of the solution with different parameters σs
and σr
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(A) Final density of I(T ) (B) Final density of S(T )

(C) Final density of W (T ) (B) Final density of R(T )

Figure 4. Final densities I(T ), S(T ), W (T ), and R(T ) with T = 30

We next compare the SIR and SIWR models. Without online an reservoir, the
basic reproduction number of the SIR model is given by

RSIR0 =
bλs

(µ+ δs)δi
.

If we fix the parameters such as σs = σr = δr = 0.5 and λs = δi = δs = µ = 1,
then RSIR0 = 0.5. However, we introduce an online reservoir with δw = 0.5 and
λw = ξ = 1, then R0 = 1.5. Therefore, we conclude that an online reservoir
promotes the spread of a rumor. The comparison of SIR and SIWR is given in
Figure 5.
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(A) SIR model
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(B) SIWR model

Figure 5. Comparison of the SIR and SIWR models
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5. Conclusion. In this paper, we consider a rumor spreading model with an online
reservoir. By using a next-generation matrix, we calculated the basic reproduction
number R0. We proved that a unique rumor-free equilibrium E0 exists and if
R0 ≤ 1, then E0 is linearly stable and if R0 > 1, then E0 is linearly unstable.
For the asymptotic behavior, E0 is globally asymptotically stable if R0 < 1. For
the endemic equilibrium, if R0 > 1, then there is a unique positive endemic state
E∗ and if R0 ≤ 1, then there is no positive endemic state. Moreover, for a rumor
spreading dynamics with an online reservoir, the endemic equilibrium E∗ is globally
asymptotically stable if R0 > 1. The presence of σs and σr does not affect the
basic reproduction number and the asymptotic behaviors of steady states. We also
investigated that the reproduction number R0 increases by the effect of the online
reservoir. Thus, the development of online media promotes rumor propagation.
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