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ABSTRACT. The spread of rumors is a phenomenon that has heavily impacted
society for a long time. Recently, there has been a huge change in rumor
dynamics, through the advent of the Internet. Today, online communication
has become as common as using a phone. At present, getting information from
the Internet does not require much effort or time. In this paper, the impact
of the Internet on rumor spreading will be considered through a simple SIR
type ordinary differential equation. Rumors spreading through the Internet are
similar to the spread of infectious diseases through water and air. From these
observations, we study a model with the additional principle that spreaders
lose interest and stop spreading, based on the SIWR model. We derive the
basic reproduction number for this model and demonstrate the existence and
global stability of rumor-free and endemic equilibriums.

1. Introduction. There are different patterns of rumor spreading depending on
the presence or absence of online media [7], for example, the emergence of influential
spreaders [2]. Before the development of online media, rumors were transmitted
from person to person. With the development of online media such as social network
service (SNS), personal broadcasting, blog, and group chatting, rumors can now
spread in a variety of ways. In the past, offline media was the starting point and an
important means of information delivery. Recently, it has become a social problem
that offline media reproduces and delivers rumors from online media. This is a sign
that information in online is rapidly being accepted by various social classes. In
this paper, we study how the combination of classical interpersonal rumor spreading
and online media influences rumor outbreak.

In order to consider the influence of online media, we denote by I the density of
people who do not know the rumor but are susceptible, S is the density of people
who spread the rumor, and W is the amount of rumor in online generated by the
group S, and R is the density of people who know the rumor but are not interested
in it or do not believe it. The process of rumor spreading is based on the following
assumptions. (1) The group I has an influx rate of b and a natural decay rate of
d;i. (2) Suppose the group I meets S, then I is converted to S with an incidence
rate of A\;, and when the group I encounters the rumor in online media, I is also
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converted to S with a rate of A,. (3) We assume that S occurs only from I and if S
encounters someone who knows the rumor, then they lose interest or do not believe
in the rumor. In this case, let o5 and o, denote the contact rates at which S meets
S and R, respectively. (4) S decreases with a natural decay rate of §; and becomes
R with the transmission rate p. (5) We assume that an online medium has its own
natural decay rate of §,, and is generated in proportion to the size of S in offline.
From the above assumptions, we can derive the following mean field equation.

dr =b—MNIS — Ny IW — 6,1,

dt

ds

i AdS + Ay IW — 0,55 — 0,.SR — uS — 645,

(1)

dW
o §S — 0, W,

CjT]; =0s554+0,.SR+ uS —94,R.

Remark 1. (1) This rumor spreading process is a relatively short time process.
Thus, we do not consider vertical transmission. See [8].

(2) If we take b = §; = §; = 4, and (I +S+ R)(0) = 1, then the total population
density I + .S + R is conserved. Thus our model is a generalization of the model in
[15].

Since the Daley-Kendall model [3], various studies on rumor spreading have been
conducted. We briefly state the history of rumor spreading models associated with
online media. See [12] for a general rumor spread, and [14] for threshold phenom-
ena for general epidemic models. Since information transmission via online media
developed in the late 1990s, intensive researches on rumors and online media began
mainly in the early 2000s. In [1], the authors focused on the spread of computer-
based rumors and analyzed the spread of rumors via computer-based communica-
tion in terms of information transmission. The authors in [7] noted the difference
between online-based media and offline media. The study in [17] considered the
spread of rumors through online networks by using the SIR model. The fast speed
and unprofessional communication of online media is considered in [13]. See also
[9]. In [11], a statistical rumor diffusion model is considered for online networks and
it contained positive and negative bipolar reinforcement factors. [4, 6, 18] studied
a rumor propagation model similar to the European fox rabies SIR model for the
situation of changing online community number. In [10], the authors studied the
rumor propagation phenomena for a model with two layers: online and offline. See
also [19] for the SEIR type online rumor model.

This paper is organized as follows. In Section 2, we present the nonnegativity
property of the solution to (1) and the stability of the rumor-free equilibrium. The
basic reproduction number Ry is calculated by using a next-generation matrix. In
Section 3, we provide the existence and uniqueness of endemic equilibrium and its
global stability. In Section 4, we perform several numerical simulations to verify
our analytical results.

2. Elementary properties of the SIWR system and stability for rumor-
free equilibrium. In this section, we consider the conservation of nonnegativity
of the densities I, S, W, R and the stability for a rumor-free equilibrium FEj.
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2.1. Nonnegativity of I, S, W, R.

Lemma 2.1. Let (I,S, W, R) be the unique global solution to (1). Assume that o
and o, are nonnegative constants and the rest of the coefficients are positive. If the
initial data (I1(0),S(0),W(0), R(0)) has only nonnegative components and satisfies

S(0)% + W(0)* > 0,
then the solution is nonnegative for allt >0 and S(t), W(t) > 0 fort > 0.

Proof. We take any positive T" > 0. By the continuity of the solution, there is
C(T) > 0 such that

@) SO W@, [R(E)| < C(T).
By the first equation in (1) and the boundedness, if I(0) > 0, then for 0 <t < T,

I(t) _ I(O)e_ SN S(8)+Xw W (s)+8;)ds + b/t e~ fJ(ASS(s)+/\wW(s)+6i)dsdu < 0.
0

We first prove that S is nonnegative for 0 < t < T. Assume not, i.e., there is
t; € (0,T) such that

S(t;) <0.
Let tg € (0,¢; ) be an entering time for S into the negative region such that S(t) > 0
on [0,t9] and S(¢) < 0 on (to,to + €), where € > 0 is a small constant. Note that by
the second equation in (1),

S(t) :S(O)efot(AsI(s)faSS(s)farR(s)fufés)ds

t 2
b [ AT )W )el i) -0r S0 0n M)y gy, .
0

This and the positivity of I imply that if W (¢) > 0 on (0, s], S(¢) is nonnegative
on (0, s]. Therefore, there is an entering time t{ € (0,¢;) for W into the negative
region such that W (t) > 0 on [0, ;] and W(t) < 0 on (ty,t( + €'), where € > 0 is
a small constant. If ¢ < ¢, then S(¢) > 0 and W(t) < 0 on (tg,to) N (ty, to + €).
Similarly, by the third equation in (1),

W(t) — W(O)e—&ut n /t fs(u)e_éw(t_u)du~ (3)
0

Thus, W (t) is nonnegative on (0,s] if S > 0 on (0, s]. This is a contradiction and
we conclude that ¢t > ¢(. Similarly, we can obtain that o < ¢. Thus, to = t.
However, on t € [tg, 00),

S (i b(1 — e~ 0i(t=t0)) (i
(I(t),S(t),W(t),R(t)) = <I(t0)e Silt—to) 4 ——— 0,0, R(to)e or(t to))
is a solution to (1). By uniqueness of the solution, there is no t; > 0 such that
S(t;) < 0. Therefore, we prove that S is nonnegative.

Similarly, we can also easily obtain that there is no ¢;, > 0 such that W (t,,) < 0.
Thus, for all ¢ > 0, I, S,W > 0. By the fourth equation in (1) and nonnegativity
of I, S, W, we have that R is also nonnegative on (0, 00). Therefore, we prove that
the solution is nonnegative for all ¢ > 0.

Moreover, if S(0) > 0, then for all t > 0, S(t) > 0 by (2). From (3), W(¢) > 0 on
(0,00). Similarly, if W (0) > 0, then for all t > 0, W(¢) > 0 by (3). By the virtue of
the positivity of I and (2), S(t) > 0 on (0, 00). Thus, we conclude that if S(0) >0
or W(0) > 0, then S(t) > 0 and W(t) > 0, t € (0,00). O
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2.2. The basic reproduction number using a next-generation matrix. In
this part, we calculate the basic reproduction number using a next-generation ma-
trix. To consider the asymptotic behavior of the dynamics in (1), we determine the
equilibrium point such that
I=S=W=R=0. (4)
If we assume that there is no rumor (S = 0) in system (1) with (4), then the
equilibrium point is unique and
b
EO = (L“fa Srfa W’r‘f7 R’I“f) = (67 07 07 O) .
7
The basic reproduction number Ry is generally a measure of the transmission
of disease. This is usually expressed in terms of the rate of secondary transmission
(or infection) and no transmission. R for more complex systems was calculated in
[5, 16] using the next-generation matrix methodology. Here, we follow the method
of [16].
For the infected compartments, the next generation matrices at the rumor-free
state Ey = (b/0;,0,0,0) are given by

1 (bA, bA _(n+6s 0
Pl (BB vo (R0,

and hence

V—1—1<5w 0)
(h+06)0w \ & H+0s)"

Here, F and V are related to the rate of new infections and transfer individuals,
respectively. This yields

bAs bAw€ bAyw
FV—1! = ((/L+6s)6i + (b+65)didw 5i5w> .

0 0
Therefore, we obtain the following formula for the basic reproduction number:
_ b A Awé
Ro=p(FV™1) == 4 L ) .
0= #l ) 9; (u+5s (4 85)0w

Here, p(A) is the spectral radius of a matrix A.

2.3. Stability for rumor-free equilibrium. For the linear stability, we consider
the Jacobian matrix as follows.

XS — AW —0; i Al 0
J— AsS + AW Al — 2048 —0,R—pu—0s Ayl -0,
0 ¢ —0w 0
0 2058 +0,R+ 1 0 0.8 — 6,

Since the rumor-free equilibrium is

b
Ey=(—
0 (51‘,07070)’

the Jacobian matrix at the rumor-free equilibrium is given by
—; A A2 0

w &y

b b
0 )\567_/’6_65 )\wéfL 0
0 3 —Gq 0
0 1 0 -0,
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Therefore, the corresponding characteristic equation is

p(z) =(z +6,)(x + &)

x (wQ - (MS -0, —6w)x— LULEN SN bAwg) .

i i i
Assume that Rg < 1. Then by the definition of Ry,
boA <b(As Mt ><1
Sip+0ds 0 \p+ds  (p+ds)0w '
Thus,
bAs
eri=—(52 —n=8=8,) > 8, > 0.
Note that
bow s bAw
Co 1= — (52 + (/-l + 63)511} - (52
bAs bAwE
=0u(pu+ds) | — — +1
(h )( (1 +03)  6:0u(pt + 0s) )

= 0w (pt+ 65)(1 = Ro)
> 0.
Clearly, —6,, and —¢; are the eigenvalues of Jg, and are negative. The rest of the
eigenvalues are zeros of the following polynomial.
by
6

bAs bow s
pO(l‘):xzi ( kY 7;11'7587511))557 5 +(M+§s)5w*

= 22 +c1x + ca.

Since ¢; > 0 and cg > 0, zeros of po(z) have only negative real part. Therefore,
Ey = (b/6;,0,0,0) is locally asymptotically stable if Ry < 1.

Clearly, if Ry = 1, then one of the eigenvalues has a zero real part. Thus, Ej is
locally stable but not asymptotically stable for the linearized system. Furthermore,
if Rg > 1, then ¢ < 0. Therefore, Ey is linearly unstable. We summarize the above
argument to

Theorem 2.2. The rumor-free equilibrium Eq of the system in (1) is linearly stable
if Ro < 1 and linearly unstable if if Rqg > 1. Moreover, Ey is linearly asymptotically
stable if Ry < 1.

The rumor-free equilibrium Ej is also a global attractive basin. We can use the
standard methodology to obtain the global asymptotical behavior of the solution
to (1).

Theorem 2.3. If Ry < 1, the rumor-free equilibrium Ey is globally asymptotically
stable on

{I,S,RW):S>00rW>0}n{(I[,S,W,R):1,S,W,R > 0}.
Proof. Let

I s
W, S, W) = I—Imc—lmclogi _|_S_;_]7nf§7‘v[/7
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where I,y = b/§;. Since

I
I_Irf _Irflog >0, for I;’éfrf7

Ly

and

I
I—1I.y—1Iylog =0, for I=1Iy,

Iy
we note that Vj is nonnegative and radially unbounded. Then by elementary cal-
culation,

vy b (b
G = OIS S IW = D) — (I — XS = AW — 51)

F NS + AW — 0458 — 0y SR — (114 0)S + 22 (68 — 5., W)

0;0w
bAs
=b—06,1—0s55—0,SR— (u+9:)S+ 5.3 (€S — 0,W)
b (b
> (I/\SS)\SW&)
b o1
=-b <5J —I—T —2) — 0585 —0,.SR— (un+05)S
bAs b
+ (S =0, W) + — (NS + AW)
6i0w 0;
b o1
——b(M+b—2> —O'SSS—O'TSR
bAs bAsE
—(u+d5)S|1— — .
(h ) < (u+65)0;  (p+ (55)51‘(5711)
Therefore, we have
dVy b o1
o —b ((M+b_2> — 0,85 —0,.SR— (11 +65)S(1 — Ryo). (5)

Note that by Lemma 2.1 in Section 2, I, S, R > 0 and S(t) > 0 for all ¢ > 0. This
nonnegativity and (5) imply that if (I(¢),S(¢)) # (I,r,0) and R < 1, then
dVy

o o,
at =

Therefore, (I(t),S(t)) converges to (I,£,0) as ¢t goes to oo by Lyapunov stability

theorem. By the third equation in (1), W (t) converges to zero as t goes to oo.

Similarly, by the fourth equation in (1), R(t) converges to zero as t goes to cc.
Therefore, the rumor-free equilibrium FEj is globally asymptotically stable. [

3. Stability analysis for endemic states. In this section, we present the exis-
tence and stability of endemic steady states for the rumor spreading model with an
online reservoir. Endemic state refers to a nonzero steady state of S, i.e., the rumor
is sustained. Since there is an influx b for ignorant I, we can show that the unique
endemic state exists as follows.
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3.1. Existence and uniqueness of the endemic equilibrium. To obtain the
endemic equilibrium

E* = (I*7 S*; W*7R*)7

we consider the following steady state equation:
al dS dW dR

dt — dt — dt  dt
Then the endemic equilibrium E, = (I, Si, W, R.) satisfies
0=">0— NI1,Sy — ANy LW, — 0,1,
0= AL,y + Ay LWy — 055,54 — 0,5 Ry — S5 — 55,
0=2¢&S, — 0,W,,
0= 0,98 + 0,5 Ry + Sy — 0, R..

We set
U* = %W*y i* = 611*7 S* = 635*7 R* = 67'R*a
and
TR AsOuw + Awé s . oy
H= =, )‘S = ’ E ’ r=
O 0050, 02 050,
Then U, = S, and
0=">b— A5, — I,
0=A1.S, — 555,58, —6,5.R, — iS. — S., (6)
0=5,5.5, +6,.5.R. + S, — R,

Note that the basic reproduction number satisfies
b
Rop= ——.
p+1
To find endemic equilibrium FE,, we set

S, > 0.

The sum of all equations in (6) implies that
R.=0b-1,-85,). (7)
From the second equation in (6),
(AS. +3,8,) I = 5,8.5. = 5,58, + (i + 1)S. + 5,b5.. (8)
By (7)-(8),
= 0s—0rg | f+1+0.b

I, == Sy + — ::ﬂg*qL’y.
As + 0 As + 0r

Substituting I, into the first equation in (6) gives
b= As(BS. +7)S, — (8BS, +7) =0.

Therefore, we have
BASI + Ay +B)Se + 7 —b=0. (9)
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If we obtain positive Sy, then by the first and third equations, we can derive I, and
R, such that

and

f*:#
As Sy +1

1—6,5,

Thus, if all components are nonnegative,

S < Ni (10)

Or

Theorem 3.1. If Ry > 1, then a unique positive endemic state E, exists, but if
Ro < 1, then there is mo positive endemic state.

Proof. Assume that Ry > 1. Then there are three cases as follows.

e Case 1 (65 — &, =0): Since = 0, we have

~ b— b -1 1
[ Ro S

= — - <
AsY bo, +ii+1 Ro o

Condition (10) holds, which implies that a positive endemic state E, exists
and is unique.

Case 2 (65 — 6, > 0): The equation (9) can be written as

S?+<wf+ﬁf1+.l)~ b 1-Ro_,

* 0s — Oy 0s —0r Ro
Since Rg —1 >0 and 65, — G- > 0,
b 1-TRy
p — 0 <
0s —Op RO

0.

Therefore, there is a unique positive real root of the equation. To check
the condition in (10), let

f(a:):x2+(bar+u+1+~1>m+ b 1_RO. (11)

5y — Gy Gy — 6, Ro

By elementary calculation,
(A +6)(@6, +55)
1/6,) = ~2= . 12
A wETER— 1
Thus, f(1/6,) > 0 and it follows that (10) holds, proving that there is a
unique positive endemic equilibrium F,.

Case 3 (65 — 6, < 0): Clearly, S, is a positive root of f(x) in (11). The
discriminant is
O 2
D= (b0r+/£+1 +1> __ 4b~ 17730'
s — 0, Ro

68 - 5"r )\3
Since we assume that 65 — &, < 0, we need further analytical calculations to
obtain D > 0.
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Let
9(@) = (& = G + As(1 + i+ b5,))? — AX(—1 — fi + bA) (G, — ).
Then the discriminant is represented as for 0 < 65 < &,
_ 96
(As +6r)?
Note that g is a quadratic function, therefore, g has global minimum value at
&= —bG,As + G — 20A2 + s + A
Since we assume that Ry > 1,
—bG,As + Gy — 2002 4 fidg + As < —(fi+ 1), 4 G, — 2602 + idg + s
= —[i6, + As(—2bXs + 1+ 1)
< 0.
Therefore, the minimum value of g on [0, 5,.) occurs at = 0, thus, for 6, €
[0,5),
9(G5) > g(0) = (Xs (b6, + i+ 1) — &T)Q VTS (—bXS +ii+ 1) = h(,).

We consider g(0) as a function of &, say h(5,). Then h(5,) is also a quadratic
function of &,. Thus, h(G,) has a global minimum as follows:

Abjd3 (bXS - 1)

- 2
(b2 -1)
Therefore, D > 0 and f has two distinct real roots. Note that
b 1-TRg
5—5 - 5—7‘ RO

> 0.

h(6,) >

> 0.

Thus, f has two distinct positive roots or two distinct negative roots.
By (12) and 65 — &, < 0,

AsG2(G5 — 6,

Therefore, f has two distinct positive roots and one is less than 1/, and one
is greater than 1/4,. For small root, R, is positive and for large root, R, is
negative.

For any case, we conclude that if Ry > 1, then a unique positive endemic state
F, exists.

For the remaining part, we assume that Ry < 1. Similar to the previous proof,
we have three cases.

e Case 1’ (65 — 6, =0): From 8 =0 and (9), it follows that
g _b-y_ b Re-1
TNy bor+i+1 Ry

Thus there is no positive endemic state FE.,.

<0.
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e Case 2’ (6, — &, > 0): Note that S, is a positive root of f(z) in (11). For
0 < &, < 75, the discriminant is
_ ~g(&8)
(As +6,)2
and g has a global minimum value of 4bA% (\; + 05) (—=bAs + p + 1).

Since we assume that Rg < 1, the minimum value is positive, which yields
that D > 0. Moreover,

_ b~ 17720>0’
0s— 0, Ro

this implies that if Ry < 1, f has two distinct positive roots or two distinct
negative roots, and if Ry = 1, 0 is a root of f.
Note that f has a global minimum value at
_bUT)\S + /J/As + )\s + (Us - Ur)
2)s (05 — 0p)

Thus, f has no positive root and there is no positive endemic equilibrium FE,.

< 0.

e Case 3' (65 — 7, < 0): Note that

§f+<b°—i+“~+1+~l)§*+ b _1-Ro_

0s — O 0s—0r Ro

S
Since Rg — 1 <0 and 6, — G, < 0, we have
b 1-Rg
5—5 - 5—7’ RO

> 0.

Therefore, there is at most one positive real root of the equation. However,
(As +6,) (A5, +6)

= < 0.
As02(6s — Gy)

f(1/er) =

Thus, (10) does not hold. This implies that there is no positive endemic
equilibrium F,.
Therefore, we conclude that if Ry < 1, then there is no positive endemic state. [

3.2. Stability for endemic equilibrium. In this part, we consider asymptotic
stability for the endemic state E,. Since the endemic state F, exists only for Rg > 1,
we consider the case of Ry > 1.

Theorem 3.2. If Ry > 1, then the endemic equilibrium FE, is globally asymptoti-
cally stable on

{I,S,RW):S>00rW>0}n{(I[,S,W,R):1,S,W,R > 0}.
Proof. Let

I
Vi(I,S,W,R) = {II*I*logI} —+ {SS*S*logg}

A
+5—“’I* [W — W, — W, log

=1+ Jo + J3 + Jy.

In the same manner as Theorem 2.3, note that V, is nonnegative and radially
unbounded.

w R.o, R
——— |R— R, — R.log —
W*:| +M+R*O—r l: ©8 R,
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We claim that if (I(¢), S(t), W(t), R(t)) # (I«, S, Wi, Rx) and S(t) > 0, then

avi
dt
Since (I, S«, Wi, Ry) is the steady state of (1),

(b— NSy — Ao, W, — 6;1,) = 0.

< 0.

Therefore,
dJy I,
— = b= AJIS = Ay IW =61 [1— —
i (b= XIS — A\ IW — §;1) ( I)
1
+ (b= AsL.Se — Ay LW, — 6;1.,) (1 — I)
I, I
:b(2_l_l> XN (L =1) (S = 8) = Ay (I, — I) (W, — W).
Similarly,

(AsLiSs + A LW, — 055,54 — 0,5 R — 11Ss) = 0.
This implies that

% = OIS + A IW — 0,85 — 0,SR — (11 +6,)S) (1 _ SS>

+ ()\SI*S* + )\wI*W* - USS*S* - UT‘S*R* - (M + 63)5*) (1 - SS>

= AL = 1) (Sx = 5) —05(Sc = 5) (S« = 95) — (R — R) (S« — 9)
Sy S
AW (1 —— AoliWe [1——|.
i ( S)* ( &)
Note that
dJs Ay W,
a5, I, (¢S — 0, W) (1 W) .
We add the derivatives of .J;,Jo, and J3 to obtain

Wb@?;)Jros(S*S)(S*S)JrJT(R*R)(S*S)

=N (L = T) (Wy = W) + A\ IW (1 - SS> + Ao LW, (1 - 5)

*

Aw W,
+ EI* (€S —6,W) <1 — W)
= A LW + A IW, — )\wI%W — )\wI*Sﬁ*W* + E—ZI* (&S — 6, W) (1 — Mv:;) .
Using 6, W, = &S,
d(Jy + J2 + J3) b<ZI*I)
dt I I,
+05(Sx = 8) (Se = S) + 0.(Rs — R) (S« — S5) (13)

B S, ¢ W.

S+LW).
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Using 0,,W, = £S5, again,

Sk f W,
W, —I—
W SW 5w w
= <IW* —I—I*%W* —QI*W*)
(14)
& W, Sy
_<5w[SW+ISW+I
I I, 13 S 02 5wf* Ow
—Lw. (L o) S, 4o Ow e g0uw )
W(Lf ) 5 W<W ens el 35)

(14) with 5, W, = €S,,

I

d
d(J1+ Jo + J3) ngS 1 772

dt dw
2 2

- wg_rs 6IW ‘wa;_g‘iw
92 5215 &1 13
—o(g(SS+S*S*—2SS*) o (SR+ SiR. — S.R — R.S).

Combining (13) an

Since

055:5% + 0.5« Ry + 1S« — 6, Ry = 0,
we have

R.o. dt dt

p+ Roo,dJy  dR (1 R*>
R

= (0,58 + 0, SR + S — 6, R) (1 - %)

+ (0555« + 0,5 Ry + 1S5 — §,-R.) <1 — ]f)

*

=0, (SS+ Sy Sy — &SS - RS*S*>

R R,
R, R
r | SR+ SiR. — —RS — —R,S.
+o ( + R R, )
R, R

Then we have

A O W I I
dt((szS )<1*+I 2)

Aw&2 2 IW 6yl 6w
52[5 5215+51 35

—0,(SS + S*S* —288,) — 0,(SR+ SR, — S.R — R..S)

R.o, R, R
R.o,

Oy (SR+ SR, — R RS — RR*S*>

uw~+ Rio, R R,
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+%u (5+s*— %s-i&).
Note that
— 0,(SS + 8,8, — 258.) + %as (ss + 5.8, — %SS - i&&)
- _ﬁos(ss + 5,5, —258,)
—%USS*S<%§F+]§?S )

and

—0,(SR+ S.R, — S.R— R.S)

L L (SR+ S.R. — IE‘RS - RR*S*>

M+R*UT R,
R.o, R.. R
O (sS4, - =3,
+,u+R*0ru< T T RYTR )
R.o, R R
= s g
Lt R (R TR )

In conclusion, we have

v, W I I,
= 2es oy 9
i () (i)

AwE? 2 IW 6l 0w
— I. wIx_ gZw
wls (e B rs e

_ ﬁas(ss + 5.5, —258.)

R.o, R.S RS,

- " 5.8.8(= — T _9
M+R*JT“65$(RS+R*S )
R.o,

‘Wﬂs( +—2)

From the first equation in (1), it follows that

b=AL.Ss + Mo LW, +6; L. = A1 S + 5“’5[ Sy + i1

This implies that

Aw§
Ow

By the relationship between arithmetic and geometric means, if

(I(t),5(t), W(t), R(t)) # (I, S, Wi, R.) and S(t) > 0

— 1.8 —b=—-X1.5, — ;1. <O.

then
dV,
dt

If we assume that S(0) > 0 or W(0) > 0, then by the result in Section 2, S(t) > 0
for t > 0. Therefore, by Lyapunov stability theorem, we conclude that if S(0) > 0

<0.
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or W(0) > 0, then (I(t),S(t), W(t), R(t)) converges to E, as t goes to co and this
implies that the endemic equilibrium FE, is globally asymptotically stable on

{((I,S,R,W):S>00r W >0}n{(I,S,W,R) : I,S,W,R > 0}.

O
4. Numerical simulation. In this section, we carry out some numerical simu-
lations to verify the theoretical results. We use the fourth-order Runge-Kutta
method with time step size At = 0.01. We assume that the initial condition is
(1(0),5(0),W(0), R(0)) = (1,1,0,0).
As shown before, the basic reproduction number is

1 b As Awé
Ro=pEV) =5 (u+6s " (u+5s)5w) '

We assume that the influx b is 1. Since the parameters o, 0., and J,. are not involved
in the basic reproduction number R, we fix these parameters as oy, = 0, = §,, = 0.5.
If we take Ay = Ay =& =05and §; = ds = 6, = p = 1, then Ry = 0.375. In
this case, as we proved in Theorem 2.3, the rumor-free equilibrium is b/§; = 1 and
is globally asymptotically stable. As seen in Figure 1(A), the population density of
ignorants I(t) converges to 1 and the other densities S(t), W(t), and R(t) converge
to zero. On the other hand, if we set 0; =05 =9, = u=05and \s =\, =& =1,
then Rg = 6. As we proved in Theorem 3.2, the endemic equilibrium exists and is
asymptotically stable. See Figure 1(B).

12 1.2
1 L
0.8
c \ c
2 06 ]
© | kS
= | =
S 04 &
o /\ o
0.2 \ 1 0.2
N
0 - 1 w 0 I Wl
s R s R
-0.2 -0.2
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t t
(A) Ro = 0.375 (B) Ro = 6

FIGURE 1. Numerical simulations when b = 1, o, = 0.5, and o, = 0.5

Now, we investigate the influence of an online reservoir. We change £ from 0 to 2
and all other parameters are fixed as A\s = Ay =05 =0, =9; =0, =6, = u=0.5
and §; = 1. The final densities I(T"), S(T), W(T), and R(T) when the final time
T = 103 are given in Figure 2(A). We observe the phase transition when Ry = 1.
That is, & = 0.5. We change A\, from 0 to 2 and all the other parameters are
the same as the previous case. If we set £ = 0.5, then we observe the effect of
the trust rate A\, in Figure 2(B). In this case, the densities S(¢) and R(t) are the
same since £ = §,,. As £ and \,, increase, the densities of the spreaders and stiflers
also increase. Therefore, as online reservoirs become more active, rumors are more
expansively spread.

Even though the contact rates os and o, are not involved in Rg, they affect the
behavior of the solutions. See Figure 3. We choose o, and o, between 0.1 and 2.
All other parameters are fixed to 0.5. That is, As = Ay, =§; =0s = =& = 0y =
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FIGURE 2. Final densities I(T), S(T), W(T), and R(T) with T = 103
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0, = 0.5 and hence Ry = 2. Since Ry > 1, the final time 7" = 30 is large enough.
The bigger contact rates lead to a sharp reduction in the density of spreaders in a
short time. Therefore, the final densities of the spreaders and stiflers are low if the
contact rates are high. Furthermore, we confirm that the aggressive activity of the
stiflers has an immense influence on the spread of a rumor. In Figure 4, we change
(0s,0r) on [0,1] x [0,1] and display the final densities I(T), S(T"), W(T), and R(T)

with T' = 30.
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FiGure 3. Evolution of the solution with different parameters oy

and o,
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FIGURE 4. Final densities I(T), S(T), W(T'), and R(T) with T = 30

We next compare the SIR and SIWR models. Without online an reservoir, the
basic reproduction number of the SIR model is given by

SIR _ bAs
If we fix the parameters such as 0, = 0, = 6, =05 and A\; = d; = s = p =1,
then R§TE = 0.5. However, we introduce an online reservoir with d,, = 0.5 and
Aw = & = 1, then Ry = 1.5. Therefore, we conclude that an online reservoir
promotes the spread of a rumor. The comparison of SIR and SIWR is given in
Figure 5.
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FI1GURE 5. Comparison of the SIR and SIWR models
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5. Conclusion. In this paper, we consider a rumor spreading model with an online
reservoir. By using a next-generation matrix, we calculated the basic reproduction
number Ry. We proved that a unique rumor-free equilibrium FEy exists and if
Ro < 1, then Ej is linearly stable and if Ry > 1, then FEj is linearly unstable.
For the asymptotic behavior, Fy is globally asymptotically stable if Ry < 1. For
the endemic equilibrium, if Ry > 1, then there is a unique positive endemic state
FE, and if Rg < 1, then there is no positive endemic state. Moreover, for a rumor
spreading dynamics with an online reservoir, the endemic equilibrium FE, is globally
asymptotically stable if Rg > 1. The presence of o4 and o, does not affect the
basic reproduction number and the asymptotic behaviors of steady states. We also
investigated that the reproduction number R increases by the effect of the online
reservoir. Thus, the development of online media promotes rumor propagation.
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