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Abstract. In this work, we study Bloch wave homogenization of periodically
heterogeneous media with fourth order singular perturbations. We recover

different homogenization regimes depending on the relative strength of the

singular perturbation and length scale of the periodic heterogeneity. The ho-
mogenized tensor is obtained in terms of the first Bloch eigenvalue. The higher

Bloch modes do not contribute to the homogenization limit. The main diffi-

culty is the presence of two parameters which requires us to obtain uniform
bounds on the Bloch spectral data in various regimes of the parameter.

1. Introduction. The formation of shear bands in elasticity is described by a de-
generate operator of elliptic-hyperbolic type [1, 23, 4]. The shear bands that are
mathematically obtained in this model are infinitesimally thin. To overcome this
non-physical description, it is customary to penalize the elasticity operator by a
fourth-order singular perturbation [18]. Subsequently, it was suggested that the
penalization should be followed by a homogenization procedure, which results in
different regimes depending on the order of penalization as compared to the length-
scale of the periodic heterogeneities. This was first carried out in [6, 18]. Similar
problems in the framework of Γ-convergence have been studied in [32, 8, 39]. A
quantitative analysis of this problem appeared in [27, 26, 29]. The aim of the
present work is to revisit this problem by employing the homogenization framework
developed by Conca and Vanninathan [13]. Bloch wave method in homogenization
is a spectral method of homogenization. It also offers an alternative approximation
scheme in the form of Bloch approximation [11, 12] which provides sharp conver-
gence estimates in homogenization under minimal regularity requirements. In this
paper, we shall establish new characterizations of homogenized tensor for the singu-
larly perturbed problem in terms of the first Bloch eigenvalue and use Bloch wave
method to recover the homogenization result for singularly perturbed periodic ho-
mogenization problem.

1.1. Notation and definitions. We will study the simultaneous homogenization
and singular perturbation limits of the following operator

Aκ,ε := κ2∆2 −∇ ·A
(x
ε

)
∇, (1.1)
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where 0 < κ, ε � 1, and A(y) = (ajk)dj,k=1 is a matrix whose entries are real,

bounded, measurable functions of y ∈ Rd. Further, the matrix A satisfies the
following hypotheses:

A1. A is elliptic, i.e., there exists α > 0 such that for all ξ ∈ Rd and a.e. y ∈ Rd,
A(y)ξ · ξ ≥ α|ξ|2.

A2. A is Y -periodic, i.e., A(y + 2πp) = A(y) for all p ∈ Zd, a.e. y ∈ Rd. The set
Y := [0, 2π)d is called a basic periodicity cell and may also be interpreted as
a parametrization of the d-dimensional torus Td.

A3. The matrix A is symmetric.

We mention briefly the function spaces that make an appearance in this problem.
The solutions of the cell problem associated with homogenization of (1.1), as well
as Bloch eigenfunctions, are sought in the space H2

] (Y ), which is the space of all

periodic distributions u for which the norm ||u||H2 =
(∑

n∈Zd(1 + |n|2)2|û(n)|2
) 1

2

is finite. The space H2
] (Y ) may be identified with H2(Td). The spaces Hs

] (Y ) for

s ∈ R are similarly defined. For s > 0, Hs
] (Y ) forms a subspace of the space of

all periodic L2 functions in Rd, denoted by L2
] (Y ) or L2(Td). We shall denote the

mean value or average of a periodic function u on the basic periodicity cell Y by
MY (u) := 1

|Y |
´
Y
u(y) dy. Averaged integrals such as 1

|Y |
´
Y
u(y) dy are sometimes

denoted as
ffl
Y
u(y) dy.

1.2. The method of Bloch wave homogenization. The method of Bloch waves
rests on decomposition of a periodic operator in terms of Bloch waves which may
be thought of as a periodic analogue of plane waves. As plane waves decompose a
linear operator with constant coefficients by means of the Fourier transform, Bloch
waves diagonalize a linear operator with periodic coefficients. This decomposition
begins with a direct integral decomposition of a periodic operator A in Rd.

A→

⊕̂

Td

A(η) dη.

The fiber operator A(η) has compact resolvent for each fixed η ∈ Td. The eigen-
functions viewed as functions of η are called Bloch waves. Finally, the operator
A(η) is diagonalized by means of Bloch waves.

The homogenization limits for a highly oscillating scalar periodic operator are
obtained from its first Bloch mode. The rest of the Bloch modes do not con-
tribute to the homogenization limit. This is a consequence of the separation of
the first Bloch eigenvalue from the rest of the spectrum. Such an interpretation of
homogenization is also called spectral threshold effect [7]. Moreover, the homoge-
nized tensor is obtained from Hessian of the first Bloch eigenvalue. Therefore, the
second-order nature of the differential operator is reflected in the quadratic nature
of the first Bloch eigenvalue near the bottom of the spectrum. Indeed, homoge-
nization of higher-even-order periodic operators can also be obtained by the Bloch
wave method, where the first Bloch eigenvalue behaves like a polynomial of the
corresponding order near the bottom of the spectrum [37, 36].

The homogenization result in Theorem 8.1 exhibits three different regimes de-
pending on the ratio of κ and ε, where κ is to be interpreted as a function of ε
satisfying lim

ε→0
κ = 0. Define ρ := κ

ε . The three different regimes correspond to
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• lim
ε→0

ρ = 0,

• 0 < lim
ε→0

ρ <∞, and

• lim
ε→0

ρ =∞.

In the first regime, the subcritical case, that is, limε→0 ρ = 0, homogenization
dominates over the singular perturbation. Hence, it may be thought of as taking
the homogenization limit followed by the singular perturbation limit. In the critical
regime, that is, 0 < limε→0 ρ <∞, we can see the combined effects of singular per-
turbation and homogenization. The cell functions are solutions to a fourth order
operator. On the other hand, in the supercritical regime, that is, lim

ε→0
ρ =∞, singu-

lar perturbation dominates the homogenization limit and homogenized coefficients
are given by the average of the periodic coefficients.

The approach is to treat ρ as a fixed number and obtain Bloch wave decompo-
sition for the unscaled operator Aρ = ρ2∆2 − ∇ · A(y)∇. This decomposition is
employed to obtain the homogenization limit as ε, κ→ 0. While the qualitative ho-
mogenization result is not new, the presentation is original. Some novel features of
the proof are characterization of homogenized tensor and cell functions in terms of
derivatives of the first Bloch eigenvalue and eigenfunctions. This requires us to prove
analyticity of the first Bloch eigenvalue and eigenfunction in a neighbourhood of
zero in the dual parameter. Interestingly, the region of analyticity does not depend
on the singular perturbation, which plays an important role in the simultaneous
passage to 0 of κ and ε. In order to study the stability of the homogenized tensor
in the different regimes, we obtain uniform in ρ estimates for Bloch eigenvalues,
eigenfunctions and their derivatives of all orders in the dual parameter. We also
prove that only the first Bloch mode contributes to homogenization and the higher
modes are negligible. The analysis of three separate regimes provides considerable
challenges in the Bloch wave method, particularly in obtaining uniform estimates
in these regimes.

While the motivation for the problem (1.1) comes from the theory of elasticity,
it is for the sake of simplicity that we only study the scalar operator. However,
it must be noted that Bloch wave homogenization of systems carries some unique
difficulties, such as the presence of multiplicity at the bottom of the spectrum.
Indeed, these challenges have been surmounted by the use of directional analyticity
of Bloch eigenvalues in [35, 7, 3]. Further, the assumption of symmetry, while
customary in elasticity, is made for a simplified presentation. A Bloch wave analysis
of homogenization of non-selfadjoint operators may be found in [19].

In a forthcoming work, we will obtain quantitative estimates for the combined
effects of singular perturbation and homogenization through the notion of Bloch
approximation, which was introduced in [11]. Higher order estimates in homoge-
nization have been obtained by these methods, particularly for the dispersive wave
equation [14, 15, 2, 22].

1.3. Plan of the paper. The plan of the paper is as follows: In Section 2, we
obtain Bloch waves for the singularly perturbed operator Aρ. In Section 3, we
prove that the first Bloch eigenpair are analytic functions of the dual parameter in
a neighbourhood of 0. In Section 4, we prove that the neighbourhood of analyticity is
independent of ρ. In Section 5, we recall the cell problem for the operatorAρ and the
estimates associated with it. In Section 6, we characterize the homogenized tensor
in the three regimes by way of Bloch method. In Section 7, we shall define the first
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Bloch transform and analyze its asymptotic properties. In Section 8, we obtain the
qualitative homogenization theorem by means of the first Bloch transform, which
is the periodic analogue of Fourier transform. Finally, in Section 9, we quantify the
contribution of the higher Bloch transforms towards the homogenization limit.

2. Bloch waves for the singularly perturbed operator. In this section, we
will prove the existence of Bloch waves for the singular operator given by

Aρ := ρ2∆2 −∇ ·A(y)∇. (2.1)

Recall that ρ was earlier set as κ
ε , however in this section, ρ will be assumed to

be a fixed positive number. Bloch waves for (2.1) refers to eigenfunctions of (2.1)
satisfying the so-called (η − Y )-periodicity condition, that is, we look for functions
ψ satisfying the following eigenvalue problem:{

ρ2∆2ψ −∇ ·A(y)∇ψ = λψ

ψ(y + 2πp) = e2πip·ηψ(y), p ∈ Zd, η ∈ Rd.

The above problem is invariant under Zd-shifts of η, hence it suffices to restrict η to

Y
′

:=
[
− 1

2 ,
1
2

)d
. Now, if we set ψ(y) = eiy·ηφ(y) where φ is a Y -periodic function,

then the above eigenvalue problem is transformed into:{
Aρ(η)φ := ρ2(∇+ iη)4φ− (∇+ iη) ·A(y)(∇+ iη)φ = λφ

φ(y + 2πp) = φ(y), p ∈ Zd, η ∈ Y ′ .
(2.2)

The operator Aρ(η) is often called the shifted operator associated with Aρ where
the shift iη appears as a magnetic potential. In order to prove the existence of
eigenvalues for (2.2), we shall begin by proving that a zeroth-order perturbation
of Aρ(η) is elliptic on H2

] (Y ). This amounts to a G̊arding type inequality for the

operator Aρ(η). Combined with Rellich compactness theorem, this will allow us to
prove compactness of the inverse in L2

] (Y ). Then, a standard application of the
spectral theorem for compact self-adjoint operators will guarantee the existence of
eigenvalues for each fixed ρ and η.

The bilinear form aρ[η](·, ·) defined on H2
] (Y )×H2

] (Y ) by

aρ[η](u, v) :=

ˆ
Y

A(∇+ iη)u · (∇+ iη)v dy + ρ2
ˆ
Y

(∇+ iη)2u(∇+ iη)2v dy, (2.3)

is associated to the operator Aρ(η). We shall prove the following G̊arding-type
inequality for aρ[η].

Lemma 2.1. There exists a positive real number C∗ not depending on η but de-
pending on ρ such that for all u ∈ H2

] (Y ) and all η ∈ Y ′ , we have

aρ[η](u, u) + C∗||u||2L2
](Y ) ≥

ρ2

6
||∆u||2L2

](Y ) +
α

2
||u||H1

] (Q). (2.4)

Proof. We have

aρ[η](u, u) =

ˆ
Y

A(∇+ iη)u · (∇+ iη)u dy︸ ︷︷ ︸
I

+ ρ2
ˆ
Y

(∇+ iη)2u(∇+ iη)2u dy︸ ︷︷ ︸
II

. (2.5)
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We shall estimate the two summands separately. For the first summand, observe
that

I =

ˆ
Y

A(∇+ iη)u · (∇+ iη)u dy

=

ˆ
Y

A∇u · ∇u dy + 2 Re

{ˆ
Y

Aiηu · ∇u dy
}

+

ˆ
Y

Aηu · ηu dy, (2.6)

where Re denotes the real part. Now we shall estimate each term on the RHS above.
The first term of I is estimated as follows:ˆ

Y

A∇u · ∇u dy =

ˆ
Y

A∇u · ∇u dy

≥ α
ˆ
Y

|∇u|2 dy. (2.7)

For the second term of I, observe that∣∣∣∣2 Re

{ˆ
Y

Aηu · ∇u dy
}∣∣∣∣ ≤ 2

ˆ
Y

|Aηu · ∇u| dy

≤ C1

ˆ
Y

|ηu · ∇u| dy

≤ C1||ηu||L2
](Y )||∇u||L2

](Y )

≤ C1C2||u||2L2
](Y ) +

C1

C2
||∇u||L2

](Y ). (2.8)

Finally, the third term of I is dominated by L2
] (Y ) norm of u as follows:∣∣∣∣ˆ

Y

Aηu · ηu dy
∣∣∣∣ ≤ C3

ˆ
Y

|ηu · ηu| dy ≤ C4||u||L2
](Y ). (2.9)

Now, we may choose C2 so that C1

C2
= α

2 , then

I ≥ α

2
||u||L2

](Y ) +
α

2
||∇u||L2

](Y ) −
(α

2
+ C1C2 + C4

)
||u||2L2

](Y ). (2.10)

For the second summand, observe that

II = ρ2
ˆ
Y

|(∇+ iη)2u|2 dy

= ρ2
ˆ
Y

|∆u|2 dy + ρ2
ˆ
Y

|η|4|u|2 dy + 4ρ2
ˆ
Y

|η · ∇u|2 dy

+ 2ρ2iIm

{ˆ
Y

|η|2u∆u dy

}
+ 4iρ2Re

{ˆ
Y

(η · ∇u)∆u dy

}
+ 4iρ2Re

{ˆ
Y

|η|2u(η · ∇u) dy

} . (2.11)

We estimate the last three terms as follows.

ρ2
∣∣∣∣2iIm{ˆ

Y

|η|2u∆u dy

}∣∣∣∣ ≤ 2ρ2
ˆ
Y

|η|2|u||∆u| dy

≤ 2ρ2|η|2||u||L2 ||∆u||L2

≤ 48ρ2|η|4||u||2L2 +
ρ2

48
||∆u||2L2 . (2.12)
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ρ2
∣∣∣∣4iRe

{ˆ
Y

(η · ∇)u∆u dy

}∣∣∣∣ ≤ 4ρ2
ˆ
Y

|(η · ∇)u||∆u| dy

≤ 4ρ2||(η · ∇)u||L2 ||∆u||L2

≤ 16ρ2

3
||(η · ∇)u||2L2 +

3ρ2

4
||∆u||2L2 . (2.13)

ρ2
∣∣∣∣4iRe

{ˆ
Y

|η|2u(η · ∇)u dy

}∣∣∣∣ ≤ 4ρ2
ˆ
Y

|(η · ∇)u||η|2|u| dy

≤ 4ρ2|η|2||u||L2 ||(η · ∇)u||L2

≤ 192ρ2|η|4||u||2L2 +
ρ2

48
||(η · ∇)u||2L2 . (2.14)

The previous threee estimate use Cauchy-Schwarz inequality for the second step and
Young’s inequality for the third step. Substituting the inequalities (2.12), (2.13)
and (2.14) into (2.11), we get

II ≥ 11ρ2

48
||∆u||2L2(Y ) − 240ρ2|η|4||u||2L2(Y ) −

65ρ2

48
||(η · ∇)u||2L2(Y ). (2.15)

Since |η| ≤ 1
2 , we get

II ≥ 11ρ2

48
||∆u||2L2(Y ) − 15ρ2||u||2L2(Y ) −

65ρ2

192
||∇u||2L2(Y ).

Now, notice that

||∇u||2L2 =

ˆ
Y

|∇u|2 dy = −
ˆ
Y

u∆u dy ≤ 65

48
||u||2L2 +

12

65
||∆u||2L2 . (2.16)

Substituting (2.16) in (2.15), we get

II ≥ ρ2

6
||∆u||2L2(Y ) − 16ρ2||u||2L2(Y ). (2.17)

Combining (2.10) and (2.17), we obtain (2.4) with

C∗ =
(α

2
+ C1C2 + C4 + 16ρ2

)
. (2.18)

Remark 2.2. In the G̊arding type inequality for the operator Aρ(η), the pertur-
bation C∗I in zeroth term depends on the parameter ρ. It is possible to avoid
the dependence of C∗ on ρ by forgoing the shift iη in the biharmonic term. This
simplification was employed in [34].

Now that we have the coercivity estimate (2.4), we can prove the existence of
Bloch eigenvalues and eigenfunctions for the operator Aρ.

Theorem 2.3. For each η ∈ Y ′ and ρ > 0, the singularly perturbed Bloch eigen-
value problem (2.2) admits a countable sequence of eigenvalues and corresponding
eigenfunctions in the space H2

] (Q).

Proof. Lemma 2.1 shows that for every η ∈ Y ′ the operator Aρ(η) +C∗I is elliptic
on H2

] (Y ). Hence, for f ∈ L2
] (Y ), this shows that Aρ(η)u + C∗u = f is solvable

and the solution is in H2
] (Y ). As a result, the solution operator Sρ(η) is continuous

from L2
] (Y ) to H2

] (Y ). Since the space H2
] (Y ) is compactly embedded in L2

] (Y ),

Sρ(η) is a self-adjoint compact operator on L2
] (Y ). Therefore, by an application
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of the spectral theorem for self-adjoint compact operators, for every η ∈ Y
′

we
obtain an increasing sequence of eigenvalues of Aρ(η) +C∗I and the corresponding
eigenfunctions form an orthonormal basis of L2

] (Y ). However, note that both the

operators Aρ(η) and Aρ(η) +C∗I have the same eigenfunctions but each eigenvalue
of the two operators differ by C∗. We shall denote the eigenvalues and eigenfunctions
of the operator Aρ(η) by η → (λρm(η), φρm(·, η)).

Remark 2.4. We can prove the existence of Bloch eigenvalues and eigenfunctions
for the case ρ = 0 by a similar method. This corresponds to the standard Bloch
eigenvalue problem considered in [13].

2.1. Bloch decomposition of L2(Rd). Now that we have proved the existence of
Bloch eigenvalues and eigenfunctions, we can state the Bloch Decomposition Theo-
rem which offers a partial diagonalization of the operator Aρ in terms of its Bloch
eigenvalues. This is facilitated by the Bloch transform which is a mapping from
L2(Rd) to `2(N;L2(Y

′
)). The proof is similar to the one in [6] and is therefore

omitted. Note that the proof relies on a measurable selection of the Bloch eigen-
functions with respect to η. A measurable selection of Bloch eigenfunctions for the
Schrödinger operator was first demonstrated in [38]. In contrast, the Bloch eigen-
values are Lipschitz continuous in the dual parameter η. We will prove this fact
in Section 4.

Theorem 2.5. Let ρ > 0. Let g ∈ L2(Rd). Define the mth Bloch coefficient of g
as

Bρmg(η) :=

ˆ
Rd
g(y)e−iy·ηφρm(y; η) dy, m ∈ N, η ∈ Y

′
. (2.19)

1. The following inverse formula holds

g(y) =

ˆ
Y ′

∞∑
m=1

Bρmg(η)φρm(y; η)eiy·η dη. (2.20)

2. Parseval’s identity

||g||2L2(Rd) =

∞∑
m=1

ˆ
Y ′
|Bρmg(η)|2 dη. (2.21)

3. Plancherel formula For f, g ∈ L2(Rd), we have

ˆ
Rd
f(y)g(y) dy =

∞∑
m=1

ˆ
Y ′
Bρmf(η)Bρmg(η) dη. (2.22)

4. Bloch Decomposition in H−1(Rd) For an element F = u0(y)+
∑N
j=1

∂uj(y)
∂yj

of H−1(Rd), the following limit exists in L2(Y
′
):

BρmF (η) =

ˆ
Rd
e−iy·η

u0(y)φρm(y; η) + i

N∑
j=1

ηjuj(y)φρm(y; η)

 dy

−
ˆ
Rd
e−iy·η

N∑
j=1

uj(y)
∂φρm
∂yj

(y; η) dy. (2.23)

The definition above is independent of the particular representative of F .
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5. Finally, for g ∈ D(Aρ),
Bρm(Aρg)(η) = λρm(η)Bρmg(η). (2.24)

3. Regularity of the ground state. The Bloch wave method of homogenization
requires differentiability of the Bloch eigenvalues and eigenfunctions in a neighbour-
hood of η = 0. In this section, we will prove the following theorem. As before, ρ > 0
will be treated as a fixed number.

Theorem 3.1. For every ρ > 0, there exists δρ > 0 and a ball Uρ := Bδρ(0) :=

{η ∈ Y ′ : |η| < δρ} such that

1. The first Bloch eigenvalue η → λρ(η) of Aρ is analytic for η ∈ Uρ.
2. There is a choice of corresponding eigenfunctions φρ1(·, η) such that η ∈ Uρ →

φρ1(·, η) ∈ H2
] (Y ) is analytic.

For the proof, we will make use of Kato-Rellich theorem which establishes the ex-
istence of a sequence of eigenvalues and eigenfunctions associated with a selfadjoint
holomorphic family of type (B). The definition of selfadjoint holomorphic family of
type (B) and other related notions may be found in Kato [21]. Nevertheless, they
are stated below for completeness. We begin with the definition of a holomorphic
family of forms of type (a).

Definition 3.2.

1. The numerical range of a form a is defined as

Θ(a) = {a(u, u) : u ∈ D(a), ||u|| = 1}
where D(a) denotes the domain of the form a. Here, D(a) is a subspace of a
Hilbert space H.

2. The form a is called sectorial if there are numbers c ∈ R and θ ∈ [0, π/2)
such that

Θ(a) ⊂ Sc,θ := {λ ∈ C : | arg(λ− c)| ≤ θ)}.
3. A sectorial form a is said to be closed if given a sequence un ∈ D(a) with

un → u in H and a(un − um) → 0 as n,m → ∞, we have u ∈ D(a) and
a(un − u)→ 0 as n→∞.

Definition 3.3. [Kato] A family of forms a(z), z ∈ D0 ⊆ CM is called a holomor-
phic family of type (a) if

1. each a(z) is sectorial and closed with domain D ⊆ H independent of z and
dense in H,

2. a(z)[u, u] is holomorphic for z ∈ D0 ⊆ CM for each u ∈ D.

A family of operators is called a holomorphic family of type (B) if it generates
a holomorphic family of forms of type (a).

In [21, 31], Kato-Rellich theorem is stated only for a single parameter family.
In [5], one can find the proof of Kato-Rellich theorem for multiple parameters with
the added assumption of simplicity for the eigenvalue at η = 0.

Theorem 3.4. (Kato-Rellich) Let D(η̃) be a self-adjoint holomorphic family of type
(B) defined for η̃ in an open set in CM . Further let λ0 = 0 be an isolated eigenvalue
of D(0) that is algebraically simple. Then there exists a neighborhood R0 ⊆ CM
containing 0 such that for η̃ ∈ R0, the following holds:
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1. There is exactly one point λ(η̃) of σ(D(η̃)) near λ0 = 0. Also, λ(η̃) is isolated
and algebraically simple. Moreover, λ(η̃) is an analytic function of η̃.

2. There is an associated eigenfunction φ(η̃) depending analytically on η̃ with
values in H.

The proof of Theorem 3.1 proceeds by complexifying the shifted operator Aρ(η)
before verifying the hypothesis of Kato-Rellich Theorem.

Proof. (Proof of Theorem 3.1)
(i) Complexification of Aρ(η): The form aρ[η](·, ·) is associated with the operator
Aρ(η). We define its complexification as

t(η̃) =

ˆ
Y

A(∇+ iσ − τ)u · (∇− iσ + τ)u dy + ρ2
ˆ
Y

|(∇+ iσ + τ)2u|2 dy

for η̃ ∈ R where

R := {η̃ ∈ CM : η̃ = σ + iτ, σ, τ ∈ RM , |σ| < 1/2, |τ | < 1/2}.

(ii) the form t(η̃) is sectorial: We have

t(η̃) =

ˆ
Y

A(∇+ iσ − τ)u · (∇− iσ + τ)u dy + ρ2
ˆ
Y

|(∇+ iσ + τ)2u|2 dy

=

ˆ
Y

A(∇+ iσ)u · (∇− iσ)u dy −
ˆ
Y

A(τu) · ∇u dy +

ˆ
Y

A∇u · (τu) dy

−
ˆ
Y

Aτu · τu dy + i

ˆ
Y

Aσu · τu dy + i

ˆ
Y

Aτu · σu dy

+ ρ2
ˆ
Y

(
∆− |σ|2 + |τ |2

)
u
(
∆− |σ|2 + |τ |2

)
u dy

+ 2ρ2
ˆ
Y

(
∆− |σ|2 + |τ |2

)
u (τ · ∇ − iσ · ∇ − iσ · τ)u dy

+ 2ρ2
ˆ
Y

(iσ · ∇ − τ · ∇ − iσ · τ)u
(
∆− |σ|2 + |τ |2

)
u dy

+ 4ρ2
ˆ
Y

(iσ · ∇ − τ · ∇ − iσ · τ)u (τ · ∇ − iσ · ∇ − iσ · τ)u dy.

From above, it is easy to write separately the real and imaginary parts of the
form t(η̃).

<t(η̃)[u] =

ˆ
Y

A(∇+ iσ)u · (∇− iσ)u dy −
ˆ
Y

Aτu · τu dy

+ ρ2
ˆ
Y

(
∆− |σ|2 + |τ |2

)
u
(
∆− |σ|2 + |τ |2

)
u dy

− 4ρ2
ˆ
Y

|(τ · ∇)u|2 dy + 4ρ2
ˆ
Y

|(σ · ∇)u|2 dy − 4ρ2
ˆ
Y

|(τ · σ)u|2 dy

+ 8ρ2Re

{ˆ
Y

i(τ · ∇)u(σ · τ)u dy

}
+ 4ρ2Re

{ˆ
Y

i(σ · ∇)u∆u dy

}
+ 4ρ2Re

{ˆ
Y

i|σ|2u(σ · ∇)u dy

}
.
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= t(η̃)[u] =

ˆ
Y

Aσu · τu dy +

ˆ
Y

Aτu · σu dy + 2=
{ˆ

Y

A∇u · τu dy
}

+ 8ρ2Im

{ˆ
Y

i(τ · σ)u(σ · ∇)u dy

}
+ 8ρ2Im

{ˆ
Y

i(σ · ∇)u(σ · τ)u dy

}
+ 4ρ2Im

{ˆ
Y

∆u(τ · ∇)u dy

}
− 4ρ2Im

{ˆ
Y

i∆u(σ · τ)u dy

}
+ 4ρ2Im

{ˆ
Y

(τ · ∇)u|σ|2u dy
}

+ 4ρ2Im

{ˆ
Y

i|σ|2u(σ · τ)u dy

}
+ 4ρ2Im

{ˆ
Y

|τ |2u(τ · ∇)u dy

}
− 4ρ2Im

{ˆ
Y

i|τ |2u(σ · τ)u dy

}
.

The following coercivity estimate can be easily found for the real part:

<t(η̃)[u] + C5||u||2L2
](Y ) ≥

α

2

(
||u||2L2

](Y ) + ||∇u||2L2
](Y )

)
+
ρ2

6
||∆u||2L2

](Y ). (3.1)

Let us define the new form t̃(η̃) by t̃(η̃)[u, v] = t(η̃)[u, v] + (C5 + C6)(u, v)L2
](Y ).

Then it holds that

<t̃(η̃)[u] ≥ α

2

(
||u||2L2

](Y ) + ||∇u||2L2
](Y )

)
+
ρ2

6
||∆u||2L2

](Y ) + C6||u||2L2
](Y ).

Also, the imaginary part of t̃(η̃) can be estimated as follows:

=t̃(η̃)[u] ≤ C7||u||2L2
](Y ) + C8||∇u||2L2

](Y ) + C9||∆u||2L2
](Y )

C10 = max{ 2C8
α ,

6C9
ρ2
}

=
C6 =

C10
C7

C10

(
C6||u||2L2

](Y ) +
α

2
||∇u||2L2

](Y ) +
ρ2

6
||∆u||2L2

](Y )

)
≤ C10

(
<t̃(η̃)[u]− α

2
||u||2L2

](Y )

)
.

This shows that t̃(η̃) is sectorial. However, sectoriality is invariant under trans-
lations by scalar multiple of identity operator in L2

] (Y ), therefore the form t(η̃) is
also sectorial.
(iii) The form t(η̃) is closed: Suppose that un

t→ u. This means that un → u in
L2
] (Q) and t(η̃)[un − um] → 0. As a consequence, <t(η̃)[un − um] → 0. By (3.1),

||un − um||H2
] (Y ) → 0, i.e., (un) is Cauchy in H2

] (Y ). Therefore, there exists v ∈
H2
] (Y ) such that un → v in H2

] (Y ). Due to uniqueness of limit in L2
] (Y ), v = u.

Therefore, the form is closed.
(iv) The form t(η̃) is holomorphic: The holomorphy of t follows as a consequence
of t being a quartic polynomial in η.
(v) 0 is an isolated eigenvalue: Zero is an eigenvalue because constants are
eigenfunctions of Aρ(0) = −∇ · A∇ + ρ2∆2. As a result, C∗ is an eigenvalue of
Aρ(0) +C∗I. We proved using Lemma 2.1 that Aρ(0) +C∗I has compact resolvent.
Therefore, C−1∗ is an eigenvalue of (Aρ(0) + C∗I)−1 and C−1∗ is isolated. Hence,
zero is an isolated point of the spectrum of Aρ(0).
(vi) 0 is a geometrically simple eigenvalue: Denote by kerAρ(0) the kernel
of operator Aρ(0). Let v ∈ kerAρ(0), then

´
Y
A∇v · ∇v dy + ρ2

´
Y
|∆v|2 = 0.

Due to the coercivity of the matrix A, we obtain ||∇v||L2
](Y ) = 0. Hence, v is a

constant. This shows that the eigenspace corresponding to eigenvalue 0 is spanned
by constants, therefore, it is one-dimensional.
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(vii) 0 is an algebraically simple eigenvalue: Suppose that v ∈ H2
] (Y ) such

that Aρ(0)2v = 0, i.e., Aρ(0)v ∈ kerAρ(0). This implies that Aρ(0)v = C for some
generic constant C. However, by the compatibility condition for the solvability of
this equation, we obtain C = 0. Therefore, v ∈ kerAρ(0). This shows that the
eigenvalue 0 is algebraically simple.

4. Neighbourhood of analyticity. In Section 3, we have proved that the first
Bloch eigenvalue and eigenfunction is analytic in a neighbourhood of η = 0. How-
ever, a priori, this neighbourhood depends on the parameter ρ. In this section, we
will prove that the neighbourhood is, in fact, independent of ρ. This requirement
is essential for problems where simultaneous limits with respect to two parameters
are studied, such as [28, 16]; as well as for quantitative estimates, such as [10].

We begin by proving that Bloch eigenvalues are Lipschitz continuous in the dual
parameter.

Lemma 4.1. For all m ∈ N and ρ > 0, λρm is a Lipschitz continuous function of

η ∈ Y ′ .

Proof. The following form is associated with Aρ(η):

aρ[η](u, u) =

ˆ
Y

A(∇+ iη)u · (∇+ iη)u dy + ρ2
ˆ
Y

(∇+ iη)2u(∇+ iη)2u dy. (4.1)

Hence, for η, η′ ∈ Y ′ , we have

aρ[η]− aρ[η′] = 2Re

{ˆ
Y

Ai(η − η′)u · ∇u dy
}

+

ˆ
Y

Aηu · ηu dy +

ˆ
Y

Aη′u · η′u dy

+ ρ2
ˆ
Y

(|η|2 − |η′|2)|u|2 dy + 4ρ2
ˆ
Y

|η · ∇u|2 − |η′ · ∇u|2 dy

+ 2ρ2iIm

{ˆ
Y

(|η|2 − |η′|2)u∆u dy

}
+ 4ρ2iRe

{ˆ
Y

(η − η′) · ∇u∆u dy

}
+ 4ρ2iRe

{ˆ
Y

|η|2u(η · ∇)u− |η′|2u(η′ · ∇)u dy

}
≤ C|η − η′|||u||2H1

] (Y ) + C ′|η − η′|ρ2
{
||∆u||2L2

](Y ) + ||u||2L2
](Y )

}
,

where C and C ′ are generic constants independent of ρ. By the Courant-Fischer
minmax characterization of eigenvalues, we obtain

λρm(η) ≤ λρm(η′) + C|η − η′|µm + C ′ρ2|η − η′|νm, (4.2)

where µm is the mth eigenvalue of the following spectral problem:{
−∆um + um = µmum in Y

um is Y − periodic,

and νm is the mth eigenvalue of the following spectral problem:{
∆2vm + vm = νmvm in Y

vm is Y − periodic.
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By interchanging the role of η and η′, we obtain

|λρm(η)− λρm(η′)| ≤ C(µm + ρ2νm)|η − η′|. (4.3)

Here, C is a generic constant independent of ρ.

Now, we will prove a spectral gap result, viz. the second Bloch eigenvalue is
bounded below.

Lemma 4.2. For all m ≥ 2 and for all η ∈ Y ′ , we have

λρm(η) ≥ αλN2 , (4.4)

where λN2 is the second Neumann eigenvalue of the operator −∆ in Y .

Proof. Notice that λρm(η) ≥ λρ2(η) for all m ≥ 2 and for all η ∈ Y ′ . Next, observe
that

λρ2(η) = inf
W⊂H2

]
(Y )

dim(W )=2

max
φ∈W
φ6=0

´
Y
A∇(eiη·yφ) · ∇(e−iη·yφ) dy + ρ2

´
Y
|∆(eiη·yφ)|2 dy´

Y
|φ|2 dy

≥ inf
W⊂H2(Y )

dim(W )=2

max
ψ∈W
ψ 6=0

´
Y
A∇ψ · ∇ψ dy + ρ2

´
Y
|∆ψ|2 dy´

Y
|ψ|2 dy

≥ inf
W⊂H2(Y )

dim(W )=2

max
ψ∈W
ψ 6=0

´
Y
A∇ψ · ∇ψ dy´
Y
|ψ|2 dy

≥ inf
W⊂H1(Y )

dim(W )=2

max
ψ∈W
ψ 6=0

´
Y
A∇ψ · ∇ψ dy´
Y
|ψ|2 dy

≥ α inf
W⊂H1(Y )

dim(W )=2

max
ψ∈W
ψ 6=0

´
Y
|∇ψ|2 dy´
Y
|ψ|2 dy

= αλN2 .

The bound obtained in Lemma 4.2 will be useful for the small ρ regime, however,
for the large ρ regime, that is, for ρ→∞, we need a different lower bound.

Lemma 4.3. For all m ≥ 2 and for all η ∈ Y ′ , we have

λρm(η) ≥ Cρ2κ2 − C
′
, (4.5)

where κ2 is the 2nd eigenvalue of periodic bilaplacian on Y , where C and C
′

are
generic constants independent of ρ and η.

Proof. Recall the following G̊arding type estimate (2.4) for the form aρ[η] associated
with the operator Aρ(η):

aρ[η](u, u) + C∗||u||2L2
](Y ) ≥

ρ2

6
||∆u||2L2

](Y ) +
α

2
||u||H1

] (Q).

The inequality in Lemma 4.3 follows readily from above by applying the minmax
characterization.
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Remark 4.4. In Lemma 4.2 and Lemma 4.3, we have avoided estimating the
second Bloch eigenvalue by using the spectral problem associated with Neumann
bilaplacian as it is known to be ill-posed [30]. Moreover, polyharmonic Neumann
eigenvalue problems on polygonal domains (such as Y ) are less well understood [20,
17]. However, suitable natural boundary conditions associated with the operator
∆2 − τ∆ are obtained in [9].

We are finally in a position to prove that the neighbourhood of analyticity of the
first Bloch eigenvalue does not depend on the parameter ρ.

Theorem 4.5. There exists a neighbourhood U = Bδ(0) of η = 0 , not depending
on ρ, such that λρ1(η) is analytic on Bδ(0).

Proof. It was proved in Theorem 3.1 that the first Bloch eigenvalue is analytic in a
neighbourhood of η = 0. However, a priori it is not clear whether this neighbour-
hood is independent of ρ. To prove this, it suffices to prove that the first Bloch
eigenvalue is simple in a neighbourhood of η = 0 independently of ρ. Observe that

|λρ1(η)− λρ2(η)| ≥ λρ2(η)− |λρ1(η)− λρ1(0)| − |λρ2(η)− λρ2(0)|
(4.3)

≥ λρ2(η)− 2(C + ρ2)|η|, (4.6)

where C is a generic constant independent of ρ and η.

• For sufficiently large ρ,

|λρ1(η)− λρ2(η)| ≥ λρ2(η)− 2(C + ρ2)|η|
Lemma 4.3
≥ (C

′
ρ2 − C

′′
)− 2(C + ρ2)|η|

large ρ

≥ C
′′′
ρ2 − 2ρ2|η| > 0

for |η| < C
′′′

2 . Here, C,C
′
, C
′′

and C
′′′

are all generic constants independent
of ρ and η.

• For remaining values of ρ,

|λρ1(η)− λρ2(η)| ≥ λρ2(η)− 2(C + ρ2)|η|
Lemma 4.2
≥ αλN2 − 2(C + ρ2)|η|

≥ αλN2 − 2C|η| > 0

for |η| < αλN2
2C .

Remark 4.6. In the papers [33, 34], an additional artificial parameter is intro-
duced in the Bloch eigenvalue problem to facilitate the homogenization method.
Unlike (1.1), these papers employ successive limits of the two parameters instead
of simultaneous limits. Therefore, the non-dependence of the neighbourhood of
analyticity on the second parameter is not required in [33, 34].

5. Cell problem and estimates. In this section, we will consider the classical cell
problem associated with (1.1) and the estimates for the corrector field. This section
will allow us to characterize the homogenized tensor for (1.1) and the corrector field
in terms of Bloch eigenvalues and eigenfunctions.
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For 1 ≤ j ≤ d, consider the following cell problem associated with the opera-
tor (1.1): 

ρ2∆2χρj − divA(y)(ej +∇χρj ) = 0 in Rd

χρj is Y − periodic

MY (χρj ) =
ffl
Y
χρj (y) dy = 0.

(5.1)

By a simple application of Lax-Milgram lemma on H2
] (Y ), we obtain solution to

above for every ρ > 0 (For ρ = 0, Lax-Milgram lemma is applied for H1
] (Y )).

Further, since the equation is also satisfied in the sense of distributions, we conclude
that χρj ∈ H3

] (Y ) for ρ > 0. By using χρj as a test function, we obtain the following
bound:

ρ||∆χρj ||L2
](Y ) + ||χρj ||H1

] (Y ) ≤ C. (5.2)

If we use ∆χρj as a test function, we obtain

ρ2||∇3χρj ||L2
](Y ) ≤ C. (5.3)

We also collect below a few estimates which will be required later. Similar esti-
mates have been proved in [26] to which we refer for more details.

Lemma 5.1. Let ρ1, ρ2 > 0. Let χρ1 , χρ2 ∈ H2
] (Y ) be solutions to (5.1) for ρ = ρ1

and ρ = ρ2 respectively, then the following estimate holds.

||∇χρ1 −∇χρ2 ||L2(Y ) ≤ C|1− (ρ1/ρ2)2|. (5.4)

Proof. Define z = χρ1j − χ
ρ2
j , then z satisfies the following equation

ρ21∆2z − divA(y)∇z = (ρ22 − ρ21)∆2χρ2 . (5.5)

Now, the quoted estimate readily follows by taking z as the test function, applying
uniform ellipticity of A, (5.3) and an application of Poincaré inequality.

Lemma 5.2. Let ρ > 0. Let χρ ∈ H2
] (Y ) be the solution to (5.1) and let χ0 ∈

H1
] (Y ) solve 

−divA(y)(ej +∇χ0
j ) = 0 in Rd

χ0
j is Y − periodic

MY (χ0
j ) =

ffl
Y
χ0
j (y) dy = 0.

(5.6)

Then, there is q ∈ (1,∞) such that for every κ > 0 there exists a matrix B with
entries in C∞] (Y ) such that ||A−B||Lq] (Y ) ≤ κ and the following estimates hold.

||∇χ0
j −∇χBj ||L2(Y ) ≤ Cκ (5.7)

||∇χρ −∇χB ||L2(Y ) ≤ C
{
ρ||χB ||H2(Y ) + κ

}
, (5.8)

where χB ∈ H1
] (Y ) solve

−divB(y)(ej +∇χBj ) = 0 in Rd

χBj is Y − periodic

MY (χBj ) =
ffl
Y
χBj (y) dy = 0.

(5.9)

Proof. Observe that given any q ∈ (1,∞) and κ > 0, we can find a smooth periodic
matrix B with the same ellipticity constant and upper bound as A such that

||A−B||Lq] (Y ) ≤ κ.
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For example, this can be achieved by a standard smoothing by convolution. Now,
by regularity theory, χBj ∈ H2

] (Y ). Define z = χρj−χBj , then z satisfies the following
equation

ρ2∆2z − divB(y)∇z = −ρ2∆2χBj + div(A−B)∇χρj . (5.10)

We test this equation against z to obtain:

ρ2
ˆ
Y

|∆z|2 dy +

ˆ
Y

A(y)∇z · ∇z dy

≤ ρ2
ˆ
Y

|∆χBj ||∆z| dy +

ˆ
Y

|A−B||∇χρj ||∇z| dy.

This leads to

ρ2||∆z||2L2 + α||∇z||2L2

≤ ρ2||∆χBj ||L2 ||∆z||L2 + ||∇z||L2

(ˆ
Y

|A−B|2|∇χρj |
2 dy

)1/2

.

By Young’s inequality,

||∇z||L2 ≤ C

{
ρ||∆χBj ||L2 +

(ˆ
Y

|A−B|2|∇χρj |
2 dy

)1/2
}
.

On the last term, we apply a form of Meyers estimate for the Lp integrability of
∇χρj proved in [26, Page 7, Theorem 2.3]. This fixes the choice of q. This finishes

the proof of the estimate (5.8). The proof of (5.7) is similar and simpler and hence
omitted.

For every fixed 0 ≤ ρ < ∞, the homogenized tensor for the operator Aρ,ε =
ρ2∆2 − divA

(
x
ε

)
∇ is given by

Aρ,hom :=MY (A+A∇χρ) (5.11)

Definition 5.3 (Homogenized Tensor for Aκ,ε).

Ahom :=


MY

(
A+A∇χθ

)
for 0 < θ <∞ where ρ = κ

ε → θ,

MY

(
A+A∇χ0

)
when ρ = κ

ε → 0,

MY (A) when ρ = κ
ε →∞.

(5.12)

6. Bloch characterization of homogenized tensor. In this section, we will
give a new characterization of the homogenized tensor (see Definition 5.3), and
corrector field (5.1) in terms of the first Bloch eigenvalue and eigenfunction. These
characterizations are obtained by differentiating the Bloch spectral problem (2.2)
with respect to the dual parameter η. Indeed, this is possible since we proved the
analyticity of the first Bloch eigenvalue and eigenfunction with respect to η in a
neighbourhood of η = 0 in Theorem 3.1. Moreover we will use the properties of the
first Bloch eigenvalue to prove the stability of the homogenized tensor with respect
to the limits ρ→ 0 and ρ→∞.
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6.1. Derivatives of Bloch eigenvalues and eigenfunctions. We recall the
Bloch eigenvalue problem for the operator Aρ here:

ρ2(∇+ iη)4φρ1(y; η)− (∇+ iη) ·A(y)(∇+ iη)φρ1(y; η) = λρ1(η)φρ1(y; η). (6.1)

We know that λρ1(0) = 0. For η ∈ Y ′ , recall that Aρ(η) = ρ2(∇+ iη)4 − (∇+ iη) ·
A(y)(∇+iη). In this section, for notational convenience we will hide the dependence
on y.

We shall normalize the average value of the first Bloch eigenfunction φρ1(·; η) to

be (2π)−d/2, that is,

MY (φρ1(·, η)) = (2π)−d/2 (6.2)

for all η in the neighbourhood of analyticity. We shall use β to denote a multiindex,
such as β = (β1, β2, . . . , βd) ∈ Nd ∪ {0} and |β| := |β1| + |β2| + · · · + |βd|. We will

use the shorthand ∂βη to denote ∂βη := ∂β1

∂η
β1
1

· · · ∂
βd

∂η
ηd
d

. For simplicity, we will also use

the notation ∂β0 u = ∂β1u

∂η
β1
1

· · · ∂
βdu
∂η
ηd
d

∣∣∣∣
η=0

. Differentiating (6.2), we obtain

MY (∂β0 φ
ρ
1) = 0 (6.3)

for all |β| > 0. Later on, we will see this as the compatibility condition associated

with the equation satisfied by ∂β0 φ
ρ
1. Denote by ∂β0Aρ := ∂βA

∂ηβ

∣∣∣∣
η=0

. Then, it holds

true that

∂βηA ≡ 0 for all |β| > 4, (6.4)

since Aρ(η) is a fourth order polynomial in η. Direct calculation shows that

Aρ(0) = ρ2∇4 −∇ ·A(y)∇
∂
ej
0 Aρ = 4iρ2ej · ∇∇2 − iej ·A∇− i∇ ·Aej

∂
ej+ek
0 Aρ = −4ρ2δjk∇2 − 8ρ2∂yj∂yk + 2ajk

∂
ej+ek+el
0 Aρ = −8iρ2(δjk∂yl + δjl∂yk + δkl∂yj )

∂
ej+ek+el+em
0 Aρ = 8ρ2(δjkδlm + δjlδkm + δjmδkl), (6.5)

where ej denotes the standard Euclidean unit vector with 1 in the jth place and
0 elsewhere. Now, we are in a position to write down the differential equations
satisfied by the derivatives of φρ1 of all orders. To this end, we recall the Leibniz’s
formula for the derivatives of product of functions, viz.,

∂β(fg) =
∑

γ∈Nd∪{0}

(
β

γ

)
∂γf ∂β−γg, (6.6)

where
(
β
γ

)
=
(
β1

γ1

)
· · ·
(
βd
γd

)
and the sum is always finite since

(
βj
γj

)
= 0 whenever

βj < γj .

Cell problems for ∂β0 φ
ρ
1. On differentiating (6.1) with respect to η and apply-

ing (6.6) we obtain

Aρ(0)∂β0 φ
ρ
1 +

d∑
j=1

βj∂
ej
0 Aρ ∂

β−ej
0 φρ1 +

∑
j,k

(
β

ej + ek

)
∂
ej+ek
0 Aρ ∂β−ej−ek0 φρ1
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+
∑
j,k,l

(
β

ej + ek + el

)
∂
ej+ek+el
0 Aρ ∂β−ej−ek−el0 φρ1

+
∑
j,k,l,m

(
β

ej + ek + el + em

)
∂
ej+ek+el+em
0 Aρ ∂β−ej−ek−el−em0 φρ1

=
∑

γ∈Nd∪{0}

(
β

γ

)
∂γ0λ

ρ
1 ∂

β−γ
0 φρ1. (6.7)

Substituting (6.5) in (6.7), we obtain(
ρ2∇4 −∇ ·A(y)∇

)
∂β0 φ

ρ
1

=

d∑
j=1

βj
(
−4iρ2ej · ∇∇2 + iej ·A∇+ i∇ ·Aej

)
∂
β−ej
0 φρ1

−
∑
j,k

(
β

ej + ek

)(
−4ρ2δjk∇2 − 8ρ2∂yj∂yk + 2ajk

)
∂
β−ej−ek
0 φρ1

+
∑
j,k,l

(
β

ej + ek + el

)(
8iρ2(δjk∂yl + δjl∂yk + δkl∂yj )

)
∂
β−ej−ek−el
0 φρ1

−
∑
j,k,l,m

(
β

ej + ek + el + em

)(
8ρ2(δjkδlm + δjlδkm + δjmδkl)

)
∂
β−ej−ek−el−em
0 φρ1

+
∑
γ∈Nd

(
β

γ

)
∂γ0λ

ρ
1 ∂

β−γ
0 φρ1. (6.8)

Expression for ∂β0 λ
ρ
1. It is easy to see that λρ1(0) = 0 since 0 is the first eigen-

value of the operator Aρ(0). On the other hand, λρ1 is an even function of η since

aρ[−η](φ, φ) = aρ[η](φ, φ) and φ ∈ H2
] (Y ) if and only if φ ∈ H2

] (Y ) (see also [15,

Page 41, Lemma 4.4]) .
Rearranging (6.8), we get

∂β0 λ
ρ
1φ

ρ
1(0) =

(
ρ2∇4 −∇ ·A(y)∇

)
∂β0 φ

ρ
1

+

d∑
j=1

βj
(
−4iρ2ej · ∇∇2 + iej ·A∇+ i∇ ·Aej

)
∂
β−ej
0 φρ1

−
∑
j,k

(
β

ej + ek

)(
−4ρ2δjk∇2 − 8ρ2∂yj∂yk + 2ajk

)
∂
β−ej−ek
0 φρ1

+
∑
j,k,l

(
β

ej + ek + el

)(
8iρ2(δjk∂yl + δjl∂yk + δkl∂yj )

)
∂
β−ej−ek−el
0 φρ1

−
∑
j,k,l,m

(
β

ej + ek + el + em

)(
8ρ2(δjkδlm + δjlδkm + δjmδkl)

)
∂
β−ej−ek−el−em
0 φρ1

+
∑
γ∈Nd
γ 6=β

(
β

γ

)
∂γ0λ

ρ
1 ∂

β−γ
0 φρ1. (6.9)

Integrating (6.9) over Y , using (6.2) and (6.3) and the fact that integrals over Y
of derivatives of periodic functions vanish due to Green’s identity, we obtain the
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following formula for the derivatives of the first Bloch eigenvalue at η = 0:

∂β0 λ
ρ
1 =



2
∑
j,k

(
β

ej+ek

)
MY

(
ajk∂

β−ej−ek
0 φρ1

)
−i
∑d
j=1 βjMY

(
ej ·A∇∂

β−ej
0 φρ1

)
when |β| 6= 4.

2
∑
j,k

(
β

ej+ek

)
MY

(
ajk∂

β−ej−ek
0 φρ1

)
−i
∑d
j=1 βjMY

(
ej ·A∇∂

β−ej
0 φρ1

)
−
∑
j,k,l,m 8ρ2 (δjkδlm + δjlδkm + δjmδkl) φ

ρ
1(0)

when |β| = 4.

(6.10)

We specialize to β = el in (6.10) to get
∂λρ1
∂ηl

(0) = 0 for all l = 1, 2, . . . , d.

On the other hand, if we set β = el in (6.8), we obtain(
−∇ ·A(y)∇+ ρ2∆2

) ∂φρ1
∂ηl

(0) = ∇ ·A(y)eliφ
ρ
1(0).

Comparing with (5.1), we conclude that χρl −
1

iφρ1(0)

∂φρ1
∂ηl

(0) is a constant.

We also specialize to β = el + ek in (6.10) to get

1

2

∂2λρ1
∂ηk∂ηl

(0) =
1

|Y |

ˆ
Y

(
ek ·Ael +

1

2
ek ·A∇χρl +

1

2
el ·A∇χρk

)
dy. (6.11)

On comparing (6.11) with (5.11), we obtain the following theorem:

Theorem 6.1. The first Bloch eigenvalue and eigenfunction satisfy:

1. λρ1(0) = 0.
2. The eigenvalue λρ1(η) has a critical point at η = 0, i.e.,

∂λρ1
∂ηl

(0) = 0,∀ l = 1, 2, . . . , d. (6.12)

3. For l = 1, 2, . . . , d, the derivative of the eigenvector (∂φρ1/∂ηl)(0) satisfies:
(∂φρ1/∂ηl)(y; 0)− iφρ1(y; 0)χρl (y) is a constant in y where χρl solves the cell

problem (5.1).
4. The Hessian of the first Bloch eigenvalue at η = 0 is twice the homogenized

matrix Aρ,hom as defined in (5.11), i.e.,

1

2

∂2λρ1
∂ηk∂ηl

(0) = ek ·Aρ,homel. (6.13)

6.2. Stability of homogenized tensor. Now, we will prove the stability of ho-
mogenized tensor in the limits ρ→ 0 and ρ→∞.

Lemma 6.2. Let 0 ≤ θ < ∞ such that ρ ↓ θ then λρ1(η) → λθ1(η) uniformly on
compact sets K contained in their common domain of definition.

Proof. The fact that the first Bloch eigenvalues {λρ1(η)}ρ≥0 are analytic on a com-

mon domain in Y
′

has been proved in Theorem 4.5. Since ρ ↓ θ where θ is finite,
the sequence ρ is bounded, that is, 0 < ρ < ρ0 for some 0 < ρ0 < ∞. We will
prove that the family {λρ1(η)}0≤ρ<ρ0 is locally uniformly bounded, that is, for every
compact set K,

|λρ1(η)| ≤ |λρ1(η)− λρ1(0|
(4.3)

≤ C(µ1 + ν1ρ
2)|η| < C

′
for all η ∈ K,
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where C
′

is independent of ρ and η. It is an easy consequence of Montel’s Theo-
rem [25, Page 9, Prop. 7] that pointwise convergence implies uniform convergence for
locally uniformly bounded sequences. We will show that λρ1(η) converges pointwise
to λθ1(η). Applying minmax characterization to the form below

aρ[η](u, u) =

ˆ
Y

A(∇+ iη)u · (∇+ iη)u dy + ρ2
ˆ
Y

(∇+ iη)2u(∇+ iη)2u dy

= aθ[η](u, u) + (ρ2 − θ2)

ˆ
Y

(∇+ iη)2u(∇+ iη)2u dy

we obtain the following inequality:

λρ1(η)− λθ1(η) ≤ (ρ2 − θ2)ϑ1(η),

where ϑ1(η) is the first Bloch eigenvalue of the bilaplacian and λθ1(η) is the first
Bloch eigenvalue of the operator −div(A∇) + θ2∆2 for θ ∈ [0,∞). On the other
hand, we also have

aρ[η](u, u) ≥ aθ[η](u, u) for ρ ≥ θ,
so that an application of minmax characterization yields:

λρ1(η) ≥ λθ1(η) for ρ ≥ θ.
Thus, we obtain

0 ≤ λρ1(η)− λθ1(η) ≤ (ρ2 − θ2)ϑ1(η) for ρ ≥ θ.

As a consequence, for each η ∈ Y ′ , λρ1(η)→ λθ1(η) as ρ ↓ θ.

Theorem 6.3. Let 0 ≤ θ ≤ ∞ such that ρ → θ then Aρ,hom → Ahom, with Ahom

as in Definition 5.3.

Proof.

Case 1. θ ∈ [0,∞): By the characterization in Theorem 6.1, Aρ,hom =
1
2∇

2
ηλ

ρ
1(0). In Lemma 6.2, we have proved that λρ1 conveges uniformly to λθ1

when ρ ↓ θ for θ ∈ [0,∞). By Theorem of Weierstrass [25, Page 7, Prop. 5],
derivatives of all orders of λρ1(η) converge uniformly on compact sets to cor-
responding derivatives of λθ1(η). In particular, ∇2

ηλ
ρ
1 converges uniformly on

compact sets to ∇2λθ1. As a consequence,

Aρ,hom =
1

2
∇2
ηλ

ρ
1(0)→ 1

2
∇2
ηλ

θ
1(0) = Ahom as ρ ↓ θ ∈ [0,∞).

Case 2. θ =∞: Observe that

|Aρ,hom −MY (A)| =
∣∣∣∣ˆ
Y

A(y)∇χρ(y) dy

∣∣∣∣ ≤ C||∇χρ||L2
](Y ) ≤

C

ρ2
,

where the last inequality follows from Poincaré inequality and (5.3). There-
fore, as ρ→∞,

Aρ,hom →MY (A) = Ahom as ρ ↑ ∞.

Remark 6.4. As a consequence of Lemma 6.2 and the discussion in Case 1 of The-
orem 6.3, for any R > 0, and 0 ≤ ρ < R, the first Bloch eigenvalue and all its
derivatives are bounded uniformly in their domain of analyticity independent of ρ.
We may also conclude from the same that the corresponding (suitably normalized)
Bloch eigenfunction and all their derivatives with respect to dual parameter are
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bounded in H1
] independent of ρ. For the first Bloch eigenfunction, the bounded-

ness is a consequence of the following calculation, which is a consequence of (2.4):

|λρ1(η)|+ C∗ ≥ λρ1(η) + C∗ = aρ[η](φρ1(η), φρ1(η)) + C∗ ≥
α

2
||φρ1(η)||2H1

] (Y ).

Recall that the number C∗ is explicitly given in (2.18). The boundedness in H1
] (Y )

of the derivatives of the first Bloch eigenfunction in the dual parameter is a con-
sequence of its analyticity [25, Page 5, Prop. 3]. This precludes the case ρ → ∞
which is covered in Theorem 6.5.

We end this section by finding boundedness estimates for higher order derivatives
of the first Bloch eigenvalue and eigenfunction in the dual parameter in the regime
ρ→∞.

Theorem 6.5. For 1 ≤ ρ <∞,

1. ||∂ej0 φ
ρ
1||H1 . 1

ρ2 , ∂
ej
0 λ

ρ
1 = 0.

2. ||∂ej+ek0 φρ1||H1 . 1
ρ2 ,

∣∣∣∂ej+ek0 λρ1 −MY (ej ·Aek)
∣∣∣ . 1

ρ2 .

3. ||∂ej+ek+el0 φρ1||H1 . 1
ρ2 , ∂

ej+ek+el
0 λρ1 = 0.

4. ||∂β0 φ
ρ
1||H1 . 1 for all |β| ≥ 4.

5. |∂β0 λ
ρ
1| .

{
ρ2 for |β| = 4.

1 for |β| > 4.
.

Proof. The estimates are computed in tandem from the equations (6.8) and (6.10).
One begins by proving the estimate on the derivative of the first Bloch eigenfunction
at η = 0, followed by the estimate on the corresponding derivative of the first Bloch
eigenvalue. The solvability of (6.8) in H2

] (Y ) follows from a standard application

of Lax-Milgram lemma. On the other hand, one can also read off from (6.8) that

the solution ∂β0 φ
ρ
1 ∈ H3

] (Y ). As a consequence, the estimate on the derivatives of

the first Bloch eigenfunction are obtained by employing the test function ∆y∂
β
0 φ

ρ
1

in (6.8) and repeated applications of Poincaré inequality. The computations are
standard and therefore, omitted.

7. Bloch transform and its properties. In this section, we will relate the Bloch
spectral problem (2.2) to the Bloch spectral problem at the ε-scale:
Aκ,ε(η)φκ,ε := κ2(∇+ iξ)4φκ,ε(x)− (∇+ iξ) ·A

(
x
ε

)
(∇+ iξ)φκ,ε(x)

= λκ,ε(ξ)φκ,ε(x)

φκ,ε(x+ 2πpε) = φκ,ε(x), p ∈ Zd, ξ ∈ Y
′

ε .

(7.1)

Comparing to (2.2), by homothety and κ = ρε, we conclude that

λκ,ε(ξ) = ε−2λρ(εξ) and φκ,ε(x, ξ) = φρ
(x
ε

; εξ
)
. (7.2)

Now, we can state the Bloch decomposition theorem of L2(Rd) at ε-scale. We
shall normalize φρ1(y; 0) to be (2π)−d/2.

Theorem 7.1. Let ρ > 0. Let g ∈ L2(Rd). Define the mth Bloch coefficient of g
at ε-scale as

Bκ,εm g(ξ) :=

ˆ
Rd
g(x)e−ix·ξφκ,εm (x; ξ) dx, m ∈ N, ξ ∈ Y

′

ε
. (7.3)
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1. The following inverse formula holds

g(x) =

ˆ
Y
′
ε

∞∑
m=1

Bκ,εm g(ξ)φκ,εm (x; ξ)eix·ξ dξ. (7.4)

2. Parseval’s identity

||g||2L2(Rd) =

∞∑
m=1

ˆ
Y
′
ε

|Bκ,εm g(ξ)|2 dξ. (7.5)

3. Plancherel formula For f, g ∈ L2(Rd), we haveˆ
Rd
f(x)g(x) dx =

∞∑
m=1

ˆ
Y
′
ε

Bκ,εm f(ξ)Bκ,εm g(ξ) dξ. (7.6)

4. Bloch Decomposition in H−1(Rd) For an element F = u0(x)+
∑N
j=1

∂uj(x)
∂xj

of H−1(Rd), the following limit exists in L2
(
Y
′

ε

)
:

Bκ,εm F (ξ) =

ˆ
Rd
e−ix·ξ

u0(x)φκ,εm (x; ξ) + i

N∑
j=1

ξjuj(x)φκ,εm (x; ξ)

 dx

−
ˆ
Rd
e−ix·ξ

N∑
j=1

uj(x)
∂φκ,εm
∂xj

(x; ξ) dx. (7.7)

The definition above is independent of the particular representative of F .
5. Finally, for g ∈ D(Aκ,ε),

Bκ,εm (Aκ,εg)(ξ) = λκ,εm (ξ)Bκ,εm g(ξ). (7.8)

7.1. First Bloch transform goes to Fourier transform. In order to compute
the homogenization limit, we need to know the limit of Bloch Transform of a se-
quence of functions. The following theorem proves that for a sequence of functions
convergent in a suitable way, the first Bloch transform converges to the Fourier
transform of the limit.

Theorem 7.2. Let K ⊆ Rd be a compact set and (gε) be a sequence of functions in
L2(Rd) such that gε = 0 outside K. Suppose that gε ⇀ g in L2(Rd)-weak for some
function g ∈ L2(Rd). Then it holds that

1ε−1UBκ,ε1 gε ⇀ ĝ

in L2
loc(Rdξ)-weak, where ĝ denotes the Fourier transform of g and 1ε−1U denotes

the characteristic function of the set ε−1U .

Proof. In Theorem 4.5, the existence of the set U indepedent of ρ was proved. The
function Bκ,ε1 gε is defined for ξ ∈ ε−1Y ′ . However, we shall treat it as a function
on Rd by extending it outside ε−1U by zero. We can write

Bκ,ε1 gε(ξ) =

ˆ
Rd
g(x)e−ix·ξφκ,ε1 (x; 0) dx

+

ˆ
Rd
g(x)e−ix·ξ

(
φρ1

(x
ε

; εξ
)
− φρ

(x
ε

; 0
))

dx.

Now, we need to distinguish between the regimes:
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Case 1. θ ∈ [0,∞): The first term above converges to the Fourier transform
of g on account of the normalization of φ1(y; 0) whereas the second term goes
to zero since it is O(εξ) due to the Lipschitz continuity of the first regularized
Bloch eigenfunction which follows from (4.3).
Case 2. θ = ∞: In this case, again, the first term converges to the Fourier
transform of g on account of the normalization of φ1(y; 0). However, for the
second term, we make use of the analyticity of φκ,ε1 in ε−1U and the estimates
in Theorem 6.5 to conclude that the second term is O(εξ) independent of ρ.

8. Qualitative homogenization. In this section, we will prove the qualitative
homogenization result for the singularly perturbed homogenization problem. There
are three regimes according to convergence of ρ = κ

ε , viz., ρ → 0, ρ → θ ∈ (0,∞)
and ρ→∞.

Theorem 8.1. Let Ω be an arbitrary domain in Rd and f ∈ L2(Ω). Let uε ∈ H2(Ω)
be such that uε converges weakly to u∗ in H1(Ω), κ∆uε is uniformly bounded in
L2(Ω), and

Aκ,εuε = f in Ω, (8.1)

where κ → 0 as ε → 0 and limε→0
κ
ε = θ ∈ [0,∞]. Let Ahom = (a∗kl)

d
k,l=1 be as

defined in Definition 5.3. Then

1. For all k = 1, 2, . . . , d, we have the following convergence of fluxes:

A
(x
ε

)
∇uε(x) ⇀ Ahom∇u∗(x) in (L2(Ω))d-weak. (8.2)

2. The limit u∗ satisfies the homogenized equation:

Ahomu∗ = −∇ ·Ahom∇u∗ = f in Ω. (8.3)

Remark 8.2. In the spirit of H-convergence [24], we do not impose any bound-
ary condition on the equation. The H-convergence compactness theorem concerns
convergence of sequences on which certain differential constraints have been im-
posed. In homogenization, the weak convergence of solutions is a consequence of
uniform bounds on them, which follow from boundary conditions imposed on the
equation. In the theorem quoted above, the uniform boundedness on κ∆uε would
have followed if appropriate boundary conditions were imposed.

The proof of Theorem 8.1 is divided into the following steps. We begin by
localizing the equation (8.1) which is posed on Ω, so that it is posed on Rd. We
take the first Bloch transform Bκ,ε1 of this equation and pass to the limit κ, ε→ 0.
The proof relies on the analyticity of the first Bloch eigenvalue and eigenfunction
in a neighborhood of 0 ∈ Y ′ . The limiting equation is an equation in Fourier space.
The homogenized equation is obtained by taking the inverse Fourier transform. We
will use the notation aεkl(x) to denote akl

(
x
ε

)
. Further, we will assume the Einstein

convention of summing over repeated indices. The proof has been divided into
separate cases for the regimes ρ→ θ ∈ (0,∞), ρ→∞, and ρ = 0.

8.1. Localization. Let ψ0 be a fixed smooth function supported in a compact set
K ⊂ Rd. Since uε satisfies Aκ,εuε = f , ψ0u

ε satisfies

Aκ,ε(ψ0u
ε)(x) = ψ0f(x) + gε(x) + hε(x) +

4∑
m=1

lκ,εm (x) in Rd, (8.4)
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where

gε(x) := −∂ψ0

∂xk
(x)aεkl(x)

∂uε

∂xl
(x), (8.5)

hε(x) := − ∂

∂xk

(
∂ψ0

∂xl
(x)aεkl(x)uε(x)

)
, (8.6)

lκ,ε1 (x) := κ2
∂4ψ0

∂x4k
(x)uε(x). (8.7)

lκ,ε2 (x) := 4κ2
∂3ψ0

∂x3k
(x)

∂uε

∂xk
(x). (8.8)

lκ,ε3 (x) := 2κ2
∂2ψ0

∂x2k
(x)

∂2uε

∂x2k
(x). (8.9)

lκ,ε4 (x) := 4κ2
∂ψ0

∂xk
(x)

∂3uε

∂x3k
(x) + 4κ2

∂2ψ0

∂x2k
(x)

∂2uε

∂x2k
(x) = 4κ2

∂

∂xk

(
∂ψ0

∂xk

∂2uε

∂x2k

)
.

(8.10)

While the sequence gε is bounded in L2(Rd), the sequence hε is bounded in
H−1(Rd). Taking the first Bloch transform of both sides of the equation (8.4), we
obtain for ξ ∈ ε−1U a.e.

λκ,ε1 (ξ)Bκ,ε1 (ψ0u
ε)(ξ) = Bκ,ε1 (ψ0f)(ξ) + Bκ,ε1 gε(ξ) + Bκ,ε1 hε(ξ) +

4∑
m=1

Bκ,ε1 lκ,εm (ξ).

(8.11)

We shall now pass to the limit κ, ε→ 0 in the equation (8.11).

8.2. Case 1 : ρ→ θ ∈ (0,∞).

8.2.1. Limit of λκ,ε1 (ξ)Bκ,ε1 (ψ0u
ε). We expand the first Bloch eigenvalue about η = 0

in λκ,ε1 (ξ)Bκ,ε1 (ψ0u
ε) to write(

1

2

∂2λρ1
∂ηs∂ηt

(0)ξsξt +O(ε2)

)
Bκ,ε1 (ψ0u

ε).

The higher order derivatives of λρ1(η) are bounded uniformly in ρ (see Remark 6.4).
Hence, their contribution is O(ε2). Now, we can pass to the limit κ, ε → 0 in
L2
loc(Rdξ)-weak by applying Lemma 7.2 to obtain:

es ·Ahomet∂ηs∂ηt(0)ξsξtψ̂ou∗(ξ). (8.12)

8.2.2. Limit of Bκ,ε1 (ψ0f). An application of Lemma 7.2 yields the convergence of
Bκ,ε1 (ψ0f) to (ψ0f )̂ in L2

loc(Rdξ)-weak.

8.2.3. Limit of Bκ,ε1 gε. The sequence gε as defined in (8.5) is bounded in L2(Rd) and
hence has a weakly convergent subsequence with limit g∗ ∈ L2(Rd). This sequence

is supported in a fixed set K. Also, note that the sequence σεk(x) := aεkl(x)
∂uε

∂xl
(x)

is bounded in L2(Ω), hence has a weakly convergent subsequence whose limit is
denoted by σ∗k for k = 1, 2, . . . , d. Extend σ∗k by zero outside Ω and continue to
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denote the extension by σ∗k. Thus, g∗ is given by −∂ψ0

∂xk
σ∗k. Therefore, by Lemma 7.2,

we obtain the following convergence in L2
loc(Rdξ)-weak:

χε−1U (ξ)Bκ,ε1 gε(ξ) ⇀ −
(
∂ψ0

∂xk
(x)σ∗k(x)

)̂
(ξ). (8.13)

8.2.4. Limit of Bκ,ε1 hε. We have the following weak convergence in L2
loc(Rdξ).

lim
ε→0

χε−1U (ξ)Bκ,ε1 hε(ξ) = −iξka∗kl
(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ) (8.14)

We shall prove this in the following steps.
Step 1. By the definition of the Bloch transform (7.7) for elements of H−1(Rd), we
have

Bκ,ε1 hε(ξ) = −iξk
ˆ
Rd
e−ix·ξ

∂ψ0

∂xl
(x)aεkl(x)uε(x)φρ1

(x
ε

; εξ
)
dx

+

ˆ
Rd
e−ix·ξ

∂ψ0

∂xl
(x)aεkl(x)uε(x)

∂φρ1
∂xk

(x
ε

; εξ
)
dx. (8.15)

Step 2. The first term on RHS of (8.15) is the Bloch transform of the expression

−iξk ∂ψ0

∂xl
(x)aεkl(x)uε(x) which converges weakly to −iξkMY (akl)

(
∂ψ0

∂xl
(x)u∗(x)

)
.

Step 3. Now, we analyze the second term on RHS of (8.15). To this end, we make
use of analyticity of first Bloch eigenfunction with respect to the dual parameter
η near 0. We have the following power series expansion in H1

] (Y ) for φρ1(η) about
η = 0:

φρ1(y; η) = φρ1(y; 0) + ηs
∂φρ1
∂ηs

(y; 0) + γρ(y; η). (8.16)

We know that γρ(y; 0) = 0 and (∂γρ/∂ηs)(y; 0) = 0, therefore, γρ(·; η) = O(|η|2)
in L∞(U ;H1

] (Y )). We also have (∂γρ/∂yk)(·; η) = O(|η|2) in L∞(U ;L2
] (Y )). These

orders are uniform in ρ by Remark 6.4. Now,

φκ,ε1 (x; ξ) = φρ1

(x
ε

; εξ
)

= φρ1

(x
ε

; 0
)

+ εξs
∂φρ1
∂ηs

(x
ε

; 0
)

+ γρ
(x
ε

; εξ
)
. (8.17)

Differentiating the last equation with respect to xk, we obtain

∂

∂xk
φρ1

(x
ε

; εξ
)

= ξs
∂

∂yk

∂φρ1
∂ηs

(x
ε

; 0
)

+ ε−1
∂γρ

∂yk

(x
ε

; εξ
)
. (8.18)

For ξ belonging to the set {ξ : εξ ∈ U and |ξ| ≤M}, we have

∂γρ

∂yk
(·; εξ) = O(|εξ|2) = ε2O(|ξ|2) ≤ CM2ε2. (8.19)

As a consequence,

ε−2
∂γρ

∂yk
(x/ε; εξ) ∈ L∞loc(Rdξ ;L2

] (εY )). (8.20)

The second term on the RHS of (8.15) is given by

χε−1U (ξ)

ˆ
K

e−ix·ξ
∂ψ0

∂xl
(x)akl

(x
ε

)
uε(x)

∂

∂xk

(
φρ1

(x
ε

; εξ
))

dx. (8.21)
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Substituting (8.18) in (8.21), we obtain

χε−1U (ξ)

ˆ
K

e−ix·ξ
∂ψ0

∂xl
(x)akl

(x
ε

)
uε(x)

[
ξs

∂

∂yk

∂φρ1
∂ηs

(x
ε

; 0
)

+ ε−1
∂γρ

∂yk

(x
ε

; εξ
)]
dx.

(8.22)

In the last expression, the term involving γρ goes to zero as ε → 0 in view
of (8.19), whereas the other term has the following limit as ρ→ θ ∈ (0,∞):

MY

(
akl(y)

∂χθs
∂yk

(y)

)
ξs

ˆ
Rd
e−ix·ξ

∂ψ0

∂xl
(x)u∗(x) dx. (8.23)

To see this, we write the second term as

ˆ
K

e−ix·ξ
∂ψ0

∂xl
(x)akl

(x
ε

)
uε(x)ξs

∂

∂yk

∂φρ1
∂ηs

(x
ε

; 0
)
dx

=

ˆ
K

e−ix·ξ
∂ψ0

∂xl
(x)akl

(x
ε

)
uε(x)ξs

∂χρs
∂yk

(x
ε

)
dx

=

ˆ
K

e−ix·ξ
∂ψ0

∂xl
(x)akl

(x
ε

)
uε(x)ξs

(
∂χθs
∂yk

(x
ε

)
+

[
∂χρs
∂yk

(x
ε

)
− ∂χθs
∂yk

(x
ε

)])
dx.

The first term in parantheses goes to (8.23) due to strong convergence of uε in

L2(K) and weak convergence of akl
∂χθs
∂yk

(
x
ε

)
, whereas the expression in the square

brackets goes to zero due to Lemma 5.1.
Step 4. By Theorem 6.1 and Remark 6.2, it follows that

MY

(
akl(y)

∂

∂yk

(
∂φθ1
∂ηs

(y; 0)

))
= −i(2π)−d/2MY

(
akl(y)

∂χθs
∂yk

(y)

)
. (8.24)

Therefore, we have the following convergence in L2
loc(Rdξ)-weak:

χε−1U (ξ)Bκ,ε1 hε(ξ)

⇀ −iξs
{
MY (akl) +MY

(
akl(y)

∂χθs
∂yk

(y)

)}(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ)

= −iξsa∗kl
(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ) (8.25)

8.2.5. Limit of Bκ,ε1 lκ,ε1 . We shall prove that

lim
ε→0
Bκ,ε1 lκ,ε1 = 0. (8.26)

Observe that

Bκ,ε1 lκ,ε1 (ξ) = κ2
ˆ
Rd
e−ix·ξ

∂4ψ0

∂x4k
(x)uε(x)φκ,ε(x, ξ) dx. (8.27)

The integral is the Bloch transform of ∂
4ψ0

∂x4
k

(x)uε(x) which converges to the Fourier

transform of ∂4ψ0

∂x4
k

(x)u∗(x). However, since κ → 0, the whole expression goes to
zero.
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8.2.6. Limit of Bκ,ε1 lκ,ε2 . We shall prove that

lim
ε→0
Bκ,ε1 lκ,ε2 = 0. (8.28)

Observe that

Bκ,ε1 lκ,ε2 (ξ) = 4κ2
ˆ
Rd
e−ix·ξ

∂3ψ0

∂x3k
(x)

∂uε

∂xk
(x)φκ,ε(x, ξ) dx. (8.29)

The integral is the Bloch transform of ∂
3ψ0

∂x3
k

(x) ∂u
ε

∂xk
(x) which converges to the Fourier

transform of ∂3ψ0

∂x3
k

(x)∂u
∗

∂xk
(x). However, since κ → 0, the whole expression goes to

zero.

8.2.7. Limit of Bκ,ε1 lκ,ε3 . We shall prove that

lim
ε→0
Bκ,ε1 lκ,ε3 = 0. (8.30)

Observe that

Bκ,ε1 lκ,ε3 (ξ) = 2κ

ˆ
Rd
e−ix·ξ

∂2ψ0

∂x2k
(x)κ

∂2uε

∂x2k
(x)φκ,ε(x, ξ) dx. (8.31)

The integral is the Bloch transform of ∂2ψ0

∂x2
k

(x)κ∂
2uε

∂x2
k

(x) which converges for a sub-

sequence since κ∂
2uε

∂x2
k

(x) is bounded in L2(Ω) (and hence converges weakly in L2(Ω)

for a subsequence). However, since κ→ 0, the whole expression goes to zero.

8.2.8. Limit of Bκ,ε1 lκ,ε4 . We shall prove that

lim
ε→0
Bκ,ε1 lκ,ε4 = 0. (8.32)

Observe that

lκ,ε4 (x) = 4κ
∂

∂xk

(
∂ψ0

∂xk
κ
∂2uε

∂x2k

)
belongs to H−1(Rd), hence the Bloch trasform for H−1(Rd), that is, (7.7) applies.
Hence,

Bκ,ε1 lκ,ε4 (ξ) = −4iκξk

ˆ
Rd
e−ix·ξ

∂ψ0

∂xl
(x)κ

∂2uε

∂xk
(x)φρ1

(x
ε

; εξ
)
dx

+4κ

ˆ
Rd
e−ix·ξ

∂ψ0

∂xl
(x)κ

∂2uε

∂x2k
(x)

∂φρ1
∂xk

(x
ε

; εξ
)
dx. (8.33)

The analysis of the first term is the same as that of Bκ,ε1 lκ,ε3 . For the second term,

observe that κ∂
2uε

∂x2
k

(x) is bounded in L2(Ω) and
∂φρ1
∂xk

(
x
ε ; εξ

)
is bounded in L2

] (εY )

uniformly in ρ (see Remark 6.4). Hence, their product is bounded in L1(K). As
a result, the integral is a Fourier transform of a sequence bounded in ρ and ε.
However, the presence of κ in front of the integral causes the expression to go to
zero.

Finally, passing to the limit in (8.11) as ε → 0 by applying equations (8.12),
(8.13), (8.14), (8.26), (8.28), (8.30), and (8.32), we get:

a∗klξkξlψ̂ou
∗(ξ) = ψ̂0f −

(
∂ψ0

∂xk
(x)σ∗k(x)

)̂
(ξ)− iξka∗kl

(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ). (8.34)
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8.3. Case 2 : ρ→∞. In this regime, the convergence proofs for Bκ,ε1 lκ,ε1 , Bκ,ε1 lκ,ε2 ,

Bκ,ε1 lκ,ε3 , Bκ,ε1 gε, Bκ,ε1 (ψ0f) are the same as in the earlier regime. Therefore, we will
only look at the remaining convergences.

8.3.1. Limit of λκ,ε1 (ξ)Bκ,ε1 (ψ0u
ε). We expand the first Bloch eigenvalue about η = 0

in λκ,ε1 (ξ)Bκ,ε1 (ψ0u
ε) to write(

1

2

∂2λρ1
∂ηs∂ηt

(0)ξsξt +
ε2

4!
∂es+et+eu+ev0 λρ1ξsξtξuξv +O(ε4)

)
Bκ,ε1 (ψ0u

ε).

The fourth order derivative is of order ρ2 by Theorem 6.5. The derivatives of λρ1(η)
of order greater than 4 are bounded uniformly in ρ (see Theorem 6.5). Hence, their
contribution is O(ε4). Hence, we can write the above as(

1

2

∂2λρ1
∂ηs∂ηt

(0)ξsξt +O(ε2ρ2) +O(ε4)

)
Bκ,ε1 (ψ0u

ε)

=

(
1

2

∂2λρ1
∂ηs∂ηt

(0)ξsξt +O(κ2) +O(ε4)

)
Bκ,ε1 (ψ0u

ε)

Now, we can pass to the limit κ, ε→ 0 in L2
loc(Rdξ)-weak by applying Lemma 7.2 to

obtain:

es ·Ahomet∂ηs∂ηt(0)ξsξtψ̂ou∗(ξ).

8.3.2. Limit of Bκ,ε1 hε.

lim
ε→0

χε−1U (ξ)Bκ,ε1 hε(ξ) = −iξka∗kl
(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ)

We shall prove this in the following steps.
Step 1. As before, we have

Bκ,ε1 hε(ξ) = −iξk
ˆ
Rd
e−ix·ξ

∂ψ0

∂xl
(x)aεkl(x)uε(x)φρ1

(x
ε

; εξ
)
dx

+

ˆ
Rd
e−ix·ξ

∂ψ0

∂xl
(x)aεkl(x)uε(x)

∂φρ1
∂xk

(x
ε

; εξ
)
dx. (8.35)

Step 2. As before, the first term on RHS of (8.35) is the Bloch transform of the

expression −iξk ∂ψ0

∂xl
(x)aεkl(x)uε(x) which converges weakly to

−iξkMY (akl)

(
∂ψ0

∂xl
(x)u∗(x)

)
= −iξka∗kl

(
∂ψ0

∂xl
(x)u∗(x)

)
where the last equality is due to Definition 5.3.
Step 3. Now we shall prove that the second term on RHS of (8.35) goes to zero. As
before, we make use of analyticity of first Bloch eigenfunction with respect to the
dual parameter η near 0. We have the following power series expansion in H1

] (Y )

for φρ1(η) about η = 0:

φρ1(y; η) = φρ1(y; 0) + ηs
∂φρ1
∂ηs

(y; 0) + γρ(y; η).

We know that γρ(y; 0) = 0 and (∂γρ/∂ηs)(y; 0) = 0, therefore, γρ(·; η) = O(|η|2)
in L∞(U ;H1

] (Y )). We also have (∂γρ/∂yk)(·; η) = O(|η|2) in L∞(U ;L2
] (Y )). These
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orders are uniform in ρ by Theorem 6.5. Now,

φκ,ε1 (x; ξ) = φρ1

(x
ε

; εξ
)

= φρ1

(x
ε

; 0
)

+ εξs
∂φρ1
∂ηs

(x
ε

; 0
)

+ γρ
(x
ε

; εξ
)
.

Differentiating the last equation with respect to xk, we obtain

∂

∂xk
φρ1

(x
ε

; εξ
)

= ξs
∂

∂yk

∂φρ1
∂ηs

(x
ε

; 0
)

+ ε−1
∂γρ

∂yk

(x
ε

; εξ
)
. (8.36)

For ξ belonging to the set {ξ : εξ ∈ U and |ξ| ≤M}, we have

∂γρ

∂yk
(·; εξ) = O(|εξ|2) = ε2O(|ξ|2) ≤ CM2ε2. (8.37)

As a consequence,

ε−2
∂γρ

∂yk
(x/ε; εξ) ∈ L∞loc(Rdξ ;L2

] (εY )).

The second term on the RHS of (8.35) is given by

χε−1U (ξ)

ˆ
K

e−ix·ξ
∂ψ0

∂xl
(x)akl

(x
ε

)
uε(x)

∂

∂xk

(
φρ1

(x
ε

; εξ
))

dx. (8.38)

Substituting (8.36) in (8.38), we obtain

χε−1U (ξ)

ˆ
K

e−ix·ξ
∂ψ0

∂xl
(x)akl

(x
ε

)
uε(x)

[
ξs

∂

∂yk

∂φρ1
∂ηs

(x
ε

; 0
)

+ ε−1
∂γρ

∂yk

(x
ε

; εξ
)]
dx.

(8.39)

In the last expression, the term involving γρ goes to zero as ε → 0 in view
of (8.37).

The other term also goes to zero as ρ→∞ due to strong convergence of uε and
the fact that

∂

∂xk

(
∂φρ1
∂ηs

(x/ε; 0)

)
= O

(
1

ρ2

)
,

as shown in Theorem 6.5.

8.3.3. Limit of Bκ,ε1 lκ,ε4 . The analysis is the same as before, however the uniform-

in-ρ boundedness of
∂φρ1
∂xk

(
x
ε ; εξ

)
in L2

] (εY ) is due to Theorem 6.5.

Hence, for the regime ρ→∞, we also recover (8.34).

8.4. Case 3 : ρ→ 0. In this regime, all the convergence proofs are the same as in

the regime ρ → θ ∈ (0,∞) except for the convergence of Bκ,ε1 hε, which we prove
below.

8.4.1. Limit of Bκ,ε1 hε. For this limit, all steps except the third are the same, hence
we only explain the part of Step 3 which differs from the regime ρ → θ ∈ (0,∞).
We begin with the following equation which was earlier labelled as (8.22).

χε−1U (ξ)

ˆ
K

e−ix·ξ
∂ψ0

∂xl
(x)akl

(x
ε

)
uε(x)

[
ξs

∂

∂yk

∂φρ1
∂ηs

(x
ε

; 0
)

+ ε−1
∂γρ

∂yk

(x
ε

; εξ
)]
dx.

(8.40)

In the last expression, the term involving γρ goes to zero as ε → 0 in view
of (8.19), whereas the other term has the following limit as ρ→ 0:

MY

(
akl(y)

∂χ0
s

∂yk
(y)

)
ξs

ˆ
Rd
e−ix·ξ

∂ψ0

∂xl
(x)u∗(x) dx. (8.41)
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To see this, we write

∂

∂yk

∂φρ1
∂ηs

(x
ε

; 0
)

=
∂χρs
∂yk

(x
ε

)
=
∂χ0

s

∂yk

(x
ε

)
︸ ︷︷ ︸

I

+

[
∂χρs
∂yk

(x
ε

)
− ∂χBs
∂yk

(x
ε

)]
︸ ︷︷ ︸

II

+

[
∂χ0

s

∂yk

(x
ε

)
− ∂χBs
∂yk

(x
ε

)]
︸ ︷︷ ︸

III

.

The first term I is responsible for (8.41) due to strong convergence of uε in L2(K)

and weak convergence of akl
∂χ0

s

∂yk

(
x
ε

)
.

For the expressions II and III, we make use of Lemma 5.2. Indeed, we obtain
II = O(ρ) +O(κ) and III = O(κ). Hence, their contribution to the limit in (8.40)
as ρ→ 0 is O(κ).

This completes the modification required for the regime ρ→ 0. Instead of (8.34),
we obtain

a∗klξkξlψ̂ou
∗(ξ) = ψ̂0f −

(
∂ψ0

∂xk
(x)σ∗k(x)

)̂
(ξ)− iξka∗kl

(
∂ψ0

∂xl
(x)u∗(x)

)̂
(ξ) +O(κ).

However, since κ > 0 is an arbitrary positive number in Lemma 5.2, we also re-
cover (8.34) for the regime ρ→ 0.

8.5. Proof of the homogenization result. Taking the inverse Fourier transform
in the equation (8.34), we obtain the following:

(Ahom(ψ0u
∗)(x)) = ψ0f −

∂ψ0

∂xk
(x)σ∗k(x)− a∗kl

∂

∂xk

(
∂ψ0

∂xl
(x)u∗(x)

)
, (8.42)

where the operator Ahom is defined in (8.3). At the same time, calculating using
Leibniz rule, we have:

(Ahom(ψ0u
∗)(x)) = (ψ0(x)Ahomu∗(x))− a∗kl

∂

∂xk

(
∂ψ0

∂xl
(x)u∗(x)

)
− a∗kl

∂ψ0

∂xk
(x)

∂u∗

∂xl
(x) (8.43)

Using equations (8.42) and (8.43), we obtain

ψ0(x)
(
Ahomu∗ − f

)
(x) =

∂ψ0

∂xk

[
a∗kl

∂u∗

∂xl
(x)− σ∗k(x)

]
. (8.44)

Let ω be a unit vector in Rd, then ψ0(x)eix·ω ∈ D(Ω). On substituting in the
above equation, we get, for all k = 1, 2, . . . , d and for all ψ0 ∈ D(Ω),

ψ0(x)

[
a∗kl

∂u∗

∂xl
(x)− σ∗k(x)

]
= 0. (8.45)

Let x0 be an arbitrary point in Ω and let ψ0(x) be equal to 1 near x0, then for
a small neighbourhood of x0:

for k = 1, 2, . . . , d,

[
a∗kl

∂u∗

∂xl
(x)− σ∗k(x)

]
= 0 (8.46)

However, x0 ∈ Ω is arbitrary, so that

Ahomu∗ = f and σ∗k(x) = a∗kl
∂u∗

∂xl
(x). (8.47)
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Thus,we have obtained the limit equation in the physical space. This finishes the
proof of Theorem 8.1.

9. Contribution of higher modes. The proof of the qualitative homogenization
theorem only requires the first Bloch transform. It is not clear whether the higher
Bloch modes make any contribution to the homogenization limit. In this section,
we show that they do not. We know that Bloch decomposition is the isomorphism
L2(Rd) ∼= L2(Y

′
/ε; `2(N)) which is reflected in the inverse identity (7.4). For sim-

plicity, take Ω = Rd and consider the equation Aκ,εuε = f in Rd which is equivalent
to

Bκ,εm Aκ,εuε(ξ) = Bκ,εm f(ξ) ∀m ≥ 1,∀ ξ ∈ ε−1Y
′
.

We claim that one can neglect all the equations corresponding to m ≥ 2.

Proposition 9.1. Let

vκ,ε(x) =

ˆ
ε−1Y ′

∞∑
m=2

Bκ,εm uε(ξ)φκ,εm (x; ξ)eix·ξ dξ,

then ||vκ,ε||L2(Rd) ≤ cε, where c does not depend on ρ and ε.

Proof. Due to boundedness of the sequence (uε) in H2(Rd), we haveˆ
Rd
Aκ,εuε uε ≤ C. (9.1)

However, by Plancherel Theorem (7.6), we have

ˆ
Rd
Aκ,εuε uε =

∞∑
m=1

ˆ
ε−1Y ′

(Bκ,εm Aκ,εuε) (ξ)Bκ,εm uε(ξ) dξ ≤ C

Using (7.8), we have

∞∑
m=1

ˆ
ε−1Y ′

λκ,εm (ξ)|Bκ,εm uε(ξ)|2 dξ ≤ C.

Now, by Lemma 4.2

λρm(η) ≥ αλN2 > 0 ∀m ≥ 2 ∀ η ∈ Y
′
, (9.2)

where λN2 is the second eigenvalue of Laplacian on Y with Neumann boundary
condition on ∂Y . Since λκ,εm (ξ) = ε−2λρm(εξ), we obtain

∞∑
m=2

ˆ
ε−1Y ′

|Bκ,εm uε(ξ)|2 dξ ≤ Cε2.

By Parseval’s identity (7.5), the LHS equals ||vκ,ε||2L2(Rd). This completes the

proof.
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