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Abstract. We prove the convergence of the vanishing viscosity approximation

for a class of 2×2 systems of conservation laws, which includes a model of traffic

flow in congested regimes. The structure of the system allows us to avoid the
typical constraints on the total variation and the L1 norm of the initial data.

The key tool is the compensated compactness technique, introduced by Murat

and Tartar, used here in the framework developed by Panov. The structure of
the Riemann invariants is used to obtain the compactness estimates.

1. Introduction.

1.1. Modeling traffic flow in the congested regime. We consider the Cauchy
problem associated with the following 2×2 system of conservation laws in one space
dimension: 

∂tρ+ ∂x(uρf(ρ)) = 0, t > 0, x ∈ R,
∂tu+ ∂x(u2f(ρ)) = 0, t > 0, x ∈ R,
ρ(0, x) = ρ0(x), x ∈ R,
u(0, x) = u0(x), x ∈ R.

(1)

The functions ρ : (0,∞) × R → R and u : (0,∞) × R → R represent the vehicular
density and the generalized momentum, respectively. The velocity law is given by
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uf(ρ), where the function f = f(ρ) describes the reaction of drivers to the different
crowding levels of the road.

System (1) describes the evolution of congested traffic in the second-order macro-
scopic traffic model introduced in [13] as an extension of the classical first-order
Lighthill-Whitham-Richards (LWR) model (see [28, 34]) allowing different drivers
to have different maximal speeds. According to the empirical evidence that vehicu-
lar traffic behaves differently in the situations of low and high densities, see [24], the
model in [13] consists of two different regimes or phases: a free phase, described by
a single transport equation, and a congested one, modeled by the 2× 2 system (1).

We remark that the well-known second-order Aw-Rascle-Zhang (ARZ) model in
its original form [1, Formula (2.10)], i.e.{

∂tρ+ ∂x(ρv) = 0, t > 0, x ∈ R,
∂t(ρ(v + p(ρ))) + ∂x(ρv(v + p(ρ))) = 0, t > 0, x ∈ R,

has some similarities, at least formally, with (1). Indeed the quantity v+p(ρ) in the
ARZ model plays an analogous role to that of uρ in (1). However, since the pressure

term p in the ARZ model depends only on the density ρ, there is no any admissible
change of variable, which transforms (1) into the ARZ model and vice-versa.

The original ARZ model does not distinguish between a free and a congested
phase, but it was extended in this direction in [20], where Goatin generalized the
two-phase model proposed by Colombo in [12], coupling the LWR equation in the
free phase with the ARZ model in the congested phase. A peculiar difference be-
tween the aforementioned models and the one formulated in [13] is that the two
phases are here connected. For other second order macroscopic or two-phase mod-
els describing traffic evolution, see [4, 17, 19, 21, 27, 39] and the references therein.

In the present paper, we do not consider phase transitions; we focus on the
evolution of traffic in the congested regime given by system (1). Indeed, the more
complex and richer dynamics happens in the congested phase. On the other hand,
in the free phase the model reduces to a linearly degenerate 2 × 2 system, where
each driver’s speed is constantly equal to the maximal one. Our main contribution
is a proof that the solutions of the viscous approximations of (1) converge to a weak
solution of the hyperbolic system.

1.2. Vanishing viscosity for systems of conservation laws. The vanishing
viscosity limit of uniformly parabolic viscous regularizations of scalar conservation
laws is a crucial point in Kružkov’s well-posedness theory (see [26] and [5, 14, 23]
for a modern exposition). The developments concerning the vanishing viscosity
approximation of systems of conservation laws are more recent. DiPerna proved
convergence for certain classes of 2 × 2 genuinely nonlinear systems in [9, 15, 25].
His results were subsequently extended in many directions to more general systems
describing gas dynamics or other physical phenomena (e.g. shallow waters, liquid
chromatography, etc.) – see, e.g. [10, 22, 31, 40] and references therein. The proofs
rely on a compensated compactness argument: the key idea, introduced by Tartar
and Murat (see, e.g., [16, Chapter 5] for a survey), is as follows: the invariant region
method provides uniform L∞ bounds on the sequence of viscous approximation, but
the weak-star convergence does not allow to pass to limit in the nonlinear terms
of the equations; however, the weak limit can be represented in terms of Young
measures, which reduce to a Dirac mass (hence giving strong convergence) due to
the entropy dissipation mechanism. In [35], Serre proved the global existence of weak



VANISHING VISCOSITY FOR 2× 2 SYSTEM MODELING TRAFFIC FLOW 415

solutions for a 2 × 2 Temple class systems, that is for systems with either linearly
degenerate characteristic fields, or with straight characteristic curves (see also [38]).
Coclite, Karlsen, Mishra, Risebro applied an improved compensated compactness
result due to Panov (see [33]) to prove convergence for 2× 2 triangular systems in
[11]. For strictly hyperbolic n× n systems with small initial total variation, in [3],
Bianchini and Bressan managed to develop a theory of vanishing viscosity based
a priori BV bounds on solutions. We remark that the general uniqueness results
known for systems of conservation laws apply only to BV solutions (see [5, 6, 7, 8,
29, 30]); therefore, the uniqueness of the L∞ solutions obtained by the compensated
compactness method remains a long-standing open problem.

None of the previously known results can be directly applied to our problem:
indeed, we do not assume any smallness condition on the initial data and system
(1) is neither of Temple class nor genuinely nonlinear nor triangular.

1.3. Outline of the paper. The paper is organized as follows. In Section 2, we
introduce the approximate viscous system and we state the main result together with
the assumptions on the function f and on the initial data. Section 3 is dedicated
to several a priori estimates for the solutions of the viscous system and to the
compactness of the family of Riemann invariants, which is a preliminary step in the
proof of the main result. Finally, in Section 4, we prove the existence of a solution
to (1) by the vanishing viscosity approach. Here the main tool is the version of the
compensated compactness proposed by Panov in [33].

2. Main result. Before stating the main result of the paper, Theorem 2.2, we
introduce the viscous approximation of (1) and all the required assumptions.

We consider a flux function f that satisfies the following hypothesis:

(F): f ∈ C2([0, 1];R+) satisfies f(1) = 0 and the function ρ 7→ ρ2f(ρ) is not affine
in every nontrivial subinterval of [0, 1].

Assumption (F) guarantees that the function g : [0, 1]→ R+, defined by

g(ρ) = ρ2f(ρ), (2)

for every ρ ∈ [0, 1], is genuinely nonlinear.

Example 1. The affine function f(ρ) = 1 − ρ satisfies assumption (F). Indeed
g′′(ρ) = 2− 6ρ is equal to 0 if and only if ρ = 1

3 .

Example 2. Choose δ ∈ (0, 1) and define f ∈ C2 ([0, 1];R+) such that f ′(ρ) < 0
for every ρ ∈

(
δ
2 , 1
)
, f (ρ) = 2

δ − 1 for every ρ ∈
[
0, δ2
]
, and f(ρ) = 1

ρ − 1 for ρ ≥ δ.
This is a typical choice in traffic flow modeling. Note that it is possible to choose f
such that assumption (F) is satisfied.

On the initial data ρ0 : R→ R and u0 : R→ R, we assume that there exist two
constants 0 < w̌ < ŵ <∞, such that

0 ≤ ρ0 ≤ 1, w̌ρ0 ≤ u0 ≤ ŵρ0, (3)

ln(ρ0) ∈ L1(R), TV

(
u0
ρ0

)
< +∞. (4)

Remark 1. Assumptions (3) and (4) on the function ρ0 imply also that the function
ρ0 − 1 belongs to L1(R).

We use the following definition of weak solution of problem (1).
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Definition 2.1 (Weak solutions). Given ρ0 ∈ L∞ (R;R) and u0 ∈ L∞ (R;R), we
say that the couple (ρ, u) is a weak solution of (1) if the following statements hold:

1. ρ ∈ L∞ ((0,+∞)× R;R);
2. u ∈ L∞ ((0,+∞)× R;R);
3. for every ϕ ∈ C∞c ([0,+∞)× R;R),∫ +∞

0

∫
R

[ρ(t, x)∂tϕ(t, x)+u(t, x)ρ(t, x)f (ρ(t, x)) ∂xϕ(t, x)]dx dt+

∫
R
ρ0(x)ϕ(0, x)dx=0;

4. for every ϕ ∈ C∞c ([0,+∞)× R;R),∫ +∞

0

∫
R

[
u(t, x)∂tϕ(t, x)+u2(t, x)f (ρ(t, x)) ∂xϕ(t, x)

]
dxdt+

∫
R
u0(x)ϕ(0, x) dx = 0.

Let us consider the following viscous approximation of (1):
∂tρε + ∂x(uερεf(ρε)) = ε∂2xxρε, t > 0, x ∈ R,
∂tuε + ∂x(u2εf(ρε)) = ε∂2xxuε, t > 0, x ∈ R,
ρε(0, x) = ρ0,ε(x), x ∈ R,
uε(0, x) = u0,ε(x), x ∈ R,

(5)

where ε > 0 and the initial data ρ0,ε and u0,ε are smooth approximations of ρ0 and
u0, respectively. More precisely we assume:

ρ0,ε, u0,ε ∈ C∞(R;R) for every ε > 0; (6)

ρ0,ε → ρ0, u0,ε → u0 in Lploc(R), 1 ≤ p <∞, and a.e. as ε→ 0; (7)

‖ρ0,ε − 1‖L1(R) ≤ ‖ρ0 − 1‖L1(R) for every ε > 0; (8)

ε ≤ ρ0,ε ≤ 1, w̌ρ0,ε ≤ u0,ε ≤ ŵρ0,ε for every ε > 0; (9)

‖ln(ρ0,ε)‖L1(R) ≤ ‖ln(ρ0)‖L1(R) ,

∥∥∥∥∥
(
u0,ε
ρ0,ε

)′∥∥∥∥∥
L1(R)

≤ TV
(
u0
ρ0

)
for all ε > 0. (10)

The well-posedness of classical solutions of (5) is guaranteed for short time by
the Cauchy-Kowaleskaya theorem (see [37]) and for large times by the classical
parabolic theory (see [18] or [31, Theorem 1.0.2]), provided uniform L∞ bounds for
ρε and uε. These a priori estimates are proved in Lemma 3.1 and imply that ρε
is defined for every t > 0 and that ρε(t, x) is strictly positive for every t > 0 and
x ∈ R.

A key ingredient for the proof is the analysis of the Riemann invariant

wε =
uε
ρε
, (11)

(see [14, Section 7.3] for a definition of Riemann invariants). From (5), we easily
deduce that wε satisfies the equation

∂twε + ρεf(ρε)wε∂xwε = ε∂2xxwε + 2ε
∂xρε∂xwε

ρε
. (12)

Our main result is the following convergence theorem.

Theorem 2.2 (Convergence of the vanishing viscosity approximation). Let us sup-
pose that the assumptions (F), (8), (9), and (10) hold. Then, there exists a sequence
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{εk}k∈N ⊂ (0,∞), εk → 0, and a weak solution (ρ, u) of problem (1), in the sense
of Definition 2.1, such that

ρεk → ρ, uεk → u in Lploc((0,∞)× R), 1 ≤ p <∞,
and a.e. in (0,∞)× R as k →∞,

(13)

where (ρεk , uεk) is a classical solution of the viscous problem (5).

3. A priori estimates and compactness results. In this section, we obtain
several a priori estimates on the functions ρε, uε, solutions of (5), and on the func-
tion wε, defined in (11). For the sake of simplicity, throughout this section, we use
c to denote various constants, which are independent of the parameter ε and of the
time t.

Lemma 3.1 (L∞ estimates on ρε, uε, wε). Let us assume that (F) and (9) hold.
For every t > 0 and x ∈ R, we have that

0 < cε(t) ≤ ρε(t, x) ≤ 1,

w̌ρε(t, x) ≤ uε(t, x) ≤ ŵρε(t, x),

w̌ ≤ wε(t, x) ≤ ŵ,
(14)

where cε(·) is positive and continuous function defined in [0,∞).

Proof. Due to (F) and (9), the functions r = ρε and r = 1 are a solution and a
supersolution (respectively) of the Cauchy problem{

∂tr + ∂x(uεrf(r)) = ε∂2xxr, t > 0, x ∈ R,
r(0, x) = ρ0,ε(x), x ∈ R.

(15)

Therefore, the third inequality of the first line follows from the comparison principle
for parabolic equations (see [18]). Moreover, the functions r = ρε and r = 0 are
a solution and a subsolution of the Cauchy problem (15), respectively; hence, the
comparison principle implies that 0 ≤ ρε(t, x).

Due to (9), the functions r = uε − w̌ρε and r = 0 are respectively a solution and
a subsolution of the Cauchy problem{

∂tr + ∂x(ruεf(ρε)) = ε∂2xxr, t > 0, x ∈ R,
r(0, x) = u0,ε(x)− w̌ρ0,ε(x), x ∈ R.

Using the comparison principle for parabolic equations (see [18]), we gain w̌ρε ≤ uε.
An analogous argument proves that uε ≤ ŵρε.

For the proof that ρε(t, x) ≥ cε(t) for every t > 0 and x ∈ R, we use the same
argument as in [31, Theorem 1.0.2]. The first equation in (5), with the change of
variable qε = log(ρε), can be written as

∂tqε = ε∂2xxqε + ε

(
∂xqε −

uεf (eqε)

2ε

)2

− u2ε (f (eqε))
2

4ε
− ∂x (uεf (eqε)) ,

so that, using the heat kernel Kε (t, x) = 1
2
√
πεt
e−

x2

4εt and (9),

qε(t, x) =

∫
R
Kε (t, x− y) log (ρ0,ε(y)) dy

+ ε

∫ t

0

∫
R
Kε (t− τ, x− y) ε

(
∂yqε (τ, y)−

uε(τ, y)f
(
eqε(τ,y)

)
2ε

)2

dy dτ
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−
∫ t

0

∫
R
Kε (t− τ, x− y)

u2ε(τ, y)f2
(
eqε(τ,y)

)
4ε

dy dτ

−
∫ t

0

∫
R
Kε (t− τ, x− y) ∂y

(
uε (τ, y) f

(
eqε(τ,y)

))
dy dτ

≥ log (ε)−
∫ t

0

∫
R
Kε (t− τ, x− y)

u2ε(τ, y)f2
(
eqε(τ,y)

)
4ε

dy dτ

+

∫ t

0

∫
R
∂yKε (t− τ, x− y)uε (τ, y) f

(
eqε(τ,y)

)
dy dτ.

From (F) and the estimate 0 ≤ uε ≤ ŵρε ≤ ŵ, we deduce that∫ t

0

∫
R
Kε (t− τ, x− y)

u2ε(τ, y)f2
(
eqε(τ,y)

)
4ε

dy dτ

≤
ŵ2 ‖f‖2L∞(R)

4ε

∫ t

0

∫
R
Kε (t− τ, x− y) dy dτ =

ŵ2 ‖f‖2L∞(R)

4ε
t.

Moreover, using again (F) and the estimate 0 ≤ uε ≤ ŵρε ≤ ŵ, we get∣∣∣∣∫ t

0

∫
R
∂yKε (t− τ, x− y)uε (τ, y) f

(
eqε(τ,y)

)
dy dτ

∣∣∣∣
≤ ŵ ‖f‖L∞(R)

∫ t

0

∫
R
|∂yKε (t− τ, x− y)| dy dτ ≤ 2√

επt
tŵ ‖f‖L∞(R) .

Therefore, for x ∈ R and t > 0, we conclude that

qε(t, x) ≥ log(ε)−
ŵ2 ‖f‖2L∞(R)

4ε
t− 2√

επ

√
tŵ ‖f‖L∞(R) .

So, for every x ∈ R and t > 0,

ρε(t, x) ≥ cε(t) > 0

with

cε(t) = ε exp

(
−
ŵ2 ‖f‖2L∞

4ε
t− 2√

επ

√
tŵ ‖f‖L∞(R)

)
.

This proves the first inequality in the first line of (14).
Finally, the third line of (14) follows from the second one, the definition of wε

given in (11), and the fact that ρε > 0.

Lemma 3.2 (L1 estimates on ρε − 1). Let us assume that (F), (8), and (9) hold.
For every t ≥ 0, we have that

‖ρε(t, ·)− 1‖L1(R) ≤ ‖ρ0 − 1‖L1(R) . (16)

Proof. Lemma 3.1 implies that 1−ρε is positive. Therefore, using (5) and observing

lim
x→±∞

ρε(t, x)f(ρε(t, x)) = f(1) = 0, lim
x→±∞

∂xρε(t, x) = 0,

due to (14), we deduce that

d

dt

∫
R
|ρε − 1|dx =

d

dt

∫
R
(1− ρε) dx = −

∫
R
∂tρε dx

=−
∫
R
∂x (ε∂xρε − uερεf(ρε)) dx = 0.

An integration over (0, t) and assumption (8) give the claim.
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Lemma 3.3 (BV estimate on wε). Let us assume that (10) holds. We have that

‖∂xwε(t, ·)‖L1(R) ≤ TV
(
u0
ρ0

)
, (17)

for every t ≥ 0.

Proof. Differentiating (12) with respect to x, we get

∂2txwε + ∂x(ρεf(ρε)wε∂xwε) = ε∂3xxxwε + 2ε∂x

(
∂xρε∂xwε

ρε

)
.

In light of [2, Lemma 2],

d

dt

∫
R
|∂xwε|dx =

∫
R
∂2txwε sign (∂xwε) dx

= ε

∫
R
∂3xxxwε sign (∂xwε) dx+2ε

∫
R
∂x

(
∂xρε∂xwε

ρε

)
sign (∂xwε) dx

−
∫
R
∂x(ρεf(ρε)wε∂xwε) sign (∂xwε) dx

= −ε
∫
R

(∂2xxwε)
2δ{∂xwε=0} dx︸ ︷︷ ︸
≤0

−2ε

∫
R

∂xρε∂xwε
ρε

∂2xxwεδ{∂xwε=0} dx︸ ︷︷ ︸
=0

+

∫
R
ρεf(ρε)wε∂xwε∂

2
xxwεδ{∂xwε=0} dx︸ ︷︷ ︸

=0

≤ 0,

where δ{∂xwε=0} is the Dirac delta measure concentrated on the set {∂xwε = 0}.
An integration over (0, t) and assumption (10) give the claim.

Lemma 3.4 (L1 estimate on ln(ρε)). Assume (F), (8), (9), and (10) hold. We
have that

‖ln(ρε(t, ·))‖L1(R) + ε

∫ t

0

∥∥∥∥∂xρερε
(s, ·)

∥∥∥∥2
L2(R)

ds

≤‖ln(ρ0)‖L1(R) + t TV

(
u0
ρ0

)∫ 1

0

|f(ξ)|dξ,
(18)

for every t ≥ 0.

Proof. Using the definition of wε (see (11)) in (5), we get

∂tρε + ∂x(wερ
2
εf(ρε)) = ε∂2xxρε. (19)

Let us consider the function F : (0,+∞)→ R defined, for every ξ > 0, by

F (ξ) =

∫ ξ

1

f(s) ds.

Thanks to (14) and (17), we have that

d

dt

∫
R
| ln(ρε)|dx =− d

dt

∫
R

ln(ρε) dx = −
∫
R

∂tρε
ρε

dx
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=− ε
∫
R

∂2xxρε
ρε

dx+

∫
R

∂x(wερ
2
εf(ρε))

ρε
dx

=− ε
∫
R

(∂xρε)
2

ρ2ε
dx+

∫
R
wε f(ρε)∂xρε︸ ︷︷ ︸

∂xF (ρε)

dx

=− ε
∫
R

(∂xρε)
2

ρ2ε
dx−

∫
R
∂xwεF (ρε) dx

≤− ε
∫
R

(∂xρε)
2

ρ2ε
dx+ ‖F‖L∞(0,1)

∫
R
|∂xwε|dx.

An integration over (0, t) and (17) give the claim.

Lemma 3.5 (L2
loc estimate on wε). Let us assume that the assumptions (F), (8),

(9), and (10) hold. Let χ ∈ C∞c (R) be a non negative cut-off function with compact
support. Then there exists a positive constant c, possibly depending on the function
χ, such that

‖wε(t, ·)
√
χ‖2L2(R) + ε

∫ t

0

‖∂xwε(s, ·)
√
χ‖2L2(R) ds ≤ c(t+ 1), (20)

for every t ≥ 0.

Proof. Thanks to (12), (14), and (17), we have that

d

dt

∫
R

w2
ε

2
χ(x) dx =

∫
R
∂twεwεχ(x) dx

=ε

∫
R
∂2xxwεwεχ(x) dx+ 2ε

∫
R

∂xρε∂xwε
ρε

wεχ(x) dx

−
∫
R
ρεf(ρε)w

2
ε∂xwεχ(x) dx

=− ε
∫
R

(∂xwε)
2χ(x) dx− ε

∫
R
∂xwεwεχ

′(x) dx

+ 2ε

∫
R

∂xρε∂xwε
ρε

wεχ(x) dx−
∫
R
ρεf(ρε)w

2
ε∂xwεχ(x) dx

≤− ε

2

∫
R
(∂xwε)

2χ(x) dx

+ 4ε

∫
R

(
∂xρε
ρε

)2

w2
εχ(x) dx+ c

∫
R
|∂xwε|dx

≤− ε

2

∫
R
(∂xwε)

2χ(x) dx+ cε

∫
R

(
∂xρε
ρε

)2

dx+ c.

Integrating over (0, t) and using (10) and (18), we deduce that

‖wε(t, ·)
√
χ‖2L2(R) + ε

∫ t

0

‖∂xwε(s, ·)
√
χ‖2L2(R) ds

≤
∥∥∥∥u0,ερ0,ε

√
χ

∥∥∥∥2
L2(R)

+ εc

∫ t

0

∥∥∥∥∂xρερε
(s, ·)

∥∥∥∥2
L2(R)

ds+ ct

≤c(t+ 1),

where we used assumption (9) and Lemma 3.4 in the last line. This concludes the
proof.
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3.1. Compactness of wε. This subsection deals with the compactness of {wε}ε>0,
which is a preliminary step for the proof of Theorem 2.2. We use the following result,
due to Murat (see [32] or [14, Lemma 17.2.2]).

Theorem 3.6 (Murat’s compact embedding). Let Ω be a bounded and open subset
of RN with N ≥ 2. Assume {Ln}n∈N is a bounded sequence of distributions in

W−1,∞(Ω). Suppose also that, for every n ∈ N, there exists a decomposition

Ln = L1,n + L2,n,

where {L1,n}n∈N lies in a compact subset of H−1loc (Ω) and {L2,n}n∈N lies in a bounded

subset of Mloc(Ω). Then {Ln}n∈N belongs to a compact subset of H−1loc (Ω).

The following result about the compactness of wε holds.

Lemma 3.7 (Compactness of {wε}ε>0). Let us assume that the assumptions (F),
(8), (9), and (10) hold. Then, there exist a sequence {εk}k∈N ⊂ (0,∞), εk → 0,
and a function

w ∈ L∞((0,∞)× R) ∩ L∞(0,∞;BV (R)),

such that

wεk → w in Lploc((0,∞)× R), 1 ≤ p <∞,
and a.e. in (0,∞)× R,

(21)

as k → +∞.

Proof. Note that the equation (12) for wε can be rewritten in the form

∂twε = ∂x(
√
ε(
√
ε∂xwε)) + 2ε

∂xρε∂xwε
ρε

− ρεf(ρε)wε∂xwε. (22)

Thanks to Lemma 3.1,

{∂twε}ε>0 is bounded in W−1,∞((0,∞)× R). (23)

Observing that {
√
ε∂xwε}ε>0 is bounded in L2

loc((0,∞)× R) (see Lemma 3.5), we
gain

{∂x(
√
ε(
√
ε∂xwε))}ε>0 compact in H−1loc ((0,∞)× R). (24)

Using Lemmas 3.4 and 3.5,{
ε
∂xρε∂xwε

ρε

}
ε>0

bounded in L1
loc((0,∞)× R). (25)

Finally, Lemmas 14 and 3.3 guarantee that

{−ρεf(ρε)wε∂xwε}ε>0 is bounded in L1
loc((0,∞)× R). (26)

Therefore, in light of Theorem 3.6, we deduce that

{∂twε}ε>0 is compact in H−1loc ((0,∞)× R). (27)

On the other hand, from Lemma 3.3, we deduce that {∂xwε}ε>0 is bounded in
L1
loc((0,∞)×R) and, by Lemma 3.1, it is bounded in W−1,∞((0,∞)×R). Therefore,

Theorem 3.6 yields that

{∂xwε}ε>0 is compact in H−1loc ((0,∞)× R). (28)

This concludes the proof.
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4. Proof of the main theorem. In this section, we prove Theorem 2.2. To this
end, first we state – in our setting – a compensated compactness result due to Panov
(see [33, Theorem 2.5 and Remark 1]), which improves the classical compensated
compactness theorem by Tartar (see [36] or [14, Lemma 17.4.1]).

Theorem 4.1 (Panov’s compensated compactness). Let {vν}ν>0 be a family of
functions defined on (0,∞)×R and w the limit function introduced in Lemma 3.7.
If {vν}ν∈N lies in a bounded set of L∞loc((0,∞)×R) and if, for every constant c ∈ R,
the family

{∂t |vν − c|+ ∂x(sign (vν − c) (g(vν)− g(c))w)}ν>0 ,

where g is a genuinely nonlinear function, lies in a compact set of H−1loc ((0,∞)×R),
then there exist a sequence {νk}k∈N ⊂ (0,∞), νk → 0, and a map v ∈ L∞((0,∞)×
R) such that

vνk → v in Lploc((0,∞)× R), 1 ≤ p <∞,
and a.e. in (0,∞)× R,

as k →∞.

Proof of Theorem 2.2. We begin by proving the compactness of {ρε}ε>0. Let c ∈ R
be fixed. We claim that the family

{∂t |ρεk − c|+ ∂x [sign (ρεk − c) (g(ρεk)− g(c))w]}k∈N
is compact in H−1loc ((0,+∞)× R), where g is the function defined in (2), which
is genuinely nonlinear due to assumption (F). For simplicity, we introduce the
following notations:

η0(ξ) = |ξ − c| − |c| ,
q0(ξ) = sign (ξ − c)

(
g(ξ)− g(c)

)
+ sign (−c) g(c).

Let us remark that

η0(0) = q0(0) = 0,

∂t |ρεk − c|+ ∂x
[
sign (ρεk − c)

(
g(ρεk)− g(c)

)
w
]

= ∂tη0(ρεk) + ∂x(q0(ρεk)w)− sign (−c) g(c)∂xw.

(29)

Let {(ηε, qε)}ε>0 be a family of maps such that

ηε ∈ C2(R), qε ∈ C2(R),

q′ε = g′η′ε, η′′ε ≥ 0,

‖ηε − η0‖L∞(0,1) ≤ ε, ‖η′ε − η′0‖L1(0,1) ≤ ε,
‖η′ε‖L∞(0,1) ≤ 1, ηε(0) = qε(0) = 0,

(30)

for every ε > 0.
Using (2), (5), (11), and (30), we deduce that

∂tη0(ρεk) + ∂x(q0(ρεk)w)

= ∂tηεk(ρεk) + ∂x(qεk(ρεk)wεk) + ∂t (η0(ρεk)− ηεk(ρεk))︸ ︷︷ ︸
I4,k

+ ∂x((q0(ρεk)− qεk(ρεk))w)︸ ︷︷ ︸
I5,k

+ ∂x(qεk(ρεk)(w − wεk))︸ ︷︷ ︸
I6,k

= η′εk(ρεk)∂tρεk + q′εk(ρεk)wεk∂xρεk + qεk(ρεk)∂xwεk + I4,k + I5,k + I6,k
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= εkη
′
εk

(ρεk)∂2xxρεk − η′εk(ρεk)∂x (wεkg (ρεk)) + g′(ρεk)η′εk(ρεk)wεk∂xρεk

+ qεk(ρεk)∂xwεk + I4,k + I5,k + I6,k

= εk∂
2
xxηεk (ρεk)︸ ︷︷ ︸
I2,k

−εkη′′εk (ρεk) (∂xρεk)
2︸ ︷︷ ︸

I3,k

−η′εk (ρεk) g (ρεk) ∂xwεk

− η′εk (ρεk) g′ (ρεk)wεk∂xρεk + η′εk (ρεk) g′ (ρεk)wεk∂xρεk

+ qεk(ρεk)∂xwεk + I4,k + I5,k + I6,k

= −
(
η′εk (ρεk) g (ρεk)− qεk (ρεk)

)
∂xwεk︸ ︷︷ ︸

I1,k

+I2,k + I3,k + I4,k + I5,k + I6,k.

By Lemma 3.1, Lemma 3.3, and (30), there exist c1 > 0 and c2 > 0 such that

‖I1,k‖L1((0,T )×R) ≤ c1
∫ T

0

‖∂xwεk(s)‖L1(R) ds ≤ c2T,

proving that I1,k is bounded in L1((0, T )× R) for every T > 0.
By Lemma 3.1, Lemma 3.4, and (30), we deduce that there exist c1 > 0 and

c2 > 0 such that, for every T > 0,

ε2k

∫ T

0

∫
R
|∂xηεk (ρεk)|2 dx dt = ε2k

∫ T

0

∫
R

∣∣ρ2εkη′εk(ρεk)
∣∣2 ∣∣∣∣∂xρεkρεk

∣∣∣∣2 dxdt

≤ c1 ε2k
∫ T

0

∥∥∥∥∂xρεkρεk
(t, ·)

∥∥∥∥2
L2(R)

dt

≤ εk c1 c2 (1 + T ),

proving that I2,k → 0 as k → +∞ in H−1((0, T )× R).
By Lemma 3.1 and Lemma 3.4, there exists c > 0 such that, for every T > 0,

εk

∫ T

0

∫
R
|η′′εk(ρεk)| |∂xρεk |

2
dx dt = εk

∫ T

0

∫
R
|ρ2εkη

′′
εk

(ρεk)|
∣∣∣∣∂xρεkρεk

∣∣∣∣2 dxdt

≤ c (1 + T ) ,

proving that I3,k is bounded in L1
loc((0,∞)× R).

By Lemma 3.1 and (30), there exists c > 0 such that

‖η0(ρεk)− ηεk(ρεk)‖L∞((0,∞)×R) ≤‖η0 − ηεk‖L∞(0,1) ≤ εk,
‖(q0(ρεk)− qεk(ρεk))w‖L∞((0,∞)×R) ≤‖q0 − qεk‖L∞(0,1) ŵ

≤ŵ ‖g′‖L∞(0,1)

∥∥η′εk − η′0∥∥L1(0,1)
≤ c εk,

proving that both I4,k → 0 and I5,k → 0 as k → +∞ in H−1loc ((0,∞)× R).
Finally, (30) implies that, for every ξ ∈ (0, 1),

|qεk(ξ)| ≤
∫ 1

0

|g′(s)|
∣∣η′εk(s)

∣∣ ds ≤
∫ 1

0

|g′(s)| ds ≤ c,

for a suitable constant c > 0. By Lemma 3.1 and Lemma 3.7, for every set K which
is compactly embedded in (0,∞)× R, we get

‖qεk(ρεk)(w − wεk)‖L2(K) ≤‖qεk(ρεk)‖L∞(K) ‖w − wεk‖L2(K)

≤c ‖w − wεk‖L2(K),

and so
I6,k → 0 in H−1loc ((0,∞)× R).
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Having proved that the family

{∂t |ρεk − c|+ ∂x [sign (ρεk − c) (g(ρεk)− g(c))w]}k∈N
is compact in H−1loc ((0,+∞)× R), the compactness of {ρε}ε>0 follows from Theo-
rem 4.1. This, together with the compactness of {wε}ε>0 established in Lemma 3.7,
yields the compactness of {uε}ε>0 since uε = wερε (see (11)).

In conclusion, we have proved that there exists (u, ρ) ∈ L∞((0,∞)× R;R) such
that

ρεk → ρ, uεk → u in Lploc((0,∞)× R), 1 ≤ p <∞,
and a.e. in (0,∞)× R as k →∞.

By Lebesgue’s dominated convergence theorem, we conclude that (ρ, u) is a weak
solution of (1) in the sense of Definition 2.1.
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