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Abstract. We investigate existence of stationary solutions to an aggrega-

tion/diffusion system of PDEs, modelling a two species predator-prey interac-

tion. In the model this interaction is described by non-local potentials that are
mutually proportional by a negative constant −α, with α > 0. Each species is

also subject to non-local self-attraction forces together with quadratic diffusion
effects. The competition between the aforementioned mechanisms produce a

rich asymptotic behavior, namely the formation of steady states that are com-

posed of multiple bumps, i.e. sums of Barenblatt-type profiles. The existence
of such stationary states, under some conditions on the positions of the bumps

and the proportionality constant α, is showed for small diffusion, by using

the functional version of the Implicit Function Theorem. We complement our
results with some numerical simulations, that suggest a large variety in the

possible strategies the two species use in order to interact each other.

1. Introduction. The mathematical modelling of the collective motion through
aggregation/diffusion phenomena has raised a lot of interest in the recent years
and it has been deeply studied for its application in several areas, such as biology
[9, 39, 47, 48], ecology [35, 42, 43], animal swarming [3, 4, 40, 46] sociology and
economics, [18, 49, 50, 51]. One of the common idea in this modelling approach
is that a certain population composed by agents evolves according to long-range
attraction and short-range repulsion forces between agents. We are interested in
modelling the problem of predator-prey interactions, namely we consider two popu-
lations that attract (prey) and repel (predators) each others. The pioneering works
for this problem are the ones by Lotka, [36] and Volterra[54], which describe the
predator-prey interaction via reaction terms in a set of differential equations, pos-
sibly combined with diffusion terms, see [41] and the references therein.

As in [21], in this paper we model predator-prey interactions via a transport
terms rather than a reaction ones as follows: consider N predators located at
X1, . . . , XN ∈ Rn, and M prey at Y1, . . . , YM ∈ Rn with masses mi

X > 0 and
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mi
Y > 0 respectively. We assume that each agent of the same species interacts

under the effect of a radial non-local force that is attractive in the long range and
repulsive in the short range. Moreover, predators are attracted by the prey, while
the latter are subject to a repulsive force from the predators, that is proportional to
the previous one. This set of modelling assumptions leads to the following system
of ODEs:

Ẋi(t) = −
N∑
k=1

mk
X (∇Sr1(Xi(t)−Xk(t)) +∇Sa1 (Xi(t)−Xk(t)))

−
M∑
h=1

mh
Y∇K(Xi(t)− Yh(t)),

Ẏj(t) = −
M∑
h=1

mh
Y (∇Sr2(Xi(t)−Xk(t)) +∇Sa2 (Yj(t)− Yh(t)))

+α

M∑
k=1

mk
X∇K(Yj(t)−Xk(t)),

(1)

with i = 1, . . . , N and j = 1, . . . ,M . The potentials Sa1 and Sa2 are called self-
interaction and model the long-range attraction among agents of the same species.
The potential K is responsible for the predator-prey interaction, and it is called
cross-interaction potential. The coefficient α > 0 models the escape propensity of
prey from the predators. The short-range repulsion among particles of the same
species is modelled by the non-local forces Sr1 and Sr2 , and we can assume that it
scales with the number of particles, Sri (z) = NβS(Nβ/nz) for a smooth functional
S, see [40].

The formal limit when the number of particles tends to infinity leads to the
following system of partial differential equations{

∂tρ = div
(
ρ∇
(
d1ρ− Sa1 ∗ ρ−K ∗ η

))
,

∂tη = div
(
η∇
(
d2η − Sa2 ∗ η + αK ∗ ρ

))
,

(2)

where ρ and η are the densities of predators and prey respectively. Through this
limit the (non-local) short-range repulsion formally turns to a (local) nonlinear
diffusion terms, being d1 and d2 positive constants modelling the spreading velocity,
while the long-range attraction takes into account the non-local self-interactions.
We can therefore lighten the notation by calling Sa1 = Sρ and Sa2 = Sη.

The goal of this paper is to show that the model above catches one of the main
features that occur in nature, namely the formation of spatial patterns where the
predators are surrounded of empty zones and the prey aggregates around, that
is usually observed in fish schools or in flock of sheeps, see [32, 38]. In the fully
aggregative case, namely system (2) with d1 = d2 = 0, the formation of these types
of patterns has been studied in several papers, see [15, 27, 21, 46] and references
therein.

Existence theory for solutions to system of the form (2) can be performed in the
spirit of [10, 20]. In particular, system (2) should be framed in the context of non
symmetrizable systems, for which the Wasserstein gradient flow theory developed
in [1] and adapted to systems in [22] does not work. In [10, 20, 22], the authors
consider different choices for the diffusion part (no diffusion in [22], diagonal non-
linear diffusion in [10] and cross-diffusion with dominant diagonal in [20]), and the
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existence of solutions is proved via an implicit-explicit version of the JKO scheme
[33].

In the following, we reduce our analysis to the one-dimensional setting{
∂tρ = ∂x

(
ρ∂x
(
d1ρ− Sρ ∗ ρ−K ∗ η

))
∂tη = ∂x

(
η∂x
(
d2η − Sη ∗ η + αK ∗ ρ

))
.

(3)

We are interested in the existence of stationary solutions to (3), which are solutions
to the following system{

0 =
(
ρ
(
d1ρ− Sρ ∗ ρ−K ∗ η

)
x

)
x
,

0 =
(
η
(
d2η − Sη ∗ η + αK ∗ ρ

)
x

)
x
,

(4)

as well as their properties, e.g., symmetry, compact support, etc. We shall assume
throughout the paper that d1 = d2 = θ for simplicity. Note that we can always
assume this by a simple scaling argument. Indeed, it is enough to multiply the first

equation in (4) by d2/d1, and setting d2 = θ, S̃ρ = d2
d1
Sρ, K̃ = d2

d1
K and α̃ = d1

d2
α

to get {
0 =

(
ρ
(
θρ− S̃ρ ∗ ρ− K̃ ∗ η

)
x

)
x
,

0 =
(
η
(
θη − Sη ∗ η + α̃K̃ ∗ ρ

)
x

)
x
.

The stationary equation for the one species case, i.e.,

∂tρ = ∂x
(
ρ∂x
(
θρ− S ∗ ρ

))
is studied several papers, see [2, 7, 11, 16] and therein references. In [7] the Krein-
Rutman theorem is used in order to characterise the steady states as eigenvectors
of a certain non-local operator. The authors prove that a unique steady state with
given mass and centre of mass exists provided that θ < ‖K‖L1 , and it exhibits a
shape similar to a Barenblatt profile for the porous medium equation; see [52] and
[24] for the local stability analysis. Similar techniques are used in [8] in order to
partly extend the result to more general nonlinear diffusion, see also [34]. This
approach is used in [6] in order to explore the formation of segregated stationary
states for a system similar to (3) but in presence of cross-diffusion. Unfortunately,
when dealing with systems, it is not possible to reproduce one of the major issues
solved in [7], namely the one-to-one correspondence between the diffusion constant
(eigenvalue) and the support of the steady state. A support-independent existence
result for small diffusion coefficient θ is obtained in [6] by using the generalised
version of the implicit function theorem, see also [5] where this approach is used in
the one species case.

In this paper we apply the aforementioned approach in order to show that station-
ary solutions to (3) are composed of multiple Barenblatt profiles. Let us introduce,
for fixed zρ, zη > 0, the following space

M =
{

(ρ, η) ∈ (L∞ ∩ L1(R))2 : ρ, η ≥ 0, ‖ρ‖L1 = zρ, ‖η‖L1 = zη
}
.

Definition 1.1. We say that a pair (ρ, η) ∈ M is a multiple bumps steady state
to (3) if the pair (ρ, η) solves (4) weakly and there exist two numbers Nρ, Nη ∈ N,
and two families of intervals Iiρ =

[
liρ, r

i
ρ

]
, for i = 1, ..., Nρ, and Ihη =

[
lhη , r

h
η

]
, for

h = 1, ..., Nη such that

• Iiρ ∩ Ijρ = ∅, for i, j = 1, ..., Nρ, i 6= j and Ihη ∩ Ikη = ∅, for h, k = 1, ..., Nη,
h 6= k,
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• ρ and η are supported on

supp(ρ) =

Nρ⋃
i=1

Iiρ and supp(η) =

Nη⋃
i=1

Iiη,

respectively and

ρ(x) =

Nρ∑
i=1

ρi(x)1Iiρ(x) and η(x) =

Nη∑
h=1

ηh(x)1Ihη (x),

where, for i = 1, ..., Nρ and h = 1, ..., Nη, ρi and ηh are even w.r.t the centres
of Iiρ and Ihη respectively, non-negative and C1 functions supported on that
intervals.

Example 1.1. A possible example of steady states as defined above is a steady
state (ρ, η) consisting of three bumps for each one of the pair (ρ, η) (Nρ = Nη = 3),
namely, ρ1, ρ2, ρ3 and η1, η2, η3 respectively, with centers of masses {cmi

ρ := riρ −
liρ}

Nρ
i=1 and {cmi

η := riη − liη}
Nη
i=1 as solutions to system (17). A plot is carried out in

Figure 1 which shows all the properties stated in Definition 1.1.

Remark 1.1. We remark that one should be careful with finding a shape of steady
state. More precisely, one should choose the numbers Nρ, Nη and the centers of

masses {cmi
ρ}
Nρ
i=1 and {cmi

η}
Nη
i=1 such that all the conditions required for the exis-

tence of steady states are satisfied, see Theorem 1.1.

ρ1 ρ2 ρ3

η1
η2 η3

l1η r1η l1ρ r1ρ l2η r2ηl2ρ r2ρ l3ρ r3ρ l3η r3η

Figure 1. A possible example of a stationary solution to (3) with
Nρ = Nη = 3 is plotted as described in Definition 1.1.

In order to simplify the notations, in the following we will denote with l ∈ {ρ, η}
a generic index that recognise one of the two families. Throughout the paper we
shall assume that the kernels satisfy the following:

(A1) Sρ, Sη and K are C2(R) functions.
(A2) Sρ, Sη and K are radially symmetric and decreasing w.r.t. the radial variable.
(A3) Sρ, Sη and K are non-negative, with finite L1-norm supported on the whole

real line R.

Note that assumption (A2) together with the sign in front of the nonlocal terms
Sρ and K (in the first equation) and Sη in system (3), give the effect of an attractive
potential, i.e. a radial interaction potential G(x) = g(|x|) for some g : [0,+∞)→ R,
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such that g′(r) > 0 for r > 0. For K in the second equation we obtain the effect of
a repulsive potential, i.e. g′(r) < 0 for r > 0.

The main result of the paper is the following

Theorem 1.1. Assume that Sρ, Sη and K are interaction kernels are under the
assumptions (A1), (A2) and (A3). Consider Nρ, Nη ∈ N and let zil be fixed positive
numbers for i = 1, 2, · · · , Nl, and l ∈ {ρ, η}. Consider two families of real numbers

{cmi
ρ}
Nρ
i=1 and {cmi

η}
Nη
i=1 such that

(i) {cmi
ρ}
Nρ
i=1 and {cmi

η}
Nη
i=1 are stationary solutions of the purely non-local par-

ticle system, that is, for i = 1, 2, · · · , Nl, for l, h ∈ {ρ, η} and l 6= h,

Bil =

Nl∑
j=1

S′l(cm
i
l − cm

j
l )z

j
l + αl

Nh∑
j=1

K ′(cmi
l − cm

j
h)zjh = 0, (5)

(ii) the following quantities

Di
l = −

Nl∑
j=1

S′′l (cmi
l − cm

j
l )z

j
l − αl

Nh∑
j=1

K ′′(cmi
l − cm

j
h)zjh, (6)

are strictly positive, for all i = 1, 2, · · · , Nl, l, h ∈ {ρ, η} and l 6= h.

where αρ = 1 and αη = −α. Then, there exists a constant θ0 such that for
all θ ∈ (0, θ0) the stationary equation (4) admits a unique solution in the sense of
Definition 1.1 of the form

ρ(x) =

Nρ∑
i=1

ρi(x)1Iiρ(x) and η(x) =

Nη∑
h=1

ηh(x)1Ihη (x)

where

• each interval Iil is symmetric around cmi
l for all i = 1, 2, · · · , Nl, l ∈ {ρ, η},

• ρi and ηj are C1, non-negative and even w.r.t the centres of Iiρ and Ijη respec-

tively, with masses ziρ and zjη, for i = 1, ..., Nρ and j = 1, ..., Nη,
• the solutions ρ and η have fixed masses

zρ =

Nρ∑
i=1

ziρ and zη =

Nη∑
i=1

ziη,

respectively.

The paper is structured as follows. In Section 2 we recall the basics notions on
optimal transport and we introduce the p-Wasserstein distances in spaces of proba-
bility measures. Then, we recall the strategy for proving existence to systems of the
form (2). The remaining part of the Section is devoted to a preliminary and partial
existence analysis of steady states via the Krein-Rutman theorem of a particular
type of stationary solutions that we call mixed steady state. Section 3 is devoted
to the proof of Theorem 1.1 in which existence and uniqueness results for multiple
bumps stationary solutions are proved in case of small diffusion coefficient using the
Implicit Function Theorem. We conclude the paper with Section 4, complementing
our results with numerical simulations that also show interesting stability issues of
the stationary states, namely transitions between states and others effects such as
traveling waves profiles.
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2. Preliminary results.

2.1. Tools in optimal transport. We start collecting preliminary concepts on
the Wasserstein distance. Let P(Rn) be the space of probability measures on Rn
and fix p ∈ [1,+∞). The space of probability measures with finite p-moment is
defined by

Pp(Rn) =

{
µ ∈P(Rn) : mp(µ) =

∫
Rn
|x|p dµ(x) <∞

}
.

For a measure µ ∈ P(Rn) and a Borel map T : Rn → Rk, denote with T#µ ∈
P(Rn) the push-forward of µ through T , defined by∫

Rk
f(y)dT#µ(y) =

∫
Rn
f(T (x))dµ(x) for all f Borel functions on Rk.

We endow the space Pp(Rn) with the Wasserstein distance, see for instance [1, 45,
53]

W p
p (µ, ν) = inf

γ∈Γ(µ,ν)

{∫
Rn×Rn

|x− y|pdγ(x, y)

}
, (7)

where Γ(µ1, µ2) is the class of transport plans between µ and ν, that is the class of
measures γ ∈P(Rn×Rn) such that, denoting by πi the projection operator on the
i-th component of the product space, the marginality condition πi#γ = µi i = 1, 2
is satisfied.

Since we are working in a ‘multi-species’ structure, we consider the product space
Pp(Rn)×Pp(Rn) endowed with a product structure. In the following we shall use
bold symbols to denote elements in a product space. For a p ∈ [1,+∞], we use the
notation

Wp
p(µ,ν) = W p

p (µ1, ν1) +W p
p (µ2, ν2),

with µ = (µ1, µ2),ν = (ν1, ν2) ∈ Pp(Rn) ×Pp(Rn). In the one-dimensional case,
given µ ∈P(R), we introduce the pseudo-inverse variable uµ ∈ L1([0, 1];R) as

uµ(z)
.
= inf

{
x ∈ R : µ((−∞, x]) > z

}
, z ∈ [0, 1], (8)

see [14].

2.2. Weak solutions for the time-dependent system. In the Section 1 we
mentioned that the well-posedness of (3) can be stated according to the results in
[10, 20] in an arbitrary space dimension n. In these papers, the existence of weak
solutions is provided using an implicit-explicit version of the Jordan-Kinderlehrer-
Otto (JKO) scheme [33, 22], that we will sketch in the following. A key point in
this approach is to associate to (3) a relative energy functional

F[µ,ν](ρ, η) =
θ

2

∫
Rn
ρ2 + η2dx− 1

2

∫
Rn
ρSρ ∗ ρdx−

1

2

∫
Rn
ηSη ∗ ηdx

−
∫
Rn
ρK ∗ µdx+ α

∫
Rn
ηK ∗ νdx,

for a fixed reference couple of measures (µ, ν). We state our definition of weak
measure solution for (3), in the space P2(Rn)2 := Pp(Rn)×Pp(Rn).

Definition 2.1. A curve µ = (ρ(·), η(·)) : [0,+∞) −→P2(Rn)
2

is a weak solution
to (3) if

(i) ρ, η ∈ L2([0, T ] × Rn) for all T > 0, and ∇ρ, ∇η ∈ L2([0,+∞) × Rn) for
i = 1, 2,
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(ii) for almost every t ∈ [0,+∞) and for all φ, ϕ ∈ C∞c (Rn), we have

d

dt

∫
Rn
φρdx = −θ

∫
Rn
ρ∇ρ · ∇φdx+

∫
Rn
ρ (∇Sρ ∗ ρ+∇K ∗ η)∇φdx,

d

dt

∫
Rn
ϕηdx = −θ

∫
Rn
η∇η · ∇ϕdx+

∫
Rn
η (∇Sη ∗ η − α∇K ∗ ρ)∇φdx.

Theorem 2.1. Assume that (A1)-(A3) are satisfied. Let µ0 = (ρ1,0, ρ2,0) ∈
P2(Rn)

2
such that

F[µ0] (µ0) < +∞.
Then, there exists a weak solution to (3) in the sense of Definition 2.1 with µ(0) =
µ0.

As already mentioned the proof of Theorem 2.1 is a special case of the results in
[10, 20] and consists in the following main steps:

1. Let τ > 0 be a fixed time step and consider the initial datum µ0 ∈P2(Rn)
2
,

such that F[µ0] (µ0) < +∞. Define a sequence
{
µkτ
}
k∈N recursively: µ0

τ = µ0

and, for a given µkτ ∈P2(Rn)
2

with k ≥ 0, we choose µk+1
τ as follows:

µk+1
τ ∈ argmin

µ∈P2(Rn)2

{
1

2τ
W2

2(µkτ ,µ) + F[µkτ ](µ)

}
. (9)

For a fixed T > 0, set N :=
[
T
τ

]
, and

µτ (t) = (ρτ (t), ητ (t)) = µkτ t ∈ ((k − 1)τ, kτ ], k ∈ N,
with µkτ defined in (9).

2. There exists an absolutely continuous curve µ̃ : [0, T ] → P2(Rn)
2

such that
the piecewise constant interpolation µτ admits a sub-sequence µτh narrowly
converging to µ̃ uniformly in t ∈ [0, T ] as h→ +∞. This is a standard result
coming from the minimising condition (9).

3. There exist a constant C > 0 such that∫ T

0

[
||ρτ (t, ·)||2H1(Rn) + ||ητ (t, ·)||2H1(Rn)

]
dt ≤ C(T,µ0), (10)

and the sequence µτh : [0,+∞) −→P2(Rn)
2

converges to µ̃ strongly in

L2((0, T )× Rn)× L2((0, T )× Rn).

The estimate in (10) can be deduced by using the so called Flow-interchange
Lemma introduced in [37], see also [25]. In order to deduce the strong con-
vergence we use the extended version of the Aubin-Lions Lemma in [44].

4. The approximating sequence µτh converges to a weak solution µ̃ to (3). This
can be showed considering two consecutive steps in the semi-implicit JKO
scheme (9), i.e. µkτ , µk+1

τ , and perturbing in the following way

µε = (ρε, ηε) = (P ε#ρ
k+1
τ , ηkτ ), (11)

where P ε = id+εζ, for some ζ ∈ C∞c (Rn;Rn) and ε ≥ 0. From the minimizing
property of µk+1

τ we have

0 ≤ 1

2τ

[
W2

2(µk+1
τ ,µε)−W2

2(µkτ ,µ
k+1
τ )

]
+ F[µkτ ](µ

ε)− F[µkτ ](µ
ε). (12)

After some manipulations, sending first ε→ 0 and then τ → 0 the inequality
(12) leads to the first weak formulation in Definition 2.1. Perturbing now on
η and repeating the same procedure we get the required convergence.
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2.3. Stationary states for purely non-local systems. The existence of weak
solutions to the purely non-local systems, i.e.,{

∂tρ = div
(
ρ∇
(
Sρ ∗ ρ+Kρ ∗ η

))
,

∂tη = div
(
η∇
(
Sη ∗ η +Kη ∗ ρ

))
,

(13)

with generic cross-interaction kernels Kρ and Kη is investigated in [22], whereas
studies on the shape of stationary states can be found in [17, 27]. Concerning the
predator-prey modelling and patterns formation, in [15, 46] a minimal version of
(1) has been considered with only one predator and arbitrarily many prey subject
to (different) singular potentials. This model induces the formation of nontrivial
patterns in some way to prevent the action of the predators. In [21] the authors
study existence and stability of stationary states for the purely aggregative version
of system (3), namely equation (3) with θ = 0,{

∂tρ = div
(
ρ∇
(
Sρ ∗ ρ+K ∗ η

))
,

∂tη = div
(
η∇
(
Sη ∗ η − αK ∗ ρ

))
,

(14)

and its relation with the particle system
Ẋi(t) = −

N∑
k=1

mk
X∇Sρ(Xi(t)−Xk(t))−

M∑
k=1

mk
Y∇K(Xi(t)− Yk(t)),

Ẏj(t) = −
M∑
k=1

mk
Y∇Sη(Yj(t)− Yk(t)) + α

N∑
k=1

mk
X∇K(Yj(t)−Xk(t)).

(15)

It is proved that stationary states of system (14) are linear combinations of Dirac’s
deltas, namely ρ̄, η̄ ∈P(Rn), with

(ρ̄, η̄) =

(
N∑
k=1

mk
XδX̄k(x),

M∑
h=1

mh
Y δȲh(x)

)
. (16)

where
{
X̄k

}
k
,
{
Ȳh
}
h

are stationary solutions of system (15), i.e.,
0 =

N∑
k=1

∇Sρ(X̄k − X̄i)m
k
X +

M∑
h=1

∇K(Ȳh − X̄i)m
h
Y

0 =

M∑
h=1

∇Sη(Ȳh − Ȳj)mh
Y − α

N∑
k=1

∇K(X̄k − Ȳj)mk
X

. (17)

for i = 1, ..., N and j = 1, ...,M , see also [29, 30] for a symilar result in the one-
species case. As pointed out in [21], system (17) is not enough to determine a unique
steady state, since the linear combination of the first N equations, weighted with
αmi

X , and the final M equations weighted with coefficients −mj
Y get the trivial

identity 0 = 0. System (17) should be coupled with the quantity

Cα = α

N∑
i=1

mi
XXi −

M∑
j=1

mj
Y Yj (18)

that is a conserved quantities, and therefore one would like to produce a unique
steady state once the quantity Cα is prescribed. Solutions to system (17) will play
a crucial role in the proof of the main Theorem 1.1.
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2.4. Existence of mixed steady state via Krein-Rutman theorem. As a
preliminary result, we now prove the existence of one possible shape of steady
state, that will be a prototype example for the general case. The steady state is
what we can call a mixed steady state, that identifies the case in which the predators
can catch the prey, see Figure 2.

LρLη Rρ Rη

ρ

η

Figure 2. Example of mixed stationary state. Note that by sym-
metry Lρ = −Rρ and Lη = −Rη.

The proof of the existence of such steady state follows by using the strong version
of the Krein-Rutman theorem, see [26].

Theorem 2.2 (Krein-Rutman). Let X be a Banach space, K ⊂ X be a solid cone,
such that λK ⊂ K for all λ ≥ 0 and K has a nonempty interior Ko. Let T be
a compact linear operator on X, which is strongly positive with respect to K, i.e.
T [u] ∈ Ko if u ∈ K \ {0}. Then,

(i) the spectral radius r(T ) is strictly positive and r(T ) is a simple eigenvalue with
an eigenvector v ∈ Ko. There is no other eigenvalue with a corresponding
eigenvector v ∈ K.

(ii) |λ| < r(T ) for all other eigenvalues λ 6= r(T ).

As pointed out in [6], using this strategy we can only obtain existence of station-
ary states for a diffusion coefficient that depends on the support, without providing
any one-to-one correspondence between the diffusion constant (eigenvalue) and the
support. Even if non completely satisfactory, the following results give a useful
insight on the possible conditions we can expect in order to get existence of steady
states, see Remark 3.1.

Let us first introduce a proper definition for mixed steady states as in Figure 2.

Definition 2.2. Let 0 < Rρ < Rη be fixed. We call a pair (ρ, η) a mixed steady
state a solution to system (3) with ρ and η in L1∩L∞(R), non-negative, symmetric
and radially decreasing functions with supports

Iρ := supp(ρ) = [−Rρ, Rρ], and Iη := supp(η) = [−Rη, Rη].

Let us now assume that (ρ, η) is a steady state to system (3) as in Definition 2.2,
then (4) can be rephrased as{

θρ(x)− Sρ ∗ ρ(x)−K ∗ η(x) = Cρ x ∈ Iρ
θη(x)− Sη ∗ η(x) + αK ∗ ρ(x) = Cη x ∈ Iη

. (19)
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where Cρ, Cη > 0 are two constants. Differentiating the two equations in (19) w.r.t.
x ∈ supp(ρ) and x ∈ supp(η) respectively, we obtain

θρx =

∫ Rρ

−Rρ
Sρ(x− y)ρy(y)dy +

∫ Rη

−Rη
K(x− y)ηy(y)dy x ∈ Iρ

θηx =

∫ Rη

−Rη
Sη(x− y)ηy(y)dy − α

∫ Rρ

−Rρ
K(x− y)ρy(y)dy x ∈ Iη

. (20)

By symmetry properties of the kernels Sρ, Sη and K and the steady states ρ and
η, for x > 0, we get

θρx =

∫ Rρ

0

(
Sρ(x− y)− Sρ(x+ y)

)
ρy(y)dy

+

∫ Rη

0

(
K(x− y)−K(x+ y)

)
ηy(y)dy,

θηx =

∫ Rη

0

(
Sη(x− y)− Sη(x+ y)

)
ηy(y)dy

− α
∫ Rρ

0

(
K(x− y)−K(x+ y)

)
ρy(y)dy.

(21)

In order to simplify the notations, we set

G̃(x, y) := G(x− y)−G(x+ y), for G = Sρ, Sη,K.

Notice that G̃, under assumptions (A1)-(A3), is a nonnegative function for x, y > 0.
We also set p(x) = −ρx(x) for x ∈ (−Rρ, Rρ) and q(x) = −ηx(x) for x ∈ (−Rη, Rη).
Hence, (21) is rewritten simply as

θp(x) =

∫ Rρ

0

S̃ρ(x, y)p(y)dy +

∫ Rη

0

K̃(x, y)q(y)dy

θq(x) =

∫ Rη

0

S̃η(x, y)q(y)dy − α
∫ Rρ

0

K̃(x, y)p(y)dy

. (22)

Proposition 2.1. Assume that Sρ, Sη,K satisfy (A1), (A2) and (A3) and fix 0 <
Rρ < Rη and 0 < zρ,zη. Assume that Sη and K are strictly concave on [−Rη, Rη]
and [−Rρ, Rρ] respectively. Assume that there exists a constant C such that

C <

∫ Rη
0

S̃η(x, y)h(y)dy∫ Rρ
0

K̃(x, y)k(y)dy
, (23)

for any (k, h) ∈ C1([0, Rρ]) × C1([0, Rη]) with k(0) = h(0) = 0 and k′(0) > 0,
k(x) > 0 for all x ∈ (0, Rρ), and h′(0) > 0, h(x) > 0 for all x ∈ (0, Rη). Then,
there exists a unique mixed steady state (ρ, η) in the sense of Definition 2.2 to system
(3) with θ = θ(Rρ, Rη) > 0, provided that

α < min

{
C ,
−S′η(Rη)zη

−R2
ηK
′′(0)zρ

}
,

where zρ and zη are masses of ρ and η respectively.
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Proof. Let us first introduce the following Banach space

XRρ,Rη =
{

(p, q) ∈ C1([0, Rρ])× C1([0, Rη]) : p(0) = q(0) = 0
}
,

endowed with the W 1,∞-norm for the two components p and q. Define the operator
TRρ,Rη [P ] on the Banach space XRρ,Rη as

TRρ,Rη [P ] := (f, g) ∈ C1([0, Rρ])× C1([0, Rη]),

where P denotes the elements P = (p, q) ∈ XRρ,Rη , and (f, g) are given by

f(x) =

∫ Rρ

0

S̃ρ(x, y)p(y)dy +

∫ Rη

0

K̃(x, y)q(y)dy for x ∈ [0, Rρ],

g(x) =

∫ Rη

0

S̃η(x, y)q(y)dy − α
∫ Rρ

0

K̃(x, y)p(y)dy for x ∈ [0, Rη].

The assumptions on the kernels ensure that the operator TRρ,Rη is compact on the

Banach space XRρ,Rη . Indeed, as the operator TRρ,Rη is defined on a space of C1

functions defined on compact intervals, and since the kernels Sρ, Sη,K are all in C2,
which is from assumption (B1), defined in the operator on compact intervals, then
using Arzelá’s theorem, it is easy to prove that TRρ,Rη maps bounded sequences in
XRρ,Rη into pre-compact ones. Now, consider the subset KRρ,Rη ⊆ XRρ,Rη defined
as

KRρ,Rη =
{
P ∈ XRρ,Rη : p ≥ 0, q ≥ 0

}
.

It can be shown that this set is indeed a solid cone in KRρ,Rη . Moreover, we have
that

HRρ,Rη =
{
P ∈ KRρ,Rη : p′(0) > 0, p(x) > 0 for all x ∈ (0, Rρ), and

q′(0) > 0, q(x) > 0 for all x ∈ (0, Rη)
}
⊂

◦
KRρ,Rη ,

where
◦

KRρ,Rη denotes the interior of KRρ,Rη . We now show that the operator
TRρ,Rη is strongly positive on the solid cone KRρ,Rη in the sense of Theorem 2.2.
Let (p, q) ∈ KRρ,Rη with p, q 6= 0, then by the definition of the operator TRρ,Rη ,
it is easy to see that the first component is non-negative. Concerning the second
component, we have∫ Rη

0

S̃η(x, y)q(y)dy − α
∫ Rρ

0

K̃(x, y)p(y)dy > 0, (24)

if and only if α < C with C as in (23). Next, it is easy to show that the derivative
at x = 0 of the first component is strictly positive. The derivative of the second
component is given by

d

dx

∣∣∣
x=0

(∫ Rη

0

S̃η(x, y)q(y)dy − α
∫ Rρ

0

K̃(x, y)p(y)dy

)

=

∫ Rη

0

S̃η,x(0, y)q(y)dy − α
∫ Rρ

0

K̃x(0, y)p(y)dy

=

∫ Rη

0

(
S′η(−y)− S′η(y)

)
q(y)dy − α

∫ Rρ

0

(
K ′(−y)−K ′(y)

)
p(y)dy

= −2

∫ Rη

0

S′η(y)q(y)dy + 2α

∫ Rρ

0

K ′(y)p(y)dy := A.
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Now, we need to find the condition on α such that A > 0. Chebyshev’s inequality in
the first integral of A and the concavity assumption of Sη on the interval [−Rη, Rη]
yields the bound

− 2

Rη

∫ Rη

0

S′η(y)q(y)dy = − 2

Rη

∫ Rη

0

S′′η (y)η(y)dy

≥

(
1

Rη

∫ Rη

0

−S′′η (y)dy

)(
2

Rη

∫ Rη

0

η(y)dy

)

=
−S′η(Rη)zη

R2
η

.

Using the concavity assumption of K on the interval [−Rρ, Rρ], the other integral
can be easily bounded by

−2

∫ Rρ

0

K ′(y)p(y)dy = −2

∫ Rρ

0

K ′′(y)ρ(y)dy < −K ′′(0)zρ.

Thus, A > 0 holds under the condition

α <
−S′η(Rη)zη

−R2
ηK
′′(0)zρ

. (25)

As a consequence, TRρ,Rη [P ] belongs to HRρ,Rη , which implies that the operator
TRρ,Rη is strongly positive on the solid cone KRρ,Rη . Then, the Krein-Rutman
theorem applies and guarantees the existence of an eigenvalue θ = θ(Rρ, Rη) such
that

TRρ,Rη [P ] = θP,

with an eigenspace generated by one given nontrivial element (p̄, q̄) in the interior
of the solid cone KRρ,Rη . Moreover, by (i) of Theorem 2.2, there exists no other
eigenvalues to TRρ,Rη with corresponding eigenvectors in KRρ,Rη besides the one

with eigenfunction (p̄, q̄), and by (ii) of Theorem 2.2 all other eigenvalues θ̃ with

eigenfunctions in XRρ,Rη satisfy |θ̃| < θ.

Lρ cmρ RρL1
η cm1

η R1
η L2

η cm2
η R2

η

ρ

η η

Figure 3. An example of a separated stationary state.

Remark 2.1. Motivated from the purely aggregative case (13), we actually expect
a more rich behavior for the possible steady states configurations, such as the sep-
arated stationary state in Figure 3. This is expected as a possible winning strategy
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for the prey, since it corresponds to prey finding a safe distance from the predators.
Unfortunately, the symmetrization argument used in the previous proof seems to
fail, since in this case we need to require the symmetry around cm2

η for the convo-
lutions. In the next section we prove the existence and uniqueness for the multiple
bumps stationary state in the sense of Definition 1.1, that includes the mixed and
the separated one, using a completely different approach.

3. Existence for Multiple Bumps Steady States. In this Section we prove the
existence and uniqueness of a multiple bumps steady state in the sense of Definition
1.1 fixing masses and a small diffusion coefficient. Following the approach in [5, 6],
we first formulate the problem in terms of the pseudo-inverse functions and then
we use the Implicit Function Theorem (cf. [19, Theorem 15.1]).

We start rewriting our stationary system in terms of pseudo-inverse functions.
Let (ρ, η) be a solution to the stationary system{

0 =
(
ρ
(
θρ− Sρ ∗ ρ− αρK ∗ η

)
x

)
x
,

0 =
(
η
(
θη − Sη ∗ η − αηK ∗ ρ

)
x

)
x
.

(26)

where αρ = 1 and αη = −α. Assume that (ρ, η) have masses zρ and zη respectively
and denote by cml, l ∈ {ρ, η}, the centres of masses∫

R
xρ(x)dx = cmρ,

∫
R
xη(x)dx = cmη.

Remember that the only conserved quantity in the evolution, together with the
masses, is the joint centre of mass

CMα = αcmρ − cmη, (27)

that we can consider fixed. Define the cumulative distribution functions of ρ and η
as

Fρ(x) =

∫ x

−∞
ρ(x)dx, Fη(x) =

∫ x

−∞
η(x)dx.

Let ul : [0, zl]→ R, l ∈ {ρ, η}, be the pseudo-inverse of Fl, namely

ul(z) = inf{x ∈ R : Fl(x) ≥ z}, l ∈ {ρ, η},

supported on

supp(ul) = [0, zl] := Jl, l ∈ {ρ, η}.

For ρ and η multiple bumps in the sense of Definition 1.1 we can denote the mass
of each bump as∫

ρi(x)dx = ziρ,

∫
ηj(x)dx = zjη, i = 1, 2, . . . , Nρ, j = 1, 2, . . . , Nη,

and the centres of masses accordingly,∫
xρi(x)dx = cmi

ρ,

∫
xηj(x)dx = cmj

η, i = 1, 2, . . . , Nρ, j = 1, 2, . . . , Nη,

and we can always assume that the centres of masses are ordered species by species,
i.e. cmi

l ≥ cmj
l if i ≥ j. Let us consider the case of centres of masses that are
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stationary solutions of the purely non-local particle system (17), that we recall for
the reader convenience,

Nρ∑
j=1

S′ρ(cm
i
ρ − cmj

ρ)z
j
ρ +

Nη∑
j=1

K ′(cmi
ρ − cmj

η)zjη = 0, i = 1, . . . , Nρ,

Nη∑
j=1

S′η(cmi
η − cmj

η)zjη − α
Nρ∑
j=1

K ′(cmi
η − cmj

ρ)z
j
ρ = 0, i = 1, . . . , Nη,

(28)

coupled with the conservation of the joint centre of mass CMα in (27), see the
discussion in Section 2. For such a density the pseudo-inverse ul reads as

ul(z) =

Nl∑
i=1

uil(z)1Jil (z), l ∈ {ρ, η},

where

supp(ul) = [0, zl] = Jl =

Nl⋃
i=1

[
i∑

k=1

zk−1
l ,

i∑
k=1

zkl

]
:=

Nl⋃
i=1

[
ẑil , z̃

i
l

]
:=

Nl⋃
i=1

J il , l ∈ {ρ, η},

with z0
l = 0 and zl =

∑Nl
k=1 z

k
l . We are now in the position of reformulating (26) in

terms of the pseudo-inverse functions as follows:

θ

2
∂z

((
∂zuρ(z)

)−2
)

=

∫
Jρ

S′ρ
(
uρ(z)− uρ(ξ)

)
dξ

+αρ

∫
Jη

K ′
(
uρ(z)− uη(ξ)

)
dξ, z ∈ Jρ,

θ

2
∂z

((
∂zuη(z)

)−2
)

=

∫
Jη

S′η
(
uη(z)− uη(ξ)

)
dξ

+αη

∫
Jρ

K ′
(
uη(z)− uρ(ξ)

)
dξ, z ∈ Jη.

(29)

The restriction to z ∈ J il , i = 1, 2, · · · , Nl, and l ∈ {ρ, η}, allow us to rephrase (29)
in the compact form

θ

2
∂z

((
∂zu

i
l(z)

)−2
)

=

Nl∑
j=1

∫
Jjl

S′l
(
uil(z)− u

j
l (ξ)

)
dξ

+ αl

Nh∑
j=1

∫
Jjh

K ′
(
uil(z)− u

j
h(ξ)

)
dξ, z ∈ J il .

(30)

Similar to [5, 6], we suggest the linearization

uil = cmi
l + δvil i = 1, 2, . . . , Nl, and l ∈ {ρ, η},

with vil , being odd functions defined on J il . Using this ansatz in (30), with the
scaling θ = δ3 we have

δ

2
∂z

((
∂zv

i
l(z)

)−2
)

=

Nl∑
j=1

∫
Jjl

S′l

(
cmi

l − cm
j
l + δ

(
vil(z)− v

j
l (ξ)

))
dξ

+ αl

Nh∑
j=1

∫
Jjh

K ′
(
cmi

l − cm
j
h + δ

(
vil(z)− v

j
h(ξ)

))
dξ.

(31)
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Multiplying (31) by δ∂zv
i
l , and taking the primitives w.r.t. z, we obtain

δ2

∂zvil(z)
=

Nl∑
j=1

∫
Jjl

Sl

(
cmi

l − cm
j
l + δ

(
vil(z)− v

j
l (ξ)

))
dξ

+ αl

Nh∑
j=1

∫
Jjh

K
(
cmi

l − cm
j
h + δ

(
vil(z)− v

j
h(ξ)

))
dξ +Ail, z ∈ J il ,

(32)

where Ail are the integration constants. In order to recover the constants Ail, we
substitute z̃il into equation (32). Denoting by vil(z̃

i
l ) = λil, we obtain

Ail = −
Nl∑
j=1

∫
Jjl

Sl

(
cmi

l−cm
j
l + δ

(
λil − v

j
l (ξ)

))
dξ

− αl
Nh∑
j=1

∫
Jjh

K
(
cmi

l − cm
j
h + δ

(
λil − v

j
h(ξ)

))
dξ.

(33)

Next, we set Gl and H such that G′l = Sl and H ′ = K, with Gl, H to be odd and
satisfy Gl(0) = H(0) = 0. Then, multiplying (32) again by δ∂zv

i
l and taking the

primitives w.r.t. z ∈ J il , we obtain

δ3z =

Nl∑
j=1

∫
Jjl

Gl

(
cmi

l − cm
j
l + δ

(
vil(z)− v

j
l (ξ)

))
dξ

+ αl

Nh∑
j=1

∫
Jjh

H
(
cmi

l − cm
j
h + δ

(
vil(z)− v

j
h(ξ)

))
dξ +Ailδv

i
l(z) + βil , z ∈ J il .

(34)
Let us denote with z̄il the middle point of each interval J il . Then, in order to recover
the integration constants βil , we substitute z̄il in (34) which yields

βil = δ3z̄il −
Nl∑
j=1

∫
Jjl

Gl
(
cmi

l − cm
j
l − δv

j
l (ξ)

)
dξ

− αl
Nh∑
j=1

∫
Jjh

H
(
cmi

l − cm
j
h − δv

j
h(ξ)

)
dξ.

(35)
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As a consequence of all above computations, we get the following relation for z ∈ J il ,

δ3(z − z̄il )

=

Nl∑
j=1

∫
Jjl

Gl

(
cmi

l − cm
j
l + δ

(
vil(z)− v

j
l (ξ)

))
−Gl

(
cmi

l − cm
j
l − δv

j
l (ξ)

)
dξ

− δvil(z)
Nl∑
j=1

∫
Jjl

Sl

(
cmi

l − cm
j
l + δ

(
λil − v

j
l (ξ)

))
dξ

+ αl

Nh∑
j=1

∫
Jjh

H
(
cmi

l − cm
j
h + δ

(
vil(z)− v

j
h(ξ)

))
−H

(
cmi

l − cm
j
h − δv

j
h(ξ)

)
dξ

− δvil(z)αl
Nh∑
j=1

∫
Jjh

K
(
cmi

l − cm
j
h + δ

(
λil − v

j
h(ξ)

))
dξ.

(36)

If we define, for p = (v1
ρ, . . . , v

Nρ
ρ , v1

η, . . . , v
Nη
η )

Fil [p; δ](z)

= z̄il − z + δ−3

[
Nl∑
j=1

∫
Jjl

Gl

(
cmi

l − cm
j
l + δ

(
vil(z)− v

j
l (ξ)

))
−Gl

(
cmi

l − cm
j
l − δv

j
l (ξ)

)
dξ

− δvil(z)
Nl∑
j=1

∫
Jjl

Sl

(
cmi

l − cm
j
l + δ

(
λil − v

j
l (ξ)

))
dξ

+ αl

Nh∑
j=1

∫
Jjh

H
(
cmi

l − cm
j
h + δ

(
vil(z)− v

j
h(ξ)

))
−H

(
cmi

l − cm
j
h − δv

j
h(ξ)

)
dξ

− δvil(z)αl
Nh∑
j=1

∫
Jjh

K
(
cmi

l − cm
j
h + δ

(
λil − v

j
h(ξ)

))
dξ

]
, z ∈ J il ,

(37)

we have that (30) reduces to the equation Fil [p; δ](z) = 0. In the following we
compute the Taylor expansion of Fil [p; δ](z) around δ = 0. Let us begin with the
first integral on the r.h.s. of (37), i.e.,∫

Jjl

Gl

(
cmi

l − cm
j
l + δ

(
vil(z)− v

j
l (ξ)

))
−Gl

(
cmi

l − cm
j
l − δv

j
l (ξ)

)
dξ

=
[
Sl(cm

i
l − cm

j
l )δv

i
l(z) +

δ2

2
S′l(cm

i
l − cm

j
l )(v

i
l(z))

2

+
δ3

6
S′′l (cmi

l − cm
j
l )(v

i
l(z))

3
]
|Jjl |

+

∫
Jjl

δ3

2
S′′l (cmi

l − cm
j
l )
(
vjl (ξ)

)2
vil(z) dξ +R(S′′′l , δ

4),

(38)
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where we used the fact that
∫
Jil
vil(ξ) dξ = 0 and R(S′′′l , δ

4) is a remainder term.

For the second integral we have

− δvil(z)
∫
Jjl

Sl

(
cmi

l − cm
j
l + δ

(
λil − v

j
l (ξ)

))
dξ

=
[
− Sl(cmi

l − cm
j
l )δv

i
l(z)− δ2S′l(cm

i
l − cm

j
l )λ

i
lv
i
l(z)

− δ3

2
S′′l (cmi

l − cm
j
l )(λ

i
l)

2vil(z)
]
|Jjl |

−
∫
Jjl

δ3

2
S′′l (cmi

l − cm
j
l )
(
vjl (ξ)

)2
vil(z) dξ +R(S′′′l , δ

4).

(39)

Summing up the contributions in (38) to (39), we get that the self-interaction part
in (37) reduces to

δ3
[δ−1

2
S′l(cm

i
l − cm

j
l )v

i
l(z)(v

i
l(z)− 2λil)

+
1

6
S′′l (cmi

l − cm
j
l )
(
(vil(z))

3 − 3vil(z)(λ
i
l)

2
)]
|Jjl |+R(S′′′l , δ

4).

(40)

Similarly, for the cross-interaction part we obtain

δ3
[δ−1

2
K ′(cmi

l − cm
j
h)vil(z)(v

i
l(z)− 2λil)

+
1

6
K ′′(cmi

l − cm
j
h)
(
(vil(z))

3 − 3vil(z)(λ
i
l)

2
)]
|Jjh|+R(K ′′′, δ4).

(41)

Putting together the contributions of (40) and (41) in the functional equation (37),
we get

Fil [p; δ](z) = (z̄il − z) +
Di
l

6

(
3vil(z)(λ

i
l)

2 − (vil(z))
3
)

+ δ−1B
i
l

2
vil(z)(v

i
l(z)− 2λil) +R(S′′′l ,K

′′′, δ4),

(42)

where we used the notations introduced in (6) and (5), namely

Di
l = −

Nl∑
j=1

S′′l (cmi
l − cm

j
l )|J

j
l | − αl

Nh∑
j=1

K ′′(cmi
l − cm

j
h)|Jjh|,

and

Bil =

Nl∑
j=1

S′l(cm
i
l − cm

j
l )|J

j
l |+ αl

Nh∑
j=1

K ′(cmi
l − cm

j
h)|Jjh|.

Note that since the values cmi
l satisfy (28) we have that Bil = 0. After the manip-

ulations above, equation Fil [p; 0](z) = 0 reads as

(z̄il − z) +
Di
l

6

(
3vil(z)(λ

i
l)

2 − (vil(z))
3
)

= 0, z ∈ J il , (43)

that gives a unique solution once the value of λil is determined. In order to do that,
we evaluate the functional Fil in the end point z̃il of the corresponding interval

Λil[p; δ] = Fil [p; δ](z̃
i
l ). (44)

Performing Taylor expansions similar to the ones in (38) and (39) we get that

Λil[p; 0] = (z̄il − z̃il ) +
Di
l

3
(λil)

3, (45)
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and we are now in the position to solve
(z̄il − z) +

Di
l

6

(
3vil(z)(λ

i
l)

2 − (vil(z))
3
)

= 0,

(z̄il − z̃il ) +
Di
l

3
(λil)

3 = 0.

(46)

The second equation in (46) admits a solution once we have that Di
l > 0, and λil is

uniquely determined by

λil =

(
3(z̃il − z̄il )

Di
l

)1/3

. (47)

By construction λil ≥ λjl if i ≥ j, and this implies that equation (46) admits the
unique solution v̄il which can be recovered as the pseudo inverse of the following
Barenblatt type profiles

ρ̄i(x) =
Di
ρ

2

(
(λiρ)

2 − (x− cmi
ρ)

2
)
1Iiρ(x), i = 1, . . . , Nρ,

η̄h(x) =
Dh
η

2

(
(λhη)2 − (x− cmh

η)2
)
1Ihη (x), h = 1, . . . , Nη,

(48)

where the intervals Iiρ =
[
liρ, r

i
ρ

]
and Ihη =

[
lhη , r

h
η

]
are determined imposing

likk = cmik
k − λ

ik
k , rikk = cmik

k + λikk , ik = 1, . . . , Nk, k = ρ, η.

We are now ready to reformulate (36) as a functional equation on a proper Banach
space. Consider the spaces

Ωil =
{
v ∈ L∞

([
z̄il , z̃

i
l

))
| v increasing, v(z̄il ) = 0

}
, i = 1, . . . , Nl, l ∈ {ρ, η}, (49)

endowed with the L∞ norm and take the product spaces

Ωl =
Nl×
i=1

Ωil, for l ∈ {ρ, η}.

We now introduce the space Ω defined by

Ω = Ωρ × RNρ × Ωη × RNη , (50)

with elements ω = (v1
ρ, . . . , v

Nρ
ρ , λ1

ρ, . . . , λ
Nρ
ρ , v1

η, . . . , v
Nη
η , λ1

η, . . . , λ
Nη
η ) endowed with

the norm

|||ω||| =
Nρ∑
i=1

(
‖viρ‖L∞ + |λiρ|

)
+

Nη∑
i=1

(
‖viη‖L∞ + |λiη|

)
. (51)

For γ > 0, calling J̃ il =
[
z̄il , z̃

i
l

)
, we consider the norm

|||ω|||γ = |||ω|||+
∑

l∈{ρ,η}

Nl∑
i=1

sup
z∈J̃il

|λil − vil(z)|
(z̃il − z)γ

, (52)

and set Ωγ := {ω ∈ Ω : |||ω|||γ < +∞}. For a given ω ∈ Ω 1
2
, we define the

operator T : Ω 1
2
→ Ω1

T[ω; δ](z) :=


Fρ[ω; δ](z)

Λρ[ω; δ]

Fη[ω; δ](z)

Λη[ω; δ]

 , (53)



MULTIPLE PATTERNS FORMATION FOR A PREDATOR-PREY SYSTEM 395

where for l ∈ {ρ, η} we have shorted the notation introducing

Fl[ω; δ](z) =
(
F1
l [ω; δ](z), . . . ,FNll [ω; δ](z)

)
,

Λl[ω; δ](z) :=
(

Λ1
l [ω; δ], . . . ,ΛNll [ω; δ]

)
.

(54)

The operator T is a bounded operator for any fixed δ ≥ 0 and can be continuously
extended at δ = 0 to (43) and (45). In order to prove existence of stationary
solutions for small δ > 0 using the Implicit Function Theorem, we need to prove
that the Jacobian matrix of T is a bounded linear operator form Ω1/2 to Ω1 with
bounded inverse. The Jacobian of T has the following structure

DT[ω; δ] =


DvρFρ(δ) DλρFρ(δ) DvηFρ(δ) DληFρ(δ)

DvρΛρ(δ) DλρΛρ(δ) DvηΛρ(δ) DληΛρ(δ)

DvρFη(δ) DλρFη(δ) DvηFη(δ) DληFη(δ)

DvρΛη(δ) DλρΛη(δ) DvηΛη(δ) DληΛη(δ)

 , (55)

where the components are actually matrices defined by

DvhFl(δ) =

(
∂Fil [ω; δ]

∂vjh
(νjh)

)Nl,Nh
i,j=1

, DλhFl(δ) =

(
∂Fil [ω; δ]

∂λjh
(ajh)

)Nl,Nh
i,j=1

DvhΛl(δ) =

(
∂Λil[ω; δ]

∂vjh
(νjh)

)Nl,Nh
i,j=1

, DλhΛl(δ) =

(
∂Λil[ω; δ]

∂λjh
(ajh)

)Nl,Nh
i,j=1

,

where νjh and ajh are generic directions. We first compute the diagonal terms in the
matrix DvlFl(δ). We have

∂Fil [ω; δ]

∂vil
(νil )

= −δ−2

∫
Jil

νil (ξ)

[
Sl

(
δ
(
vil(z)− vil(ξ)

))
− δvil(z)S′l

(
δ
(
λil − vil(ξ)

))
− Sl

(
− δvil(ξ)

)]
dξ

+ δ−2νil (z)

Nl∑
j=1

∫
Jjl

[
Sl

(
cmi

l − cm
j
l + δ

(
vil(z)− v

j
l (ξ)

))

− Sl
(
cmi

l − cm
j
l + δ

(
λil − v

j
l (ξ)

))]
dξ

+ δ−2νil (z)αl

Nh∑
j=1

∫
Jjh

[
K
(
cmi

l − cm
j
h + δ

(
vil(z)− v

j
h(ξ)

))

−K
(
cmi

l − cm
j
h + δ

(
λil − v

j
h(ξ)

))]
dξ.
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A Taylor expansion around δ = 0 similar to the ones in (38) - (41) easily gives that
in the limit δ → 0 we obtain

∂Fil [ω; 0]

∂vil
(νil ) =

Di
l

2

(
(λil)

2 − (vil(z))
2
)
νil (z).

Concerning the other terms in DvlFl(δ) we get

∂Fil [ω; δ]

∂vjl
(νjl )

= −δ−2
Nl∑
j=1

∫
Jjl

νjl (ξ)

[
Sl

(
cmi

l − cm
j
l + δ

(
vil(z)− v

j
l (ξ)

))

− Sl
(

(cmi
l − cm

j
l − δv

j
l (ξ)

)
− δvil(z)S′l

(
cmi

l − cm
j
l + δ

(
λil − v

j
l (ξ)

))]
dξ,

that all vanish in the limit δ → 0. Let us now focus on the matrix DλlFl(δ). By
(37) it is easy to see that the only non-zero terms in DλlFl(δ) are the diagonal ones
that are given by

∂Fil [ω; δ]

∂λil
(ail) = −δ−1vil(z)a

i
l

[
Nl∑
j=1

∫
Jjl

S′l

(
cmi

l − cm
j
l + δ

(
λil − v

j
l (ξ)

))
dξ

+ αl

Nh∑
j=1

∫
Jjh

K ′
(
cmi

l − cm
j
h + δ

(
λil − v

j
h(ξ)

))
dξ

]
.

Then, Taylor expansion w.r.t. δ yields

∂Fil [ω; 0]

∂λil
(ail) = Di

lλ
i
lv
i
l(z)a

i
l.

Since all the entrances in the matrix DλhFl(δ) are zero, the last matrix that concerns
Fil is DvhFl(δ). The elements of this matrix are given by

∂Fil [ω; δ]

∂vjh
(νjh)

= −δ−2αl

Nh∑
j=1

∫
Jjh

νjh(ξ)

[
K
(
cmi

l − cm
j
h + δ

(
vil(z)− v

j
h(ξ)

))

−K
(
cmi

l − cm
j
h − δv

j
h(ξ)

)
− δvil(z)K ′

(
cmi

l − cm
j
h + δ

(
λil − v

j
h(ξ)

))]
dξ,

that vanish in the limit δ → 0. We now start in computing the functional derivatives
for Λil in (44). Again we should consider the four matrices in (55), and we start
from DvlΛl(δ). Note that the terms in the diagonal are zero in this case and the
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others are given by

∂Λil[ω; δ]

∂vjl
(νjl )

= −δ−2
Nl∑
j=1

∫
Jjl

νjl (ξ)

[
Sl

(
cmi

l − cm
j
l + δ

(
λil(z)− v

j
l (ξ)

))

− Sl
(

(cmi
l − cm

j
l − δv

j
l (ξ)

)
− δλilS′l

(
cmi

l − cm
j
l + δ

(
λil − v

j
l (ξ)

))]
dξ.

The terms in DvhΛl(δ) are

∂Λil[ω; δ]

∂vjh
(νjh)

= −δ−2αl

Nh∑
j=1

∫
Jjh

νjh(ξ)

[
K
(
cmi

l − cm
j
h + δ

(
λil − v

j
h(ξ)

))

−K
(
cmi

l − cm
j
h − δv

j
h(ξ)

)
− δλilK ′

(
cmi

l − cm
j
h + δ

(
λil − v

j
h(ξ)

))]
dξ,

and the usual Taylor expansions around δ = 0, show that both the matrices
DvlΛl(0) = DvhΛl(0) = 0. Since DλhΛl(δ) is trivially a zero matrix, only remains
to compute the diagonal terms in DλlΛl(δ). We have

∂Λil[ω; δ]

∂λil
(ail) = −δ−1ail

Nl∑
j=1

∫
Jjl

λilS
′
l

(
cmi

l − cm
j
l + δ

(
λil − v

j
l (ξ)

))
dξ

− δ−1ailαl

Nh∑
j=1

∫
Jjh

λilK
′
l

(
cmi

l − cm
j
h + δ

(
λil − v

j
h(ξ)

))
dξ.

The last Taylor expansion gives

∂Λil[ω; 0]

∂λil
(ail) = Di

l(λ
i
l)

2ail.

We have proved that

DT[ω; 0] =



El1 dg
(
Di
ρλ
i
ρv
i
ρa
i
ρ

)
0 0

0 dg
(
Di
ρ(λ

i
ρ)

2aiρ
)

0 0

0 0 El2 dg
(
Di
ηλ

i
ηv
i
ηa
i
η

)
0 0 0 dg

(
Di
η(λiη)2aiη

)

 , (56)

where

El1 = dg

(
Di
ρ

2

(
(λiρ)

2 − (viρ)
2
)
νiρ

)
, El2 = dg

(
Di
η

2

(
(λiη)2 − (viη)2

)
νiη

)
,

and dg(Ai) is a diagonal matrix with elements Ai. Let us denote by ω0 the unique
solution to (46), we have the following lemma:

Lemma 3.1. For δ > 0 small enough, the operator DT[ω0; δ] is a bounded linear
operator from Ω1/2 to Ω1.
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Proof. Thanks to the previous computations it is easy to see that DT is a bounded
linear operator from Ω into itself and it is continuous at δ = 0. The definition of
the norm in (52) implies that for z ∈ J̃ il we need to control only that

sup
|||ω|||1/2≤1

1

(z̃il − z)

∣∣∣∣∂Fil∂vil
[·, δ](νil )−

∂Λil
∂vil

[·; δ](νil )−
(
∂Fil
∂vil

[·; 0](νil )−
∂Λil
∂vil

[·; 0](νil )

)
+
∂Fil
∂λil

[·, δ](ail)−
∂Λil
∂λil

[·; δ](ail)−
(
∂Fil
∂λil

[·; 0](ail)−
∂Λil
∂λil

[·; 0](ail)

)
+
∂Fil
∂vjh

[·, δ](νjh)− ∂Λil
∂vjh

[·; δ](νjh)−
(
∂Fil
∂vjh

[·; 0](νjh)− ∂Λil
∂vjh

[·; 0](νjh)

)
+
∂Fil
∂λjh

[·, δ](ajh)− ∂Λil
∂λjh

[·; δ](ajh)−
(
∂Fil
∂λjh

[·; 0](ajh)− ∂Λil
∂λjh

[·; 0](ajh)

)∣∣∣∣↘ 0,

(57)
as δ ↘ 0. We start estimating the third row in (57),

1

(z̃il − z)

[
∂Fil
∂vjh

[·, δ](νjh)− ∂Λil
∂vjh

[·; δ](νjh)−
(
∂Fil
∂vjh

[·; 0](νjh)− ∂Λil
∂vjh

[·; 0](νjh)

)]

=− αl
(vil(z)− λil)2

z̃il − z

Nh∑
j=1

∫
Jjh

K ′′
(
cmi

l − cm
j
h + δ(λil − v

j
h(ξ))

)
νjh(ξ)

2
dξ

− δαl
(vil(z)− λil)3

z̃il − z

Nh∑
j=1

∫
Jjh

K ′′′(x̃(ξ))νjh(ξ)

6
dξ

=− δαl
(vil(z)− λil)2

z̃il − z

Nh∑
j=1

∫
Jjh

K ′′′(x̄(ξ))(λil − v
j
h(ξ))νjh(ξ)

2
dξ

− δαl
(vil(z)− λil)3

z̃il − z

Nh∑
j=1

∫
Jjh

K ′′′(x̃(ξ))νjh(ξ)

6
dξ.

=− αl
(

(vil(z)− λil)2

z̃il − z
+

(vil(z)− λil)3

z̃il − z

)
O(δ),

where in the first equality we did a Taylor expansion around the point x0 = cmi
l −

cmj
h + δ(λil − v

j
h(ξ)) for the kernel K

(
cmi

l − cm
j
h + δ(vil(z) − v

j
h(ξ))

)
, while in the

second equality we did a Taylor expansion around the point x0 = cmi
l − cm

j
h for

the kernel K ′′
(
cmi

l − cm
j
h + δ(λil − v

j
h(ξ))

)
. Similarly, we can show that

1

(z̃il − z)

[
∂Fil
∂λjh

[·, δ](ajh)− ∂Λil
∂λjh

[·; δ](ajh)−
(
∂Fil
∂λjh

[·; 0](ajh)− ∂Λil
∂λjh

[·; 0](ajh)

)]
= 0.
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The first two rows in (57) can be treated as follows,

1

(z̃il − z)

[
∂Fil
∂vil

[·, δ](νil )−
∂Λil
∂vil

[·; δ](νil )−
(
∂Fil
∂vil

[·; 0](νil )−
∂Λil
∂vil

[·; 0](νil )

)

+
∂Fil
∂λil

[·, δ](ail)−
∂Λil
∂λil

[·; δ](ail)−
(
∂Fil
∂λil

[·; 0](ail)−
∂Λil
∂λil

[·; 0](ail)

)]

=
δ

(z̃il − z)

[
Nl∑
j=1

∫
Jjl

δ−2(vil(z)− λil)(νil (z)− ail)S′l
(
cmi

l − cm
j
l + δ(λil − v

j
l (ξ))

)
+ δ−1 1

2
(vil(z)− λil)2(νil (z)− ν

j
l (ξ))S′′l

(
cmi

l − cm
j
l + δ(λil − v

j
l (ξ))

)
+

1

6
(vil(z)− λil)3(νil (z)− ν

j
l (ξ))S′′′l

(
x̃1(ξ)

)
dξ

+ αl

Nh∑
j=1

∫
Jjh

δ−2(vil(z)− λil)(νil (z)− ail)K ′
(
cmi

l − cm
j
h + δ(λil − v

j
h(ξ))

)
+ δ−1 1

2
(vil(z)− λil)2(νil (z)− ν

j
l (ξ))K ′′

(
cmi

l − cm
j
h + δ(λil − v

j
h(ξ))

)
+

1

6
(vil(z)− λil)3(νil (z)− ν

j
l (ξ))K ′′′

(
x̃2(ξ)

)
dξ

]

=

(
2

(νil (z)− ail)(vil(z)− λil)
(z̃il − z)

+ (2νil (z)− 1)

(
(vil(z)− λil)3

(z̃il − z)
+

(vil(z)− λil)2

(z̃il − z)

))
O(δ).

Since the functions vil are components of a vector ω belonging to Ω1/2, the quantities

λil − vil(z)
(z̃il − z)1/2

,

are uniformly bounded in J̃ il , that gives (57).

Lemma 3.2. For any δ > 0 small enough, DT[ω0; 0] : Ω1/2 → Ω1 is a linear
isomorphism.

Proof. Given w ∈ Ω1, we have to prove that

DT[ω0; 0]ω = w, (58)

admits a unique solution ω ∈ Ω1/2 with the property

||ω||1/2 ≤ C||w||1.

The determinant of the matrix in (56) is given by

detDT =

Nρ∏
i=1

(Di
ρ)

2

2

(
(λiρ)

2 − (viρ)
2
)

(λiρ)
2

 ·
Nη∏
i=1

(Di
η)2

2

(
(λiη)2 − (viη)2

)
(λiη)2

 ,

(59)
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that is always different from zero under the condition Di
l > 0 and since

(
vil(z)−λil

)
<

0 on z ∈ [z̄il , z̃
i
l ). Thanks to the structure in (56) and denoting with νil , a

i
l and σil , k

i
l

the generic entrances in ω and w respectively, we easily get that

νil (z) =
−2σil(z)

Di
l

(
(vil(z))

2 − (λil)
2
) +

2λilv
i
l(z)a

i
l

(vil(z))
2 − (λil)

2
,

ail =
kil

Di
l(λ

i
l)

2
,

that implies ||νil ||1/2 ≤ C||σil ||∞ for i = 1, 2, · · · , Nl, and l ∈ {ρ, η}. In order to
close the argument, it is enough to note that the ratio

ail − νil (z)
(z̃il − z)1/2

,

is uniformly bounded since (λil−vil(z))/(z̃il−z) is uniformly bounded, see [5, Lemma
4.4].

We are now in the position of proving the main result of the paper, namely
Theorem 1.1, that we recall below for convenience.

Theorem 3.1. Assume that Sρ, Sη and K are interaction kernels are under the
assumptions (A1), (A2) and (A3). Consider Nρ, Nη ∈ N and let zil be fixed positive
numbers for i = 1, 2, · · · , Nl, and l ∈ {ρ, η}. Consider two families of real numbers

{cmi
ρ}
Nρ
i=1 and {cmi

η}
Nη
i=1 such that

(i) {cmi
ρ}
Nρ
i=1 and {cmi

η}
Nη
i=1 are stationary solutions of the purely non-local par-

ticle system, that is, for i = 1, 2, · · · , Nl, for l, h ∈ {ρ, η} and l 6= h,

Bil =

Nl∑
j=1

S′l(cm
i
l − cm

j
l )z

j
l + αl

Nh∑
j=1

K ′(cmi
l − cm

j
h)zjh = 0, (60)

(ii) the following quantities

Di
l = −

Nl∑
j=1

S′′l (cmi
l − cm

j
l )z

j
l − αl

Nh∑
j=1

K ′′(cmi
l − cm

j
h)zjh, (61)

are strictly positive, for all i = 1, 2, · · · , Nl, l, h ∈ {ρ, η} and l 6= h.

where αρ = 1 and αη = −α. Then, there exists a constant θ0 such that for
all θ ∈ (0, θ0) the stationary equation (4) admits a unique solution in the sense of
Definition 1.1 of the form

ρ(x) =

Nρ∑
i=1

ρi(x)1Iiρ(x) and η(x) =

Nη∑
h=1

ηh(x)1Ihη (x)

where

• each interval Iil is symmetric around cmi
l for all i = 1, 2, · · · , Nl, l ∈ {ρ, η},

• ρi and ηj are C1, non-negative and even w.r.t the centres of Iiρ and Ijη respec-

tively, with masses ziρ and zjη, for i = 1, ..., Nρ and j = 1, ..., Nη,
• the solutions ρ and η have fixed masses

zρ =

Nρ∑
i=1

ziρ and zη =

Nη∑
i=1

ziη,

respectively.
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Proof. Consider zρ and zη fixed masses and a set of points cmi
l for i = 1, 2, · · · , Nl,

and l ∈ {ρ, η} that satisfy (i) and (ii). The results in Lemma 3.1 and Lemma 3.2
imply that given T defined in (53), the functional equation

T[ω; δ](z) = 0,

admits a unique solution

ω = (v1
ρ(z), . . . , vNρρ (z), λ1

ρ, . . . , λ
Nρ
ρ , v1

η(z), . . . , vNηη (z), λ1
η, . . . , λ

Nη
η ) ,

for δ > 0 small enough. The entrances vil(z) are solutions to (36) for z ∈ J il .
Consider now uil defined for z ∈ J il as uil(z) = cmi

l + δvil(z). Differentiating (36)
twice w.r.t z we get that vil is differentiable and strictly increasing for z ∈ J il and
that uil is a solution to (30). Moreover uil is also strictly increasing and we can define
the inverse F il that and its spatial derivative ρil = ∂xF

i
l is a solution to (4).

Remark 3.1. Note that conditions (ii) in Theorem 3.1 turn to be conditions on
the positions of the centres of masses and on the value of α. Indeed, as a sufficient
condition for Di

ρ > 0 we can assume that all the differences between the centres of

masses are in the range of concavity of the kernels. Moreover, Di
η > 0 is satisfied if

α < min
i=1,...,Nη

∑Nη
j=1 S

′′
η (cmi

η − cmj
η)|Jjη |∑Nρ

j=1K
′′(cmi

η − cm
j
ρ)|Jjρ |

.

Note that the above conditions are comparable to the one we got in the proof of
Section 2 using the Krein-Rutman approach.

4. Numerics and perspectives. In this section, we study numerically solutions
to system (3) using two different methods, the finite volume method introduced in
[12, 13] and the particles method studied in [23, 28]. We validate the results about
the existence of the mixed steady state and the multiple bumps steady states.
Moreover, we perform some examples to show the variation in the behaviour of the
solution to system (3) under different choices of initial data and the parameter α,
which, in turn, suggests future work on the stability of the solutions to system (3).
Finally, travelling waves are detected under a special choice of initial data and value
for the parameter α. We begin by sketching the particles method. This method
essentially consists in a finite difference discretization in space to the pseudo inverse
version of system (3)

∂tuρ(z) = −θ
2
∂z

((
∂zuρ(z)

)−2
)

+

∫
Jρ

S′ρ
(
uρ(z)− uρ(ξ)

)
dξ

+αρ

∫
Jη

K ′
(
uρ(z)− uη(ξ)

)
dξ, z ∈ Jρ

∂tuη(z) = −θ
2
∂z

((
∂zuη(z)

)−2
)

+

∫
Jη

S′η
(
uη(z)− uη(ξ)

)
dξ

+αη

∫
Jρ

K ′
(
uη(z)− uρ(ξ)

)
dξ, z ∈ Jη,

(62)

as the following: Let N ∈ N, let {zi}Ni=1 be a sequence of points that partition the
interval [0, 1] uniformly. Denote by Xi

l (t) := ul(t, z
i) the approximating particles

of the pseudo inverse at each point zi of the partition. Assuming that the densities
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ρ and η are of unit masses, then we have the following approximating system of
ODEs

∂tX
i
ρ(t) =

θ

2N

((
ρi−1(t)

)−2 −
(
ρi(t)

)−2
)

+
1

N

N∑
j=1

S′ρ
(
Xi
ρ(t)−Xj

ρ(t)
)
dξ

+
αρ
N

N∑
j=1

K ′
(
Xi
ρ(t)−Xj

η(t)
)
dξ, i = 1, · · ·N,

∂tX
i
η(t) =

θ

2N

((
ηi−1(t)

)−2 −
(
ηi(t)

)−2
)

+
1

N

N∑
j=1

S′η
(
Xi
η(t)−Xj

η(t)
)
dξ

+
αη
N

N∑
j=1

K ′
(
Xi
η(t)−Xj

ρ(t)
)
dξ, i = 1, · · ·N,

(63)

where the densities are reconstructed as
ρi(t) =

1

N(Xi+1
l (t)−Xi

l (t))
, i = 1, · · · , N − 1,

ρ0(t) = 0,

ρN (t) = 0,

(64)

and the same for the ηi(t). To this end, we are ready to solve this particle system by
applying the Runge-Kutta MATLAB solver ODE23, with initial positions Xl(0) =
Xl,0 = {Xi

l,0}Ni=1, l = ρ, η determined by solving∫ Xi+1
ρ,0

Xiρ,0

ρ(t = 0)dX =
1

N − 1
, i = 1, · · · , N − 1.

The second method we use is the finite volume method which introduced in [12]
and extended to systems in [13], that consists in a 1D positive preserving finite-
volume method for system (3). To do so, we first partition the computational
domain into finite-volume cells Ui = [xi− 1

2
, xi+ 1

2
] of a uniform size ∆x with xi =

i∆x, i ∈ {−s, . . . , s}. Define

ρ̃i(t) :=
1

∆x

∫
Ui

ρ(x, t)dx, η̃i(t) :=
1

∆x

∫
Ui

η(x, t)dx,

the averages of the solutions ρ, η computed at each cell Ui. Then we integrate
each equation in system (3) over each cell Ui, and so we obtain a semi-discrete
finite-volume scheme described by the following system of ODEs for ρi and ηi

dρ̃i(t)

dt
= −

F ρ
i+ 1

2

(t)− F ρ
i− 1

2

(t)

∆x
,

dη̃i(t)

dt
= −

F η
i+ 1

2

(t)− F η
i− 1

2

(t)

∆x
,

(65)

where the numerical flux F l
i+ 1

2

, l = ρ, η, is considered as an approximation for the

continuous fluxes −ρ(θρ + Sρ ∗ ρ + αρK ∗ η)x and −η(θη + Sη ∗ η + αηK ∗ ρ)x
respectively. More precisely, the expression for F ρ

i+ 1
2

is given by

F ρ
i+ 1

2

= max(ϑi+1
ρ , 0)

[
ρ̃i +

∆x

2
(ρx)i

]
+ min(ϑi+1

ρ , 0)
[
ρ̃i −

∆x

2
(ρx)i

]
, (66)
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Figure 4. In this figure, a mixed steady state is plotted by using
initial data given by (70), α = 0.1, θ = 0.4. Number of particles
are chosen equal to number of cells in the finite volume method,
which is N = 71.

where

ϑi+1
ρ =− θ

∆x

(
ρ̃i+1 − ρ̃i

)
−
∑
j

ρ̃j
(
Sρ(xi+1 − xj)− Sρ(xi − xj)

)
− αρ

∑
j

η̃j
(
K(xi+1 − xj)−K(xi − xj)

)
,

(67)

and

(ρx)i = minmod

(
2
ρ̃i+1 − ρ̃i

∆x
,
ρ̃i+1 − ρ̃i−1

2∆x
, 2

ρ̃i − ρ̃i−1

∆x

)
. (68)
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Figure 5. A separated steady state is presented in this figure.
Initial data are given by (71). The parameters are α = 0.2 and
θ = 0.4 with N = 91.

The minmod limiter in (68) has the following definition

minmod(a1, a2, . . . ) :=


min(a1, a2, . . . ), if ai > 0 ∀i
max(a1, a2, . . . ), if ai < 0 ∀i
0, otherwise.

(69)

We have the same as the above expresions for η. Finally, we integrate the semi-
discrete scheme (65) numerically using the third-order strong preserving Runge-
Kutta (SSP-RK) ODE solver used in [31].
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Figure 6. This figure shows how from the initial densities ρ0, η0

and θ, as in Figure 4, a transition between mixed and a sort of
separated steady state appears by choosing the value of α = 6.
This large value of α suggests an unstable behavior in the profile,
see Remark 3.1.

In all the simulations below, we will fix the kernels as a normalised Gaussian
potentials

Sρ(x) = Sη(x) = K(x) =
1√
π
e−x

2

,

that are under the assumptions on the kernels (A1), (A2) and (A3). This choice
helps us in better understanding the variation in the behavior of the solutions w.r.t.
the change in the initial data and the parameter α. In the first five examples, see
Figures 4, 5, 6, 7 and 8 we show:
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Figure 7. A steady state of four bumps is showed in this figure
starting from initial data as in (72) with α = 0.05 and θ = 0.3.
The number of particles N = 181, which is the same as number of
cells.

• in the first row steady states are plotted at the level of density, on the l.h.s.
we compare the two methods illustrated above, while on the r.h.s. we show
the evolution by the finite volume method,

• in the second row we plot the particles paths for both species obtained with
the particles method,

• in the last row we show the pseudo inverse functions corresponding to the
steady state densities.

The last example we present shows an interesting traveling waves-type evolution.
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Figure 8. Starting from initial data as in (73) with α = 1 and
θ = 0.3, we get a five bumps steady state.

The first example is devoted to validating existence of mixed steady state and
separated steady state. By choosing the initial data (ρ0, η0) as

ρ0(x) = η0(x) =
10

14
1[−0.7,0.7](x), (70)

and fixing α = 0.1 and θ = 0.4, we obtain a mixed steady state as plotted in Figure
4. Note that, the small value of α allows the predators to dominate the prey which
results in the shape shown in Figure 4. Next, we take the initial data as

ρ0(x) = 0.51[−1,1](x), η0(x) = 0.51[−4,−3]∪[3,4](x), (71)

with the same θ as above and α = 0.2. This choice of the initial data, actually,
introduce two equal attractive forces on the right and left hand sides of the predators
which, in turn, fix the predators at the centre and gives the required shape of the
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Figure 9. This last figure shows a possible existence of traveling
waves by choosing initial data as in (74), α = 1 and θ = 0.2. The
first two plots are performed by particles method, while the third
one is done by finite volume method. Here we fix N = 101.

separated steady state as shown in Figure 5. Finally, a sort of separated steady
state can also be obtained starting from the same initial data as in (70) and same
diffusion parameter θ. If we choose α = 6, the prey η will have enough speed to get
out of the predators region, producing a transition between the mixed state to the
separated one, this is illustrated in Figure 6.

We then, test two cases where we validate the existence of steady states of more
bumps. Let us fix θ = 0.3. Then, a four-bumps steady state is performed and
plotted in Figure 7, where we consider

ρ0(x) =
10

14
1[−0.7,0.7](x), η0(x) =

5

21
1[−0.7,0.7](x) +

1

3
1[−6,−5]∪[5,6](x), (72)

as initial data and we take α = 0.05. This way of choosing initial data produces a
balanced attractive forces which in turn form the required steady state. Similarly,
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we can obtain a steady state of five bumps by using initial data

ρ0(x) =
1

2
1[−5,−4]∪[4,5](x), η0(x) =

1

3
1[−9,−8]∪[−0.5,0.5]∪[8,9](x), (73)

and α = 1, see Figure 8.
Finally, in this example, we detect existence of traveling waves. Indeed, by

choosing initial data as

ρ0(x) =
10

12
1[−0.6,0.6](x), η0(x) =

10

12
1[1.7,2.9](x), (74)

α = 1 and θ = 0.2, we obtain a traveling wave that is shown in Figure 9. Once
the initial data and the value of θ are fixed, if α is taken as a small value, then we
will come out with a mixed steady state. If we take a larger value for α then the
prey will be fast escaping from the predators. Therefore, the proper value for α will
produce a situation where the attack speed of the predators is equal to the escape
speed of the prey, which results in a traveling wave of both the densities ρ and η.
All the simulations above motivate further studies on stability vs. instability for
such a system, together with the possible existence on traveling wave type solutions.
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32 (2015), 1283–1305.

http://www.ams.org/mathscinet-getitem?mr=MR2401600&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2812240&return=pdf
http://dx.doi.org/10.1016/j.aml.2011.05.022
http://dx.doi.org/10.1016/j.aml.2011.05.022
http://www.ams.org/mathscinet-getitem?mr=MR3629153&return=pdf
http://dx.doi.org/10.1142/S0218202517500154
http://www.ams.org/mathscinet-getitem?mr=MR2974186&return=pdf
http://dx.doi.org/10.1142/S0218202511400069
http://dx.doi.org/10.1142/S0218202511400069
http://www.ams.org/mathscinet-getitem?mr=MR2448940&return=pdf
http://dx.doi.org/10.3934/nhm.2008.3.749
http://dx.doi.org/10.3934/nhm.2008.3.749
http://www.ams.org/mathscinet-getitem?mr=MR3815544&return=pdf
http://dx.doi.org/10.1137/17M1125716
http://dx.doi.org/10.1137/17M1125716
http://www.ams.org/mathscinet-getitem?mr=MR3061139&return=pdf
http://dx.doi.org/10.4310/CMS.2013.v11.n3.a3
http://dx.doi.org/10.4310/CMS.2013.v11.n3.a3
http://www.ams.org/mathscinet-getitem?mr=MR3176313&return=pdf
http://dx.doi.org/10.1137/130923786
http://dx.doi.org/10.1137/130923786
http://www.ams.org/mathscinet-getitem?mr=MR1794944&return=pdf
http://dx.doi.org/10.1016/S0362-546X(99)00399-5
http://dx.doi.org/10.1016/S0362-546X(99)00399-5
http://www.ams.org/mathscinet-getitem?mr=MR3535783&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2016.07.061
http://dx.doi.org/10.1016/j.jmaa.2016.07.061
http://www.ams.org/mathscinet-getitem?mr=MR3659826&return=pdf
http://dx.doi.org/10.1016/j.na.2017.03.008
http://dx.doi.org/10.1016/j.na.2017.03.008
http://www.ams.org/mathscinet-getitem?mr=MR3372289&return=pdf
http://dx.doi.org/10.4208/cicp.160214.010814a
http://dx.doi.org/10.4208/cicp.160214.010814a
http://www.ams.org/mathscinet-getitem?mr=MR3783102&return=pdf
http://dx.doi.org/10.1137/17M1128782
http://dx.doi.org/10.1137/17M1128782
http://www.ams.org/mathscinet-getitem?mr=MR2163983&return=pdf
http://dx.doi.org/10.1098/rsif.2013.1208
http://www.ams.org/mathscinet-getitem?mr=MR3425263&return=pdf
http://dx.doi.org/10.1016/j.anihpc.2014.09.004
http://dx.doi.org/10.1016/j.anihpc.2014.09.004


410 SIMONE FAGIOLI AND YAHYA JAAFRA

[17] M. Cicalese, L. De Luca, M. Novaga and M. Ponsiglione, Ground states of a two phase model
with cross and self attractive interactions, SIAM J. Math. Anal., 48 (2016), 3412–3443.
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