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Abstract. In this paper we provide converge rates for the homogenization
of the Poisson problem with Dirichlet boundary conditions in a randomly

perforated domain of Rd, d > 3. We assume that the holes that perforate the
domain are spherical and are generated by a rescaled marked point process
(Φ,R). The point process Φ generating the centres of the holes is either a

Poisson point process or the lattice Zd; the marks R generating the radii are
unbounded i.i.d random variables having finite (d− 2 + β)-moment, for β > 0.
We study the rate of convergence to the homogenized solution in terms of the

parameter β. We stress that, for low values of β, the balls generating the holes
may overlap with overwhelming probability.

1. Introduction. In this paper we obtain convergence rates for the homogenization
of the Poisson problem in a bounded domain of Rd, d > 3, that is perforated by
many small random holes Hε. We impose Dirichlet boundary conditions on the
boundary of the set and of the holes Hε. In other words, given f ∈ H−1(D) and
D ⊆ Rd bounded and regular, we define the perforated set Dε := D\Hε and study
the boundary value problem{

−∆uε = f in Dε

uε = 0 on ∂Dε
(1.1)

We assume that, for ε > 0, the holes Hε are a union of spherical holes having
random centres and radii. Let (Φ,R) be marked point process where Φ is either
the lattice Zd or a Poisson point process of intensity λ > 0. We assume that the
associated marks R = {ρz}z∈Φ are independent and identically distributed random
variables that satisfy the moment condition

Eρ
[
ρd−2+β

]
< +∞, β > 0. (1.2)
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Here and below, Eρ[ · ] denotes the expectation under ρ. The set Hε is thus defined
by

Hε :=
⋃

z∈Φ∩( 1
εD)

B
(ε

d
d−2 ρz)∧1

(εz), (
1

ε
D) := {x ∈ Rd : εx ∈ D}. (1.3)

As shown in [13], if β = 0 in (1.2), then for P-almost every realization of the
random set Hε, the solutions to (1.1) converge weakly in H1

0 (D) to the homogenized
problem {

−∆u+ C0u = f in D

u = 0 on ∂D.
(1.4)

The constant C0 > 0 is the limit of the density of harmonic capacity generated by
the set Hε: If Sd denotes the d-dimensional unit sphere and Hd is the d-dimensional
Hausdorff measure, then

C0 := cd

{
Eρ
[
ρd−2

]
if Φ = Zd

λEρ
[
ρd−2

]
if Φ = Poi(λ)

, cd := (d− 2)Hd−1(Sd−1). (1.5)

In this paper, we strengthen the condition (1.2) on the integrability of the marks
R from β = 0 to β > 0 and study the convergence rates of uε to the homogenized
solution u.

By the Strong Law of Large Numbers, assumption (1.2) with β = 0 is minimal
in order to ensure that for P-almost every realization of Hε, its density of capacity
admits a finite limit. However, it does not prevent the balls in Hε from having

radii that are much bigger than ε
d
d−2 . This gives rise to clustering phenomena with

overwhelming probability. In particular the expected number of balls of Hε that

intersect, namely such that their radius ε
d
d−2 ρz is bigger than the typical distance ε

between the centres, is of order ε−d+2 (over an expected total of ε−d balls). The

analogue holds also under assumption (1.2) for values β < (d−2)2

2 , with the expected

number of overlapping balls being of order ε−d+2+ 2
d−2β .

The presence of balls that overlap is the main challenge in the proof of the
qualitative homogenization statement obtained in [13] and is one of the challenges
of the current paper. It requires a careful treatment of the set Hε to ensure that
the presence of long chains of overlapping balls does not destroy the homogenization
process. For a more detailed discussion on this issue we refer to the introductory
section in [13] and to Subsection 2.2 of the present paper.

The main results contained in this paper provide an annealed (i.e. averaged in
probability) estimate for the H1-norm of the homogenization error uε −Wεu. The
function Wε is a suitable corrector function that is related to the so-called oscillating
test function [6, 23]. We assume that Φ is the lattice Zd or that it is a Poisson point
process in dimension d = 3. For a comment on the case d > 3, we refer to Remark
2.2. If E

[
·
]

denotes the expectation under the probability measure associated to

the process (Φ,R), we show that1

E
[
‖uε −Wεu‖2H1

0 (D)

] 1
2 6 C

{
ε

d
d2−4

β
if β 6 d− 2

ε
d
d+2 if β > d− 2

(1.6)

1In the case of Φ being a Poisson point process, there is a factor log ε on the right-hand side.
We refer to Theorem 2.1 for the precise statement.
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We stress that in the case of periodic holes, namely when Φ = Zd and the radii
ρz = r, r > 0 are constant and deterministic, the optimal rate on the right-hand
side of (1.6) is ε [18]. In the current setting, the unboundedness and randomness of
the radii seems to yield slower convergence rates. We refer to Subsection 2.2 for a
discussion on the exponents obtained in (1.6) and how they relate to the techniques
used in the present paper to treat the case of unbounded and random radii.

The main quantity that governs the decay of the homogenization error uε−Wεu is
the convergence of the capacity density of Hε to the constant term C0 that appears
in the homogenized equation (1.4). In the periodic case mentioned in the previous
paragraph, the term C0 = cdr

d−2 (c.f. (1.5)) is close to the density of capacity of
Hε already at scale ε. Heuristically, indeed, if A ⊆ D we have

Cap(A ∩Hε) '
∑

z∈(εZ)d∩A

Cap(B
ε

d
d−2 r

(z)) ' |A|ε−dcd(ε
d
d−2 r)d−2 (1.5)

= C0|A|,

and this chain of identities is true as long as |A| is at least of order ε. On the other
hand, in the random setting, this identity is expected to hold at scales that are
larger than ε due to the fluctuations of the process (Φ,R). We also remark that
the threshold d− 2 in the parameter β obtained in (1.6) is related to the L2-nature
of the norm considered for the homogenization error. Roughly speaking, the norm
considered in (1.6) requires a control on the expectation of the square of the capacity
generated by the balls in Hε. This quantity depends on the 2(d− 2)-moments of
the random variable ρ.

Starting with [6] and [21], there is a large amount of literature devoted to the
homogenization of (1.1), both for deterministic and random holes Hε [3, 20]; similar
problems have also been studied in the case of the fractional laplacian (−∆)s, [2] or
for nonlinear elliptic operators [4, 24]. All the models considered in the deterministic
case contain assumptions that ensure that, for ε small enough, the holes in Hε do not
to overlap. In the random models mentioned above, a non-overlapping condition is
as well imposed, at least for P-almost every realization and ε > 0 small enough. For
a complete and more detailed description of these works, we refer to the introduction
of [13].

For what concerns quantitative rates of convergence for (1.1) to (1.4), the first
result in the periodic case is contained in [18]. When the holes are randomly
distributed, the first quantitative result has been obtained in [9]. In this paper, the
authors study the analogue of (1.1) for the operator −∆+λ in an unbounded domain
of R3, that is perforated by m spherical holes of identical radius ∼ m−1. The centres
of the holes are independent and distributed according to a compactly supported and
continuous potential V . If um denotes the analogue of uε, when the massive term λ
is big enough compared to the size of V , the authors provide rates of convergence
for the L2-norm of the difference um − u in the limit m→ +∞. Furthermore, they
prove the Gaussianity of the fluctuations of um around the homogenized solution u
in the CLT-scaling. In [16], this result has been obtained in the same setting of [9]
without any constraint on the massive term λ > 0.

The quantitative estimates developed in this paper are also used in [10] to obtain
homogenization results for solutions to (1.1) and the analogous Stokes system in the
regimes leading to Darcy’s law. In [10], the radii in (1.3) are rescaled by a factor εα,
1 < α < d

d−2 and the random variables {ρz}z∈Φ satisfy a suitable moment condition.

Like (1.2), also this condition does not prevent the holes from overlapping and give
rise to clusters.
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We conclude this introduction mentioning that the analogue of (1.1) for a Stokes
(and Navier-Stokes) system with no-slip boundary conditions on the holes Hε has
been considered in [1, 22] in the periodic case and then extended to more general
configurations of holes (see, e.g., [5, 8, 15]). In the case of the Stokes operator,
the limit equation contains an additional zero-th order term similar to C0 in (1.4).
Under the same assumptions of this paper, the analogue of the homogenization
result contained in [13] has been proven for a Stokes system in [12, 11]. We believe
that techniques similar to the one of this paper may be used to prove the same result
of (1.6) also in the case of a Stokes system. However, in this case, we expect that
the role played by the pressure would yield a less explicit definition of the corrector
function Wε.

2. Setting and main result. Let d > 3 and D ⊆ Rd be a bounded and smooth
domain that is star-shaped with respect to the origin. For ε > 0, we define the
punctured set Dε = D\Hε, with Hε as in (1.3). We assume that the union of balls
Hε is generated by a marked point process (Φ,R) on Rd × R+: We generate the
centres of the balls in Hε via a point process Φ. To each point z ∈ Φ, we associate
a mark ρz > 0 that determines the radius of the ball. We refer to [7, Chapter 9,
Definitions 9.1.I - 9.1.IV] for an extensive and rigorous definition of marked point
processes and their associated measures on Rd × R+.

We denote by (Ω;F ,P) the probability space associated to (Φ,R), so that the
random sets in (1.3) and the random field solving (1.1) may be written as Hε =
Hε(ω), Dε = Dε(ω) and uε(ω; ·), respectively. The set of realizations Ω may be seen
as the set of atomic measures

∑
n∈N δ(zn,ρn) in Rd × R+ or, equivalently, as the set

of (unordered) collections {(zn, ρn)}n∈N ⊆ Rd × R+.
Throughout this paper we assume that (Φ,R) satisfies the following conditions:

(i) Φ is either the lattice Zd or Φ = Poi(λ), i.e. a Poisson point process of intensity
λ > 0;

(ii) The marks {ρz}z∈Φ are independent and identically distributed: The marginal
of the marks with respect to the process Φ, has n-correlation function, n ∈ N,
that may be written as the product

gn((z1, ρ1), · · · , (zn, ρn)) = Πn
i=1g1((zi, ρi)), g1((z, ρ)) = g(ρ).

(iii) The marks R have finite (d− 2 + β)-moment, namely the density function g
in (ii) satisfies

Eρ
[
ρd−2+β

]
=

ˆ +∞

0

ρd−2+βg(ρ)dρ 6 1, with β > 0. (2.1)

We stress that conditions (i)-(ii) yield that (Φ,R) is stationary. In the case
Φ = Poi(λ), the process (Φ,R) is stationary with respect to the action of the group
of translations {τx}x∈Rd . This means that the probability measure P is invariant
under the action of the transformation τx : Ω → Ω, ω = {(zi; ρzi)}i∈N 7→ τxω :=
{(zi + x; ρzi)}i∈N. In the case Φ = Zd the same holds under the action of the group
{τz}z∈Zd .

Notation. When no ambiguity occurs, we skip the argument ω ∈ Ω in the notation
for Hε(ω), Dε(ω), uε(ω; ·) and in all the other random objects. We denote by
E
[
·
]

and EΦ

[
·
]

the expectations under the total probability measure P and the
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probability measure PΦ associated to the point process Φ, respectively. For ε > 0
and a set A ⊆ Rd, we define

Φ(A) :=
{
z ∈ Φ : z ∈ A

}
, Φε(A) :=

{
z ∈ Φ : εz ∈ A

}
(2.2)

and the random variables

N(A) := #(Φ(A)), Nε(A) := #(Φε(A)). (2.3)

For any µ ∈ H−1(D), we write 〈 · ; · 〉 for the duality product with H1
0 (D); we use

the notation
∑
i∈I for the averaged sum #(I)−1

∑
i∈I and . and & instead of 6 C

and > C with the constant C depending on the dimension d, the domain D and, in
the case of Φ = Poi(λ), the intensity rate λ.

For two sets A ⊆ B ⊆ Rd, we denote by Cap(A;B) the relative harmonic capacity
of the set A in B (c.f., for instance, [13][(4.17)]).

2.1. Main result. Before stating the main results, we need to define a suitable
corrector function Wε that appears in the homogenization error uε −Wεu. For
x ∈ Rd we set

Rε,x :=
ε

4
min

z∈Φε(D),
z 6=x

{
|z − x|; 1

}
(2.4)

Note that, if Φ = Zd, then Rε,x = ε
4 for every x ∈ Φ. For δ > 0, we denote by

Φεδ(D) ⊆ Φε(D) the set

Φεδ(D) :=

{
z ∈ Φε(D) : ε

d
d−2 ρz 6 ε1+δ, Rε,z > 2

√
d ε

d
d−2 ρz ∨ ε2

}
, (2.5)

where here and through out the paper a ∨ b = max
{
a; b
}

.

For each z ∈ Φεδ(D), let wε,z ∈ H1(B ε
4
(εz)) be the solution to

−∆wz,ε = 0 in BRε,z (εz)\B
ε

d
d−2 ρz

(εz)

wz,ε = 0 on ∂BRε,z (εz)

wz,ε = 1 on ∂BRε,z (εz).

(2.6)

We thus define

Wε(x) =


wz,ε if x ∈ BRε,z (εz)\B

ε
d
d−2 ρz

(εz)

0 if x ∈ B
ε

d
d−2 ρz

(εz)

1 otherwise

(2.7)

We stress that (2.5) ensures that definitions (2.6) and (2.7) are well-posed since
the set {BRε,z(εz)}z∈Φεδ(D) is made of disjoint balls and, for every z ∈ Φε

δ(D), it

holds B
ε

d
d−2 ρz

(εz) ⊆ BRε,z(εz). Note that in the above definition the function

Wε ∈ H1(D) depends on the choice of the parameter δ used to select the subset
Φε
δ(D). The optimal parameter δ will be fixed in Theorem 2.1. We finally stress

that, in the periodic case Φ = Zd and ρz ≡ r, for any δ > 0 and ε small enough, the
function Wε coincides with the oscillating test function constructed in [6, 18].

Theorem 2.1. Let (Φ,R) satisfy conditions (i)-(iii). For ε > 0 and p > d, let
f ∈W 1,p(D) with ‖f‖W 1,p(D) = 1 and uε and u be as in (1.1) and (1.4), respectively.
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We consider the random field Wε in (2.7) with

δ =

{
4

d2−4 if β 6 d− 2
2
d−2 −

2d
(d+2)β if β > d− 2

(a) If Φ = Zd, there exists a constant C = C(d,D, p) > 0 such that

E
[
‖uε −Wεu‖2H1

0 (D)

] 1
2 6 C

{
ε

d
d2−4

β
if β 6 d− 2

ε
d
d+2 if β > d− 2

(b) If Φ = Poi(λ) with λ > 0 and d = 3, there exists a constant C = C(λ,D, p) > 0
such that

E
[
‖uε −Wεu‖2H1

0 (D)

] 1
2 6 C

{
| log ε|ε 3

5β if β 6 1

| log ε|ε 3
5 if β > 1

Remark 2.2. As shown throughout Section 4, the argument of Theorem 2.1 (b)
applies also to higher dimensions d > 4. In this case, the homogenization error
decays as εα, for an exponent α = α(d, β). The exponent α, however, is generally
smaller than the one in the periodic case and it is the same only for β small enough
(β 6 2

d−1 (d− 2)).
We expect that the techniques used to prove Theorem 2.1 do extend to other

examples of stationary random distributions of centres. For instance, to point
processes that satisfy a finite-range of dependence assumption and for which the
expected number of elements in a finite set A scales like its (Lebesgue-)measure. We
also believe that Theorem 2.1 may be adapted to sets of holes Hm, m ∈ N that are
a collection of m balls having centres that are independently distributed according
to a fixed density Ψ ∈ C∞c (D). In this case, the balls have random radii rescaled

by m−
1
d−2 and the homogenization limit is obtained for m → ∞. For this choice

of holes, the deterministic control on the cardinality of the set of centres simplifies
some of the estimates.

Remark 2.3. As it becomes apparent in the proof of Theorem 2.1, the choice of
Wε is not unique. The same result holds, for instance, if Wε is replaced with the
oscillating test function wε constructed in [13, Section 3] and in Subsection 3.2
of the present paper. The function Wε, however, has a simpler and more explicit
construction that may be implemented numerically with more efficiency. It is, indeed,
an oscillating test function basically restricted to the balls of Hε that do not overlap
and have radius smaller than ε1+δ. We emphasize that the condition on the minimal
distance being at least ε2 is purely technical and may be avoided by either assuming
that the radii {ρz}z∈Φ are (uniformly) bounded from below, or that their inverse ρ−1

z

satisfies a suitable moment condition.

2.2. Ideas of the proofs. The proof of Theorem 2.1 is inspired to the proof of
the same result in the case of periodic holes shown in [18]. The latter, in turn,
upgrades the result of [6] from the qualitative statement uε ⇀ u in H1

0 (D) to an
estimate on the convergence of the homogenization error. Both arguments rely on
the construction of suitable oscillating test functions {wε}ε>0 ⊆ H1(D). In the
qualitative statement of [6], these functions allow to pass to the limit ε ↓ 0 in the
weak formulation of (1.1) and infer the homogenized equation (1.4).

The functions {wε}ε>0 may be constructed as Wε in (2.7), where the set Φε
δ

coincides with the whole set Φ = Zd and the functions {wε,z}z∈Φε(D) introduced in
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(2.6) satisfy wε,z(·) = wε,0(· + z). The additional term C0 = cdr
d−2 that appears

in the homogenized equation (1.4) is the limit of the measures −∆wε when tested
against the function ρuε ∈ H1

0 (Dε), ρ ∈ C∞0 (D). It is not hard to see from (2.7)
that, for functions that vanish on the holes Hε, the action of −∆wε reduces the
periodic measure

µε =
∑

z∈Zd∩ 1
εD

∂nwε,zδ∂B ε
4

(εz), (2.8)

that is concentrated on the spheres {∂B ε
4
(εz)}z∈Zd . Here, ∂n is the outer normal

derivative on ∂B ε
4
(εz).

In [18], the corrector Wε is chosen as the oscillating test function wε itself. As a
first step, it is shown that the decay of ‖uε −Wεu‖H1

0 (D) boils down to controlling

the convergence of the density of capacity of Hε to its limit C0 (c.f. (1.5)). The
latter is expressed in terms of the decay of the norm ‖µε−C0‖H−1(D), with µε as in
(2.8). As a second step, the authors appeal to a result of [19] to estimate the decay
of ‖µε − C01D‖H−1(D) in terms of the size ε of the periodic cell Cε := [− ε2 ; ε2 ] of µε.

The crucial feature is that, up to a correction of order ε2, the measure µε − C0 has
zero average in Cε. In other words, we haveˆ

∂B ε
4

(0)

∂nwε = εd
(
C0 +O(ε2)

)
. (2.9)

In this paper we adapt to the random setting the previous two-step argument.
The first main difference is strictly related to the randomness of the radii in Hε and
needs to be addressed also in the case of bounded radii (i.e. if β = +∞ in (2.1))
and periodic centres. In this case, the measure µε is defined as in (2.8) but, on
each sphere ∂B ε

4
(εz), the term ∂nwε depends on the random mark ρz. Therefore,

contrarily to the periodic case, (2.9) may not hold in each cube εz+Cε. Nevertheless,
by the Law of Large Numbers, we may expect that the average of µε − C0 is close
to zero over cubes of size kε, k >> 1, as the left-hand side in (2.9) turns into an
averaged sum of kd random variables. This motivates the introduction of a partition
of the set D into cubes of mesoscopic size kε (c.f. Section 3.1) that plays the role of
the cells εz +Cε of the periodic case. This allows us to adapt the result by [19] and
obtain

E
[
‖µε − C01D‖2H−1(D)

] 1
2 . kε+ Eρ

[
(

kd∑
i=1

ρd−2
i − Eρ

[
ρd−2

]
)2

] 1
2

. (2.10)

Here, the last term accounts for the difference between the average of µε in each
cube of size (kε), k ∈ N and the value C0. This inequality, implies an estimate of
the form:

E
[
‖µε − C01D‖2H−1(D)

] 1
2 . kε+ Eρ

[
(ρd−2 − Eρ

[
ρd−2

]
)2

] 1
2

k−
d
2 .

The optimal choice of k yields the exponent d
d+2 of Theorem 2.1. If ρz ≡ r for all

z ∈ Zd, then the second term vanishes and the above estimate with k = 1 gives the
optimal rate of [18].

In the case of centres distributed according to a Poisson point process, the
argument for Theorem 2.1 follows the same ideas sketched above. Although the
centres of the holes in Hε have random positions, their typical distance is still of size
ε. This feature gives rise to the additional logarithmic factor in the rate of Theorem
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2.1. The main technical challenge is related to the construction of the mesoscopic
partition of D that allows to obtain the analogue of (2.10). In contrast with the
case Φ = Zd, indeed, there are (P-many) realizations of Hε where the support of
the measure µε defined in (2.8) intersects the boundary of the covering. In other
words, the spheres {∂B ε

4
(εz)}z∈Φεδ(D) might fall across two cubes of size εk that

cover D. This, in particular, implies that to the covering does not correspond to a
well-defined partition of the spheres where the measure µε is supported. We tackle
this issue by constructing a suitable random covering. We refer to Subsection 3.1
for the precise construction.

A second challenge that arises in the proof of Theorem 2.1 is related to the
presence of overlapping holes in the case β < +∞ in (2.1). The strategy to deal
with this issue is very similar to the one used in [13]: We partition, indeed, the set
of holes as Hε = Hε

b ∪Hε
g , where the subset Hε

b contains all the holes that overlap
(c.f. Lemma 3.1). As shown in [13], the contribution of Hε

b to the density of capacity
is negligible in the limit ε ↓ 0. As a consequence, we may modify the estimates of
[18], to prove that ‖uε −Wεu‖H1

0 (D) is controlled by the norm ‖µε − C01D‖H−1(D),
where the measure µε is now only related to the union of disjoint balls Hε

g .

3. Proof of Theorem 2.1, (a).

3.1. Partition of the holes Hε and mesoscopic covering of D. This subsection
contains some technical tools that will be crucial to prove the main result: The first
one is an adaptation of [13] and provides a suitable way of dividing the holes Hε

between the ones that may overlap due to the unboundedness of the marks {ρz}z∈Φ

and the ones that, instead, are disjoint and have radii ε
d
d−2 ρz much smaller than

the distance ε between the centres.

Lemma 3.1. Let δ ∈ (0, 2
d−2 ] be fixed. There exists an ε0 = ε0(δ, d) such that for

every ε 6 ε0 and ω ∈ Ω we may find a partition of the realization of the holes

Hε := Hε
g ∪Hε

b

with the following properties:

• There exists a subset of centres nε(D) ⊆ Φε(D) such that

Hε
g :=

⋃
z∈nε(D)

B
ε

d
d−2 ρz

(εz), max
z∈nε(D)

ε
d
d−2 ρz 6 ε1+δ; (3.1)

• There exists a set Dε
b ⊆ {x ∈ R3 : dist(x,D) 6 2} satisfying

Hε
b ⊆ Dε

b , Cap(Hε
b , D

ε
b) . εd

∑
z∈Φε(D)\nε(D)

ρd−2
z (3.2)

and

B ε
4
(εz) ∩Dε

b = ∅, for every z ∈ nε(D). (3.3)

Proof of Lemma 3.1. The construction for the sets Hε
g , H

ε
b and Dε

b is the one im-

plemented in the proof of [13, Lemma 2.2]. We fix δ ∈ (0, 2
d−2 ] throughout the

proof.
We denote by Ibε ⊆ Φε(D) the set that generates the holes Hε

b . We construct it
in the following way: We first set Jεb := Φε(D)\Φε

δ(D) with Φε
δ as in (2.5). Since

Φ = Zd, this turns into

Jεb = Φε(D)\Φεδ(D) =
{
z ∈ Φε(D) : ε

d
d−2 ρz > ε1+δ

}
. (3.4)
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Given the holes H̃ε
b :=

⋃
z∈Jεb

B
2(ε

d
d−2 ρz∧1)

(εz), we include in Iεb also the set of points

in Φε(D)\Jεb that are “too close” to the set H̃ε
b , i.e.

Ĩεb :=
{
z ∈ Φε(D)\Jεb : H̃ε

b ∩B ε
4
(εz) 6= ∅

}
. (3.5)

We define

Iεb := Ĩεb ∪ Jεb , nε(D) := Φε(D)\Iεb
Hε
b :=

⋃
z∈Iεb

B
ε

d
d−2 ρz∧1

(εz), Hε
g :=

⋃
zj∈nε(D)

B
ε

d
d−2 ρz

(εz),

Dε
b :=

⋃
z∈Iεb

B
2(ε

d
d−2 ρz∧1)

(εz).

(3.6)

It remains to show that the sets defined above satisfy properties (3.1)-(3.3).
Property (3.1) is an immediate consequence of definition (3.4). The first inclusion
in (3.2) follows by the definition of Hε

b and Dε
b in (3.6); for the inequality in (3.2)

we instead appeal to the subadditivity of the capacity to bound

Cap(Hε
b ;Dε

b) 6
∑

z∈Φε(D)\nε(D)

Cap(B
ε

d
d−2 ρz∧1

(εz);Dε
b).

Moreover, by the monotonicity property Cap(A;C) 6 Cap(A;B) for every A ⊆ B ⊆
C, this turns into

Cap(Hε
b ;Dε

b) 6
∑

z∈Φε(D)\nε(D)

Cap(B
ε

d
d−2 ρz

(εz);B
2ε

d
d−2 ρz

(εz))

. εd
∑

z∈Φε(D)\nε(D)

ρd−2
z ,

i.e. the estimate in (3.2).
To conclude the proof of this lemma, it remains to argue (3.3): By construction

(see (3.6)), it holds that

Dε
b = H̃ε

b ∪
⋃
z∈Ĩεb

B
2ε

d
d−2 ρz

(εz). (3.7)

On the one hand, by (3.5) and the definition of nε(D) in (3.6), for each z ∈ nε(D)
we have that

dist(εz; H̃ε
b ) >

ε

4
. (3.8)

On the other hand, by (3.4) and (3.5), if w ∈ Ĩεb , then 4ε
d
d−2 ρw 6 ε1+δ so that

dist(εz;B
2ε

d
d−2 ρw

(εw)) >
ε

2
|z − w| > ε

4
,

whenever ε is such that εδ < 1
4 . Hence, also

dist(εz;
⋃
z∈Ĩεb

B
2ε

d
d−2 ρz

(εz)) >
ε

4
.

Combining this with (3.8) and (3.7), we infer (3.3). The proof of Lemma 3.1 is
complete.
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We now construct a suitable covering of D that, as explained in Subsection
2.2, plays a fundamental role in the proof of Theorem 2.1. We recall that, by our
assumption, the set D is any smooth domain that is star-shaped with respect to the
origin.

For z ∈ Rd, we define the “microscopic cubes”

Qε,z := εz + εQ, Q := [−1; 1]d (3.9)

while for k ∈ N and any z ∈ Zd we set

Qk,z := εz +
(2k + 1)ε

2
Q. (3.10)

Let Nk ⊆ Zd be such that the collection {Qk,z}z∈Nk is an essentially disjoint covering
of D. Since D is bounded, we may assume that

#(Nk) . (εk)−d. (3.11)

Let

N̊k :=

{
z ∈ Nk : Qk,z ⊆ D, dist(Qk,z; ∂D) > ε

}
. (3.12)

Since D is smooth and has compact boundary, it is easy to see that there exist
C1 = C1(D) such that, whenever kε 6 C1 it holds

#(Nk\N̊k) . (kε)d−1. (3.13)

Finally, for each z ∈ Nk we denote by Nk,z ⊆ Φ the set of points of Φε
δ(D) that,

when rescaled, are contained into the cube Qk,z, i.e. such that

Nk,z := {w ∈ Φεδ(D) : εw ∈ Qk,z}
(2.2)
= Φεδ(D) ∩ Φε(Qk,z). (3.14)

Note that, since in this section we assumed that Φ = Zd, it follows that for every
z ∈ Nk, we have

⋃
w∈Nk,z Qε,w ⊆ Qk,z where Qε,w are defined as in (3.9). Morevoer,

for every z ∈ N̊k,z, the collection {Qε,w}w∈Nk,z provides a refinement of Qk,z.

3.2. Quenched estimates for the homogenization error. All the results con-
tained in this subsection are quenched, in the sense that they hold for any fixed
realization of the holes Hε. The main result of this section is Lemma 3.2 that allows
to control the norm of the homogenization error uε −Wεu in terms of suitable
averaged sums of the random marks {ρz}z∈Φ.

Before giving the statement of Lemma 3.2, we recall the construction of the
oscillating test function wε ∈ H1(D) implemented in [13]. As mentioned in the
introduction and in Subsection 2.2, the main feature of this function is to vanish on
the holes Hε and “approximate” the density of the capacity of Hε. We note that
the unboundedness of the marks {ρz}z∈Φ implies that the set Φεδ(D) ( Φε(D) and
that the function Wε in (2.7) does not vanish in all the holes contained in Hε.

Let Hε
g , H

ε
b and Dε

b be as in Lemma 3.1. For every z ∈ Φε(D), let2

vε := argmin{
ˆ
Dεb

|∇u|2 : u ∈ H1
0 (Dε

b), u = 1 on ∂Hε
b }.

We pick as oscillating test function

wε = wgε ∧ wbε, (3.15)

2We assume that the minimizer exists. If this is not the case, it suffices to take vε in the

minimizing class such that
´
Dε
b
|∇vε|2 6 2 Cap(Hε

b ;Dεb).
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where wgε and wbε are defined as follows:

wbε :=


1− vε in Dε

b\Hε
b

0 in Hε
b

1 in R3\Dε
b

(3.16)

and

wgε(x) :=


wz,ε if x ∈ B ε

4
(εz)\B

ε
d
d−2 ρz

(εz), for some z ∈ nε(D)

0 if x ∈ B
ε

d
d−2 ρz

(εz), for some z ∈ nε(D)

1 otherwise

(3.17)

For each z ∈ nε(D), the function wz,ε is as in (2.6). We remark that each wε,z
admits the explicit formulation

wz,ε(x) =
(ε

d
d−2 ρz)

−(d−2) − |x− εzi|−(d−2)

(ε
d
d−2 ρz)−(d−2) − ( ε4 )−(d−2)

in B ε
4
(εz)\B

ε
d
d−2 ρz

(εz). (3.18)

For k ∈ N, let {Qk,z}z∈Nk be the covering of D constructed at the end of
Subsection 3.1. For every z ∈ Nk, we define the random variables

Sk,z :=
1

kd

∑
w∈Nk,z

Yε,w Yε,w := ρd−2
w

1

1− 4d−2ε2ρd−2
w

. (3.19)

Lemma 3.2. Let δ ∈ (0, 2
d−2 ] be fixed. Then for every ε > 0 and k ∈ N with kε 6 1

the following inequality holds: If uε, u are as in Theorem 2.1 and Wε as in (2.7),
then

‖uε−Wεu‖H1
0 (D)

.

(
εd+2

∑
z∈Φεδ(D)

ρd−2
z + (kε)2εd

∑
z∈Φεδ(D)

ρ2(d−2)
z + εd

∑
z∈Φε(D)\nε(D)

ρd−2
z

) 1
2

+

(∑
z∈N̊k

(Sk,z − Eρ
[
ρd−2

]
)2 + (kε)3

∑
z∈Nk\N̊k

(Sk,z − Eρ
[
ρd−2

]
)2

) 1
2

.

Lemma 3.2 relies on the next lemma, that is an adaptation of [18][Theorem 3.2]
and shows that controlling the error uε−Wεu considered in Theorem 2.1 boils down
to controlling the convergence to C0 of the density of capacity generated by Hε.

Lemma 3.3. Let δ ∈ (0; 2
d−2 ] be fixed; let uε, u, wε and Wε be as in Lemma 3.2.

Let wε be as in (3.15). Then

‖uε −Wεu‖2H1
0 (D) . ‖wε − 1‖2L2(D) + ‖∇(wε −Wε)‖2L2(Rd) + ‖µε − C0‖2H−1(D),

with

µε :=
∑

z∈Φεδ(D)

∂nwε,z δ∂B ε
4

(εz). (3.20)

Proof of Lemma 3.2. The statement follows from Lemma 3.3, provided that we show
that

‖∇(wε −Wε)‖2L2(D) + ‖wε − 1‖2L2(D) . εd+2
∑

z∈nε(D)

ρd−2
z + εd

∑
Φε(D)\nε(D)

ρd−2
z

(3.21)
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and that for every ε > 0 and k ∈ N such that kε 6 1

‖µε − C0‖2H−1(D) . (kε)2εd
∑

z∈Φεδ(D)

ρ2(d−2)
z

+
∑
z∈N̊k

(Sk,z − Eρ
[
ρd−2

]
)2 + (kε)3

∑
z∈Nk\N̊k

(Sk,z − Eρ
[
ρd−2

]
)2.

(3.22)
We first argue (3.21): By definition (3.16) for wεb and Lemma 3.1, we have that

‖∇wεb‖2L2(Rd) . εd
∑

Φε(D)\nε(D)

ρd−2
z . (3.23)

Since by Lemma 3.1 the sets
⋃
z∈nε(D)B ε

4
(εz) and Dε

b are disjoint, we appeal to

(3.15) to estimate

‖wε − 1‖2L2(D) =
∑

zi∈nε(D)

‖wgε − 1‖2L2(B ε
4

(εzi))
+ ‖wbε − 1‖2L2(Dbε∩D). (3.24)

The function wgε −1 vanishes on
⋃
z∈nε(D) ∂B ε

4
(εz): Since the balls {B ε

4
(εz)}z∈nε(D)

are all disjoint, Poincaré’s inequality in each ball B ε
4
(εz) yields

‖wgε − 1‖2L2(D) . ε2
∑

z∈nε(D)

‖∇wgε‖2L2(B ε
4

(εz)).

Using definitions (3.17),(2.6) and property (3.1) of Lemma 3.1, we may rewrite

‖wgε − 1‖2L2(D) . εd+2
∑

z∈nε(D)

ρd−2
z ,

and, inserting this into (3.24), also

‖wε − 1‖2L2(D) = εd+2
∑

z∈nε(D)

ρd−2
z + ‖wbε − 1‖2L2(Dbε∩D). (3.25)

To conclude the proof of (3.21) for wε − 1, it thus remains to estimate the last term
on the right-hand side. By construction (c.f. (3.16)), it holds wbε − 1 = 0 on ∂Db

ε;
appealing to Lemma 3.1, we also have that Dε

b ⊆ {x ∈ R3 : dist(x,D) 6 2}. We
thus apply Poincaré’s inequality in this set and conclude that

‖wbε − 1‖2L2(Dbε∩D) . ‖∇w
b
ε‖2L2(Dbε)

(3.23)

. εd
∑

Φε(D)\nε(D)

ρd−2
z .

To establish (3.21) for wε − 1, it only remains to combine this last inequality with
(3.25).

We now argue (3.21) for ∇(wε −Wε): By definition (2.5) and (3.1) of Lemma
3.1, it holds

nε(D) ⊆ Φεδ(D). (3.26)

Thanks to definition (3.15) for wε and the fact that, by Lemma 3.1 the support of
∇wεg and ∇wεb is disjoint, we use the triangle inequality to infer that

‖∇(wε −Wε)‖2L2(D) . ‖∇(wεg −Wε)‖2L2(D) + ‖∇wεb‖2L2(D) (3.27)

(3.23)

. ‖∇(wεg −Wε)‖2L2(D) + εd
∑

z∈Φε(D)\nε(D)

ρd−2
z .



CONVERGENCE RATES FOR THE POISSON PROBLEM 353

Comparing definition (3.17) for wεg with definition (2.7) for Wε and using inclusion
(3.26), we observe that

∇(wεg −Wε) =
∑

Φεδ(D)\nε(D)

∇Wε1B ε
4

(εz).

Since the balls {B ε
4
(εz)}z∈Φεδ(D) are disjoint, the previous identity and the triangle

inequality imply that

‖∇(wεg −Wε)‖2L2(D) .
∑

Φεδ(D)\nε(D)

‖∇wε,z‖2L2(B ε
4

(εz))

(2.5)−(2.6)
= εd

∑
Φε(D)\nε(D)

ρd−2
z .

Inserting this bound into (3.27) yields (3.21) also for the norm of ∇(wε −Wε).
We now turn to (3.22) and claim that we may apply Lemma 5.1 with M = µε,

Z = {εw}w∈Φεδ(D), X = {ε
d
d−2 ρw}w∈Φεδ(D) and rw ≡ ε

4 for every w ∈ Φεδ(D). We use

as covering {Kj}j∈J the sets {Qk,z}z∈Nk . Conditions (5.1) and (5.3) are satisfied
thanks to (2.5) and by construction (see Subsection 3.1), respectively. Appealing to
Lemma 5.1, we therefore have that

‖µε −mk‖2H−1(D) . (kε)2εd
∑

z∈Φεδ(D)

ρ2(d−2)
z , mk

(3.19)
= cd

∑
z∈Nk

Sk,z1Qk,z .

By the triangle inequality and the previous estimate, we thus bound

‖µε − C0‖2H−1(D) 6 (εk)2εd
∑

z∈Φεδ(D)

ρ2(d−2)
z + ‖mk − C0‖2H−1(D) (3.28)

so that, to prove (3.22), it only remains to control the last term on the right-hand
side above. We do this by observing that, since {Qk,z}z∈Nk is a disjoint covering of
D, for each φ ∈ H1

0 (D) we have

|〈mk − C0;φ〉| ' |
∑
z∈Nk

(Sk,z − Eρ
[
ρd−2

]
)

ˆ
Qk,z∩D

φ|.

By the triangle inequality, also

|〈mk − C0;φ〉|
(3.12)

. |
∑
z∈N̊k

(Sk,z − Eρ
[
ρd−2

]
)

ˆ
Qk,z

φ|

+ |
∑

z∈Nk\N̊k

(Sk,z − Eρ
[
ρd−2

]
)

ˆ
Qk,z∩D

φ|.
(3.29)

We claim that

|
∑
z∈N̊k

(Sk,z − Eρ
[
ρd−2

]
)

ˆ
Qk,z

φ|

.
( ∑
z∈N̊k

(Sk,z − Eρ
[
ρd−2

]
)2
) 1

2
(ˆ
D

|∇φ|2
) 1

2 .

(3.30)

This is an easy consequence of the properties of the covering {Qk,z}z∈Nk of D, (3.11),
together with Cauchy-Schwarz’s inequality and Poincaré’s inequality for φ in D.

We now turn to the second term in (3.29). We note that, by definition (3.12), the
set ⋃

z∈Nk\N̊k

Qk,z ⊆ {x ∈ Rd : dist(x; ∂D) 6 4kε}.
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Since φ ∈ H1
0 (D) and D is a smooth and bounded set, we may appeal to Poincaré’s

inequality in the previous set on the right-hand side to bound( ∑
z∈Nk\N̊k

ˆ
Qk,z

|φ|2
) 1

2 . (kε)
(ˆ
D

|∇φ|2
) 1

2 .

Appealing once again to Cauchy-Schwarz’s inequality and using the above estimate,
we control

|
∑

z∈Nk\N̊k

(Sk,z−Eρ
[
ρd−2

]
)

ˆ
Qk,z∩D

φ|

.
(
(kε)d+2

∑
z∈Nk\N̊k

(Sk,z − Eρ
[
ρd−2

]
)2
) 1

2
(ˆ
D

|∇φ|2
) 1

2 .

Hence, provided kε . 1, we may appeal to (3.13) and infer that

|
∑

z∈Nk\N̊k

(Sk,z−Eρ
[
ρd−2

]
)

ˆ
Qk,z∩D

φ|

.
(
(kε)3

∑
z∈Nk\N̊k

(Sk,z − Eρ
[
ρd−2

]
)2
) 1

2
(ˆ
D

|∇φ|2
) 1

2 .

Combining this with (3.30) and (3.29) allows us to infer that for every φ ∈ H1
0 (D)

|〈mk − C0;φ〉|.
(
(kε)3

∑
z∈Nk\N̊k

(Sk,z − Eρ
[
ρd−2

]
)2

+
∑
z∈N̊k

(Sk,z − Eρ
[
ρd−2

]
)2
) 1

2
(ˆ
D

|∇φ|2
) 1

2 ,

or, equivalently, that

‖mk − C0‖2H−1(D).(kε)3
∑

z∈Nk\N̊k

(Sk,z − Eρ
[
ρd−2

]
)2 +

∑
z∈N̊k

(Sk,z − Eρ
[
ρd−2

]
)2.

This, together with (3.28), establishes (3.22). The proof of Lemma 3.2 is complete.

Proof of Lemma 3.3. The argument for this lemma is very similar to the one of [18,
Theorem 3.1]. Since f ∈ W 1,p, p > d and since D is smooth, by standard elliptic
regularity we infer that the solution u of (1.4) satisfies u ∈W 2,∞(D). By computing
the (distributional) Laplacian of uε − wεu we obtain that in Dε

−∆(uε−wεu) = (C0 + ∆wε)u− 2∇ · ((1− wε)∇u) + (1− wε)∆u (3.31)

We now smuggle the term (−∆Wε)u ∈ H−1(D) in the right-hand side so that the
previous identity turns into

−∆(uε − wεu)

= (C0 + ∆Wε)u−∆(Wε − wε)u− 2∇ · ((1− wε)∇u) + (1− wε)∆u in Dε.
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We stress that, since u ∈W 2,+∞(D)∩H1
0 (D), uε ∈ H1

0 (Dε) ,wε ∈ H1(D), the above
equation holds in the sense that for every φ ∈ H1

0 (Dε)ˆ
∇φ · ∇(uε − wεu) = 〈C0 + ∆Wε;uφ〉+

ˆ
∇(Wε − wε) · ∇(uφ) (3.32)

+ 2

ˆ
(1− wε)∇u · ∇φ+

ˆ
(1− wε)∆uφ.

Since the balls {B ε
4
(εz)}z∈Φεδ(D) are all mutually disjoint, by definition (2.7) and

equations (2.6) we have that

−∆Wε :=
∑

z∈Φεδ(D)

∂nwε,z(1∂B ε
4

(εz) − 1∂B
ε
d
d−2 ρz

(εz)).

Since φ ∈ H1
0 (Dε) and therefore it vanishes on the spheres {∂B

ε
d
d−2 ρz

(εz)}z∈Φεδ(D),

the above identity implies that

〈∆Wε;uφ〉 = −
∑

z∈Φεδ(D)

ˆ
∂B ε

4
(εz)

∂nwε,zuφ
(3.20)

= −〈µε;uφ〉.

Inserting this last identity in (3.32), we infer thatˆ
∇φ · ∇(uε − wεu) = 〈C0 − µε;uφ〉+

ˆ
∇(Wε − wε) · ∇(uφ)

+ 2

ˆ
(1− wε)∇u · ∇φ+

ˆ
(1− wε)∆uφ.

We now choose φ = uε − wεu and apply Hölder’s and Poincaré’s inequalities to
bound

‖uε−wεu‖2H1
0 (D)

. ‖u‖2W 2,∞

(
‖wε − 1‖2L2(D) + ‖∇(wε −Wε)‖2L2(D) + ‖µε − C0‖2H−1(D)

)
.

To obtain the claim of Lemma 3.3 it remains to use that, by the triangle inequality
and Hölder’s inequality, we have

‖∇(uε −Wεu)‖L2(D) 6 ‖u‖W 2,∞‖Wε − wε‖H1(Rd) + ‖uε − wεu‖H1
0 (D)

and that, by definitions (2.7) and (3.15), the difference Wε − wε is compactly
supported in {x ∈ Rd : dist(x; ∂D) 6 4} (see also Lemma 3.1).

3.3. Annealed estimates (Proof of Theorem 2.1, (a)). In this subsection we
rely on the quenched estimate of Lemma 3.2 to prove the statement of Theorem 2.1
in the case of periodic centres. The first ingredient is the following annealed bound:

Lemma 3.4. Let (Φ,R) satisfy the assumptions of Theorem 2.1, (a). For every
δ ∈ (0, 2

d−2 ], let nε(D) ⊆ Φε(D) be the random subset constructed in Lemma 3.1.
Then

E
[
εd

∑
z∈Φε(D)\nε(D)

ρd−2
z

]
. ε( 2

d−2−δ)β .

Proof of Theorem 2.1, (a). By the assumptions on D, we may assume that for ε > 0
and k ∈ N such that εk . 1, the cube Qk,0 ⊆ D. We restrict to the values of k ∈ N
satisfying the previous bound.
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Combining Lemma 3.2 and Lemma 3.4, we bound for every ε > 0 and k ∈ N as
above

E
[
‖uε −Wεu‖2H1

0 (D)

]
. (kε)2E

[
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

]
+ ε2E

[
εd

∑
z∈Φεδ(D)

ρd−2
z

]
+ E

[ ∑
z∈N̊k

(Sk,z − E
[
ρd−2

]
)2
]

+ (εk)3E
[ ∑
z∈Nk\N̊k

(Sk,z − E
[
ρd−2

]
)2
]

+ ε( 2
d−2−δ)β .

Since the sets Nk, N̊k are deterministic and {Sk,z}z∈N̊k are identically distributed,
we infer that

E
[
‖uε −Wεu‖2H1

0 (D)

]
. (kε)2E

[
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

]
+ ε2E

[
εd

∑
z∈Φεδ(D)

ρd−2
z

]
+ E

[
(Sk,0 − E

[
ρd−2

]
)2
]

+ (εk)3
∑

z∈Nk\N̊k

E
[
(Sk,z − E

[
ρd−2

]
)2
]

+ ε( 2
d−2−δ)β ,

We observe that, by (2.5), (2.1) and the inequality Nε(D) . ε−d (c.f. (2.3)), we
have that

E
[
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

]
+ E

[
εd

∑
z∈Φεδ(D)

ρd−2
z

]
. E

[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
+ 1.

Since k > 1, the previous two displays thus imply

E
[
‖uε −Wεu‖2H1

0 (D)

]
. (kε)2E

[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
+ E

[
(Sk,0 − E

[
ρd−2

]
)2
]

+ (εk)3
∑

z∈Nk\N̊k

E
[
(Sk,z − E

[
ρd−2

]
)2
]

+ ε( 2
d−2−δ)β .

(3.33)
We now claim that for every k ∈ N such that εk 6 C1 with C1 as in (3.13), then

E
[
‖uε−Wεu‖2H1

0 (D)

]
. (kε)2E

[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
+ k−d V ar(Yε,01

ρ<ε
− 2
d−2

+δ) + ε( 2
d−2−δ)β ,

(3.34)
where Yε,0 is defined as in (3.19). We begin by showing how to conclude the proof
of the theorem provided (3.34) holds.

Let us first assume that (2.1) holds with β > d− 2; in this case, we have that

E
[
ρ2(d−2)

]
+ E

[
Y 2
ε,0

]
. 1

and therefore that

E
[
‖uε −Wεu‖2H1

0 (D)

]
. (kε)2 + k−d + ε( 2

d−2−δ)β .

Estimate of Theorem 2.1 for β > d−2 follows from this inequality if we minimize the

right-hand side above in k, i.e. if we choose k = bε−
2
d+2 c, and set δ as in Theorem

2.1.
Let us now assume that β < d− 2 in (2.1): In this case, we bound

V ar(Yε,01
ρ<ε

− 2
d−2

+δ) + E
[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
. ε−( 2

d−2−δ)(d−2−β)



CONVERGENCE RATES FOR THE POISSON PROBLEM 357

so that (3.34) turns into

E
[
‖uε −Wεu‖2H1

0 (D)

]
.
(
(kε)2 + k−d

)
ε−( 2

d−2−δ)(d−2−β) + ε( 2
d−2−δ)β .

Also in this case, we infer the estimate of Theorem 2.1 by minimizing the right-hand

side in k and δ, i.e. choosing k = bε−
2
d+2 c and δ as in Theorem 2.1.

To complete the proof of the theorem it only remains to argue (3.34) from (3.33).
We first tackle the second term on the right-hand side of (3.33) and show that

E
[
(Sk,0 − E

[
ρd−2

]
)2
]
. k−d V ar(Yw,ε1

ρ<ε
− 2
d−2

+δ) + ε( 2
d−2−δ)β . (3.35)

This may be done after noticing that the left-hand side may be written, up to an
error, as the sum of (2k+ 1)d centred and independent random variables: Definitions
(2.5) and (3.14) for Φεδ(D) and Nk,z imply that

Nk,z =
{
w ∈ Zd : εw ∈ Qk,z ∩D, ε

d
d−2 ρw < ε1+δ

}
. (3.36)

Since 0 ∈ N̊k, this, (3.19) and the triangle inequality allows us to bound

E
[
(Sk,0 − Eρ

[
ρd−2

]
)2
]
. E

[
(
∑
w∈Zd

εw∈Qk,0

Yw,ε1
ρw<ε

− 2
d−2

+δ − Eρ
[
ρd−21

ρ<ε
− 2
d−2

+δ

]
)2
]

+ Eρ
[
ρd−21

ρ>ε
− 2
d−2

+δ

]2
.

(3.37)
Thanks to Chebyshev’s inequality and assumption (2.1) we have

Eρ
[
ρd−21

ρ>ε
− 2
d−2

+δ

]
. ε( 2

d−2−δ)β , (3.38)

and thus we may rewrite (3.37) as

E
[
(Sk,0 − Eρ

[
ρd−2

]
)2
]
. E

[
(
∑
w∈Zd

εw∈Qk,0

Yw,ε1
ρw<ε

− 2
d−2

+δ − Eρ
[
ρd−21

ρ<ε
− 2
d−2

+δ

]
)2
]

+ ε2( 2
d−2−δ)β .

Since

|Eρ
[
Y0,ε1

ρ0<ε
− 2
d−2

+δ

]
− Eρ

[
ρd−21

ρ<ε
− 2
d−2

+δ

]
| . ε2Eρ

[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
(2.1)

. ε( 2
d−2−δ)β ,

the independence of the random variables {ρz}z∈Φ, and the fact that Nε(Qk,0) =
(2k+1)d (c.f. (2.3)), allows us to obtain (3.35), by means of standard CLT arguments.

We now turn to the remaining term in (3.33) and argue that

(εk)3
∑

z∈Nk\N̊k

E
[
(Sk,z − Eρ

[
ρd−2

]
)2
]
. (kε)2E

[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
. (3.39)

By the triangle inequality and assumption (2.1), the left-hand side is bounded by

(εk)3
∑

z∈Nk\N̊k

E
[
(Sk,z − Eρ

[
ρd−2

]
)2
]
. (εk)3 + (εk)3

∑
z∈Nk\N̊k

E
[
S2
k,z

]
. (3.40)

To establish (3.39) from this it suffices to remark that, by (3.19) and (3.36), we have

S2
k,z .

∑
w∈Z3

εw∈Qk,z∩D

ρ2(d−2)
w 1

ρw<ε
− 2
d−2

+δ
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so that this, and the fact that the random variables {ρz}z∈Φε(D) are identically
distributed, yields ∑

z∈Nk\N̊k

E
[
S2
k,z

]
. E

[
1
ρ<ε

− 2
d−2

+δρ
2(d−2)

]
.

Inserting this into (3.40) implies (3.39). To establish (3.34) it remains to combine
(3.39), (3.35) and (3.33). The proof of Theorem 2.1, (a) is complete.

Proof of Lemma 3.4. We resort to the construction of the set nε(D) implemented
in Lemma 3.1: By (3.6), (3.4) and (3.5) in the proof of Lemma 3.1 we decompose

εd
∑

Φε(D)\nε(D)

ρd−2
w = εd

∑
z∈Jεb

ρd−2
z + εd

∑
z∈Ĩεb

ρd−2
z . (3.41)

and prove the statement of Lemma 3.4 for each one of the two sums. We begin with
the first one: Using (3.4) we write

εd
∑
z∈Jεb

ρd−2
z = εd

∑
z∈Φε(D)

ρd−2
z 1

ρz>ε
− 2
d−2

+δ .

Taking the expectation and using that {ρz}Φε(D) are identically distributed and that

Nε(D) . ε−d, we immediately bound

εdE
[∑
z∈Jεb

ρd−2
z

]
. Eρ

[
ρd−21

ρ>ε
− 2
d−2

+δ

] (3.38)

. ε( 2
d−2−δ)β , (3.42)

i.e. the claim of Lemma 3.4 for the first sum in (3.41).

We now turn to the second sum in (3.41): By definition (3.5), if z ∈ Ĩεb , then

ρz 6 ε−
2
d−2 +δ and there exists an element w ∈ Jεb such that ε|z−w| . ε+(ε

d
d−2 ρw∧1).

This allows us to bound

εd
∑
z∈Ĩεb

ρd−2
z 6 εd

∑
w∈Jεb

∑
z∈Φε(D)\{w},

ε|z−w|.ε+ε
d
d−2 ρw∧1

ρd−2
z 1

ρz<ε
− 2
d−2

+δ

= εd
∑

w∈Φε(D)

1
ρw>ε

− 2
d−2

+δ

∑
z∈Φε(D)\{w},

ε|z−w|.ε+ε
d
d−2 ρw∧1

ρd−2
z 1

ρz<ε
− 2
d−2

+δ .

We now take the expectation and use that Φ = Zd and that {ρz}z∈Φ are independent
and identically distributed: This implies that

E
[
εd
∑
z∈Ĩεb

ρd−2
z

]
. E

[
εd

∑
w∈Φε(D)

1
ρw>ε

− 2
d−2

+δ#{z ∈ Φε(D)\{w} : ε|z − w| . ε+ ε
d
d−2 ρw ∧ 1}

]
.

Since for every w ∈ Jεb , the set

#{z ∈ Φε(D)\{w} : ε|z − w| < ε+ ε
d
d−2 ρw ∧ 1} . 1 + ρd−2

w ,
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we obtain that

E
[
εd
∑
z∈Ĩεb

ρd−2
z

]
. E

[
εd

∑
w∈Φε(D)

ρd−2
w 1

ρw>ε
− 2
d−2

+δ

] (3.4)
= E

[
εd
∑
w∈Jεb

ρd−2
w

]
(3.42)

. ε( 2
d−2−δ)β .

This, together with identities (3.41) and (3.42), establishes Lemma 3.4.

4. Proof of Theorem 2.1, (b). In this section we adapt the argument of the
previous section to Theorem 2.1 in case (b). As mentioned in Subsection 2.2, the
main challenge is related to the construction of a mesoscopic covering {Kk,z}z∈Nk
that plays the same role of {Qk,z}z∈Nk of Subsection 3.1. In the present case, the
random positions of the centres imply that (with positive probability) there are
configurations in which some of the spheres {∂B ε

4
(εz)}z∈Φ intersect the boundary

of {Qk,z}z∈Nk . This prevents us from appealing to Lemma 5.1 as condition (5.3) is
violated.

All the results contained in this section besides hold for any dimension d > 3.
However, in the proof of Theorem 2.1, (b) we obtain the same decay rate of case (a)
only in d = 3. In higher dimensions we obtain a slower (but still algebraic) rate. In
order to best appreciate this dimensional constraint, in the whole section we work
in a general dimension d > 3.

Throughout this section we set δ as in Theorem 2.1 and define the parameters

k := bε−
2
d+2 c, κ :=

2

(d− 1)(d+ 2)
. (4.1)

4.1. Partition of the holes and mesoscopic covering of D. This subsection
contains an adaptation to the case of random centres of Lemma 3.1 and of the sets
{Qk,z}z∈Nk .

Lemma 4.1. Let δ be as in Theorem 2.1. We recall the definition (2.4) of Rε,z.
For ω ∈ Ω, we consider a realization of the marked point process (Φ;R) and of the
associated set of holes Hε. Then, there exists a partition

Hε := Hε
g ∪Hε

b ,

with the following properties:

• There exists a subset of centres nε(D) ⊆ Φε(D) such that

Hε
g :=

⋃
z∈nε(D)

B
ε

d
d−2 ρz

(εz), min
z∈nε(D)

Rε,z > ε2, max
z∈nε(D)

ε
d
d−2 ρz 6 ε1+δ,

and such that 2
√
dε

d
d−2 ρz 6 Rε,z, for every z ∈ nε(D).

• There exists a set Dε
b(ω) ⊆ {x ∈ Rd : dist(x,D) 6 2} satisfying

Hε
b ⊆ Dε

b , Cap(Hε
b , D

ε
b) . ε

d
d−2

∑
z∈Φε(D)\nε(D)

ρd−2
z

and for which BRε,z (εz) ∩Dε
b = ∅, for every z ∈ nε(D).

Proof of Lemma 4.1. The construction for the sets Hε
g , H

ε
b and Dε

b is analogous to
the one implemented in the proof of Lemma 3.1, with the only difference that in
this case, we set

Jεb = Φε(D)\Φεδ(D) =

{
z ∈ Φε(D) : ε

d
d−2 ρz > ε1+δ OR Rε,z 6 ε2 ∨ ε

d
d−2 ρz

}
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and in the definition (3.5) of Ĩεb the ball B ε
4
(εz) is replaced by BRε,z (εz).

For k as in (4.1), let {Qk,z}z∈Nk be as in Subsection 3.1. For every z ∈ Nk we
define the sets Nk,z as in (3.14). We stress that, in this case, (3.14) is ill-defined for
the realizations of Φ such that there are points in Φεδ(D) that fall on the boundary
of the cubes {Qk,z}z∈Nk . This issue may be easily solved by fixing a deterministic
rule to assign these points to a particular cube that shares the boundary considered.
We stress that all the arguments of this section do not depend on this rule since the
set of the boundaries of the covering {Qk,z}z∈Nk has zero (Lebesgue)-measure.

For z ∈ Nk and w ∈ Nk,z, we define the modification of the minimal distance
Rε,w:

R̃ε,w :=


Rε,w if εw ∈ Qz,k−1

ε1+κ ∧Rε,w if dist(εw; ∂Qz,k) 6 ε1+κ

(2n−1ε1+κ) ∧Rε,w if εw /∈ Qz,k−1, 2n−1ε1+κ 6 dist(εw; ∂Qz,k)

6 2nε1+κ.

(4.2)

We aim at obtaining a (random) collection of disjoint sets {Kk,z}z∈Nk having size
' ε(2k + 1) and such that for every z ∈ Nk and w ∈ Φεδ(D)

BR̃ε,z (εw) ∩Kk,z = ∅ OR B2R̃ε,z
(εw) ⊆ Kk,z.

We modify {Qk,z}z∈Nk as follows: For κ as in (4.1), any z ∈ Nk and w ∈ Nk,z, we
consider the cubes

Q̃ε,w := εw + 2[−R̃ε,z; R̃ε,z].
Note that, by definition (2.4), all the cubes above are disjoint. For every z ∈ Nk, we
thus set (see Figure (1))

Kk,z :=
(
Qk,z

⋃
w∈Nk,z

Q̃ε,w
)
\

⋃
w∈Φεδ(D)\Nk,z

Q̃ε,w. (4.3)

Since the cubes {Qε,z}z∈Φεδ(D) are disjoint we have that⋃
z∈Nk

Kk,z ⊇ D, | diam(Kk,z)| . kε,

(2k + 1− εκ)dεd 6 |Kk,z| 6 (2k + 1 + εκ)dεd.

(4.4)

We emphasize that the previous properties hold for every realization of the point
process Φ. The introduction of the modified random variable R̃ε,z is needed to
ensure that the second property in (4.4) holds with εκ instead of 1. This yields
that the difference between the volume of the set Kk,z and the cube Qk,z is of order
εd+κkd−1 instead of εdkd−1. This condition plays a crucial role in the proof of the
theorem (see (4.14)) and is the main term that forces the dimensional constraint
d = 3 in the rates of convergence.

4.2. Quenched estimates for the homogenization error. In this section we
adapt Lemma 3.2 to the current setting. As in the case of Lemma 3.2, the next
result relies on a variation of Lemma 3.3 that allows us to replace in the definition
(3.20) of µε the radii ε

4 with R̃ε,z defined in (4.2).

We define the oscillating test function wε ∈ H1(D) as done in Subsection 3.2,
this time using the sets Hε

b , H
ε
g and Dε

b of Lemma 4.1 with δ as in Theorem 2.1,
and Rε,z instead of ε

4 in (3.17). We also define the analogues of (3.19), this time
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Figure 1. The construction of Kε,z from the cube Qk,ε. The
dashed grey area corresponds to the set Kε,z, while Qε,z is the
square bounded by the thick black line. The green dots are the
points of Φε

δ that fall inside the set Qk−1,z (here bounded by the
dashed blue line). The red dots are the points that are outside
of Qk,z but whose associated cube intersects ∂Qk,z. The black
dots are the points that are in Qk,z\Qk−1,z. Note that the cubes
associated to the black and red dots are typically smaller than the
ones associated to the green dots due to the cut-off R̃ε,z.

associated to the covering {Kk,z}z∈Nk constructed in the previous subsection: For
every z ∈ Nk we indeed set

Sk,z :=
εd

|Kk,z|
∑

w∈Nk,z

Yε,w, Yε,w := ρd−2
w

R̃d−2
ε,w

R̃d−2
ε,w − εdρd−2

w

. (4.5)

Lemma 4.2. Let Wε be as in (2.7) and let uε, u as in Theorem 2.1. Then, for
every ε > 0 and k ∈ N such that εk . 1 we have that

‖uε −Wεu‖H1
0 (D)

.

(
εd+2

∑
z∈nε(D)

ρd−2
z + (kε)2εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

( ε

R̃ε,z

)d
+ εd

∑
z∈Φε(D)\nε(D)

ρd−2
z

) 1
2

+

(∑
z∈N̊k

(Sk,z − λE
[
ρd−2

]
)2 + (kε)3

∑
z∈Nk\N̊k

(Sk,z − λEρ
[
ρd−2

]
)2

) 1
2

+

(
εd+ 2d

d+2

∑
z∈Nk

∑
w∈Nk,z,

εw∈Qk,z\Qk−1,z

ρ2(d−2)
w

) 1
2

.

Lemma 4.3. Let uε, u and Wε be as in Lemma 3.2 and let wε be as defined above.
Then

‖uε −Wεu‖2H1
0 (D) . ‖wε − 1‖2L2(D) + ‖∇(wε −Wε)‖2L2(Rd)

+ ‖∇(W̃ε −Wε)‖2L2(Rd) + ‖µε − C0‖2H−1(D),
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where W̃ε is defined as in (2.7) with Rε,z substituted by R̃ε,z. Furthermore, in this
case

µε :=
∑

z∈Φεδ(D)

∂nw̃ε,z δ∂BR̃ε,z (εz),

with w̃ε,z as in (2.6) with R̃ε,z instead of Rε,z.

Proof of Lemma 4.2. Analogously to the proof of Lemma 3.2, we appeal to Lemma
4.3 and reduce to showing that

‖∇(Wε − wε)‖2L2(D) + ‖wε − 1‖2L2(D) (4.6)

. εd+2
∑

z∈nε(D)

ρd−2
z + εd

∑
Φε(D)\nε(D)

ρd−2
z ,

‖∇(W̃ε −Wε)‖2L2(Rd) . εd+ 2d
d+2

∑
z∈Nk

∑
w∈Nk,z,

εw∈Qk,z\Qk−1,z

ρ2(d−2)
w (4.7)

and

‖µε − C0‖2H−1(D) . (kε)2εd
∑

z∈Φεδ(D)

ρ2(d−2)
z

( ε

R̃ε,z

)d
+ (kε)3

∑
z∈Nk\N̊k

(Sk,z − λEρ
[
ρd−2

]
)2 +

∑
z∈N̊k

(Sk,z − λEρ
[
ρd−2

])2
.

(4.8)
Inequality (4.6) may be argued exactly as done for (3.21) in the proof of Lemma

3.2, this time appealing to Lemma 4.1 instead of Lemma 3.1.
We thus turn to (4.7). We begin by remarking that W̃ε is well-defined: Indeed,

by definition (2.4) and (4.2), we have that R̃ε,z 6 Rε,z 6 ε
4 for every z ∈ Φε

δ(D).
Furthermore, since κ < δ (c.f. (4.1) and Theorem 2.1), it follows from (2.5) that

2ε
d
d−2 ρz 6 R̃ε,z, for every z ∈ Φε

δ(D). Therefore, comparing the two definitions of

Wε and W̃ε, we use (4.2) to bound:

‖∇(W̃ε −Wε)‖2L2 =
∑
z∈Nk

∑
w∈Nk,w,

εw∈Qk\Qk−1

‖∇(W̃ε −Wε)‖2L2(BRε,w (εw)). (4.9)

Since, if Rε,w 6= R̃ε,w, then ε1+κ 6 R̃ε,w 6 Rε,w, we have that

‖∇(W̃ε −Wε)‖2L2(BRε,w (εw)) 6
ˆ
BRε,w (εw)\Bε1+κ (εw)

|∇Wε|2

+

ˆ
BR̃ε,w (εw)\B

ε
d
d−2 ρw

(εw)

|∇(Wε − W̃ε)|2.

Appealing to (2.7), (2.6) and the adaptation of (3.18) for both W̃ε and Wε, the
previous integrals may be bounded by

‖∇(W̃ε −Wε)‖2L2(BRε,w (εw)) . εdρ2(d−2)
w ε2−(d−2)κ + εdρ3(d−2)

w ε2(2−(d−2)κ)
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Since w ∈ Φεδ(D), we have that ρw 6 ε−
2
d−2 +δ so that

‖∇(W̃ε −Wε)‖2L2(BRε,w (εw)) . εdρ2(d−2)
w ε2−(d−2)κ + εdρ2(d−2)

w ε2−2(d−2)κ+(d−2)δ

δ>κ

. εdρ2(d−2)
w ε2−(d−2)κ.

Inserting this into (4.9) and appealing to (4.1) for κ yields (4.7).
We finally tackle (4.8): As done for (3.22) of Lemma 3.2, we aim at applying

Lemma 5.1. We thus pick Z = Φε
δ(D) and X = {ε

d
d−2 ρz}z∈Z ,R := {R̃ε,z}z∈Z . As

shown above before the argument for (4.7), condition (5.1) is satisfied. Moreover,
thanks to (4.3), the collection {Kk,z}z∈Nk satisfies (5.3). Hence, by Lemma 5.1, we
have that

‖µε −mk‖H−1 . max
z∈Nk

(
diam(Kk,z)

)(
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

( ε

R̃ε,z

)d) 1
2

(4.4)

. εk
(
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

( ε

R̃ε,z

)d) 1
2

where, thanks to (4.5), we have that mk = cd
∑
z∈Nk Sk,z1Kk,z . By the triangle

inequality it thus only remains to control the norm ‖mk − C0‖H−1(D). Using (4.4),
this may be done exactly as in the proof of Lemma 3.2. The proof of Lemma 4.2 is
complete.

Proof of Lemma 4.3. This lemma may be argued as done for Lemma 3.3. The only
difference is that, in (3.31), we smuggle in −∆W̃ε instead of −∆Wε and apply

the triangle inequality to bound ‖∇(W̃ε − wε)‖L2 6 ‖∇(Wε − wε)‖L2 + ‖∇(W̃ε −
Wε)‖L2 .

4.3. Annealed estimates (Proof of Theorem 2.1, (b)). As in case (a), the
next lemma provides annealed bounds for some of the quantities appearing in the
right-hand side of Lemma 4.2.

Lemma 4.4. Let nε(D) ⊆ Φε(D) the (random) subset constructed in Lemma 4.1.
Then

E
[
εd

∑
z∈Φε(D)\nε(D)

ρd−2
z

]
. ε( 2

d−2−δ)β + ε2.

Proof of Theorem 2.1, (b). We recall that k satisfies (4.1). Combining Lemma 4.2
and Lemma 4.4, we bound

E
[
‖uε − W̃εu‖2H1

0 (D)

]
. (kε)2E

[
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

( ε

R̃ε,z

)d]
+ E

[ ∑
z∈N̊k

(Sk,z − λE
[
ρd−2

]
)2
]

+ (kε)3E
[ ∑
z∈Nk\N̊k

(Sk,z − λEρ
[
ρd−2

]
)2
]

+ ε( 2
d−2−δ)β + ε2 + εd+ 2d

d+2E
[ ∑
z∈Nk

∑
w∈Nk,z,

εw∈Qk,z\Qk−1,z

ρ2(d−2)
w

]
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As done in the proof of Theorem 2.1 (a), this also turns into

E
[
‖uε − W̃εu‖2H1

0 (D)

]
. (kε)2E

[
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

( ε

R̃ε,z

)d]
+ E

[
(Sk,0 − λE

[
ρd−2

]
)2
]

+ (kε)3
∑

z∈Nk\N̊k

E
[
(Sk,z − λEρ

[
ρd−2

]
)2
]

+ ε( 2
d−2−δ)β + ε2 + εd+ 2d

d+2E
[ ∑
z∈Nk

∑
w∈Nk,z,

εw∈Qk,z\Qk−1,z

ρ2(d−2)
w

]
.

(4.10)
We now claim that, thanks to (4.1), the previous estimate reduces to

E
[
‖uε − W̃εu‖2H1

0 (D)

]
.
(
| log ε|(kε)2 + k−d

)
E
[
ρ2(d−2)1ρ<− 2

d−2 +δ

]
+ ε( 2

d−2−δ)β + ε2 + k−2ε
4

(d+2)(d−1) .
(4.11)

If the previous estimate holds, by the choice of δ and (4.1), we infer that

E
[
‖uε − W̃εu‖2H1

0 (D)

]
. | log ε|ε

2d
d2−4

β∧(d−2)
+ ε

2
(d+2)

( 2
d−1 +2),

which establishes Theorem 2.1, (b) if d = 3.
To conclude the proof, we only need to obtain (4.11) from (4.10). The sum over

z ∈ Nk\N̊k may be treated as in (3.39). We thus obtain inequality (4.11) provided
that

εd+ 2d
d+2E

[ ∑
z∈Nk

∑
w∈Nk,z,

εw∈Qk,z\Qk−1,z

ρ2(d−2)
w

]
. (εk)2E

[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
, (4.12)

E
[
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

( ε

R̃ε,z

)d]
. | log ε|E

[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
(4.13)

and

E
[
(Sk,0 − λE

[
ρ
]
)2
]
. k−dE

[
ρ21

ρ<ε
− 2
d−2

+δ

]
+ ε( 2

d−2−δ)β + k−2ε
4

(d+2)(d−1) .(4.14)

We argue (4.13): Recalling the definition of the covering {Qk,z}z∈Nk , we decom-
pose

D ⊆
⋃
z∈Nk

(
Qk−1,z ∪ (Qk,z\Qk−1,z)

)
and rewrite

E
[
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

( ε

R̃ε,z

)d]
6 E

[
εd
∑
w∈Nk

( ∑
z∈Φε

δ
(D),

εz∈Qk−1,w

ρ2(d−2)
z

( ε

R̃ε,z

)d
+

∑
z∈Φε

δ
(D),

εz∈Qk,w\Qk−1,w

ρ2(d−2)
z

( ε

R̃ε,z

)d)]
.
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Since the process (Φ,R) is stationary, we bound

E
[
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

( ε

R̃ε,z

)d]
(3.11)

. k−dE
[ ∑
z∈Φε

δ
(D),

εz∈Qk−1,0

ρ2(d−2)
z

( ε

R̃ε,z

)d
+

∑
z∈Φε

δ
(D),

εz∈Qk,0\Qk−1,0

ρ2(d−2)
z

( ε

R̃ε,z

)d]
.

(4.15)
Let us partition the cube Qk,0 into (2k+ 1)d cubes of size ε and let Q be as in (3.10);

the definitions of Φε
δ(D) and R̃ε,z (c.f. (2.5), (4.2)) and the stationarity of (Φ,R)

imply that

k−dE
[ ∑
z∈Φε

δ
(D),

εz∈Qk−1,0

ρ2(d−2)
z

( ε

R̃ε,z

)d]
. E

[ ∑
z∈Φ(Q)

ρ2(d−2)
z 1

ρz6ε
− 2
d−2

+δ1Rε,z>ε2
( ε

Rε,z

)d]
.

(4.16)

We now apply Lemma 5.2 with G((x, ρ);ω) =
(

ε
Rε,x

)d
1Rε,x>ε2ρ

2(d−2)1
ρ<ε

− 2
d−2

+δ to

infer that

k−dE
[
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

( ε

R̃ε,z

)d]
. Eρ

[
ρ2(d−2)1

ρ6ε
− 2
d−2

+δ

]
EΦ

[( ε

Rε,0

)d
1Rε,0>ε2

]
.

(4.17)
We rewrite

EΦ

[( ε

Rε,0

)d
1Rε,0>ε2

]
= EΦ

[( ε

Rε,0

)d
1Rε,0>ε

]
+ EΦ

[( ε

Rε,0

)d
1ε26Rε,0<ε

]
6 1 + EΦ

[( ε

Rε,0

)d
1ε26Rε,0<ε

]
.

We claim that

EΦ

[( ε

Rε,0

)d
1ε26Rε,0<ε

]
. | log ε|.

This inequality, indeed, is obtained by decomposing the indicator function above
into

1ε2<R0,ε<ε '
d2 log εe∑
n=0

1ε22n<R0,ε<ε22n+1

and using that, by definition (2.4), it holds

P(ε22n < R0,ε < ε22n+1) 6 P(Φ(B2n+1ε(0)) > 1) . 2d(n+1)εd,

where Br(0) is the ball of radius r > 0 centred at the origin. Hence,

EΦ

[( ε

Rε,0

)d
1Rε,0>ε2

]
. | log ε|+ 1. (4.18)

Inserting this into (4.17) we obtain that for ε . 1

k−dE
[ ∑
z∈Φε

δ
(D),

εz∈Qk−1,0

ρ2(d−2)
z

( ε

R̃ε,z

)d]
. | log ε|Eρ

[
ρ2(d−2)
z 1

ρz6ε
− 2
d−2

+δ

]
.
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Thus, inequality (4.15) turns into

E
[
εd

∑
z∈Φεδ(D)

ρ2(d−2)
z

( ε

R̃ε,z

)d]
. | log ε|Eρ

[
ρ2(d−2)
z 1

ρz6ε
− 2
d−2

+δ

]
+ k−dE

[ ∑
z∈Φε

δ
(D),

εz∈Qk,0\Qk−1,0

ρ2(d−2)
z

( ε

R̃ε,z

)d]
.

This yields (4.13) provided that

k−dE
[ ∑

z∈Φε
δ
(D),

εz∈Qk,0\Qk−1,0

ρ2(d−2)
z

( ε

R̃ε,z

)d]
. Eρ

[
ρ2(d−2)
z 1

ρz6ε
− 2
d−2

+δ

]
. (4.19)

Let Qr be the cube of size r > 0 centred at the origin. Using (2.5) we bound

k−dE
[ ∑

z∈Φε
δ
(D),

εz∈Qk,0\Qk−1,0

ρ2(d−2)
z

( ε

R̃ε,z

)d]
6 k−dE

[ ∑
z∈Φ(Qk\Qk−1)

ρ2(d−2)
z

( ε

R̃ε,z

)d
1Rε,z>ε21ρz<ε

− 2
d−2

+δ

]
.

Since we may decompose the set Qk\Qk−1 into . kd−1 unitary cubes, we use again
the stationarity of (Φ;R) and infer that

k−dE
[ ∑

z∈Φε
δ
(D),

εz∈Qk,0\Qk−1,0

ρ2(d−2)
z

( ε

R̃ε,z

)d]
(4.20)

6 k−1E
[ ∑
z∈Φ(Q1)

ρ2(d−2)
z

( ε

R̃ε,z

)d
1Rε,z>ε21ρz<ε

− 2
d−2

+δ

]
,

where Q1 is any unitary cube that is contained in Qk\Qk−1
3. We now decompose

Q1 =
∑d−κ log εe
n=1 An with

An : = {x ∈ Q1 : 2nεκ 6 dist(x; ∂Qk) 6 2n+1εκ},
A0 : = {x ∈ Q1 : dist(x; ∂Qk) 6 εκ}

and use (4.2) to rewrite

E
[ ∑
z∈Φ(Q1)

ρ2(d−2)
z

( ε

R̃ε,z

)d
1Rε,z>ε21ρz<ε

− 2
d−2

+δ

]

.
d−κ log εe∑
n=0

E
[ ∑
z∈Φ(An)

ρ2(d−2)
z

( ε

Rε,z ∧ 2nε1+κ

)d
1Rε,z>ε21ρz<ε

− 2
d−2

+δ

]
We now appeal again to Lemma 5.2 as for (4.16) to reduce to

E
[ ∑
z∈Φ(Q1)

ρ2(d−2)
z

( ε

R̃ε,z

)d
1Rε,z>ε21ρz<ε

− 2
d−2

+δ

]

.
d−κ log εe∑
n=0

Eρ
[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
|An|E

[( ε

Rε,0 ∧ 2nε1+κ

)d
1Rε,0>ε2

]
.

3In this last step one should distinguish between unitary cubes according to the number of faces

that they share with ∂Qk. However, the argument shown below is immediately adapted to any of
the previous cubes.
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Arguing as for (4.18) and using the stationarity of Φ we infer that

E
[ ∑
z∈Φ(Q1)

ρ2(d−2)
z

( ε

R̃ε,z

)d
1Rε,z>ε21ρz<ε

− 2
d−2

+δ

]

. Eρ
[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

] d−κ log εe∑
n=0

2nεκ
(
2−dnε−dκ − log ε

)
. Eρ

[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
ε−(d−1)κ.

To establish (4.19) it only remains to combine the previous inequality with (4.20)
and use (4.1). The proof of (4.13) is therefore complete.

Inequality (4.12) may be obtained in a similar way as to that of (4.13): Since
we may decompose the set

⋃
z∈Nk Qk,z\Qk−1,z into n . (εk)−dkd−1 disjoint cubes

{Qε,i}ni=1 of size ε, we use definition (2.5) and the stationarity of (Φ,R) to bound

εd+ 2d
d+2E

[ ∑
z∈Nk

∑
w∈Nk,z,

εw∈Qk,z\Qk−1,z

ρ2(d−2)
w

]
. k−1ε

2d
d+2E

[ ∑
w∈Φ(Q)

ρ2(d−2)1
ρ<ε

− 2
d−2

+δ

]
so that, again by Lemma 5.2, we obtain

εd+ 2d
d+2E

[ ∑
z∈Nk

∑
w∈Nk,z,

εw∈Qk,z\Qk−1,z

ρ2(d−2)
w

]
. k−1ε

2d
d+2E

[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]

We establish (4.12) after observing that, thanks to (4.1), it holds k−1ε
2d
d+2 6 (εk)2.

We now tackle (4.14): As in the proof of case (a), we may assume that for ε . 1
the set Q0,k ⊆ D. By construction (see definition (4.3)), the (random) set Kε,0

satisfies {
w ∈ Φεδ(D) : εw ∈ Kk,0

}
=
{
w ∈ Φεδ(D) : εw ∈ Qk,0

}
= Φ(Qk),

where Qk is, as above, the cube of size 2k + 1 centred at the origin. Hence,

decomposing Qk =
⋃(2k+1)d

i=1 Qi into unitary cubes, definitions (4.5) and (2.5) allow
us to rewrite

Sk,0 − λE
[
ρd−2

]
=

εd

|Kk,z|

(2k+1)d∑
i=1

Zi − λE
[
ρ
]

with

Zi :=
∑

Φ(Qi)

Yε,z1
ρz<ε

− 2
d−2

+δ1
Rε,z>2ε

d
d−2 ρz

, i = 1, · · · , kd. (4.21)

We rewrite

Sk,0 − λE
[
ρd−2

]
=

εd

|Kk,z|

(2k+1)d∑
i=1

(Zi − λE
[
ρd−2

]
) + λ(

εd(2k + 1)d

|Kk,z|
− 1)Eρ

[
ρd−2

]
so that the triangle inequality, assumption (2.1) and the quenched bounds in (4.4)
yield

(Sk,0 − λE
[
ρd−2

]
)2 .

((2k+1)d∑
i=1

(Zi − λE
[
ρd−2

]
)
)2

+ k−2ε2κ.
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Appealing to definitions (4.21), (4.5) and (2.4), we observe that Zi and Zj are
independent whenever i, j are such that Qj and Qi are not adjacent. We emphasize
that they are not identically distributed as in definition (4.21) the random variables

Yε,z contain the modified radii R̃ε,z (see (4.5) and (4.2)). Hence, by taking the
expectation in the previous inequality, we estimate

E
[
(Sk,0 − λE

[
ρ
]
)2

]
. (2k + 1)−d

(2k+1)d∑
i=1

E
[
(Zi − λE

[
ρd−2

]
)2

]

+

(2k+1)d∑
i=1

E
[
Zi − λE

[
ρd−2

]]2

+ k−2ε2κ.

(4.22)

To establish (4.14) from (4.22) it suffices to bound

E
[
(Zi − λE

[
ρd−2

]
)2

]
. E

[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
+ 1, (4.23)

E
[
Zi − λE

[
ρd−2

]]
. ε( 2

d−2−δ)β . (4.24)

We emphasize that in the first bound the right-hand side may be bounded by
. E

[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
.

Inequality (4.23) follows from Cauchy-Schwarz’s inequality, the triangle inequality
and definitions (4.21) and (4.5). We thus turn to (4.24) and fix i = 1, · · · , (2k + 1)d.
Since by definition (4.5) it holds

Yε,z = ρd−2
z + εd

ρ
2(d−2)
z

R̃d−2
ε,w − εdρd−2

w

,

we use this and (4.21) to rewrite

E
[
Zi − λE

[
ρd−2

]]
= E

[ ∑
z∈Φ(Qi)

ρd−2
z 1

ρz<ε
− 2
d−2

+δ1
Rε,z>ε2∨ε

d
d−2 ρz

]
− λE

[
ρd−2

]
+ E

[ ∑
z∈Φ(Qi)

εd
ρ

2(d−2)
z

R̃d−2
ε,z − εdρd−2

z

1
ρz<ε

− 2
d−2

+δ1
Rε,z>ε2∨ε

d
d−2 ρz

]
.

Observing that E
[∑

z∈Φ(Qi)
ρd−2
z

]
= λE

[
ρd−2

]
, and writing

1
ρz<ε

− 2
d−2

+δ1
Rε,z>ε2∨ε

d
d−2 ρz

= 1− 1
ρz>ε

− 2
d−2

+δ − 1
ρz6ε

− 2
d−2

+δ1
Rε,z62ε

d
d−2 ρz∨ε2

,

we infer that

|E
[
Zi − λE

[
ρd−2

]]
| . E

[ ∑
z∈Φ(Qi)

ρd−2
z 1

ρz<ε
− 2
d−2

+δ1
Rε,z6ε

d
d−2 ρ∨ε2

]
+ E

[
ρd−21

ρ>ε
− 2
d−2

+δ

]
+ εd E

[ ∑
z∈Φ(Qi)

(
ρ2
z

R̃ε,z

)d−2

1
ρ<ε

− 2
d−2

+δ1
Rε,z>ε

d
d−2 ρz∨ε2

]
.
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We now appeal to Lemma 5.2 with G((x, ρ);ω) = ρ1
ρ6ε

− 2
d−2

+δ1
Rε,x6ε

d
d−2 ρ∨ε2

to

infer that

E
[ ∑
z∈Φ(Qi)

ρd−2
z 1

ρz<ε
− 2
d−2

+δ1
Rε,z6ε

d
d−2 ρz∨ε2

]
. Eρ

[
ρd−21

ρ<ε
− 2
d−2

+δEΦ

[
1
Rε,0<ε

d
d−2 ρ∨ε2

]]]
.

By the properties of the Poisson point process and definition (2.4) this yields

E
[ ∑
z∈Φ(Qi)

ρd−2
z 1

ρz<ε
− 2
d−2

+δ1
Rε,z6ε

d
d−2 ρz∨ε2

]
. Eρ

[
ρd−21

ρ<ε
− 2
d−2

+δ(ε
2
d−2 ρ ∨ ε)d

]
. εdEρ

[
ρd−2

]
+ ε

2d
d−2Eρ

[
ρ2d−21

ρ<ε
− 2
d−2

+δ

]
(2.1)

. εd + ε( 2
d−2−δ)β .

Hence

|E
[
(Zi − λE

[
ρ
]]
| . εd + E

[
ρ1

ρ>ε
− 2
d−2

+δ

]
+ εd E

[ ∑
z∈Φ(Qi)

(
ρ2
z

R̃ε,z

)d−2

1
ρz<ε

− 2
d−2

+δ1
Rε,z>ε

d
d−2 ρz∨ε2

]
(3.38)

. εd + ε( 2
d−2
−δ)β + εd E

[ ∑
z∈Φ(Qi)

(
ρ2
z

R̃ε,z

)d−2

1
ρz<ε

− 2
d−2

+δ1Rε,z>ε2
]

(4.25)

To establish (4.24) it remains to bound the last term above by ε( 2
d−2−δ)β : By

stationarity we have

εdE
[ ∑
z∈Φ(Qi)

(
ρ2
z

R̃ε,z

)d−2

1
ρz<ε

− 2
d−2

+δ1Rε,z>ε2
]

. Eρ
[
ρ2(d−2)1

ρ<ε
− 2
d−2

+δ

]
ε2Eρ

[ ∑
z∈Φ(Qi)

(
ε

R̃ε,z

)d−2

1Rε,z>ε2
]

(3.38)

. ε( 2
d−2−δ)βε2Eρ

[ ∑
z∈Φ(Qi)

(
ε

R̃ε,z

)d−2

1Rε,z>ε2
]
.

We now observe that if Qi ∈ Qk−1, then by (4.2) we have that R̃ε,z = Rε,z: In this
case, the expectation on right-hand side above may be bounded similarly to (4.18)
so that

εdE
[ ∑
z∈Φ(Qi)

(
ρ2
z

R̃ε,z

)d−2

1
ρz<ε

− 2
d−2

+δ1Rε,z>ε2
]
. ε2+( 2

d−2−δ)β . ε( 2
d−2−δ)β . (4.26)
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If, otherwise, Qi ∈ Qk\Qk−1, then (4.2) and a decomposition of Qi similar to the
one performed in (4.20) implies that

εdE
[ ∑
z∈Φ(Qi)

(
ρ2
z

R̃ε,z

)d−2

1
ρz<ε

− 2
d−2

+δ1Rε,z>ε2
]
. ε2+( 2

d−2
−δ)βε2Eρ

[( ε

R̃ε,0

)d−2

1Rε,0>ε2
]

+ ε2

{
| log ε| if d = 3

ε−κ(d−3) if d > 3

Using that, if d > 3, we have κ < 2
d−3 (c.f. (4.1)) and dealing with the remaining

expectation as done in (4.26), yields that

εdE
[ ∑
z∈Φ(Qi)

(
ρ2
z

R̃ε,z

)d−2

1
ρz<ε

− 2
d−2

+δ1Rε,z>ε2
]
. ε( 2

d−2−δ)β . (4.27)

Combining (4.27) and (4.26) with (4.25) implies (4.24) and, in turn, (4.14). The
proof of Theorem 2.1 is complete.

Proof of Lemma 4.4. The proof of this lemma follows the same lines of the argument
for Lemma 3.4. We resort to the construction made in Lemma 4.1 (c.f. (3.6)) to
decompose

εd
∑

z∈Φε(D)\nε(D)

ρz = εd
∑
z∈Jεb

ρd−2
z + εd

∑
z∈Ĩεb

ρd−2
z . (4.28)

The expectation of the first sum may be bounded by by ε( 2
d−2−δ)β + εd by arguing

in a way analogue to the one for (3.42) in Lemma 3.4. In this case, besides (2.1), we
also appeal to assumption (ii) and to the properties of the Poisson point process.
Hence, it only remains to estimate the last sum in (4.28). As done for the same sum
in (3.41), we use the definiton of nε(D) and the stationarity of (Φ,R) to rewrite

E
[
εd
∑
z∈Ĩε

b

ρd−2
z

]
. E

[ ∑
w∈Φ(Qi)

(1
ρw>ε

− 2
d−2

+δ + 1
ρw<ε

− 2
d−2

+δ1
Rε,w62ε

d
d−2 ρw∨ε2

)
∑

z∈Φε(D)\{w}

ε|w−z|6ε+ε
d
d−2 ρw∧1

ρd−2
z

]
.

By Lemma 5.2 applied to

G((x, ρ), ω) = (1
ρ>ε

− 2
d−2

+δ + 1
ρ<ε

− 2
d−2

+δ1
Rε,x62ε

d
d−2 ρ∨ε2

)
∑

z∈Φε(D)

ε|x−z|6ε+ε
d
d−2 ρ∧1

ρd−2
z ,

we infer that

E
[
εd
∑
z∈Ĩεb

ρd−2
z

]
. Eρ

[
E
[
(1
ρ>ε

− 2
d−2

+δ + 1
ρ<ε

− 2
d−2

+δ1
Rε,062ε

d
d−2 ρ∨ε2

)
∑

z∈Φε(D)\{0}

ε|z|6ε+ε
d
d−2 ρ∧1

ρd−2
z

]]
.



CONVERGENCE RATES FOR THE POISSON PROBLEM 371

Since the marks {ρz} are identically distributed and independent, we use (2.1) to
bound

E
[
εd
∑
z∈Ĩεb

ρd−2
z

]
.Eρ

[
EΦ

[
(1
ρ>ε

− 2
d−2

+δ + 1
ρ<ε

− 2
d−2

+δ1
Rε,062ε

d
d−2 ρ∨ε2

)

×#{z ∈ Φε(D)\{0} : ε|z| 6 ε+ ε
d
d−2 ρ ∧ 1}

]]
dx.

(4.29)

Since EΦ

[
#{z ∈ Φε(D)\{0} : ε|z| 6 ε + ε

d
d−2 ρ ∧ 1}

]
. (ρd−2 + 1), the term

corresponding to the first sum on the right-hand side above is easily bounded by

Eρ
[
1
ρ>ε

− 2
d−2

+δEΦ

[
#{z ∈ Φε(D)\{0} : ε|z| 6 ε+ ε

d
d−2 ρ ∧ 1}

]]
. Eρ

[
ρd−21

ρ>ε
− 2
d−2

+δ

] (3.38)

. ε( 2
d−2−δ)β .

(4.30)

We now turn to the second term in (4.29): Since this term reduces to the values

ρ < ε−
2
d−2 +δ, we have that

Eρ
[
EΦ

[
1
ρ<ε

− 2
d−2

+δ1
Rε,062ε

d
d−2 ρ∨ε2

#{z ∈ Φε(D)\{0} : ε|z| 6 ε+ ε
d
d−2 ρ ∧ 1}

]]
6 Eρ

[
1
ρ<ε

− 2
d−2

+δEΦ

[
1
Rε,062ε

d
d−2 ρ∨ε2

#{z ∈ Φε(D)\{0} : |z| 6 4}
]]

Using Hölder’s inequality with exponents d
d−1 and d in the inner expectation,

definition (2.4) and the fact that Φ is a Poisson point process, this implies that

Eρ
[
EΦ

[
1
ρ<ε

− 2
d−2

+δ1
Rε,062ε

d
d−2 ρ∨ε2

#{z ∈ Φε(D)\{0} : ε|z| 6 ε+ ε
d
d−2 ρ ∧ 1}

]]
. Eρ

[
1
ρ<ε

− 2
d−2

+δEΦ

[
1
Rε,062ε

d
d−2 ρ∨ε2

] d−1
d

]
.

(4.31)
We control the last term by

Eρ
[
1
ρ<ε

− 2
d−2

+δEΦ

[
1
Rε,062ε

d
d−2 ρ∨ε2

] d−1
d

]
6 Eρ

[
1
ρ<ε

− 2
d−2

+δ

(
2ε

2
d−2 ρ ∨ ε

)d−1
]

(2.1)

. εd−1 + ε2 d−1
d−2−( 2

d−2−δ)(1−β)+

Since d > 3 and δ 6 2
d−2 , the last term on the right-hand side above is bounded

by ε2. Combining this with (4.31), (4.29) and (4.30) yields E
[
εd
∑
z∈Ĩεb

ρd−2
z

]
.

ε( 2
d−2−δ)β + ε2. This concludes the proof of Lemma 4.4.

5. Auxiliary results. Let Z := {zi}i∈I ⊆ D be a collection of points and let
X := {Xi}i∈I ,R := {ri}i∈I ⊆ R+. We assume that

2Xi < ri < min
zj∈Z,
zj 6=zi

{|zj − zi|}, for every zi ∈ Z. (5.1)

We define the measure

M :=
∑
i∈I

∂nviδ∂Bri (zi) ∈ H
−1(D), (5.2)
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where each vi ∈ H1(Bri(zi)) solves (2.6) with Bερz(εz) and BRε,z(εz) replaced by
BXi(zi) and Bri(zi), respectively.

The next lemma is a generalization of the result by [19] used in [18] to show the
analogue of Theorem 2.1 in the case of periodic holes Hε.

Lemma 5.1. Let Z, X and R be as above and let M be as in (5.2). Then, there
exists a constant C = C(d) < +∞ such that for every Lipschitz and (essentially)
disjoint covering {Kj}j∈J of D such that

B2ri(zi) ⊆ Kj OR Bri(zi) ∩Kj = ∅ for every i ∈ I, j ∈ J (5.3)

we have that

‖M −m‖H−1(D) 6 C max
j∈J

diam(Kj)
(∑
i∈I

X
2(d−2)
i r−di

) 1
2 ,

with

m := cd
∑
j∈J

( 1

|Kj |
∑
i∈I,
zi∈Kj

Xd−2
i rd−2

i

rd−2
i −Xd−2

i

)
1Kj . (5.4)

Here, the constant cd is as in (1.5).

The next result is a consequence of the assumptions (i)-(iii) on the marked point
process (Φ,R). Since it is used extensively in the proof of Theorem 2.1, in the sake
of a self-contained presentation, we give below the statement and its brief proof. Let
(Ω,F ,P) the underlying probability space for (Φ,R). Let G : Rd × R+ × Ω→ R be
a stationary random field. This means that for almost every (x, ρ) ∈ Rd × R+, the
expectation E

[
G((x, ρ);ω)

]
= E

[
G((0, ρ);ω)

]
.

Lemma 5.2. Let A ⊆ Rd be bounded and such that 0 ∈ A. Let (Φ;R) satisfy
(i)-(iii) with Φ = Poi(λ). For every ε > 0 and x ∈ Rd, let Rε,z be as in (2.4). Then
for every stationary G : Rd × R+ × Ω→ R it holds

E
[ ∑
z∈Φ(A)

G((z, ρz);ω\{(z, ρz)})
]

= λ|A|Eρ
[
E
[
G((0, ρ);ω)

]]
.

Proof of Lemma 5.1. With no loss of generality, we give the proof for d = 3. We
start by remarking that, thanks to (5.3), we may rewrite the measure M in (5.2) as

M =
∑
j∈J

Mj , Mj :=
∑
i∈I,
zi⊆Kj

∂nviδ∂Bri (zi). (5.5)

By the definition of the capacitary functions {vi}i∈I (see also (3.18)), m in (5.4)
satisfies

m =
∑
j∈J

mj , mj =
( 1

|Kj |
∑
i∈I,
zi⊆Kj

ˆ
∂Bri (zi)

∂nvi
)
1Kj (5.6)

For every j ∈ J , we thus define qj ∈ H1(Kj) as the (weak) solution to{
−∆qj = Mj −mj in Kj

∂nqj = 0 on ∂Kj

,

ˆ
Kj

qj = 0, (5.7)

We stress that qj exists since Kj is a Lipschitz domain and, thanks to (5.3) and
(5.5)-(5.6), the compatibility condition 〈Mj ; 1〉 −

´
Kj
mj = 0 is satisfied.
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By (5.7) and (5.5)-(5.6), we thus have that

‖M −m‖H−1(D) 6
(∑
j∈J

ˆ
Kj

|∇qj |2
) 1

2 .

The statement of Lemma 5.1 holds, provided that we show that for each j ∈ J(ˆ
Kj

|∇qj |2
) 1

2 . diam(Kj)
( ∑

i∈I,
zi∈Kj

X2
i r
−3
i

) 1
2 . (5.8)

We argue (5.8) as follows: testing (5.7) with qj itself and using that
´
Kj
qj = 0,

we obtain ˆ
Kj

|∇qj |2 =
∑
i∈I,
zi∈Kj

ˆ
∂Bri (zi)

∂nvi qz.

By Cauchy-Schwarz’s inequality and by the definition of vi (see also (3.18)), this
implies that
ˆ
Kj

|∇qj |2 .
∑
i∈I,
zi∈Kj

r−1
i

( Xiri
ri −Xi

)(ˆ
∂Bri (zi)

|qj |2
) 1

2

(5.1)

.
∑
i∈I,
zi∈Kj

r−1
i Xi

(ˆ
∂Bri (zi)

|qj |2
) 1

2 .

(5.9)

By the trace estimate for functions u ∈ H1(Br), r > 0ˆ
∂Br

|u|2 . r−1
(ˆ
Br

|u|2 + r2

ˆ
Br

|∇u|2
)
,

inequality (5.9) turns intoˆ
Kj

|∇qj |2 .
∑
i∈I,
zi∈Kj

r−1
i

( Xiri
ri −Xi

)(ˆ
∂Bri (zi)

|qj |2
) 1

2

(5.1)

.
∑
i∈I,
zi∈Kj

r
− 3

2
i Xi

(ˆ
Bri (zi)

|qj |2 + r2
i

ˆ
Bri (zi)

|∇qj |2
) 1

2 .

Since by (5.3) we have ri 6 diam(Kj), we infer thatˆ
Kj

|∇qj |2.
∑
i∈I,
zi∈Kj

r
− 3

2
i Xi

(ˆ
Bri (zi)

|qj |2 + diam(Kj)
2

ˆ
Bri (zi)

|∇qj |2
) 1

2 .

This, Cauchy-Schwarz’s inequality, and (5.1) further yieldˆ
Kj

|∇qj |2.
( ∑

i∈I,
zi∈Kj

X2
i r
−3
i

) 1
2
(ˆ
Kj

|qz|2 + diam(Kj)
2

ˆ
Kj

|∇qz|2
) 1

2

Since by (5.7) the function qj has zero mean, we may apply Poincaré-Wirtinger’s
inequality to conclude thatˆ

Kj

|∇qj |2 . diam(Kj)
( ∑

i∈I,
zi∈Kj

X2
i r
−3
i

) 1
2
(ˆ
Kj

|∇qj |2
) 1

2 .

This establishes (5.8) and, in turn, concludes the proof of Lemma 5.1.



374 ARIANNA GIUNTI

Proof of Lemma 5.2. Without loss of generality we assume that |A| = 1. By the
assumption (i)-(ii) on (Φ,R) and by symmetry we have that

E
[ ∑
z∈Φ(A)

G((z, ρz), ω\(z, ρz))
]

= λe−λ
∑
n>1

λn−1

(n− 1)!

×
ˆ

(A×R+)n
E
[
G((x1, ρ1), ω\{(x1, ρ1)}) |Φ(A)

= n, {ρz}Φ(A)

]
f(ρ1)dρ1dx1 · · · f(ρn)dρndxn.

Appealing to Fubini’s theorem and relabelling the elements {(xi, ρi)}ni=1, this implies

E
[ ∑
z∈Φ(A)

G((z, ρz), ω\{(z, ρz)})
]

= λ

ˆ
A×R+

(
e−λ

∑
n>0

λn

n!

×
ˆ

(A×R+)n
E
[
G((x, ρ), ω) |Φ(A) = n, {ρz}Φ(A)

]
f(ρ1)dρ1dx1 · · · f(ρn)dρndxn

)
f(ρ) dx,

i.e. E
[∑

z∈Φ(A)G((z, ρz), ω\{(z, ρz)})
]

= λ
´
A
Eρ
[
E
[
G((x, ρ), ω)

]]
dx. Since G is

stationary, the above equality immediately implies Lemma 5.2.
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terme étrange, in Partial Differential Equations and the Calculus of Variations, Vol. II , Progr.

Nonlinear Differential Equations Appl., 2, Birkhäuser Boston, Boston, MA, 1989, 661–696.
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