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Abstract. In this paper we consider a non-standard dynamical inverse prob-

lem for the wave equation on a metric tree graph. We assume that positive
masses may be attached to the internal vertices of the graph. Another spe-

cific feature of our investigation is that we use only one boundary actuator
and one boundary sensor, all other observations being internal. Using the

Dirichlet-to-Neumann map (acting from one boundary vertex to one boundary

and all internal vertices) we recover the topology and geometry of the graph,
the coefficients of the equations and the masses at the vertices.

1. Introduction. This paper concerns inverse problems for differential equations
on quantum graphs. Under quantum graphs or differential equation networks
(DENs) we understand differential operators on geometric graphs coupled by cer-
tain vertex matching conditions. Network-like structures play a fundamental role in
many problems of science and engineering. The range for the applications of DENs
is enormous. Here is a list of a few.

–Structural Health Monitoring. DENs, classically, arise in the study of stability,
health, and oscillations of flexible structures that are made of strings, beams, cables,
and struts. Analysis of these networks involve DENs associated with heat, wave, or
beam equations whose parameters inform the state of the structure, see, e.g., [44].

–Water, Electricity, Gas, and Traffic Networks. An important example of DENs
is the Saint-Venant system of equations, which model hydraulic networks for water
supply and irrigation, see, e.g., [33]. Other important examples of DENs include
the telegrapher equation for modeling electric networks, see, e.g., [3], the isothermal
Euler equations for describing the gas flow through pipelines, see, e.g., [21], and the
Aw-Rascle equations for describing road traffic dynamics, see e.g., [29].
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–Nanoelectronics and Quantum Computing. Mesoscopic quasi-one-dimensional
structures such as quantum, atomic, and molecular wires are the subject of extensive
experimental and theoretical studies, see, e.g., [37], the collection of papers in [38, 39,
40]. The simplest model describing conduction in quantum wires is the Schrödinger
operator on a planar graph. For similar models appear in nanoelectronics, high-
temperature superconductors, quantum computing, and studies of quantum chaos,
see, e.g., [42, 41, 45].

–Material Science. DENs arise in analyzing hierarchical materials like ceramic
and metallic foams, percolation networks, carbon and graphene nano-tubes, and gra-
phene ribbons, see, e.g., [1, 46, 47].

–Biology. Challenging problems involving ordinary and partial differential equa-
tions on graphs arise in signal propagation in dendritic trees, particle dispersal in
respiratory systems, species persistence, and biochemical diffusion in delta river
systems, see, e.g., [7, 24, 48].

Quantum graph theory gives rise to numerous challenging problems related to
many areas of mathematics from combinatoric graph theory to PDE and spec-
tral theories. A number of surveys and collections of papers on quantum graphs
appeared in previous years; we refer to the monograph by Berkolaiko and Kuch-
ment, [25], for a complete reference list. The inverse theory of network-like struc-
tures is an important part of a rapidly developing area of applied mathematics—
analysis on graphs. Being tremendously important for all aforementioned applica-
tions these theories have not been, however, sufficiently developed. To date, there
are relatively few results related to inverse problems on graphs, and almost exclu-
sively they concern trees, i.e. graphs without cycles.

The first question to be asked when studying inverse problems is how to establish
the uniqueness result, i.e. to characterize spectral, or scattering, or dynamical
data ensuring uniques solution of the inverse problem. It was shown that inverse
boundary spectral and scattering problems for differential equations on graphs with
cycles do not have in general a unique solution [41, 34, 43]. The results on stable
identification are known only for trees, and only for the case of boundary inputs
(controls) and observations. It was proved that a DEN is identifiable if the actuators
and sensors are placed at all or all but one boundary vertices.

There are two groups of uniqueness results in this direction: for trees with a priori
known topology and lengths of the edges [28, 49, 32] and for trees with unknown
topology [22, 23, 11, 13]. The most significant result of the last two cited papers is
developing a constructive and robust procedure for the recovery tree’s parameters,
which became known as the leaf peeling method. This method was extended to
boundary inverse problems for various types of PDEs on trees in a series of our
subsequent papers [7, 15, 20].

The boundary control method in inverse theory demonstrates [11, 23] that in-
verse (identification) problems for DENs are closely related to control and observa-
tion problems for PDEs on graphs. The latter problems were studied in numerous
papers, see, e.g. [5, 16, 30, 35, 44, 50] and references therein.

In this paper, we solve a non-standard dynamical inverse problem for the wave
equation on a metric tree graph. Let Ω = {V, E} be a finite compact and connected
metric tree (i.e. graph without cycles), where V is a set of vertices and E is a set
of edges. We recall that a graph is called a metric graph if every edge ej ∈ E, j =
1, . . . , N, is identified with an interval (a2j−1, a2j) of the real line with a positive
length `j . We denote the set of boundary vertices (i.e. vertices of degree one) by
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Γ = {γ0, ..., γm}, and the set of interior vertices (whose degree is at least two) by
{vm+1, ...., vN}. The vertices can be regarded as equivalence classes of the edge
end points aj . For each vertex vk, denote its degree by Υk. We write j ∈ J(v) if
ej ∈ E(v), where E(v) is the set of edges incident to v.

The graph Ω determines naturally the Hilbert space of square integrable functions
H = L2(Ω). We define its subspace H1 as the space of continuous functions y on Ω
such that y|e ∈ H1(e) for every e ∈ E and y|Γ = 0, and let H−1 be the dual space
to H1. When convenient, we will denote the restriction of a function y on Ω to ej
by yj . For any vertex vk and function y(x) on the graph, we denote by ∂yj(vk) the
derivative of yj at vk in the direction pointing away from the vertex.

We will assume that for each internal vertex vk, a mass Mk ≥ 0 is placed at vk.
Our system is described by the following initial boundary value problem (IBVP):

utt − uxx + qu = 0, (x, t) ∈ (Ω \ V )× [0, T ], (1)

u|t=0 = ut|t=0 = 0, x ∈ Ω (2)

ui(vk, t)− uj(vk, t) = 0, i, j ∈ J(vk), vk ∈ V \ Γ, t ∈ [0, T ], (3)∑
j∈J(vk)

∂uj(vk, t) = Mkutt(vk, t), vk ∈ V \ Γ, t ∈ [0, T ], (4)

u(γ0, t) = f(t), t ∈ [0, T ], (5)

u(γk, t) = 0, k = 1, . . . ,m, t ∈ [0, T ]. (6)

Here T is an arbitrary positive number, qj ∈ CN ([a2j−1, a2j ]) for all j, and
f ∈ L2(0, T ). In what follows, we will refer to γ0 as the root of Ω and f as the
control. The well-posedness of this system is discussed in Section 2, see Theorem
2.8, where it is proved that uf ∈ C([0, T ];H)∩C([0, T ];H−1). In the absence of any
masses, and for sufficiently regular q, it was discussed in several papers, see, e.g.
[44, 19, 15, 16]. In the presence of masses, the function u will have more regularity
properties, see Section 2 and [2, 36].

Figure 1. A metric tree.

Inverse Problem 1. Assume an observer knows the topology of the tree, i.e. the
number of boundary vertices and interior vertices, the adjacency relations for this
tree, i.e. for each pair of vertices, whether or not there is an edge joining them.
Assume the observer also knows the boundary condition (5), and that (6) holds at
the other boundary vertices. The unknowns are the lengths {`j}, the masses Mk, and
the function q. We wish to determine these quantities with a set of measurements
that we describe now.

Let v1 be the interior vertex adjacent to γ0 and let e1 be the edge joining the
two, see Figure 1. Our first measurement is then the following measurement at γ0:(

R01f
)
(t) := ∂uf1 (γ0, t). (7)
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Figure 2. Sensors at vertex v1 marked by arrows

Physically, this corresponds to applying a Dirichlet control and placing a tension
sensor, both at γ0. In what follows, we will refer to R01 as the “root response
operator”.

Theorem 1.1. From operator R01 one can recover the following data: `1, q1, Υ1,
and M1.

The proof of this, appearing in Section 2, is an adaptation of an argument well
known for the massless case, M1 = 0, see [11].

We now define the other measurements required for the inverse problem. For
interior vertex vk we list the incident edges by {ekj : j = 1, ...,Υk}. Here ek1 is
chosen to be the edge lying on the unique path from γ0 to vk, and the remaining
edges are labeled randomly, see Figure 2. Then the tension sensors, represented by
arrows in Figure 2, measure(

Rkjf
)
(t) := ∂ufj (vk, t), j = 2, ...,Υk − 1. (8)

We remark in passing that because the control and sensors are at different places,
Theorem 1.1 does not apply. We will show that it is not required to measure

∂ufj (vk, t) for j = 1 or Υk. Thus for the whole graph, the total number of sensors

needed is 1 +
∑N−m−1
k=1 (Υk − 2). It is easy to check that this number is equal

to |Γ| − 1. We denote by RT , which we call the “total response operator”, the
(|Γ| − 1)-tuple (R01, R12, R13, ....) acting on L2(0, T ).

Figure 3. Ω and subtree Ωkj

Let ` be equal to the maximum distance between γ0 and any other boundary
vertex. In our first main result, we solve Inverse Problem 1.



INVERSE PROBLEM FOR QUANTUM TREES 321

Theorem 1.2. Assume qj ∈ CN ([a2j−1, a2j ]) for all j. Suppose T > 2`. Then from
RT one can determine q, the point masses and the lengths of the edges.

Placement of internal sensors has been considered in the engineering and com-
puter science literature, see, e.g. [26, 27]. We are unaware of any mathematical
works treating the inverse problem on general tree graphs with measurements at
the internal vertices, except for [8] where the interior vertices are assumed to satisfy
delta-prime matching conditions instead of (3), (4). Internal measurements might
have advantages in situations where some boundary vertices are inaccessible. In
future work, we will study inverse problems of graphs with cycles, in which case
both boundary and internal observations appear to be necessary. For a discussion
on inverse problems for graphs with cycles see [4] and references therein.

We briefly mention some of the ideas used in the proof of Theorem 1.2. Denote
by Ωkj the unique subtree of Ω having vk as root with incident edge ekj , see Figure

3. In Section 3, we will define the operator R̃kj , analogously to our definition of
R01, as the root response operator associated to Ωkj . Assume for now k = 1 and

fix j > 1. We will show that R̃1j can be determined by using our knowledge of R01

and R1j . This will be achieved using two ingredients. The first ingredient is an

identity relating the Schwartz kernels of R̃1j and R1j , using general properties of
wave propagation on graphs. The second is our knowledge of the data associated
with the edge e1. Having determined R̃1j , we apply Theorem 1.1 to determine
the data associated to e1j . Similarly we will determine the data associated to all
edges incident to v1. Then using this newly determined data together with the
appropriate components of RT , we then determine the data for all edges incident to
the neighbors of v1. The argument can then be iterated until the data associated
with each edge are determined.

The iterative nature of our solution actually allows us to solve what at first glance
seems to be a much harder inverse problem.
Inverse Problem 2. Assume an observer knows Ω is a tree, that the boundary
condition (5) holds, and that (6) holds at the other boundary vertices. All other
data are unknowns. The problem then is to use RT to determine the topology, the
lengths {`j}, the masses Mk, and the function q.

To solve this inverse problem, for P ∈ N, define ΩP to be the subgraph of Ω
covered by paths in Ω starting at γ0 and containing (P + 1) vertices. Define RTP to
be the vector consisting of elements Rkj of RT such that vk ∈ ΩP . Then we have
the following refinement of Theorem 1.2.

Theorem 1.3. Assume qj ∈ CN ([a2j−1, a2j ]) for all j. Suppose T > 2`. Then for
any P ∈ N, one can determine from RT(P−1) the following: a) the topology of ΩP ,

b) Mk, Υk for all vk ∈ ΩP , and c) for each ej ∈ ΩP , the length of ej and qj.

We remark that in the theorem, Υk should be interpreted as the degree of vk as
an element of Ω. Evidently, this theorem will allow one to solve Inverse Problem 2
by choosing P large enough. It will be clear that the proof of Theorem 1.2 actually
proves Theorem 1.3.

In an engineering setting, Inverse Problem 2 could be solved using the following
process. One begins with only the control and sensor at γ0. Once these are used
to determine Υ1, one transports (Υ1 − 2) sensors to edges incident to v1, perhaps
by robots along e1. Then the arguments of this paper allow one to determine
R̃1j , and thus the data associated with those edges including the degrees of the
vertices adjacent to v1. Mathematically, this will be equivalent to having derived
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the conclusions of Theorem 1.3 for Ω1. Then more sensors would be transported to
those vertices, enabling the next steps in our iterative process to proceed to solve
for Ω2. Clearly this process could be continued until the graph is exhausted. It will
be clear that our proof of Theorem 1.2 actually tracks this process.

We now compare our paper with the literature. All papers referred to in this
paragraph assume all controls and measurements take place at boundary vertices.
In [11], the authors consider trees with no masses, and assume that controls and
measurements are placed at (|Γ|−1) boundary vertices. The authors use an iterative
method called “leaf peeling”, where the response operator on Ω is used first to
determine the data on the edges adjacent to the boundary, and then to determine
the response operator associated to a proper subgraph. The leaf peeling argument
includes spectral methods that require knowing RT for all T . The tools used in
our paper mostly closely resemble those in [20, 17], where an iterative dynamical
argument, called “dynamical leaf peeling”, is developed for a tree with no masses and
with response operators at all but one boundary vertices, allowing for the solution
of the inverse problem for finite T sufficiently large. The arguments in the present
paper differ from those papers in two main ways: (a) the presence of masses in our
paper complicates the underlying analysis, and (b) our use of interior measurements
makes the proofs somewhat simpler. In [2], the methods of [11] are extended to the
case where masses are placed at internal vertices, see also [6]; however these methods
still require knowledge of RT for all T . Also in [2], it is proven that that for a single
string of length ` with N attached masses and T > 2`, RT01 is sufficient to solve the
inverse problem.

In the present paper we develop a new version of the dynamical leaf peeling
method. A special feature of our paper is that we use only one control together
internal observations. This may be useful in some physical settings where some
or most boundary points are inaccessible, or where use of more than one control
might be difficult. The extension of dynamical leafing peeling to systems with at-
tached masses, for which the underlying analysis is more complicated than in the
mass-free setting, should also be of interest. Another potential advantage of the
method presented here is that we recover all parameters of the graphs, including its
topology, from the (|Γ| − 1)-tuple response operator acting on L2(0, T ). In previous
papers, the authors recovered the graph topology from a larger number of measure-
ments: the (|Γ|−1)×(|Γ|−1) matrix (boundary) response operator or, equivalently,
from (|Γ| − 1) × (|Γ| − 1) Titchmarsh–Weyl matrix function. In [12], the inverse
problems on a star graph for the wave equation with general self-adjoint matching
conditions was solved by the (|Γ|−1)×(|Γ|−1) matrix boundary response operator.

2. Representation of solution and the response function for star graph.
In this section, we prove well-posedness of our IBVP for a star shape graph. We
also derive representations of both the solution and the Schwartz kernel of the
components of the response operator. The representations will be used in Section
3 to solve the inverse problem. We then indicate how these results can be extended
from star graphs to arbitrary trees.

2.1. Preliminaries. In what follows, it will convenient to denote

Fn = {f ∈ Hn(R) : f(t) = 0 if t ≤ 0},

where Hn(R) are the standard Sobolev spaces. We define the Heaviside function
by H(t) = 1 for t > 0, and H(t) = 0 for t < 0. Then define Hn ∈ Fn as the unique
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solution to
dn

dtn
Hn = H;

at times we will use H−1(t), resp. H−2(t) for δ(t), resp. δ′(t). In this section and
those that follow, we will drop the superscript T from RT when convenient.

Consider a star shaped graph with edges e1, ..., eN . For each j, we identify ej
with the interval (0, `j) and the central vertex with x = 0, see Figure 4.

Figure 4. Star with coordinate system: ej identified with [0, `j ]

Recall the notation qj = q|ej , and uj(·, t) = u(·, t)|ej . We consider the case where
a point mass M ≥ 0 is attached at the central vertex. Thus we consider the system

∂2u

∂t2
− ∂2u

∂x2
+ qu = 0, x ∈ ej , j = 1, ..., N, t ∈ ×[0, T ], (9)

u|t=0 = ut|t=0 = 0, (10)

u(0, t) = ui(0, t) = uj(0, t), i 6= j, t ∈ [0, T ], (11)

N∑
j=1

∂uj(0, t) = M
∂2u

∂t2
(0, t), t ∈ [0, T ], (12)

u1(`1, t) = f(t), t ∈ [0, T ], (13)

uj(`j , t) = 0, j = 2, ..., N, t ∈ [0, T ]. (14)

Let uf solve (9)-(14), and set

g(t) = uf (0, t). (15)

For (10), it is standard that the waves have unit speed of propagation on the interval,
so g(t) = 0 for t < `1. It will be useful first to consider the vibrating string on an
interval.

2.2. Representation of solution on an interval and reduced response op-
erator. We will use a representation of uf (x, t) developed in [16]. For the reader’s
convenience, we recall facts proven in that work. Fix j ∈ {1, ..., N}. We extend qj
to (0,∞) as follows: first evenly with respect to x = `j , and then periodically. Thus
qj(2n`j ± x) = qj(x) for all positive integers n.

Define wj to be the solution to the Goursat problem{
∂w2

∂t2 (x, s)− ∂w2

∂x2 (x, s) + qj(x)w(x, s) = 0, 0 < x < s <∞,
w(0, s) = 0, w(x, x) = − 1

2

∫ x
0
qj(η)dη, x > 0.

A proof of solvability of the Goursat problem can be found in [14].



324 SERGEI AVDONIN AND JULIAN EDWARD

Consider the IBVP on the interval (0, `j):

ũtt − ũxx + qj(x)ũ = 0, 0 < x < `j , t ∈ (0, T ), (16)

ũ(x, 0) = ũt(x, 0) = 0, 0 < x < `j ,

ũ(0, t) = h(t),

ũ(`j , t) = 0, t > 0. (17)

Then the solution to (16)-(17) on ej can be written as

ũh(x, t) =
∑

n≥0: 0≤2n`j+x≤t

(
h(t− 2n`j − x) +

∫ t

2n`j+x

wj(2n`j + x, s)h(t− s)ds

)

−
∑

n≥1: 0≤2n`j−x≤t

(
h(t− 2n`j + x) +

∫ t

2n`j−x
wj(2n`j − x, s)h(t− s)ds

)
. (18)

Setting h(t) = g(t), with g given by (15), we get a representation of the solution uf

to (9)-(14) on e2, ..., eN .
Define the “reduced response operator” on ej , with j ≥ 2, by(

R̃0jh
)
(t) = ∂ũj(0, t), t ∈ [0, T ],

associated to the IBVP (16)-(17). From (18) we immediately obtain:

Lemma 2.1. For j = 2, ..., N , and any h ∈ C∞0 (R+), we have

(
R̃0jh

)
(t) =

∫ t

0

R̃0j(s)h(t− s)ds,

with

R̃0j(s) = −δ′(s)− 2
∑
n≥1

δ′(s− 2n`j)− 2
∑
n≥1

wj(2n`j , 2n`j)δ(s− 2n`j) + r̃0j(s).

and r̃0j = ∂wj(0, s)+2
∑
n≥1H(s−2n`j)∂wj(2n`j , s). If T is finite, the sums above

are finite.

In what follows we will refer to R̃0j(s) as the “response function”.
It will be useful also to represent the solution of a wave equation on an interval

when the control is on the right end. Thus consider the IBVP:

vtt − vxx + q1(x)v = 0, 0 < x < `1, t > 0,

v(x, 0) = vt(x, 0) = 0, 0 < x < `1,

v(0, t) = 0,

v(`1, t) = f(t), t > 0. (19)

Set q̃1(x) = q1(`1 − x), and extend q̃1 to [0,∞) by q̃1(2n`1 ± x) = q̃1(x). Define ωj
to be the solution to the Goursat problem{

∂ω2

∂t2 (x, s)− ∂ω2

∂x2 (x, s) + q̃j(x)ω(x, s) = 0, 0 < x < s,
ω(0, s) = 0, ω(x, x) = − 1

2

∫ x
0
q̃j(η)dη, x < `j .
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By changing coordinates in (18), we get

vf (x, t) = f(t− `1 + x) +

∫ t

`1−x
ω1(`1 − x, s)f(t− s) ds

− f(t− `1 − x)−
∫ t

`1+x

ω1(`1 + x, s)f(t− s) ds

+ f(t− 3`1 + x) +

∫ t

3`1−x
ω1(3`1 − x, s)f(t− s) ds

− f(t− 3`1 − x)−
∫ t

3`1+x

ω1(3`1 + x, s)f(t− s) ds

. . .

(20)

2.3. Representation of R01 for M > 0 for star graph. We begin section by
proving an analog of Lemma 2.1 for R01(t), and also R1j(t) in the case of a positive
mass at the central vertex. As a corollary, we recover the data associated to the
edge e1. The case of a massless central vertex requires a modified analysis, and will
be covered in the next subsection.

Lemma 2.2. The response function for RT01 has the form

R01(s) = r01(s) +
∑
n≥0

(anδ
′(s− 2n`1) + bnδ(s− 2n`1)) .

Here r01 is a piecewise continuous function, an and bn are real constants,

a1 = −2 and, b1 = −2ω1(2`1, 2`1) + 4/M. (21)

If T is finite, then the sum is finite.

Proof. We see that on e1, the solution to (9)-(14) is given by

uf (x, t) = vf (x, t) + ũg(x, t). (22)

Thus by (18) with h = g and (20),

(R01)f(t) = −ufx(`1, t) = −vfx(`1, t)− ũgx(`1, t)

= −f ′(t)−2
∑
n≥1

f ′(t−2n`1)−2
∑
n≥1

ω1(2n`1, 2n`1)f(t−2n`1)+

∫ t

0

∂ω1(0, s)f(t−s)ds

+2
∑
n≥1

∫ t

2n`1

∂ω1(2n`1, s)f(t− s)ds+ 2
∑
n≥0

g′
(
t− (2n+ 1)`1

)
+2
∑
n≥0

w1

(
(2n+ 1)`1, (2n+ 1)`1

)
g
(
t− (2n+ 1)`1

)

− 2
∑
n≥0

∫ t

(2n+1)`1

∂w1

(
(2n+ 1)`1, s

)
g(t− s)ds. (23)
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Next, we study the structure of g. Using the equation uf (0, t) = g(t), along with
(12), (18) with h = g, and (20), we have

Mg′′(t) +Ng′(t) = 2
∑
n≥0

f ′
(
t− (2n+ 1)`1

)
+2
∑
n≥0

ω1

(
(2n+ 1)`l, (2n+ 1)`1

)
f
(
t− (2n+ 1)`1

)
−2
∑
n≥0

∫ t

(2n+1)`1

∂ω1

(
(2n+ 1)`1, s

)
f(t− s)ds

+

N∑
j=1

∫ t

0

∂wj(0, s)g(t− s)ds

+2

N∑
j=1

∑
n≥1

[−g′(t− 2n`j)− wj(2n`j , 2n`j)g(t− 2n`j)

+2

∫ t

2n`j

∂wj(2n`j , s)g(t− s)ds]. (24)

In what follows, we will assume t < T for some positive T , so the sums above are
all finite. Adapting the argument in [11], we let f(t) = δ(t). In what follows, it will
be useful to note that by the uniqueness of the solution of the wave equation, we
have for p = p(t)

up(x, t) = (p ∗ uδ)(x, t) =

∫ t

s=0

p(t− s)uδ(x, s)ds.

As a consequence, (R01p)(t) = (p ∗ uδx)(`1, t), so R01(s) = uδx(`1, s).
For g(t) = uδ(0, t), we claim g will have the structure:

g(t) =
∑
m≥0

cmH(t− (2m+ 1)`1) + tmH1(t− βm) + ã(t− `1). (25)

Here ã ∈ F2, {βn} is a discrete, increasing set of positive constants with β0 = `1, and
cn and tn are constants. In what follows, we will solve for these various unknowns,
thereby justifying the claim. Assuming the claim for the moment and inserting
f(t) = δ(t) and (25) into (23), the lemma follows except (21) which we will prove
below.

We will now justify the claim. Substituting (25) into (24), and matching the δ′

terms, we get

M
∑
m≥0

cmδ
′(t− (2m+ 1)l1) = 2

∑
n≥0

δ′(t− (2n+ 1)`1), t ∈ [0, T ]. (26)

We conclude that cm = 2/M for all m. This equation together with (25) and (23)
imply the equalities in (21). In what follows we denote cm as c. Matching the δ
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terms in (25) and (24),

M
( ∑
m≥0

tmδ(t− βm)
)

= −Nc
( ∑
m≥0

δ(t− (2m+ 1)l1)
)

−2c

N∑
j=1

∑
n≥1

∑
m≥0

δ(t− 2n`j − (2m+ 1)`1)

+2
∑
n≥0

ω1((2n+ 1)`1, (2n+ 1)`1)δ(t− (2n+ 1)`1).

(27)

We can solve for {βm} by matching β0 < β1 < β2 < ... with the set

{2n`j + (2m+ 1)`1 : m ≥ 0; n ≥ 0; j = 1, 2, ..., N}.
Next, for any given m, we solve for tm as follows. First, inspection of (27) gives

β0 = `1, t0 = 2(ω1(`1, `1)/M −N/M2). (28)

For larger m, inspection of (27) gives three cases.
Case 1. βm = (2n + 1)`1 and βm 6= 2n0`j + (2m0 + 1)`1 for any m0, n0, j ∈ N.
Then tm = 1

M (−Nc+ 2ω1((2n+ 1)`1, (2n+ 1)`1)).
Case 2. For some positive integer L and any l = 1, ..., L, we have βm 6= (2n+ 1)`1
and βm = 2nl`jl + (2ml + 1)`1. Then tm = 1

M (−2Lc).
Case 3. For some positive integer L and any l = 1, ..., L, we have βm = (2n+1)`1 =
2nl`jl + (2ml + 1)`1. Then

tm = −Nc
M
− 2Lc

M
+

2ω1((2nl + 1)`1, (2nl + 1)`1)

M
.

Accounting for these cases, we thus solve for tm of each m.

Next, we solve for ã, which by (24) and (25) satisfies:

Mã′′(t− `1) +Nã′(t− `1) + 2

N∑
j=1

∑
n≥1

ã′(t− `1 − 2n`j)

= b̃0(t) +

N∑
j=1

∫ t

0

∂wj(0, s)ã(t− s− `1)ds

+2

N∑
j=1

∑
n≥1

[−wj(2n`j , 2n`j)ã(t− 2n`j − `1) + 2

∫ t

2n`j

∂wj(2n`j , s)ã(t− s− `1)ds],

where b̃0 ∈ L2. We will assume ã ∈ F2 (an assumption later justified). Since
ã′(0) = 0, integrating the equation above gives

Mã′(t− `1) +Nã(t− `1) + 2

N∑
j=1

∑
n≥1

ã(t− 2n`j − `1)

= b̃1(t− `1) +

∫ t

s=`1

 N∑
j=1

∫ s

0

∂wj(0, r)ã(s− r − `1)dr

+2

N∑
j=1

∑
n≥1

−wj(2n`j , 2n`j)ã(s− 2n`j − `1)
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+2

∫ s

2n`j

∂wj(2n`j , r)ã(s− r − `1)dr

)
ds, (29)

with b̃1 ∈ F1. We solve for ã by an iterative argument. For simplicity of presenta-
tion, assume β1 = `1 + 2`2, β2 = `1 + 2`3, and `3 < min(`1, `j : j > 3); the other
cases can be treated similarly. Then for t < β1 we have ã(t− 2n`j − `1) = 0 for all
j, so (29) simplifies to an equation that we can integrate to

ã(w − `1)

=
1

M

∫ w

t=0

(
eN(w−t)/M

∫ t

s=`1

∫ s

r=0

 N∑
j=1

∂wj(0, r)

 ã(s−r−`1)
)
dr ds dt+b̃2(w−`1),

with b̃2 ∈ F2. It is not hard to show that this is a Volterra equation of the second
kind, and we can thus uniquely solve for ã(t) ∈ F1 for for t < 2`2. Next, we consider
the interval t ∈ [β1, β2] = [`1 + 2`2, `1 + 2`3], so ã(t − 2`j − `1) = 0 for j 6= 2. We
claim the term ã(t− 2`2 − `1) has already been determined. To see this, note that
by the construction of the set {βn} together with our assumption for β2, we have
2`3 < 4`2. Hence for t < 2`3 + `1, we have t− 2`2 − `1 < 2`2, so ã(t− 2`2 − `1) has

been determined as claimed. We can absorb this known term into b̃2 in the right
hand side of (29). We then integrate (29) to get

ã(w − `1)

=
1

M

∫ w

t=0

(
eN(w−t)/M

∫ t

s=`1

∫ s

r=0

 N∑
j=1

∂wj(0, r)

 ã(s−r−`1)
)
dr ds dt+b̃2(w−`1).

Again we solve this Volterra equation to determine ã(t) ∈ F1 for t < 2`3. Iterating
this procedure, we can solve for ã(t) for any large t. Since the right hand side of
(29) is in F1, it follows that ã ∈ F2. This completes the proof of the lemma.

Lemma 2.3. Let g(t) be given by (24). Then

g(t) =

∫ t

0

A(s)f(t− s)ds, (30)

where

A(t) =
∑
m≥0

amH(t− (2m+ 1)`1) + tmH1(t− νm) + ã(t− `1). (31)

Furthermore, ã ∈ F2, am = 2/M for all m, and ν0 = `1, and am, tm are constants.

Proof. Since g(t) = uf (0, t) = (f ∗ uδ)(0, t), we have a(t) = uδ(0, t). The formula
(31) follows from (25).

Proposition 1. Let T > 2`1 and M > 0. From RT01 one can determine M,N, q1,
and `1.

Proof. One can determine `1 immediately from Lemma 2.2 because α1 6= 0. Then a
well known argument (see, eg. [11]) shows that one can recover q1 from RT01. Having
determined q1 one can solve the Goursat problem to determine ω1, and then one
gets M from (21). To find N we observe that near t = 2`1, setting f(t) = δ(t), we
can extract from (23)

F (t) = c1δ
′(t− 2`1) + c2δ(t− 2`1) + 2H(t− 2`1)(t0 + w1(`1, `1)ψ) +G(t),
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where c1, c2 are constants, F (t) is a function that has been explicitly determined,
and G(t) is continuous. Thus we can distinguish the coefficient (t0 + w1(`1, `1)ψ).
Also, w1 can be determined from q1, and so we solve for t0 hence N (see (28)).

Lemma 2.4. Label the central vertex v1, and let ej be an incident edge other than
e1. Assume M1 > 0. Let T > 0, and let RT1j be associated with (9)-(14), defined by

(RT1jf)(t) = ∂ufj (v1, t). The response function for RT1j has the form

R1j(s) = r1j(s) +
∑
n≥1

(bnδ(s− βn) + rnH0(s− βn)) .

Here r1j ∈ F1, and the sequence {βn} is positive and strictly increasing, and bn, rn
are constants. . If T is finite then the sums are finite.

Proof. the lemma follows immediately from Lemmas 2.2 and 2.3; the details are left
to the reader.

2.4. Adaptation when M = 0. We can adapt the methods of the previous sub-
section to the case the internal vertex is massless (also see [11] for a proof of the
results below). Here we will only mention the modifications necessary. In Subsec-
tion 2.3, the argument carries through word for word until (24), which becomes a
first order integral-differential equation, since M = 0. As a consequence, the func-
tion g(t) = uδ(0, t) will be less regular, because its singularities are not mollified
when transmitted across vertices. Instead of(25) and Lemma 2.3 we have:

Lemma 2.5. Let g(t) be given by (24) with M = 0. Then

g(t) =

∫ t

0

A(s)f(t− s)ds, (32)

where

A(s) =
∑
k≥0

akδ(t− ξk) + bkH(t− ξk) + ã(t− `1). (33)

Here {ξk} is a increasing positive sequence, and ak, bk are constants. Furthermore,
ã ∈ F1, and ξ0 = `1.

Inserting f(t) = δ(t) and (32) into (23), we obtain the following analog of Lemma
2.2:

Lemma 2.6. The response function for RT01 has the form

R01(s) = r01(s) +
∑
n≥0

(znδ
′(s− ζn) + ynδ(s− ζn)) .

Here {ζn} is a increasing positive sequence with ζ0 = 0, ζ1 = 2`1, and zn, yn are
constants. Function r01 is piecewise continuous. If T is finite, then the sum is
finite.

Proposition 2. Let T > 2`1. From RT01 one can determine M = 0, N, q1, and `1.

The reader is referred to [11] for a proof of this.
We conclude this section with the following lemma, whose proof is similar to that

of Lemma 2.4 and is left to the reader.
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Figure 5. Star as part of larger tree.

Lemma 2.7. Label the central vertex v1, and let ej be an incident edge other than
e1. Assume M1 = 0. Let T > 0, and let RT1j be associated with (9)-(14), The

response function for RT1j has the form

R1j(s) = r1j(s) +
∑
n≥1

(anδ
′(s− βn) + bnδ(s− βn)) .

Here r1j ∈ L2 , and the sequence {βn} is positive and strictly increasing, and an, bn
are constants. If T is finite then the sums are finite.

This lemma should be compared with Lemma 2.4. For this lemma, the lead
singularity is of the form δ′, compared with δ in the case M1 > 0; this reflects the
mollifying effect of the mass.

2.5. Extension to trees. In this subsection, we extend some of the previous re-
sults to trees. The extensions will be used in Section 3 in solving the inverse problem
on trees.

We begin by discussing the wellposed of the system (1)-(6). Let dj be the mini-
mum number of nonzero masses on the path from edge ej to the boundary vertex
γ0.

Theorem 2.8. If f ∈ L2(0, T ) then uf ∈ C([0, T ];H) ∩ C1([0, T ];H−1). Further-
more, for each ej ∈ Ω, uf |ej ∈ C([0, T ];Hdj (ej)).

The proof of the theorem is based on the analysis of the waves incoming to,
transmitted through and reflected from an interior vertex, and the waves reflected
from the boundary vertices. The details are left to the reader; also see [6].

Theorem 2.9. Let u solve the system (1)-(6), and define R01 by (7). Let v1 be the
vertex adjacent to γ0, with connecting edge labeled e1, as in Figure 5. Then

a) The response function for RT01 has the form

R01(s) = r01(s) +
∑
n≥1

(anδ
′(s− ζn) + bnδ(s− ζn)) .

Here r01 ∈ L2 , and the sequence {ζn} is positive and strictly increasing, and an, bn
are constants. If T is finite then the sums are finite, and

b) from R01 one can determine M1,Υ1, q1, and `1.

Proof. We sketch this proof, leaving the details to the reader. The key point is the
waves propagate at unit speed. Hence for T > 2`1 + ε and ε > 0 sufficiently small,
the response operator R01 will not “feel” the vertices vm for m > 1, regardless of
whether they are boundary or interior vertices. Thus by Propositions 1 and 2, l1,
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Υ1 and M1 can be determined. Having established l1, one determines q1 as in the
proof of 1.

For an internal vertex vk, let K = K(k) be the number of positive masses on the
path from γ0 to vk, including vk. We have the following generalization to a tree of
Lemmas 2.4 and 2.7.

Lemma 2.10. Let T > 0, and let RTkj be defined by (3)-(6) and (8). The response

function for RTkj has the form

Rkj(s) = rkj(s) +
∑
n≥1

(bnHK−2(s− βn) + rnHK−1(s− βn)) .

Here rkj ∈ FK , and the sequence {βn} is positive and strictly increasing, and bn, rn
are constants. If T is finite then the sums are finite.

Proof. The proof follows from the proof of Lemma 2.2, together with the transmis-
sion and reflection properties of waves at interior vertices, and reflection proper-
ties at boundary vertices. The details are left to the reader; see also [11]- where,
however, the formula analogous to Lemma 2.2 should have the terms of the form
ρnδ(s− βn).

3. Solving the inverse problem for the tree. In this section we prove Theorem
1.2. In the first subsection, we establish some notation, and give an outline of the
solution method, Steps 1-3. Then in Subsection 3.2, we present the technical heart
of our argument, using the equation

R̃12 ∗A = R12

and the expansions for R̃12(s), A(s) and R12(s) derived in the previous section to

solve for R̃12(s). Then, in Subsection 3.3, we show how to compute R̃22(s). From

the proof there, it will be evident that we can compute R̃kj(s) for general k, j.

3.1. Reduced response operators. We begin by establishing some notation. Let
vk be some fixed interior vertex. We list the incident edges by {ekj : j = 1, ...,Υk}.
Denote `kj := |ekj |. Let j satisfy 1 < j ≤ Υk. Denote by Ωkj as in the introduction,
see Figure 3, and let the vertices of Ωkj be denoted Vkj .

We will define an associated response operator as follows. Suppose w = wp solves
the following IBVP: for t ∈ [0, T ],

∂2w

∂t2
− ∂2w

∂x2
+ qw = 0, x ∈ Ωkj \ Vkj , (34)

wi(vl, t) = wj(vl, t), i, j ∈ J(vl), vl ∈ (Vkj \ Γ) \ {vk}, (35)∑
i∈J(vl)

∂wi(vl, t) = Ml
∂2w

∂t2
(vl, t), vl ∈ (Vkj \ Γ) \ {vk}, (36)

w(vk, t) = p(t), (37)

w(γl, t) = 0, γl ∈ Γ ∩ Vkj , (38)

and initial conditions

w|t=0 = wt|t=0 = 0. (39)

Then we define an associated reduced response operator

(R̃kjp)(t) = ∂wpj (vk, t), w
p
j := wp|ekj

,



332 SERGEI AVDONIN AND JULIAN EDWARD

with associated response function R̃kj(s).
We have the following important result is essentially a restatement of Theorem

2.9.

Theorem 3.1. For vertex vk and incident edge ekj, suppose vk′ is the other vertex

on ekj. Then from R̃kj one can determine the data: qkj , `kj ,Mk′ , and Υk′ .

In this section we will present an iterative method to determine the operator R̃kj
from the (|Γ| − 1)-tuple of operators, RT , for arbitrary k, j. By Theorem 3.1, this
allows us to solve the inverse problem. We now sketch our method for solving for
R̃kj . Fix T > 2`. In what follows, we will repeatedly refer to Figure 6.

Figure 6. Ω and subtree Ω12

Step 1. Let v1 be the vertex adjacent to the root γ0, with connecting edge labeled
e1. By Theorem 3.1, we can use RT01 to recover Υ1, `1, q1, and M1.

Step 2. Consider e12. In the next subsection, we will show how to solve for R̃12

given our knowledge of R01 and R12. Thus applying Theorem 3.1, we can solve
for the data Υ2, |e12|, q2, and M2. Because R1j for j = 2, ...,Υ1 − 1 are known
by assumption, the data associated to these edges can be solved for in the same
way. We now consider the edge e1,Υ1

. In the next subsection, we will also show

that ∂uf1 (v1, t) is also determined. Furthermore, by assumption we know ∂ufj (v1, t)

for j = 2, ...,Υ1 − 1. Hence by (4), R1Υ1
= ∂ufΥ1

(v1, t) is also determined, with it
the data associated to that edge.
Step 3. In Subsection 3.3, we will solve for determine R̃2j for all j. It will be clear

at that point that the same argument can be used to solve for all R̃kj .

3.2. Solving for R̃12.

Proposition 3. The function R̃12(s) can be determined from R01(s) and R12(s).

The rest of this subsection will be devoted to proving this proposition.
Let f ∈ L2(0, T ), and let uf be the solution of (1)-(6). Since we know `1 and q1,

we can solve the wave equation on e1 with known boundary data. We identify e1

as the interval (0, `1) with vk1 corresponding to x = 0. Then uf , restricted to e1,
solves the following Cauchy problem, where we view x as the “time” variable:

utt − uxx + q1u = 0, x ∈ (0, `1), t > 0,

u(`1, t) = f(t), t > 0,

ux(`1, t) = (R01f)(t), t > 0,

u(x, 0) = 0, x ∈ (0, `1).
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Since the operator R01 is known, we can thus uniquely determine uf (0, t) = uf (v1, t)

and ∂uf1 (v1, t). Since uf (0, t) = (uδ(0, ·) ∗ f)(t), it follows that A(t) = uδ(v1, t) is a

known quantity. We now show how A and R12 can be used to determine R̃12(s). A

key ingredient is the following equation, which relates R12(s) with R̃12(s).∫ t

0

R̃12(s)(f ∗A)(t−s)ds = ∂uf2 (v1, t) = A(t) =

∫ t

0

R12(s)f(t−s)ds, ∀f ∈ L2(0, T ).

This follows from the definition of the response operators for any f ∈ L2, in partic-

ular (R12 ∗ f)(t) = ∂uf2 (v1, t). We rewrite this equation:

R̃12 ∗A = R12. (40)

Below, we will use (40) to determine R̃12(s). To this end, we now insert represen-

tations of R̃12(s), R12(s), and A that were derived in the previous section.
Since v1 is the root of Ω12, the following equation is essentially an restatement

Theorem 3.1.

R̃12(s) = r̃12(s) +
∑
p≥0

zpδ
′(s− ζp) +

∑
l≥0

ylδ(s− ηl). (41)

Here 0 = ζ0 < ζ1 < ..., and 0 = η0 < η1 < ..., and r̃12(s) is piecewise continuous
and vanishes for s < 0. In what follows, we will for readability rewrite r̃12 as r̃.

We now must separately consider the cases M1 > 0 and M1 = 0.

Case A. M1 > 0
In what follows, it will be convenient to extend f(t) ∈ L2(0, T ) as zero for t < 0.

By Lemma 2.10 and by an adaptation of Lemma 2.3 to general trees, we have the
following expansions:

R12(s) = r12(s) +
∑
n≥1

[
bnδ(s− βn) + rnH(s− βn)

]
,

r12|s∈(0,β1) = 0, β1 = `1; (42)

A(s) = ã(s− `1) +
∑
k≥1

[
akH(s− αk) + tkH1(s− νk)

]
,

α1 = ν1 = `1, a1 =
2

M1
. (43)

Here r12 ∈ F1 and ã(s) ∈ F2, and {αk} and {βn} are positive and increasing.
Clearly ã(s), r12(s), {ak}, {tk}, {αk}, {νk}, {bn}, {βn}, {rn} are known because we
assume knowledge of R01 and R12, whereas for now r̃ and the sets {ζp}, {zp}, {yj},
{ηj} are unknown. In what follows, we mimick an iterative argument in [20]. Both
sides of (40) are a linear combination of δ, Heavyside, and continuous functions.
We will split the rather intricate argument solving for the unknowns in (40) into
three lemmas. In the first, we match the delta functions on each side of (40).

Lemma 3.2. The sets {ζp}, {zp}, can be determined by R01 and R12.

Proof. By (40), (41), (42), and (43), we get by matching delta functions:∑
n≥1

bnδ(t− βn) =
∑
p≥1

∑
k≥1

akzpδ(t− ζp − αk). (44)

Step 1. We solve for z1, ζ1. Since the sequences {βn}, {ζp}, {αk} are all strictly
increasing, clearly we have β1 = ζ1 +α1, so that b1 = z1a1, and so ζ1 = β1−α1 and
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z1 = b1/a1. We represent that the set {b1, β1}, {a1, α1} determines the set {z1, ζ1}
by

{b1, β1, a1, α1} =⇒ {z1, ζ1}.

Step 2. We solve for z2, ζ2. We match the term δ(t− β2) with its counterpart on
the right hand side of (44). There are three possible cases.
Case 1. β2 6= ζ1 + α2.

In this case, we must have β2 = ζ2 + α1, hence

ζ2 = α1 − β2, z2 = b2/a1.

Case 2a. β2 = ζ1 +α2 and b2 6= a2z1. Note that the last inequality can be verified
by an observer at this stage, because we have determined b2, a2, z1. We conclude
β2 = ζ2 + α1 and b2 = a1z2 + a2z1, and hence

ζ2 = α1 − β2, z2 = (b2 − a2z1)/a1.

Case 2b. β2 = ζ1 + α2 and b2 = a2z1. Then β2 < ζ2 + α1. Note we have not yet
solved for {ζ2, z2}. In this case, we now repeat the matching coefficient argument
just used with δ(t− β3).

Again there are three cases:
Case 2bi. β3 6= ζ1 + α3. Note all of these terms are known, so this inequality can
be verified. In this case, β3 = ζ2 + α1, so ζ2 = β3 − α1 and z2 = b3/a1.
Case 2bii. β3 = ζ1 + α3 and b3 6= z1a3. Then β3 = ζ2 + α1, and b3 = z1a3 + z2a1.
Thus ζ2 = β3 − α1 and z2 = (b3 − z1a3)/a1.
Case 2biii. β3 = ζ1 + α3 and b3 = z1a3. Then β3 < ζ2 + α1, and we will need to
continue our procedure with β4.

Repeating this procedure as necessary, say for a total of N2 times, we solve for
{ζ2, z2}. We represent this process as

{bk, βk, ak, αk}N2

k=1 =⇒ {zk, ζk}2k=1.

We must have N2 finite by (44) and the finiteness of the graph.
Step (p+ 1). we solve for zp+1, ζp+1

Iterating the procedure above, suppose for p ∈ N we have

{bk, βk, ak, αk}
Np

k=1 =⇒ {zk, ζk}pk=1.

Here Np is chosen to be minimal, and so βNp
= ζp + α1. We wish to solve for

{zp+1, ζp+1}.
We can again distinguish three cases:

Case 1. β(Np+1) 6= ζj + αk, ∀j ≤ p, ∀k. Note that we know {ζj}p1 and {αk}, so
these inequalities are verifiable. In this case, we must have β(Np+1) = ζp+1 +α1 and
a1zp+1 = b(Np+1), so we have determined zp+1 and ζp+1 in this case.

Case 2. There exists an integer Q and pairs {ζjn , αjn}
Q
n=1, with jn ≤ p, such that

β(Np+1) = ζj1 + αj1 = ... = ζjQ + αjQ .

Note that all the numbers {ζjn , αjn} have been determined, so these equations can
be all verified. In this case, we have either
Case 2i. b(Np+1) 6= zj1aj1 + ...+ zjQajQ . It follows then that β(Np+1) = ζp+1 + α1,
and

b(Np+1) = zp+1a1 + zj1aj1 + ...+ zjQajQ .

We thus solve for zp+1, ζp+1.
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Case 2ii. b(Np+1) = zj1aj1 + ...+ zjQajQ . It follows then that β(Np+1) 6= ζp+1 +α1,
and we have to repeat this process with β(Np+2).

Repeating the reasoning in Case 2ii as often as necessary, we will eventually solve
for {zp+1, ζp+1}. Thus,

{bk, βk, ak, αk}
Np+1

k=1 =⇒ {zk, ζk}p+1
k=1.

Hence we can solve for {ζp : p ≤ L}, {zp : p ≤ L} for any positive integer L given
knowledge of RT01, R

T
12 for T = T (L) sufficiently large.

Lemma 3.3. The sets {χj}, {yj} can be determined by R01 and R12.

Proof. We identify the Heavyside functions in (40). By (41), (42), and (43), we get∑
n≥1

rnH(t− βn)ds−
∑
k≥1

∑
p≥1

zptkH(t− ζp − νk) =
∑
k≥1

∑
l≥1

akylH(t− ηl − αk).

Since the left hand side is known, we can argue as in Lemma 3.2 to solve for {yj , ηj}.
The details are left to the reader.

Lemma 3.4. The function r̃ can be determined by R01 and R12.

Proof. We solve for r̃ with an iterative integral equation argument. By (40), we
have

d

dt
(R̃12 ∗A) =

d

dt
R12.

Hence by (41), (42), and (43), we calculate

C(t) =

∫ t

0

r̃(s)ã′(t− s− `1)ds+
∑
k≥1

akr̃(t− αk) +
∑
k≥1

tk

∫ t−νk

0

r̃(s)ds.

We set z := t− α1 = t− ν1 = t− `1 and use that ã(s) = 0 for s < 0 to obtain

C(z) =

∫ z

0

r̃(s)
(
ã′(z − s) + t1

)
ds+ a1r̃(z) +

∑
k≥2

akr̃(z + α1 − αk)

+
∑
k≥2

tk

∫ z+ν1−νk

0

r̃(s)ds. (45)

Setting α0 = ν0 = 0 for convenience, we introduce the number

α := min
(

min
k≥0

(αk+1 − αk),min
k≥0

(νk+1 − νk)
)
.

Since we will be choosing finite T and t < T , we have α > 0. The integral equation
for r̃ can be solved by an iterative argument with a finite number of steps.

1) For z < 0, we have r̃(z) = 0.

2) Suppose we have solved for r̃(z) for z < (n−1)α, n ≥ 1. We will now suppose

z ∈ ((n− 1)α, nα),

and identify terms in (45) that we already know. We have for k ≥ 2∫ z+ν1−νk

0

r̃(s)ds = C(z) +

∫ z+ν1−νk

(n−1)α

r̃(s)ds.
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For s ≥ (n− 1)α and z < nα we have

z + ν1 − νk − s ≤ nα+ ν1 − νk − s
≤ nα− (k − 1)α− s
≤ (n− 1)α− s
≤ 0,

so ∑
k≥2

tk

∫ z+ν1−νk

0

r̃(s)ds = C(z). (46)

Similarly, for k ≥ 2 we have z + α1 − αk < (n− 1)α, so∑
k≥2

akr̃(z + α1 − αk) = C(z). (47)

Combining (46) and (47) with (45), we get

C(z) = a1r̃(z) +

∫ z

0

r̃(s)
(
ã′(z − s) + t1

)
ds.

This is a Volterra equation of the second kind, and thus we solve for r̃(z) for z in

[(n− 1)α, nα).

Iterating this argument finitely many times, we will have solved for r̃ = r̃12, and
hence R̃T12, on the interval [0, T ] for any T > 0.

Case B: M1 = 0.
In this case, we must replace (42), (43) by

R12(s) = r12(s) +
∑
n≥1

bnδ
′(t− βn) + rnδ(s− βn), r12|s∈(0,β1) = 0, β1 = `1,

A(s) = ã(s− `2) +
∑
k≥1

akδ(s− αk) + tkH(s− νk), α1 = ν1 = `1.

with piecewise continuous r12 and continuous, piecewise C1 function ã. The ar-
gument is then a straightforward adaptation of Case A; the details are left to the
reader.

Careful reading of Steps 2, 3 shows that we can choose any T > 2(`1 + `1j).

3.3. Solving for R̃22. The purpose of this subsection is to determine R̃22. Mim-
icking the previous subsection, let uδ solve (1)-(6), let B(t) = uδ(v2, t) and let
f ∈ L2(0, T ). We have the following formula holding by the definition of response
operators: ∫ t

0

R̃22(s)
(
B ∗ f

)
(t− s)ds =

∫ t

0

R22(s)f(t− s)ds.

Of course R22(s) is assumed to be known. We determine B as follows. We have
from Step 2 that A(t) = uδ(v1, t) is known. We identify e12 as the interval (0, `2)
with v2 corresponding to x = 0. Then B(t) = uf (v2, t) arises as a solution to the
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following Cauchy problem on e2, where we view x as the “time” variable:

ytt − yxx + q2y = 0, x ∈ (0, `2), t > 0

y(`2, t) = a(t), t > 0

yx(`2, t) = (R12 ∗ δ)(t), t > 0

y(x, 0) = 0, x ∈ (0, `2).

Since q2, `2, and R12 are all known, we can thus determine B(t) = y(0, t).
The rest of the argument here is a straightforward adaptation of the previous

subsection. The details are left to the reader.
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