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Abstract. In this paper, we propose a macroscopic model that describes the

influence of a slow moving large vehicle on road traffic. The model consists of a
scalar conservation law with a nonlocal constraint on the flux. The constraint

level depends on the trajectory of the slower vehicle which is given by an ODE

depending on the downstream traffic density. After proving well-posedness,
we first build a finite volume scheme and prove its convergence, and then

investigate numerically this model by performing a series of tests. In particular,

the link with the limit local problem of [M. L. Delle Monache and P. Goatin,
J. Differ. Equ. 257 (2014), 4015–4029] is explored numerically.

1. Introduction. Delle Monache and Goatin developed in [20] a macroscopic model
aiming at describing the situation in which a slow moving large vehicle – a bus for
instance – reduces the road capacity and thus generates a moving bottleneck for the
surrounding traffic flow. Their model is given by a Cauchy problem for Lightwill-
Whitham-Richards scalar conservation law in one space dimension with local point
constraint. The constraint is prescribed along the slow vehicle trajectory (y(t), t),
the unknown y being coupled to the unknown ρ of the constrained LWR equation.
Point constraints were introduced in [19, 17] to account for localized in space phe-
nomena that may occur at exits and which act as obstacles. The constraint in the
model of [20] depends upon the slow vehicle speed ẏ, where its position y verifies
the following ODE

ẏ(t) = ω
(
ρ(y(t)+, t)

)
. (A)

Above, ρ = ρ(x, t) ∈ [0, R] is the traffic density and ω : [0, R] → R+ is a
nonincreasing Lipschitz continuous function which links the traffic density to the
slow vehicle velocity. Delle Monache and Goatin proved an existence result for
their model in [20] with a wave-front tracking approach in the BV framework.
Adjustments to the result were recently brought by Liard and Piccoli in [28]. Despite
the step forward made in [21], the uniqueness issue remained open for a time.
Indeed, the appearance of the trace ρ(y(t)+, t) makes it fairly difficult to get a
Lipschitz continuous dependency of the trajectory y = y(t) from the solution ρ =
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ρ(x, t). Nonetheless, a highly nontrivial uniqueness result was achieved by Liard
and Piccoli in [27]. To describe the influence of a single vehicle on the traffic flow,
the authors of [26] proposed a PDE-ODE coupled model without constraint on the
flux for which they proposed in [9] two convergent schemes. In the present paper,
we consider a modified model where the point constraint becomes nonlocal, making
the velocity of the slow vehicle depend on the mean density evaluated in a small
vicinity ahead the driver. More precisely, instead of A, we consider the relation

ẏ(t) = ω

(∫
R
ρ(x+ y(t), t)µ(x) dx

)
, (B)

where µ ∈ BV(R;R+) is a weight function used to average the density. From the
mathematical point of view, this choice makes the study of the new model easier.
Indeed, the authors of [3, 4, 5] put forward techniques for full well-posedness analysis
of similar models with nonlocal point constraints. From the modeling point of view,
considering B makes sense for several reasons outlined in Section 3.5.

The paper is organized as follows. Sections 2 and 3 are devoted to the proof
of the well-posedness of the model. In Section 4 we introduce the numerical finite
volume scheme and prove its convergence. An important step of the reasoning is to
prove a BV regularity for the approximate solutions. It serves both in the existence
proof and it is central in the uniqueness argument. In that optic, the appendix is
essential. Indeed, it is devoted to the proof of a BV regularity for entropy solutions
to a large class of limited flux models. Let us stress that we highlight the interest of
the BVloc discrete compactness technique of Towers [33] in the context of general
discontinuous-flux problems. In the numerical section 5, first we perform numerical
simulations to validate our model. Then we investigate both qualitatively and
quantitatively the proximity between our model – in which we considered B – as
δ → µ0+ and the model of [20] in which the authors considered A.

2. Model, notion of solution and uniqueness.

2.1. Model in the bus frame. Note that we find it convenient to study the
problem in the bus frame, which means setting X = x − y(t) in the model of
Delle Monache and Goatin in [20]. Keeping in mind what we said above about the
nonlocal constraint, the problem we consider takes the following form:

∂tρ+ ∂x (F (ẏ(t), ρ)) = 0 R× (0, T )

ρ(x, 0) = ρ0(x+ y0) x ∈ R

F (ẏ(t), ρ)|x=0 ≤ Q(ẏ(t)) t ∈ (0, T )

ẏ(t) = ω

(∫
R
ρ(x, t)µ(x) dx

)
t ∈ (0, T )

y(0) = y0.

(1)

Above, ρ = ρ(x, t) denotes the traffic density, of which maximum attainable value
is R > 0, and

F (ẏ(t), ρ) = f(ρ)− ẏ(t)ρ

denotes the normal flux through the curve x = y(t). We assume that the flux
function f : [0, R]→ R is Lipschitz continuous and bell-shaped, which are commonly
used assumptions in traffic dynamics:

f(ρ) ≥ 0, f(0) = f(R) = 0, ∃! ρ ∈ (0, R), f ′(ρ)(ρ− ρ) > 0 for a.e. ρ ∈ (0, R). (2)
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In [20], the authors chose the function Q(s) = α×
(

1− s
2

)2

to prescribe the

maximal flow allowed through a bottleneck located at x = 0. The parameter α ∈
(0, 1) was giving the reduction rate of the road capacity due to the presence of the
slow vehicle. We use the s variable to stress that the value of the constraint is a
function of the speed of the slow vehicle. In the sequel the s variable will refer to
quantities related to the slow vehicle velocity. Regarding the function Q, we can
allow for more general choices. Specifically,

Q : [0, ‖ω‖L∞ ]→ R+

can be any Lipschitz continuous function. It is a well known fact that in general, the
total variation of an entropy solution to a constraint Cauchy problem may increase
(see [17, Section 2] for an example). However, this increase can be controlled if the
constraint level does not reach the maximum level. A mild assumption on Q – see
Assumption (17) below – will guarantee availability of BV bounds, provided we
suppose that

ρ0 ∈ L1(R; [0, R]) ∩BV(R).

2.2. Notion of solution. Throughout the paper, we denote by

Φ(a, b) = sign(a− b)(f(a)− f(b)) and Φẏ(t)(a, b) = Φ(a, b)− ẏ(t)|a− b|

the entropy fluxes associated with the Kružkov entropy ρ 7→ |ρ−κ|, for all κ ∈ [0, R],
see [25]. Following [20, 17, 6, 15], we give the following definition of solution for
Problem (1).

Definition 2.1. A couple (ρ, y) with ρ ∈ L∞(R× (0, T )) and y ∈W1,∞((0, T )) is
an admissible weak solution to (1) if

(i) the following regularity is fulfilled:

ρ ∈ C([0, T ]; L1
loc(R)); (3)

(ii) for all test functions ϕ ∈ C∞c (R × R+), ϕ ≥ 0 and κ ∈ [0, R], the following
entropy inequalities are verified for all 0 ≤ τ < τ ′ ≤ T :∫ τ ′

τ

∫
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdx dt+

∫
R
|ρ(x, τ)− κ|ϕ(x, τ) dx

−
∫
R
|ρ(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

∫ τ ′

τ

Rẏ(t)(κ, q(t))ϕ(0, t) dt ≥ 0,

(4)

where

Rẏ(t)(κ, q(t)) = F (ẏ(t), κ)−min {F (ẏ(t), κ), q(t)} and q(t) = Q(ẏ(t));

(iii) for all test functions ψ ∈ C∞([0, T ]), ψ ≥ 0 and some given ϕ ∈ C∞c (R)
which verifies ϕ(0) = 1, the following weak constraint inequalities are verified for
all 0 ≤ τ < τ ′ ≤ T :

−
∫ τ ′

τ

∫
R+

ρ∂t(ϕψ) + F (ẏ(t), ρ)∂x(ϕψ) dxdt−
∫
R+

ρ(x, τ)ϕ(x)ψ(τ) dx

+

∫
R+

ρ(x, τ ′)ϕ(x)ψ(τ ′) dx ≤
∫ τ ′

τ

q(t)ψ(t) dt ;

(5)
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(iv) the following weak ODE formulation is verified for all t ∈ [0, T ]:

y(t) = y0 +

∫ t

0

ω

(∫
R
ρ(x, s)µ(x) dx

)
ds . (6)

Definition 2.2. We will call BV-regular solution any admissible weak solution
(ρ, y) to the Problem (1) which also verifies

ρ ∈ L∞((0, T ); BV(R)).

Remark 1. It is more usual to formulate (4) with ϕ ∈ C∞c (R× [0, T )), τ = 0 and
τ ′ = T . The equivalence between the two formulations is due to the regularity (3).

Remark 2. As it happens, the time-continuity regularity (3) is actually a con-
sequence of inequalities (4). Indeed, we will use the result [12, Theorem 1.2]
which states that if Ω is an open subset of R and if for all test functions ϕ ∈
C∞c (Ω× [0, T )), ϕ ≥ 0 and κ ∈ [0, R], ρ satisfies the following entropy inequalities:∫ T

0

∫
Ω

|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdxdt+

∫
Ω

|ρ0(x)− κ|ϕ(x, 0) dx ≥ 0,

then ρ ∈ C([0, T ]; L1
loc(Ω)). Moreover, since ρ is bounded and Ω\Ω has a Lebesgue

measure 0, ρ ∈ C([0, T ]; L1
loc(Ω)). We will use this remark several times in the

sequel of the paper, with Ω = R∗.

Remark 3. Any admissible weak solution (ρ, y) to Problem (1) is also a distribu-
tional solution to the conservation law in (1). Therefore, inequalities (5) imply the
following ones for all 0 ≤ τ < τ ′ ≤ T :∫ τ ′

τ

∫
R−

ρ∂t(ϕψ) + F (ẏ(t), ρ)∂x(ϕψ) dx dt+

∫
R−

ρ(x, τ)ϕ(x)ψ(τ) dx

−
∫
R−

ρ(x, τ ′)ϕ(x)ψ(τ ′) dx ≤
∫ τ ′

τ

q(t)ψ(t) dt ,

where ϕ and ψ are such as described in Definition 2.1 (iii).

The interest of weak formulations (5)-(6) for the flux constraint and for the ODE
governing the slow vehicle lies in their stability with respect to ρ. Formulation
(4) – (6) is well suited for passage to the limit of a.e. convergent sequences of exact
or approximate solutions.

2.3. Uniqueness of the BV-regular solution. In this section, we prove stability
with respect to the initial data and uniqueness for BV-regular solutions to Problem
(1). We start with the

Lemma 2.3. If (ρ, y) is an admissible weak solution to Problem (1), then
ẏ ∈W1,∞((0, T )). In particular, ẏ ∈ BV([0, T ]).

Proof. Denote for all t ∈ [0, T ],

s(t) = ω

(∫
R
ρ(x, t)µ(x) dx

)
.

Since µ ∈ L1(R) ∩ L∞(R) and ρ ∈ C([0, T ]; L1
loc(R)), s is continuous on [0, T ].

By definition, y satisfies the weak ODE formulation (6). Consequently, for a.e.
t ∈ (0, T ), ẏ(t) = s(t). We are going to prove that s is Lipschitz continuous on
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[0, T ], which will ensure that ẏ ∈ W1,∞((0, T )). Since µ ∈ BV(R), there exists a
sequence (µn)n∈N ⊂ BV(R) ∩C∞c (R) such that:

‖µn − µ‖L1 −→
n→+∞

0 and TV(µn) −→
n→+∞

TV(µ).

Introduce for all n ∈ N and t ∈ [0, T ], the function

ξn(t) =

∫
R
ρ(x, t)µn(x) dx .

Fix ψ ∈ C∞c ((0, T )). Since ρ is a distributional solution to the conservation law
in (1), we have for all n ∈ N,∫ T

0

ξn(t)ψ̇(t) dt =

∫ T

0

∫
R
ρ∂t(ψµn) dxdt

=−
∫ T

0

∫
R
F (ẏ(t), ρ)∂x(ψµn) dx dt

=−
∫ T

0

(∫
R
F (ẏ(t), ρ)µ′n(x) dx

)
ψ(t) dt ,

which means that for all n ∈ N, ξn is differentiable in the weak sense, and that
for a.e. t ∈ (0, T ),

ξ̇n(t) =

∫
R
F (ẏ(t), ρ)µ′n(x) dx .

In particular, since both the sequences (‖µn‖L1)n and (TV(µn))n are bounded
– say by C > 0 – we also have for all n ∈ N,

‖ξn‖L∞ ≤ RC and ‖ξ̇n‖L∞ ≤ C(‖f‖L∞ + ‖ω‖L∞R).

Therefore, the sequence (ξn)n is bounded in W1,∞((0, T )). Now, for all t, τ ∈
[0, T ] and n ∈ N, triangle inequality yields:

|s(t)− s(τ)| ≤2‖ω′‖L∞R‖µn − µ‖L1 + ‖ω′‖L∞
∣∣∣∣∫

R
(ρ(x, t)− ρ(x, τ))µn(x) dx

∣∣∣∣
=2‖ω′‖L∞R‖µn − µ‖L1 + ‖ω′‖L∞ |ξn(t)− ξn(τ)|
≤2‖ω′‖L∞R‖µn − µ‖L1 + C‖ω′‖L∞(‖f‖L∞ + ‖ω‖L∞R)︸ ︷︷ ︸

K

|t− τ |.

Letting n→ +∞, we get that for all t, τ ∈ [0, T ], |s(t)− s(τ)| ≤ K|t− τ |, which
proves that s is Lipschitz continuous on [0, T ]. The proof of the statement is com-
pleted.

Before stating the uniqueness result, we make the following additional assump-
tion:

∀s ∈ [0, ‖ω‖L∞ ], argmax
ρ∈[0,R]

F (s, ρ) > 0. (7)

This ensures that for all s ∈ [0, ‖ω‖L∞ ], the function F (s, ·) verifies the bell-
shaped assumptions (53). For example, when considering the flux f(ρ) = ρ(R− ρ),
(7) reduces to ‖ω‖L∞ < R, which only means that the maximum velocity of the
slow vehicle is lesser than the maximum velocity of the cars.

Theorem 2.4. Suppose that f satisfies (2) and (7). Fix ρ1
0, ρ

2
0 ∈ L1(R; [0, R]) ∩

BV(R) and y1
0 , y

2
0 ∈ R. We denote by (ρ1, y1) a BV-regular solution to Problem
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(1) corresponding to initial data (ρ1
0, y

1
0), and by (ρ2, y2) an admissible weak solution

with initial data (ρ2
0, y

2
0). Then there exist constants α, β, γ > 0 such that

for a.e. t ∈ (0, T ), ‖ρ1(t)− ρ2(t)‖L1 ≤
(
|y1

0 − y2
0 |TV(ρ1

0) + ‖ρ1
0 − ρ2

0‖L1

)
exp(αt)

(8)
and

∀t ∈ [0, T ], |y1(t)−y2(t)| ≤ |y1
0−y2

0 |+(β|y1
0−y2

0 |+γ‖ρ1
0−ρ2

0‖L1)(exp(αt)−1). (9)

In particular, Problem (1) admits at most one BV-regular solution.

Proof. Since (ρ1, y1) is a BV-regular solution to Problem (1), there exists C ≥ 0
such that

∀t ∈ [0, T ], TV(ρ1(t)) ≤ C.
Lemma 2.3 ensures that ẏ1, ẏ2 ∈ BV([0, T ];R+). We can use result (54) to

obtain that for a.e. t ∈ (0, T ),

‖ρ1(t)− ρ2(t)‖L1 ≤|y1
0 − y2

0 |TV(ρ1
0) + ‖ρ1

0 − ρ2
0‖L1

+ (2‖Q′‖L∞ + 2R+ C)

∫ t

0

|ẏ1(s)− ẏ2(s)|ds .
(10)

Moreover, since for a.e. t ∈ (0, T ),

|ẏ1(t)− ẏ2(t)| ≤ ‖ω′‖L∞‖µ‖L∞‖ρ1(t)− ρ2(t)‖L1 ,

Gronwall’s lemma yields (8) with α = (2‖Q′‖L∞ + 2R+ C) ‖ω′‖L∞‖µ‖L∞ . Then
for all t ∈ [0, T ],

|y1(t)− y2(t)| ≤|y1
0 − y2

0 |+
∫ t

0

|ẏ1(s)− ẏ2(s)|ds

≤|y1
0 − y2

0 |+ ‖ω′‖L∞‖µ‖L∞
∫ t

0

‖ρ1(s)− ρ2(s)‖L1 ds

≤|y1
0 − y2

0 |+ (β|y1
0 − y2

0 |+ γ‖ρ1
0 − ρ2

0‖L1)(exp(αt)− 1),

where

β =
TV(ρ1

0)

2‖Q′‖L∞ + 2R+ C
and γ =

1

2‖Q′‖L∞ + 2R+ C
.

The uniqueness of a BV-regular solution is then clear.

Remark 4. Up to inequality (10), our proof was very much following the one of
[21, Theorem 2.1]. However, the authors of [21] faced an issue to derive a Lipschitz
stability estimate between the car densities and the slow vehicle velocities starting
from

|ω
(
ρ1(0+, t)

)
− ω

(
ρ2(0+, t)

)
|.

For us, due to the nonlocality of our problem, it was straightforward to obtain
the bound∣∣∣∣ω(∫

R
ρ1(x, t)µ(x) dx

)
− ω

(∫
R
ρ2(x, t)µ(x) dx

)∣∣∣∣ ≤ ‖ω′‖L∞‖µ‖L∞‖ρ1(t)−ρ2(t)‖L1 .

Remark 5. A noteworthy consequence of Theorem 2.4 is that existence of a BV-
regular solution will ensure uniqueness of an admissible weak one.
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3. Two existence results.

3.1. Time-splitting technique. In [20], to prove existence for their problem, the
authors took a wave-front tracking approach. We choose here to use a time-splitting
technique. The main advantage of this technique is that it relies on a ready-to-use
theory. More precisely, at each time step, we will deal with exact solutions to a con-
servation law with a flux constraint, which have now become standard, see [17, 6, 15].

Fix ρ0 ∈ L1(R; [0, R]) and y0 ∈ R. Let δ > 0 be a time step, N ∈ N such that
T ∈ [Nδ, (N + 1)δ) and denote for all n ∈ {0, . . . , N + 1}, tn = nδ. We initialize
with

∀t ∈ R, ρ0(t) = ρ0(·+ y0) and ∀t ∈ [0, T ], y0(t) = y0.

Fix n ∈ {1, . . . , N + 1}. First, we define for all t ∈ (tn−1, tn],

σn(t) = ω

(∫
R
ρn−1(x, t− δ)µ(x) dx

)
, sn = σn(tn) and qn = Q(sn).

Since both qn and ρn−1(·, tn−1) are bounded, [6, Theorem 2.11] ensures the
existence and uniqueness of a solution ρn ∈ L∞(R× [tn−1, tn]) to

∂tρ+ ∂x (F (sn, ρ)) = 0 R× (tn−1, tn)

ρ(x, tn−1) = ρn−1(x, tn−1) x ∈ R

F (sn, ρ)|x=0 ≤ qn t ∈ (tn−1, tn),

in the sense that ρn satisfies entropy/constraint inequalities analogous to (4)-(5)
with suitable flux/constraint function and initial data, see Definition A.1. Tak-
ing also into account Remark 2, ρn ∈ C([tn−1, tn]; L1

loc(R)). We then define the
following functions:

• ρδ(t) = ρ01R−(t) +

N+1∑
n=1

ρn(t)1(tn−1,tn](t)

• σδ(t), qδ(t), sδ(t) = σn(t), qn, sn if t ∈ (tn−1, tn]

• yδ(t) = y0 +

∫ t

0

σδ(u) du .

First, let us prove that (ρδ, yδ) solves an approximate version of Problem (1).

Proposition 1. The couple (ρδ, yδ) is an admissible weak solution to

∂tρδ + ∂x (F (sδ(t), ρδ)) = 0 R× (0, T )

ρδ(x, 0) = ρ0(x+ y0) x ∈ R

F (sδ(t), ρδ)|x=0 ≤ qδ(t) t ∈ (0, T )

ẏδ(t) = ω

(∫
R
ρδ(x, t− δ)µ(x) dx

)
t ∈ (0, T )

yδ(0) = y0,

(11)

in the sense that ρδ ∈ C([0, T ]; L1
loc(R)) and satisfies entropy/constraint inequalities

analogous to (4)-(5) with flux F (sδ(·), ·), constraint qδ, and initial data ρ0(·+ y0);
and yδ satisfies, instead of (6), the following weak ODE formulation:

∀t ∈ [0, T ], yδ(t) = y0 +

∫ t

0

ω

(∫
R
ρδ(x, s− δ)µ(x) dx

)
ds .
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Proof. By construction, for all n ∈ {1, . . . , N + 1}, ρn ∈ C([tn−1, tn]; L1
loc(R)).

Combining this with the “stop-and-restart” conditions ρn(·, tn−1) = ρn−1(·, tn−1),
one ensures that ρδ ∈ C([0, T ]; L1

loc(R)). Let t ∈ [0, T ] and n ∈ {1, . . . , N + 1} such
that t ∈ [tn−1, tn). Then,

yδ(t)− y0 =

n−1∑
k=1

∫ tk

tk−1

σk(s) ds+

∫ t

tn−1

σn(s) ds

=

n−1∑
k=1

∫ tk

tk−1

ω

∫
R
ρk−1(x, s− δ)︸ ︷︷ ︸

ρδ(x,s−δ)

µ(x) dx

 ds

+

∫ t

tn−1

ω

∫
R
ρn−1(x, s− δ)︸ ︷︷ ︸

ρδ(x,s−δ)

µ(x) dx

ds

=

∫ t

0

ω

(∫
R
ρδ(x, s− δ)µ(x) dx

)
ds ,

(12)

which proves that ẏδ solves the ODE in (11) in the weak sense. Fix now ϕ ∈
C∞c (R×R+), ϕ ≥ 0 and κ ∈ [0, R]. By construction of the sequence ((ρk, yk))k, we
have for all n,m ∈ {0, . . . , N + 1},∫ tm

tn

∫
R
|ρδ − κ|∂tϕ+ Φsδ(t)(ρδ, κ)∂xϕdxdt

=

m∑
k=n+1

∫ tk

tk−1

∫
R
|ρk − κ|∂tϕ+ Φsk(ρk, κ)∂xϕdxdt

≥
m∑

k=n+1


∫
R
|ρk(x, tk)− κ|ϕ(x, tk) dx−

∫
R
| ρk(x, tk−1)︸ ︷︷ ︸
ρk−1(x,tk−1)

−κ|ϕ(x, tk−1) dx

−2

∫ tk

tk−1

Rsk(κ, qk)ϕ(0, t) dt

}

=

∫
R
|ρδ(x, tm)− κ|ϕ(x, tm) dx−

∫
R
|ρδ(x, tn)− κ|ϕ(x, tn) dx

− 2

∫ tm

tn
Rsδ(t)(κ, qδ(t))ϕ(0, t) dt .

It is then straightforward to prove that for all 0 ≤ τ < τ ′ ≤ T ,∫ τ ′

τ

∫
R
|ρδ − κ|∂tϕ+ Φsδ(t)(ρδ, κ)∂xϕ dxdt+

∫
R
|ρδ(x, τ)− κ|ϕ(x, τ) dx

−
∫
R
|ρδ(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

∫ τ ′

τ

Rsδ(t)(κ, qδ(t))ϕ(0, t) dt ≥ 0.

(13)

Proving that ρδ satisfies constraint inequalities is very similar so we omit the
details. One has to start from

−
∫ τ ′

τ

∫
R+

ρδ∂t(ϕψ) + F (sδ(t), ρδ)∂x(ϕψ) dxdt



INFLUENCE OF A SLOW MOVING VEHICLE ON TRAFFIC 229

and make use once again of the construction of the sequence ((ρk, yk))k to obtain

−
∫ τ ′

τ

∫
R+

ρδ∂t(ϕψ) + F (sδ(t), ρδ)∂x(ϕψ) dx dt−
∫
R+

ρδ(x, τ)ϕ(x)ψ(τ) dx

+

∫
R+

ρδ(x, τ
′)ϕ(x)ψ(τ ′) dx ≤

∫ τ ′

τ

qδ(t)ψ(t) dt .

(14)

This concludes the proof.

Remark 6. Remark that we have for all δ > 0,

‖σδ‖L∞ ≤ ‖ω‖L∞ and ‖yδ‖L∞ ≤ |y0|+ T‖ω‖L∞ .
This means that the sequence (yδ)δ is bounded in W1,∞((0, T )). Then the com-

pact embedding of W1,∞((0, T )) in C([0, T ]) yields a subsequence of (yδ)δ, which
we do not relabel, which converges uniformly on [0, T ] to some y ∈ C([0, T ]).

At this point, we propose two ways to obtain compactness for the sequence (ρδ)δ,
which will lead to two existence results.

3.2. The case of a nondegenerately nonlinear flux.

Theorem 3.1. Fix ρ0 ∈ L1(R; [0;R]) and y0 ∈ R. Suppose that f is Lipschitz
continuous, satisfies (2)-(7) and the following nondegeneracy assumption

for a.e. s ∈ (0, ‖ω‖L∞), mes{ρ ∈ [0, R] | f ′(ρ)− s = 0} = 0. (15)

Then Problem (1) admits at least one admissible weak solution.

Proof. Condition (15) combined with the obvious uniform L∞ bound

∀δ > 0, ∀(x, t) ∈ R× [0, T ], ρδ(x, t) ∈ [0, R],

and the results proved by Panov in [30, 31] ensure the existence of a subsequence –
which we do not relabel – that converges in L1

loc(R∗×(0, T )) to some ρ ∈ L1
loc(R∗×

(0, T )); and a further extraction yields the almost everywhere convergence on R×
(0, T ) and also the fact that ρ ∈ L∞(R × (0, T ); [0, R]). We now show that the
couple (ρ, y) constructed above is an admissible weak solution to (1) in the sense of
Definition 2.1.

For all δ > 0 and t ∈ [0, T ],

yδ(t)− y0 =

∫ t

0

ω

(∫
R
ρδ(x, s− δ)µ(x) dx

)
ds

=

∫ t−δ

−δ
ω

(∫
R
ρδ(x, s)µ(x) dx

)
ds

=

∫ t

0

ω

(∫
R
ρδ(x, s)µ(x) dx

)
ds+

(∫ 0

−δ
−
∫ t

t−δ

)
ω

(∫
R
ρδ(x, s)µ(x) dx

)
ds .

The last term vanishes as δ → 0 since ω is bounded. Then, Lebesgue theorem
combined with the continuity of ω gives, for all t ∈ [0, T ],

yδ(t) −→
δ→0

y0 +

∫ t

0

ω

(∫
R
ρ(x, s)µ(x) dx

)
ds .

This last quantity is also equal to y(t) due to the uniform convergence of (yδ)δ
to y. This proves that y verifies (6). Now, we aim at passing to the limit in
(13) and (14). With this in mind, we prove the a.e. convergence of the sequence
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(σδ)δ towards ẏ. Since µ ∈ BV(R), there exists a sequence of smooth functions
(µn)n∈N ⊂ BV(R) ∩C∞c (R) such that:

‖µn − µ‖L1 −→
n→+∞

0 and TV(µn) −→
n→+∞

TV(µ).

Introduce for every δ > 0 and n ∈ N, the function

ξnδ (t) =

∫
R
ρδ(x, t)µn(x) dx .

Since for all δ > 0, ρδ is a distributional solution to the conservation law in (11),
one can show – following the proof of Lemma 2.3 for instance – that for every n ∈ N,
ξnδ ∈W1,∞((0, T )), and that for a.e. t ∈ (0, T ),

ξ̇nδ (t) =

∫
R
F (sδ(t), ρδ)µ

′
n(x) dx .

Moreover, since both the sequences (‖µn‖L1)n and (TV(µn))n are bounded, it is
clear that (ξnδ )δ,n is uniformly bounded in W1,∞((0, T )), therefore so is (ω(ξnδ ))δ,n.

Consequently, for all n ∈ N, δ > 0 and almost every t ∈ (0, T ), triangle inequality
yields:∣∣∣∣σδ(t)− ω(∫

R
ρ(x, t)µ(x) dx

)∣∣∣∣ ≤2‖ω′‖L∞R‖µn − µ‖L1 + δ sup
n∈N

‖ω(ξnδ )‖W1,∞

+ ‖ω′‖L∞
∣∣∣∣∫

R
(ρδ(x, t)− ρ(x, t))µ(x) dx

∣∣∣∣ −→δ→0
n→+∞

0,

which proves that (σδ)δ converges a.e. on (0, T ) to ẏ. To prove the time-continuity
regularity, we first apply inequality (13) with τ = 0, τ ′ = T (which is licit since ρδ
is continuous in time), ϕ ∈ C∞c (R∗ × [0, T )), ϕ ≥ 0 and κ ∈ [0, R]:∫ T

0

∫
R
|ρδ − κ|∂tϕ+ Φσδ(t)(ρδ, κ)∂xϕ dxdt+

∫
R
|ρ0(x+ y0)− κ|ϕ(x, 0) dx ≥ 0.

Then, we let δ → 0 to get∫ T

0

∫
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdx dt+

∫
R
|ρ0(x+ y0)− κ|ϕ(x, 0) dx ≥ 0.

Consequently, ρ ∈ C([0, T ]; L1
loc(R)), see Remark 2. Finally, the a.e. conver-

gences of (σδ)δ and (ρδ)δ to ẏ and ρ, respectively, are enough to pass to the limit in
(13). This ensures that for all test functions ϕ ∈ C∞c (R×R+), ϕ ≥ 0 and κ ∈ [0, R],
the following inequalities hold for a.e. 0 ≤ τ < τ ′ ≤ T :∫ τ ′

τ

∫
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕ dx dt+

∫
R
|ρ(x, τ)− κ|ϕ(x, τ) dx

−
∫
R
|ρ(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

∫ τ ′

τ

Rẏ(t)(κ, q(t))ϕ(0, t) dt ≥ 0.

Observe that the expression in the left-hand side of the previous inequality is a
continuous function of (τ, τ ′) which is almost everywhere greater than the continu-
ous function 0. By continuity, this expression is everywhere greater than 0, which
proves that ρ satisfies the entropy inequalities (4). Using similar arguments, we
show that ρ satisfies the constraint inequalities (5). This proves the couple (ρ, y) is
an admissible weak solution to Problem (1), and this concludes the proof.
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In this section, we proved an existence result for L∞ initial data, but we have no
guarantee of uniqueness since a priori we have no information regarding the BV
regularity of such solutions.

Assumption (15) ensures the compactness for sequences of entropy solutions to
conservation laws with flux function F . However, it prevents us from using flux
functions with linear parts – which corresponds to constant traffic velocity for small
densities – whereas such fundamental diagrams are often used in traffic modeling.
The results of the next section will extend to this interesting case, under the extra
BV assumption on the data.

3.3. Well-posedness for BV data. To obtain compactness for (ρδ)δ, an alterna-
tive to the setting of Section 3.2 is to derive uniform BV bounds.

Theorem 3.2. Fix ρ0 ∈ L1(R; [0, R])∩BV(R) and y0 ∈ R. Suppose that f satisfies
(2) and (7). Suppose also that

∀s ∈ [0, ‖ω‖L∞ ] , F (s, ·) ∈ C1([0, R]\{ρs}), (16)

where ρs = argmax
ρ∈[0,R]

F (s, ρ). Finally assume that Q satisfies the condition

∃ε > 0, ∀s ∈ [0, ‖ω‖L∞ ], Q(s) ≤ max
ρ∈[0,R]

F (s, ρ)− ε. (17)

Then Problem (1) admits a unique admissible weak solution, which is also
BV-regular.

Proof. Fix δ > 0. Recall that (ρδ, yδ) is an admissible weak solution to (11). In
particular, ρδ is an admissible weak solution to the constrained conservation law in
(11), in the sense of Definition A.1. It is clear from the splitting construction that
for a.e. t ∈ (0, T ),

σδ(t) = ω

(∫
R
ρδ(x, t− δ)µ(x) dx

)
.

Following the steps of the proof of Lemma 2.3, we can show that for all δ >
0, σδ ∈ BV([0, T ];R+). Even more than that, by doing so we show that the
sequence (TV(σδ))δ is bounded. Therefore, the sequence (TV(sδ))δ is bounded
as well. Moreover, since Q verifies (17), all the hypotheses of Corollary 2 are
fulfilled. Combining this with Remark 15, we get the existence of a constant Cε =
Cε(‖∂sF‖L∞) such that for all t ∈ [0, T ],

TV(ρδ(t)) ≤TV(ρ0) + 4R+ Cε (TV(qδ) + TV(sδ))

≤TV(ρ0) + 4R+ Cε(1 + ‖Q′‖L∞)TV(sδ).
(18)

Consequently for all t ∈ [0, T ], the sequence (ρδ(t))δ is bounded in BV(R).
A classical analysis argument – see [24, Theorem A.8] – ensures the existence of
ρ ∈ C([0, T ]; L1

loc(R)) such that

∀t ∈ [0, T ], ρδ(t) −→
δ→0

ρ(t) in L1
loc(R).

With this convergence, we can follow the proof of Theorem 3.1 to show that (ρ, y)
is an admissible weak solution to (1). Then, when passing to the limit in (18), the
lower semi-continuity of the BV semi-norm ensures that (ρ, y) is also BV-regular.
By Remark 5, it ensures uniqueness and concludes the proof.
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3.4. Stability with respect to the weight function. To end this section, we
now study the stability of Problem (1) with respect to the weight function µ. More
precisely, let

(
µ`
)
`
⊂ BV(R;R+) be a sequence of weight functions that converges

to µ in the weak L1 sense:

∀g ∈ L∞(R),

∫
R
g(x)µ`(x) dx −→

`→+∞

∫
R
g(x)µ(x) dx . (19)

Let (y`0)` ⊂ R be a sequence of real numbers that converges to some y0 and let
(ρ`0)` ⊂ L1(R; [0, R]) be a sequence of initial data that converges to ρ0 in the strong
L1 sense. We suppose that the flux function f satisfies Assumptions (2)-(7)-(15).
Theorem 3.1 allows us to define or all ` ∈ N, the couple (ρ`, y`) as an admissible
weak solution to the problem

∂tρ
` + ∂x

(
F (ẏ`(t), ρ`)

)
= 0 R× (0, T )

ρ`(x, 0) = ρ`0(x+ y`0) x ∈ R

F (ẏ`(t), ρ`)
∣∣
x=0
≤ Q(ẏ`(t)) t ∈ (0, T )

ẏ`(t) = ω

(∫
R
ρ`(x, t)µ`(x) dx

)
t ∈ (0, T )

y`(0) = y`0.

Remark 7. Using the same arguments as in Remark 6 and as in the proof of
Theorem 3.1, we get that up to the extraction of a subsequence, (y`)` converges
uniformly on [0, T ] to some y ∈ C([0, T ]) and (ρ`)` converges a.e. on R× (0, T ) to
some ρ ∈ L∞(R× (0, T )).

Theorem 3.3. The couple (ρ, y) constructed above is an admissible weak solution
to Problem (1).

Proof. The sequence (µ`)` converges in the weak L1 sense and is bounded in L1(R);
by the Dunford-Pettis theorem, this sequence is equi-integrable:

∀ε > 0, ∃α > 0, ∀A ∈ B(R), mes(A) < α =⇒ ∀` ∈ N,
∫
A

µ`(x) dx ≤ ε (20)

and

∀ε > 0, ∃X > 0, ∀` ∈ N,
∫
|x|≥X

µ`(x) dx ≤ ε. (21)

Fix t ∈ (0, T ) and ε > 0. Fix α,X > 0 given by (20) and (21). Egoroff theorem
yields the existence of a measurable subset Et ⊂ [−X,X] such that

mes([−X,X]\Et) < α and ρ`(·, t) −→ ρ(·, t) uniformly on Et.

For a sufficiently large ` ∈ N,∣∣∣∣∫
R
ρ`(x, t)µ`(x) dx−

∫
R
ρ(x, t)µ(x) dx

∣∣∣∣
≤
∫
|x|≥X

|ρ` − ρ|µ` dx+

∣∣∣∣∫
Et

(ρ` − ρ)µ` dx

∣∣∣∣+

∣∣∣∣∣
∫

[−X,X]\Et
(ρ` − ρ)µ` dx

∣∣∣∣∣
+

∣∣∣∣∫
R
ρµ` dx−

∫
R
ρµ dx

∣∣∣∣
≤Rε+ ‖ρ` − ρ‖L∞(Et)

∫
Et

µ`(x) dx+R

∫
[−X,X]\Et

µ`(x) dx+ ε

≤2(R+ 1)ε,
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which proves that for a.e. t ∈ (0, T ),∫
R
ρ`(x, t)µ`(x) dx −→

`→+∞

∫
R
ρ(x, t)µ(x) dx . (22)

We get that y verifies the weak ODE formulation (6) by passing to the limit in

y`(t) = y`0 +

∫ t

0

ω

(∫
R
ρ`(x, s)µ`(x) dx

)
ds .

By definition, for all ` ∈ N, the couple (ρ`, y`) satisfies the analogue of en-
tropy/constraint inequalities (4)-(5) with suitable flux/constraint functions. Ap-
plying these inequalities with τ = 0, τ ′ = T , ϕ ∈ C∞c (R∗ × [0, T )), ϕ ≥ 0 and
κ ∈ [0, R], we get∫ T

0

∫
R
|ρ` − κ|∂tϕ+ Φẏ`(t)(ρ

`, κ)∂xϕdxdt+

∫
R
|ρ`0(x+ y`0)− κ|ϕ(x, 0) dx ≥ 0.

The continuity of ω and the convergence (22) ensure that (ẏ`)` converges a.e.
to ẏ. This combined with the a.e. convergence of (ρ`)` to ρ and Riesz-Frechet-
Kolmogorov theorem –

(
ρ`0
)
`

being strongly compact in L1(R) – is enough to show
that when letting `→ +∞ in the inequality above, we get, up to the extraction of
a subsequence, that∫ T

0

∫
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdx dt+

∫
R
|ρ0(x+ y0)− κ|ϕ(x, 0) dx ≥ 0.

Consequently ρ ∈ C([0, T ]; L1
loc(R)), see Remark 2. Finally, the combined a.e.

convergences of (ẏ`)` and (ρ`)` to ẏ and ρ, respectively, guarantee that (ρ, y) verifies
inequalities (4)-(5) for almost every 0 ≤ τ < τ ′ ≤ T . The same continuity argument
we used in the proof Theorem 3.1 holds here to ensure that (ρ, y) actually satisfies
the inequalities for all 0 ≤ τ < τ ′ ≤ T . This concludes the proof of our stability
claim.

3.5. Discussion. The last section concludes the theoretical analysis of Problem
(1). The nonlocality in space of the constraint delivers an easy proof of stability
with respect to the initial data in the BV framework. Although a proof of exis-
tence using a fixed point theorem was possible (cf. [5]), we chose to propose a proof
based on a time-splitting technique. The stability with respect to µ is a noteworthy
feature, which shows a certain sturdiness of the model. However, the case we had in
mind – namely µ → δ0+ – is not reachable with the assumptions we used to prove
the stability, especially (19). We will explore this singular limit numerically, after
having built a robust convergent numerical scheme for Problem (1). Let us also
underline that unlike in [27, 28] where the authors required a particular form for
the function ω to prove well-posedness for their model, our result holds as long as
ω is Lipschitz continuous.

As evoked earlier, the nonlocality in space of the constraint makes the mathe-
matical study of the model easier. But in the modeling point of view, this choice
also makes sense for several reasons. First of all, one can think that the velocity ẏ
of the slow moving vehicle – unlike its acceleration – is a rather continuous value.
Even if the driver of the slow vehicle suddenly applies the brakes, the vehicle will
not decelerate instantaneously. Note that the LWR model allows for discontinu-
ous averaged velocity of the agents, however while modeling the slow vehicle we
are concerned with an individual agent and can model its behavior more precisely.
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Moreover, considering the mean value of the traffic density in a vicinity ahead of
the driver could be seen at taking into account both the driver anticipation and
a psychological effect. For example, if the driver sees – several dozens of meters
ahead of him/her – a speed reduction on traffic, he/she will start to slow down.
This observation can be related to the fact that, compared to the fluid mechanics
models where the typical number of agents is governed by the Avogadro constant,
in traffic models the number of agents is at least 1020 times less. Therefore, a mild
nonlocality (evaluation of the downstream traffic flow via averaging over a handful
of preceding cars) is a reasonable assumption in the macroscopic traffic models in-
spired by fluid mechanics. This point of view is exploited in the model of [16]. Note
that it is feasible to substitute the basic LWR equation on ρ by the nonlocal LWR
introduced in [16] in our nonlocal model for the slow vehicle. Such mildly nonlocal
model remains close to the basic local model of [20]. It can be studied combining
the techniques of [16] and the ones we developed in this section.

4. Numerical approximation of the model. In this section, we aim at con-
structing a finite volume scheme and at proving its convergence toward the
BV-regular solution to (1). We will use the notations:

a ∨ b = max{a, b} and a ∧ b = min{a, b}.

Fix ρ0 ∈ L1(R; [0, R]) and y0 ∈ R.

4.1. Finite volume scheme in the bus frame. For a fixed spatial mesh size
∆x and time mesh size ∆t, let xj = j∆x, tn = n∆t. We define the grid cells
Kj+1/2 = (xj , xj+1). Let N ∈ N such that T ∈ [tN , tN+1). We write

R× [0, T ] ⊂
N⋃
n=0

⋃
j∈Z
Pnj+1/2, Pnj+1/2 = Kj+1/2 × [tn, tn+1).

We choose to discretize the initial data ρ0(·+ y0) and the weight function µ with(
ρ0
j+1/2

)
j∈Z

and
(
µj+1/2

)
j∈Z where for all j ∈ Z, ρ0

j+1/2 and µj+1/2 are their mean

values on the cell Kj+1/2.

Remark 8. Others choice could be made, for instance in the case ρ0 ∈ C(R) such
that lim

|x|→+∞
ρ0(x) exists (in which case, the limit is zero due to the integrability

assumption), the values ρ0
j+1/2 = ρ0

(
xj+1/2 + y0

)
can be used. The only require-

ments are

∀j ∈ Z, ρ0
j+1/2 ∈ [0, R] and ρ0

∆ =
∑
j∈Z

ρ0
j+1/21Kj+1/2

−→
∆x→0

ρ0(·+ y0) in L1
loc(R).

Fix n ∈ {0, . . . , N−1}. At each time step we first define an approximate velocity
of the slow vehicle sn+1 and a constraint level qn+1:

sn+1 = ω

∑
j∈Z

ρnj+1/2µj+1/2∆x

 , qn+1 = Q
(
sn+1

)
. (23)

With these values, we update the approximate traffic density with the marching
formula for all j ∈ Z:

ρn+1
j+1/2 = ρnj+1/2 −

∆t

∆x

(
Fn+1
j+1 (ρnj+1/2, ρ

n
j+3/2)− Fn+1

j (ρnj−1/2, ρ
n
j+1/2)

)
, (24)
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where, following the recipe of [6, 15],

Fn+1
j (a, b) =

{
Fn+1(a, b) if j 6= 0

min
{
Fn+1(a, b), qn+1

}
if j = 0,

(25)

Fn+1 being a monotone consistent and Lipschitz numerical flux associated to
F (sn+1, ·). We will also use the notation

ρn+1
j+1/2 = Hn+1

j (ρnj−1/2, ρ
n
j+1/2, ρ

n
j+3/2), (26)

where Hn+1
j is given by the expression in the right-hand side of (24). We then

define the functions

• ρ∆(x, t) =

N∑
n=0

∑
j∈Z

ρnj+1/21Pnj+1/2
(x, t)

• s∆(t), q∆(t) = sn+1, qn+1 if t ∈ [tn, tn+1)

• y∆(t) = y0 +

∫ t

0

s∆(u) du .

Let ∆ = (∆x,∆t). For our convergence analysis, we will assume that ∆ → 0,
with λ = ∆t/∆x verifying the CFL condition

λ sup
s∈[0,‖ω‖L∞ ]

(∥∥∥∥∂Fs

∂a

∥∥∥∥
L∞

+

∥∥∥∥∂Fs

∂b

∥∥∥∥
L∞

)
︸ ︷︷ ︸

L

≤ 1, (27)

where Fs = Fs(a, b) is the numerical flux, associated to F (s, ·), we use in (24).

Remark 9. When considering the Rusanov flux or the Godunov one, (27) is guar-
anteed when

2λ(‖f ′‖L∞ + ‖ω‖L∞) ≤ 1.

4.2. Stability and discrete entropy inequalities.

Proposition 2 (L∞ stability). The scheme (26) is

(i) monotone: for all n ∈ {0, . . . , N − 1} and j ∈ Z, Hn+1
j is nondecreasing with

respect to its three arguments;
(ii) stable:

∀n ∈ {0, . . . , N}, ∀j ∈ Z, ρnj+1/2 ∈ [0, R]. (28)

Proof. (i) In the classical case – j /∈ {−1, 0} – we simply differentiate the Lipschitz
function Hn+1

j and make use of both the CFL condition (27) and the monotonicity

of Fn+1. For j ∈ {−1, 0}, note that the authors of [6] pointed out (in Proposition
4.2) that the modification done in the numerical flux (25) does not change the
monotonicity of the scheme.

(ii) The L∞ stability is a consequence of the monotonicity and also of the fact that
0 and R are stationary solutions of the scheme. Indeed, as in [6, Proposition 4.2]
for all n ∈ {0, . . . , N} and j ∈ Z,

Hn+1
j (0, 0, 0) = 0, Hn+1

j (R,R,R) = R.
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In order to show that the limit of (ρ∆)∆ – under the a.e. convergence up to a
subsequence – is a solution of the conservation law in (1), we derive discrete entropy
inequalities. These inequalities also contain terms that will help to pass to the limit
in the constrained formulation of the conservation law, as soon as the sequence
(q∆)∆ of constraints is proved convergent as well.

Proposition 3 (Discrete entropy inequalities). The numerical scheme (26) fulfills
the following inequalities for all n ∈ {0, . . . , N − 1}, j ∈ Z and κ ∈ [0, R]:(

|ρn+1
j+1/2 − κ| − |ρ

n
j+1/2 − κ|

)
∆x+

(
Φnj+1 − Φnj

)
∆t

≤ Rsn+1(κ, qn+1)∆t δj∈{−1,0} + (Φn0 − Φnint) ∆t (δj=−1 − δj=0) ,
(29)

where Φnj and Φnint denote the numerical entropy fluxes:

Φn
j = Fn+1(ρnj−1/2 ∨ κ, ρnj+1/2 ∨ κ)− Fn+1(ρnj−1/2 ∧ κ, ρnj+1/2 ∧ κ),

Φn
int = min{Fn+1(ρn−1/2 ∨ κ, ρn1/2 ∨ κ), qn+1} −min{Fn+1(ρn−1/2 ∧ κ, ρn1/2 ∧ κ), qn+1}

and

Rsn+1(κ, qn+1) = F (sn+1, κ)−min{F (sn+1, κ), qn+1}.

Proof. This result is a direct consequence of the scheme monotonicity. When the
constraint does not enter the calculations i.e. j /∈ {−1, 0}, the proof follows [23,
Lemma 5.4]. The key point is not only the monotonicity, but also the fact that in
the classical case, all the constants κ ∈ [0, R] are stationary solutions of the scheme.
This observation does not hold when the constraint enters the calculations. For
example if j = −1,

Hn+1
−1 (κ, κ, κ) = κ+ λRsn+1(κ, qn+1).

Consequently, we have both

ρn+1
−1/2 ∨ κ ≤ Hn+1

−1 (ρn−3/2 ∨ κ, ρ
n
−1/2 ∨ κ, ρ

n
1/2 ∨ κ)

and

ρn+1
−1/2 ∧ κ ≥ Hn+1

−1 (ρn−3/2 ∧ κ, ρ
n
−1/2 ∧ κ, ρ

n
1/2 ∧ κ)− λRsn+1(κ, qn+1).

By substracting these last two inequalities, we get

|ρn+1
−1/2 − κ|

=ρn+1
−1/2 ∨ κ− ρ

n+1
−1/2 ∧ κ

≤Hn+1
−1 (ρn−3/2 ∨ κ, ρn−1/2 ∨ κ, ρn1/2 ∨ κ)−Hn+1

−1 (ρn−3/2 ∧ κ, ρn−1/2 ∧ κ, ρn1/2 ∧ κ)

+ λRsn+1(κ, qn+1)

=|ρn−1/2 − κ| − λ
(
min{Fn+1(ρn−1/2 ∨ κ, ρn1/2 ∨ κ), qn+1} − Fn+1(ρn−1/2 ∨ κ, ρn1/2 ∨ κ)

)
+ λ

(
min{Fn+1(ρn−1/2 ∧ κ, ρn1/2 ∧ κ), qn+1} − Fn+1(ρn−1/2 ∧ κ, ρn1/2 ∧ κ)

)
+ λRsn+1(κ, qn+1)

=|ρn−1/2 − κ| − λ (Φn
0 − Φn

−1) + λ (Φn
0 − Φn

int) + λRsn+1(κ, qn+1),

which is exactly (29) in the case j = −1. The case j = 0 is similar so we omit the
details of the proof for this case.



INFLUENCE OF A SLOW MOVING VEHICLE ON TRAFFIC 237

Starting from (24) and (29), we can obtain approximate versions of (4) and (5).
Let us introduce the functions:

Φ∆ (ρ∆, κ) =

N∑
n=0

∑
j∈Z

Φnj 1Pnj+1/2
; F∆(s∆, ρ∆) =

N∑
n=0

∑
j∈Z

Fn+1(ρnj−1/2, ρ
n
j+1/2)1Pn

j+1/2
.

Proposition 4 (Approximate entropy/constraint inequalities). (i) Fix ϕ ∈ C∞c (R×
R+), ϕ ≥ 0 and κ ∈ [0, R]. Then there exists a constant Cϕ

1 = Cϕ
1 (R, T,L), nonde-

creasing with respect to its arguments, such that the following inequalities hold for
all 0 ≤ τ < τ ′ ≤ T :∫ τ ′

τ

∫
R
|ρ∆ − κ|∂tϕ+ Φ∆ (ρ∆, κ) ∂xϕdxdt+

∫
R
|ρ∆(x, τ)− κ|ϕ(x, τ) dx

−
∫
R
|ρ∆(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

∫ τ ′

τ

Rs∆(t)(κ, q∆(t))ϕ(0, t) dt ≥ −Cϕ
1 (∆t+ ∆x).

(30)
(ii) Fix ψ ∈ C∞([0, T ]), ψ ≥ 0 and ϕ ∈ C∞c (R) such that ϕ(0) = 1. Then there

exists a constant Cϕ,ψ
2 = Cϕ,ψ

2 (R, T,L, ‖Q‖L∞), nondecreasing with respect to its
arguments, such that for all 0 ≤ τ < τ ′ ≤ T :

−
∫ τ ′

τ

∫
R+

ρ∆∂t(ϕψ) + F∆(s∆, ρ∆)∂x(ϕψ) dxdt−
∫
R+

ρ∆(x, τ)ϕ(x)ψ(τ) dx

+

∫
R+

ρ∆(x, τ ′)ϕ(x)ψ(τ ′) dx ≤
∫ τ ′

τ

q∆(t)ψ(t) dt+ Cϕ,ψ
2 (∆x+ ∆t).

(31)

Proof. Fix k,m ∈ N such that τ ∈ [tk, tk+1) and τ ′ ∈ [tm, tm+1).

(i) Define for all n ∈ N and j ∈ Z, ϕnj+1/2 =
1

∆x∆t

∫∫
Pn
j+1/2

ϕ(x, t) dxdt. Mul-

tiplying the discrete entropy inequalities (29) by ϕnj+1/2, then summing over n ∈
{k, . . . ,m − 1} and j ∈ Z, one obtains after reorganization of the sums (using in
particular the Abel/“summation-by-parts” procedure)

A+B + C +D + E ≥ 0, (32)

with

A =

m−1∑
n=k+1

∑
j∈Z
|ρnj+1/2 − κ|

(
ϕnj+1/2 − ϕ

n−1
j+1/2

)
∆x

B =

m−1∑
n=k

∑
j∈Z

Φnj

(
ϕnj+1/2 − ϕ

n
j−1/2

)
∆t

C =
∑
j∈Z
|ρkj+1/2 − κ|ϕ

k
j+1/2∆x−

∑
j∈Z
|ρmj+1/2 − κ|ϕ

m−1
j+1/2∆x

D =

m−1∑
n=k

Rsn+1(κ, qn+1)
(
ϕn−1/2 + ϕn1/2

)
∆t

E =

m−1∑
n=k

(Φn0 − Φnint)
(
ϕn−1/2 − ϕ

n
1/2

)
∆t.
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Inequality (30) follows from (32) with

Cϕ
1 = R

(
T max

t∈[0,T ]
‖∂2
ttϕ(·, t)‖L1 + 4 max

t∈[0,T ]
‖∂tϕ(·, t)‖L1

)
+RL

(
T max

t∈[0,T ]
‖∂2
xxϕ(·, t)‖L1 + 2 max

t∈[0,T ]
‖∂xϕ(·, t)‖L1

+4‖ϕ‖L∞ + 2T‖∂xϕ‖L∞
)
,

making use of the bounds:∣∣∣∣∣A−
∫ τ ′

τ

∫
R
|ρ∆ − κ|∂tϕdxdt

∣∣∣∣∣
≤ R

(
T max

t∈[0,T ]
‖∂2
ttϕ(·, t)‖L1 + 2 max

t∈[0,T ]
‖∂tϕ(·, t)‖L1

)
∆t,∣∣∣∣∣B −

∫ τ ′

τ

∫
R

Φ∆(ρ∆, κ)∂xϕdx dt

∣∣∣∣∣
≤ RL

(
T max

t∈[0,T ]
‖∂2
xxϕ(·, t)‖L1∆x,+2 max

t∈[0,T ]
‖∂xϕ(·, t)‖L1∆t

)
∣∣∣∣C − ∫

R
|ρ∆(x, τ)− κ|ϕ(x, τ) dx+

∫
R
|ρ∆(x, τ ′)− κ|ϕ(x, τ ′) dx

∣∣∣∣
≤ 2R max

t∈[0,T ]
‖∂tϕ(·, t)‖L1∆t,∣∣∣∣∣D − 2

∫ τ ′

τ

Rs∆(t)(κ, q∆(t))ϕ(0, t) dt

∣∣∣∣∣ ≤ RL (4‖ϕ‖L∞∆t+ T‖∂xϕ‖L∞∆x) and

|E| ≤ 2RTL‖∂xϕ‖L∞∆x.

(ii) In this case, the constant Cϕ,ψ
2 reads

Cϕ,ψ
2 =R‖ϕ‖L1 (T‖ψ′′‖L∞ + 4‖ψ′‖L∞) + ‖Q‖L∞‖ψ‖L∞ (2 + T‖ϕ′‖L∞)

+RL‖ψ‖L∞ (2‖ϕ′‖L1 + T‖ϕ′‖L1 + T‖ϕ′′‖L1) .

Following the proof of (30), define for all n ∈ N and j ∈ Z,

ψn =
1

∆t

∫ tn+1

tn
ψ(t) dt , and ϕj+1/2 =

1

∆x

∫ xj+1

xj

ϕ(x) dx ,

multiply the scheme (24) by ϕj+1/2ψ
n, then take the sum over n ∈ {k, . . . ,m− 1}

and j ≥ 0. Since the proof is very similar to the one of (i), we omit the details.

The final step is to obtain compactness for the sequences (ρ∆)∆ and (y∆)∆ in
order to pass to the limit in (30)-(31). We start with (y∆)∆.

Proposition 5. For all t ∈ [0, T ],

y∆(t) = y0 +

∫ t

0

ω

(∫
R
ρ∆(x, u)µ(x) dx

)
du . (33)

Consequently, there exists y ∈ C([0, T ]) such that up to an extraction, (y∆)∆

converges uniformly to y on [0, T ].
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Proof. For all t ∈ [0, T ], if t ∈ [tn, tn+1) for some n ∈ {0, . . . , N}, then we can write

y∆(t)− y0 =

n−1∑
k=0

∫ tk+1

tk
sk+1 du+

∫ t

tn
sn+1 du

=

n−1∑
k=0

∫ tk+1

tk
ω

∑
j∈Z

∫
R
ρkj+1/2µj+1/2∆x

 du

+

∫ t

tn
ω

∑
j∈Z

∫
R
ρnj+1/2µj+1/2∆x

 du

=

∫ t

0

ω

(∫
R
ρ∆(x, u)µ(x) dx

)
du .

Let us also point out that from (23), we get that for all ∆ and almost every
t ∈ (0, T ),

s∆(t) = ω

(∫
R
ρ∆(x, t)µ(x) dx

)
. (34)

Combining (33) and (34), we obtain that for all ∆,

‖ẏ∆‖L∞ = ‖s∆‖L∞ ≤ ‖ω‖L∞ and ‖y∆‖L∞ ≤ |y0|+ T‖ω‖L∞ .
The sequence (y∆)∆ is therefore bounded in W1,∞((0, T )). Making use of the

compact embedding of W1,∞((0, T )) in C([0, T ]), we get the existence of y ∈
C([0, T ]) such that up to the extraction of subsequence, (y∆)∆ converges uniformly
to y on [0, T ].

The presence of a time dependent flux in the conservation law of (1) complicates
the obtaining of compactness for (ρ∆)∆. In particular, the techniques used in
[10, 11] to derive localized BV estimates don’t apply here since our problem lacks
time translation invariance. In the present situation, it would be possible to derive
weak BV estimates ([6, 23]). We choose different options. Similarly to what we did
in Section 3, we propose two ways to obtain compactness, which will lead to two
convergence results.

4.3. Compactness via one-sided Lipschitz condition technique. First, we
choose to adapt techniques and results put forward by Towers in [33]. With this in
mind, we suppose in this section that f ∈ C2([0, R]) and strictly concave. Therefore,

∃α > 0, ∀ρ ∈ [0, R], f ′′(ρ) ≤ −α. (35)

Though this assumption is stronger than the nondegeneracy one (15), since f is
bell-shaped, these two assumptions are similar in their spirit. We will also assume,
following [33], that

the numerical flux chosen in (24) is either

the Engquist-Osher one or the Godunov one.
(36)

To be precise, the choice made for the numerical flux at the interface – i.e. when
j = 0 in (25) – does not play any role. What is important is that away from
the interface, one chooses either the Engquist-Osher flux or the Godunov one. We
denote for all n ∈ {0, . . . , N + 1} and j ∈ Z,

Dn
j = max

{
ρnj−1/2 − ρ

n
j+1/2, 0

}
.



240 ABRAHAM SYLLA

We will also use the notation

Ẑ = Z\{−1, 0, 1}.
In [33], the author dealt with a discontinuous in both time and space flux and the

specific “vanishing viscosity” coupling at the interface. The discontinuity in space
was localized along the curve {x = 0}. Here, we deal with only a discontinuous
in time flux, but we also have a flux constraint along the curve {x = 0} since we
work in the bus frame. The applicability of the technique of [33] for our case with
moving interface and flux-constrained interface coupling relies on the fact that one
can derive a bound on Dn

j as long as the “interface” does not enter the calculations

for Dn
j i.e. j ∈ Ẑ. This is what the following lemma points out under Assumptions

(35)-(36). For readers’ convenience and in order to highlight the generality of the
technique of Towers [33], let us provide the key elements of the argumentation
leading to compactness.

Lemma 4.1. Let n ∈ {0, . . . , N − 1} and j ∈ Ẑ. Then if a =
λα

4
, we have

Dn+1
j ≤ max

{
Dn
j−1,D

n
j ,D

n
j+1

}
− a

(
max

{
Dn
j−1,D

n
j ,D

n
j+1

})2
(37)

and

Dn+1
j ≤ 1

min{|j| − 1, n+ 1}a
. (38)

Proof. (Sketched) Inequality (38) is an immediate consequence of inequality (37),
see [33, Lemma 4.3]. Obtaining inequality (37) however, is less immediate. Let us
give some details of the proof.
First, note that by introducing the function ψ : z 7→ z− az2, inequality (37) can be
stated as:

Dn+1
j ≤ ψ

(
max

{
Dn
j−1,D

n
j ,D

n
j+1

})
. (39)

Then, one can show – only using the monotonicity of both the scheme and the
function ψ – that under the assumption inequality (39) holds when

(ρnj+3/2 − ρ
n
j+1/2), (ρnj−1/2 − ρ

n
j−3/2) ≤ 0, (40)

it follows that inequality (39) holds for all cases. And finally in [33, Page 23], the
author proves that if the flux considered is either the Engquist-Osher flux or the
Godunov flux, then (40) holds.

The following lemma is an immediate consequence of inequality (38).

Lemma 4.2. Fix 0 < ε < X. Let i, J ∈ N∗ such that ε ∈ Ki+1/2 and X ∈ KJ−1/2.

Then if ∆x/ε is sufficiently small, there exists a constant B = B

(
R,X,

1

a
,

1

ε

)
,

nondecreasing with respect to its arguments, such that for all n ≥ i− 1,

J−1∑
j=i

|ρnj+1/2 − ρ
n
j−1/2|,

−i−1∑
j=−J+1

|ρnj+1/2 − ρ
n
j−1/2| ≤ B (41)

and
J−2∑
j=i

|ρn+1
j+1/2 − ρ

n
j+1/2|,

−i−2∑
j=−J+1

|ρn+1
j+1/2 − ρ

n
j+1/2| ≤ 2λLB. (42)

Proposition 6. There exists ρ ∈ L∞(R× (0, T )) such that up to the extraction of
a subsequence, (ρ∆)∆ converges almost everywhere to ρ in R× (0, T ).
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Proof. Fix 0 < ε < X and t > λε. Denote by Ω(X, ε) = (−X,−ε) ∪ (ε,X). In-
troduce i, J, n ∈ N such that ε ∈ Ki+1/2, X ∈ KJ−1/2 and t ∈ [tn, tn+1). Remark
that

(n+ 1)∆t > t > λε ≥ λ(i ∆x) = i∆t,

i.e. n ≥ i − 1. Then if we suppose that ∆x/ε is sufficiently small, we can use
Lemma 4.2. From (41), we get

TV(ρ∆(t)|Ω(X,ε)) ≤ 2B (43)

and from (42), we deduce∫
Ω(X,ε)

|ρ∆(x, t+ ∆t)− ρ∆(x, t)|dx ≤ 4LB∆t. (44)

Combining (43)-(44) and the L∞ bound (28), a functional analysis result ([24,
Theorem A.8]) ensures the existence of a subsequence which converges almost ev-
erywhere to some ρ on Ω(X, ε) × (λε, T ). By a standard diagonal process we can
extract a further subsequence (which we do not relabel) such that (ρ∆)∆ converges
almost everywhere to ρ on R× (0, T ).

Theorem 4.3. Fix ρ0 ∈ L1(R; [0, R]) and y0 ∈ R. Suppose that f ∈ C2 satisfies
Assumptions (2)-(7)-(35). Suppose also that in (25), we use the Engquist-Osher flux
or the Godunov one when j 6= 0 and any other monotone consistent and Lipschitz
numerical flux when j = 0. Then under the CFL condition (27), the scheme (23) –
(25) converges to an admissible weak solution to Problem (1).

Proof. We have shown that – up to the extraction of a subsequence – y∆ converges
uniformly on [0, T ] to some y ∈ C([0, T ]) and that ρ∆ converges a.e. on R× (0, T )
to some ρ ∈ L∞(R× (0, T )). We now prove that this couple (ρ, y) is an admissible
weak solution to Problem (1) in the sense of Definition 2.1.

Recall that for all ∆ and t ∈ [0, T ],

y∆(t) = y0 +

∫ t

0

ω

(∫
R
ρ∆(x, u)µ(x) dx

)
du .

When letting ∆→ 0, the dominated convergence theorem ensures that y satisfies
(6). Apply inequality (30) with τ = 0, τ ′ = T , ϕ ∈ C∞c (R∗ × [0, T )), ϕ ≥ 0 and
κ ∈ [0, R] to obtain∫ T

0

∫
R
|ρ∆−κ|∂tϕ+ Φ∆(ρ∆, κ)∂xϕdx dt+

∫
R
|ρ0

∆−κ|ϕ(x, 0) dx ≥ −Cϕ
1 (∆x+ ∆t).

Then the a.e. convergence of (s∆)∆ to ẏ – coming from (34) – and the a.e.
convergence of (ρ∆)∆ to ρ ensure that when letting ∆→ 0, we get∫ T

0

∫
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdxdt+

∫
R
|ρ0(x+ y0)− κ|ϕ(x, 0) dx ≥ 0,

and consequently ρ ∈ C([0, T ]; L1
loc(R)), see Remark 2. Now, we pass to the limit in

(30) and (31) using the a.e. convergence of (s∆)∆ to ẏ and of (ρ∆)∆ to ρ as well as
the continuity of Q and ω. Consequently, for all test functions ϕ ∈ C∞c (R×R+), ϕ ≥
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0 and κ ∈ [0, R], the following inequalities hold for almost every 0 ≤ τ < τ ′ ≤ T :∫ τ ′

τ

∫
R
|ρ− κ|∂tϕ+ Φẏ(t)(ρ, κ)∂xϕdx dt+

∫
R
|ρ(x, τ)− κ|ϕ(x, τ) dx

−
∫
R
|ρ(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

∫ τ ′

τ

Rẏ(t)(κ, q(t))ϕ(0, t) dt ≥ 0.

To conclude, note that the expression in the left-hand side of the previous inequal-
ity is a continuous function of (τ, τ ′) which is almost everywhere greater than the
continuous function 0. By continuity, this expression is everywhere greater than 0,
which proves that ρ satisfies the entropy inequalities (4). Using similar arguments,
one shows that ρ also satisfies the constraint inequalities (5). This shows that the
couple (ρ, y) is an admissible weak solution to (1), and that concludes the proof of
convergence.

We proved than in the L∞ framework, the scheme converges to an admissible
weak solution, but note that there is no guarantee of uniqueness in this construc-
tion. Also stress that we cannot extend this result to general consistent monotone
numerical fluxes beyond hypothesis (36).

4.4. Compactness via global BV bounds. The following result is the discrete
version of Lemma 2.3 so it is consistent that the proof uses the discrete analogous
arguments of the ones we used in the proof of Lemma 2.3.

Lemma 4.4. Introduce for all ∆ > 0 the function ξ∆ defined for all t ∈ [0, T ] by

ξ∆(t) =

∫
R
ρ∆(x, t)µ(x) dx .

Then ξ∆ has bounded variation and consequently, so does s∆.

Proof. Since µ ∈ BV(R), there exists a sequence of smooth functions (µ`)`∈N ⊂
BV(R) ∩C∞c (R) such that

‖µ` − µ‖L1 −→
`→+∞

0 and TV(µ`) −→
`→+∞

TV(µ).

Introduce for all ` ∈ N and t ∈ [0, T ], the function ξ∆,`(t) =

∫
R
ρ∆(x, t)µ`(x) dx

and let K > 0 such that

∀` ∈ N, ‖µ`‖L1 ,TV(µ`) ≤ K.
For all ` ∈ N and t, s ∈ [0, T ], if t ∈ [tk, tk+1) and s ∈ [tm, tm+1), we have

|ξ∆,`(t)− ξ∆,`(s)|

=
∣∣ξ∆,`(tk)− ξ∆,`(tm)

∣∣
=

∣∣∣∣∫
R
ρ∆(x, tk)µ`(x) dx−

∫
R
ρ∆(x, tm)µ`(x) dx

∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈Z

(ρkj+1/2 − ρ
m
j+1/2)µ`j+1/2∆x

∣∣∣∣∣∣ , µ`j+1/2 =
1

∆x

∫ xj+1

xj

µ`(x) dx

=

∣∣∣∣∣∣
∑
j∈Z

k−1∑
τ=m

(ρτ+1
j+1/2 − ρ

τ
j+1/2)µ`j+1/2∆x

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
k−1∑
τ=m

∑
j∈Z

(
Fτ+1
j (ρτj−1/2, ρ

τ
j+1/2)− Fτ+1

j+1 (ρτj+1/2, ρ
τ
j+3/2)

)
µ`j+1/2∆t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k−1∑
τ=m

∑
j∈Z

Fτ+1
j+1 (ρτj+1/2, ρ

τ
j+3/2)(µ`j+3/2 − µ

`
j+1/2)∆t

∣∣∣∣∣∣
≤RL

k−1∑
τ=m

TV(µ`)∆t ≤ RLK(|t− s|+ 2∆t).

Consequently, for all ` ∈ N, ∆ > 0 and t, τ ∈ [0, T ], the triangle inequality yields:

|ξ∆(t)− ξ∆(τ)| ≤ 2R‖µ− µ`‖L1 +RLK(|t− τ |+ 2∆t).

Letting `→ +∞, we get that for all ∆ > 0 and t, τ ∈ [0, T ],

|ξ∆(t)− ξ∆(τ)| ≤ RLK(|t− τ |+ 2∆t),

which leads to

TV(ξ∆) =

N∑
k=0

∣∣ξ∆(tk+1)− ξ∆(tk)
∣∣ ≤ 3RLK(T + ∆t).

This proves that ξ∆ ∈ BV([0, T ]). Since ω is Lipschitz continuous, s∆ also has
bounded variation.

Theorem 4.5. Fix ρ0 ∈ L1(R; [0, R])∩BV(R) and y0 ∈ R. Suppose that f satisfies
(2)-(7)-(16) and that Q satisfies (17). Suppose also that in (25), we use the Godunov
flux when j = 0 and any other monotone consistent and Lipschitz numerical flux
when j 6= 0. Then under the CFL condition (27), the scheme (23) – (25) converges
to a BV-regular solution to Problem (1).

Proof. All the hypotheses of Lemma A.4 are fulfilled. Consequently, there exists a
constant Cε > 0 such that for all n ∈ {0, . . . , N − 1},

TV
(
ρ∆(tn+1)

)
≤ TV(ρ0) + 4R+ Cε

(
n∑
k=0

∣∣qk+1 − qk
∣∣+

n∑
k=0

∣∣sk+1 − sk
∣∣)

≤ TV(ρ0) + 4R+ Cε(1 + ‖Q′‖L∞)

n∑
k=0

∣∣sk+1 − sk
∣∣ . (45)

Making use of Lemma 4.4, we obtain that for all n ∈ {0, . . . , N},
n∑
k=0

|sk+1 − sk| =
n∑
k=0

|s∆(tk+1)− s∆(tk)|

≤‖ω‖L∞
n∑
k=0

|ξ∆(tk+1)− ξ∆(tk)|

≤3RLK‖ω‖L∞(T + ∆t).

where the constant K was introduced in the proof of Lemma 4.4. The two last
inequalities imply that for all t ∈ [0, T ], we have

TV(ρ∆(t)) ≤ TV(ρ0) + 4R+ 3Cε(1 + ‖Q′‖L∞)‖ω‖L∞RLK(T + ∆t). (46)
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Therefore, the sequence (ρ∆)∆ is uniformly in time bounded in BV(R). Using
[22, Appendix], we get the existence of ρ ∈ C([0, T ]; L1

loc(R)) such that

∀t ∈ [0, T ], ρ∆(t) −→
∆→0

ρ(t) in L1
loc(R).

Following the proof of Theorem 4.3, we show that (ρ, y) is an admissible weak
solution. Then passing to the limit in (46), the lower semi-continuity of the BV
semi-norm ensures that (ρ, y) is also BV-regular.

Remark 10. Note the complementarity of the hypotheses made in the above the-
orem with the ones of Theorem 4.3. Recall that in Theorem 4.3, we needed the
Godunov flux only away from the interface.

5. Numerical simulations. In this section we present some numerical tests per-
formed with the scheme analyzed in Section 4. In all the simulations we take the
uniformly concave flux f(ρ) = ρ(1− ρ) (the maximal car velocity and the maximal
density are assumed to be equal to one). Following the hypotheses of Theorem 4.5,
we choose the Godunov flux at the interface, and the Rusanov one away from the
interface. We will use weight functions of the kind

µk(x) = 2k1[0; 1

2k
](x),

for one (in Section 5.1) or several (in Section 5.3) values of k ∈ N∗.

5.1. Validation of the scheme. In this section, consider a two-lane road on which
a bus travels with a speed given by the function

ω(ρ) =


α

(β + ρ)2
if 0 ≤ ρ ≤ 0.6

1− ρ if 0.6 ≤ ρ ≤ 1,

where α and β are chosen so that ω(0) = 0.7 and ω(0.6) = 0.4, as illustrated in
Figure 1 (left). The set-up of the experiment is the following. Consider a domain
of computation [0, 11], the weight function µ4 and the following data:

ρ0(x) = 0.51[0.5;1](x), y0 = 1.5, Q(s) = 0.75×
(

1− s
2

)2

.

The idea behind the choice of Q is that in average (between the two lanes), the
presence of the slow vehicle reduces by 25% the maximum traffic flow. As we can
see in Figure 1 (right), the slow vehicle nearly always travels at maximum velocity.
It makes sense because even though we can see that cars are overtaking it (Figure
1, right and Figure 2), the density ξ ahead of it is never sufficiently important to
make it go slower.

Remark 11. The function ω we chose above is not of the form as required in
[27, 28]. Once again, let us stress that the particular form ω(ρ) = min {Vbus; 1− ρ},
where Vbus is the maximum bus velocity, is crucial for the well-posedness result of
[27, 28] to hold. Indeed, it is essential in the analysis of [27, 28] that the velocity
of the bus be constant (equal to Vbus) across the nonclassical shocks. Our nonlocal
model is not bound to this restriction.
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Figure 1. Evolution in time of the subjective density ξ and the
bus velocity ẏ (1280 cells).
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Figure 2. The numerical solution at different fixed times.

5.2. Convergence analysis. We also perform a convergence analysis for this test.
In Table 1, we computed the relative errors

E∆
ρ = ‖ρ∆ − ρ∆/2‖L1((0,T );L1(R)) and E∆

y = ‖y∆ − y∆/2‖L∞ ,

for different number of space cells at the final time T = 13. We see that those ratio
converge with convergence orders approximately equal to 0.76 for the car density
and approximately equal to 1.1 for the slow moving vehicle position.
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Number of cells E∆
ρ (×10−2) E∆

y (×10−3)

160 24.053 48.0643
320 15.731 15.939
640 9.647 7.698
1280 6.197 3.715
2560 3.226 1.777
5120 1.936 0.889
10240 1.055 0.443

Table 1. Measured errors at time T = 13.
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Figure 3. Rates of convergence at time T = 13.

5.3. Comparisons with experiments on the local model. Now we confront
the numerical tests performed with our model with the tests done by the authors
in [14] approximating the original problem of [20]. We deal with a road of length 1
parametrized by the interval [0, 1] and choose the weight function µ3. Moreover,

ω(ρ) = min{0.3; 1− ρ} and Q(s) = 0.6×
(

1− s
2

)2

.

First, consider the initial datum

ρ0(x) =

{
0.4 if x < 0.5
0.5 if x > 0.5

y0 = 0.5. (47)

The numerical solution is composed of two classical shocks separated by a non-
classical discontinuity, as illustrated in Figure 4 (left).

Next, we choose

ρ0(x) =

{
0.8 if x < 0.5
0.5 if x > 0.5

y0 = 0.5. (48)

The values of the initial condition create a rarefaction wave followed by a non-
classical and classical shocks, as illustrated in Figure 4 (right).
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Figure 4. Evolution in time of the numerical density correspond-
ing to initial data (47) (left) and (48) (right), with 1280 cells.

Finally, still following [14], we consider

ρ0(x) =

{
0.8 if x < 0.5
0.4 if x > 0.5

y0 = 0.4. (49)

Here the solution is composed of a rarefaction wave followed by nonclassical and
classical shocks on the density that are created when the slow vehicle approaches
the rarefaction and initiates a moving bottleneck, as illustrated in Figure 5.
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Figure 5. Evolution in time of the numerical density correspond-
ing to initial data (49) (1280 cells).

With these three tests, we can already see – in a qualitative way – the resem-
blance between the numerical approximations to the solutions to our model and
the numerical approximations of [14]. One way to quantify their proximity is for
example to evaluate the L1 error between the car densities and the L∞ error be-
tween the bus positions. More precisely, denote by (ρ∆, y∆) the approximation of
the BV-regular solution to (1) obtained with the scheme (23) – (25), and denote
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by (ρ∆, y∆) the couple obtained with this same scheme but

replacing sn+1 = ω

∑
j∈Z

ρnj+1/2µj+1/2∆x

 by sn+1 = ω
(
ρn1/2

)
.

Let us precise that this is not the scheme the authors of [14] proposed. However,
this scheme is consistent with the problem

∂tρ+ ∂x (F (ẏ(t), ρ)) = 0 R× (0, T )

ρ(x, 0) = ρ0(x+ y0) x ∈ R

F (ẏ(t), ρ)|x=0 ≤ Q(ẏ(t)) t ∈ (0, T )

ẏ(t) = ω (ρ(0+, t)) t ∈ (0, T )

y(0) = y0

(50)

and behaves in a stable way in the calculations we performed. Therefore, the couple
(ρ∆, y∆) is expected to give a reasonable approximation of the solution to (50). With
this in mind, for the case (49) and still with the weight function µ3, we computed
in Table 2 the measured errors

E∆
L1 = ‖ρ∆ − ρ∆‖L1((0,T );L1(R)) and E∆

L∞ = ‖y∆ − y∆‖L∞ .

Number of cells E∆
L1 (×10−4) E∆

L∞ (×10−3)

160 32.672 18.519
320 14.236 7.341
640 5.837 3.701
1280 3.833 4.879
2560 3.207 6.405
5120 2.922 7.144
10240 2.776 7.501
20480 2.698 7.674
40960 2.658 7.759

Table 2. Measured errors at time T = 0.7245.

These calculations indicate that for a sufficiently large number of cells J ≥ 40960,

E∆
L1 ' 2.7× 10−4 and E∆

L∞ ' 7.6× 10−3.

This indicates the discrepancy between our nonlocal and the local model (50)
of [20]. The idea is now to fix the number of cells J = 40960 and to make the
length of the weight function support go to zero. In Table 3, we have computed, for
different weight functions, the error between the approximations of the two models.
This error corresponds, as in the above calculation, to the residual error observed
starting from a sufficiently small ∆x.

Remark 12. The previous simulations show a closeness between our model as
µ→ δ0+ and (50). Let us however point that the nonlocality in space for the slow
vehicle introduces an undesirable artefact into the model. In the rarefaction regime
one may observe that the large vehicle may move a bit faster that the surrounding
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weight function E∆
L1 E∆

L∞

µ1 6.810× 10−3 5.489× 10−2

µ2 1.105× 10−3 1.972× 10−2

µ3 2.658× 10−4 7.759× 10−3

µ4 9.232× 10−5 2.913× 10−3

µ5 6.190× 10−5 9.110× 10−4

Table 3. Measured errors at time T = 0.7245

flow. The situation where this effect becomes truly perceptible is when considering
initial data of the type

ρ0(x) =

{
1 if x < xb

0 if x > xb.
(51)

Indeed, for such data, there exists a small time interval [0, δ] in which ẏ(t) >
v(ρ(y(t)+)) = 0, which would suggest that the slow vehicle moves forward while
the cars in front of it do not. This time interval is in fact quite small due to the
narrowness of the support of the weight function. The local model does not develop
such phenomena. This qualitative artefact precludes us from giving a microscopic
interpretation to the model, which main output is the global influence of the slow
vehicle on the flow; however, let us stress that the phenomenon becomes quanti-
tatively negligible for larger times. Indeed, Olĕınik estimate on decay of positive
waves ensures that data of the type (51) evolve into rarefaction waves and do not
appear while driving: the classical LWR model precludes the formation of rarefac-
tion waves focused at positive time. The modification of the classical LWR brought
by the constraint may produce nonclassical waves at positive times; while these
waves are downward jumps in density like in (51), they are situated precisely at the
location of the constraint and not slightly behind it, like in (51).

Even if we are unable, at this time, to rigorously link our problem (1) with
µ → δ0+ and the original problem (50) of the authors in [20], this last experiment
corroborates the conjecture that the local model (50) is the singular limit of our
model in the case ω is of the form ω(ρ) = min {Vbus; 1− ρ}. The other interesting
question is whether the local model is well posed beyond this particular choice of
ω.

Acknowledgments. The author is most grateful to Boris Andreianov for his con-
stant support and many enlightening discussions.

Appendix A. On BV bounds for limited flux models. We focus on the study
of the following class of models:

∂tρ+ ∂x (F (s(t), ρ)) = 0 R× (0, T )

ρ(x, 0) = ρ0(x) x ∈ R

F (s(t), ρ)|x=0 ≤ q(t) t ∈ (0, T ),

(52)

where s ∈ BV([0, T ]; [0,Σ]) for some Σ > 0 and q ∈ BV([0, T ];R+). We suppose
that F ∈ C1([0,Σ]× [0, R]) and that for all s ∈ [0,Σ], F (s, ·) is bell-shaped i.e.

∀s ∈ [0,Σ], F (s, 0) = 0, F (s,R) ≤ 0 and

∃! ρs ∈ (0, R), ∂ρF (s, ρ) (ρs − ρ) > 0 for a.e. ρ ∈ (0, R).
(53)
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This framework covers the particular case when F takes the form:

F (s(t), ρ) = f(ρ)− s(t)ρ,

with bell-shaped f : [0, R] → R+, which our model (1) is based on. This class of
models is well known, especially when the flux function is not time dependent, cf.
[17, 6]. In this appendix, we establish in passing the well-posedness of Problem
(52), but our main interest lies in the BV in space regularity of the solutions. More
precisely, we aim at obtaining a bound on the total variation of the solutions to
(52), using a finite volume approximation which allows for sharp control of the
variation at the constraint. Note that the alternative offered by wave-front tracking
would be cumbersome because of the explicit time-dependency in (52). In the
general case, entropy solutions to limited flux problems like (52) do not belong to
L∞((0, T ); BV(R)), see [1]. We will show that it is the case under a mild assumption
on the constraint function q – see Assumption (59) below – and provided that

ρ0 ∈ L1(R; [0, R]) ∩BV(R).

Throughout the appendix, for all s ∈ [0,Σ] and a, b ∈ [0, R], we denote by

Φs(a, b) = sign(a− b)(F (s, a)− F (s, b))

the classical Kružkov entropy flux associated with the Kružkov entropy ρ 7→ |ρ−κ|,
for all κ ∈ [0, R], see [25].

A.1. Equivalent definitions of solution and uniqueness. Let us first recall
the following definition.

Definition A.1. A bounded function ρ ∈ L∞(R × (0, T )) is an admissible weak
solution to (52) if

(i) the following regularity is fulfilled: ρ ∈ C([0, T ]; L1
loc(R));

(ii) for all test functions ϕ ∈ C∞c (R × R+), ϕ ≥ 0 and κ ∈ [0, R], the following
entropy inequalities are verified for all 0 ≤ τ < τ ′ ≤ T :∫ τ ′

τ

∫
R
|ρ− κ|∂tϕ+ Φs(t)(ρ, κ)∂xϕdx dt+

∫
R
|ρ(x, τ)− κ|ϕ(x, τ) dx

−
∫
R
|ρ(x, τ ′)− κ|ϕ(x, τ ′) dx+ 2

∫ τ ′

τ

Rs(t)(κ, q(t))ϕ(0, t) dt ≥ 0,

where

Rs(t)(κ, q(t)) = F (s(t), κ)−min {F (s(t), κ), q(t)} ;

(iii) for all test functions ψ ∈ C∞([0, T ]), ψ ≥ 0 and some given ϕ ∈ C∞c (R)
which verifies ϕ(0) = 1, the following weak constraint inequalities are verified for
all 0 ≤ τ < τ ′ ≤ T :

−
∫ τ ′

τ

∫
R+

ρ∂t(ϕψ) + F (s(t), ρ)∂x(ϕψ) dxdt−
∫
R+

ρ(x, τ)ϕ(x)ψ(τ) dx

+

∫
R+

ρ(x, τ ′)ϕ(x)ψ(τ ′) dx ≤
∫ τ ′

τ

q(t)ψ(t) dt .

Definition A.2. An admissible weak solution ρ will be called BV-regular if it
verifies ρ ∈ L∞((0, T ); BV(R)).
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As we pointed out before, this notion of solution is well suited for passage to the
limit of a.e. convergent sequences of exact or approximate solutions. However, it
is not so well-adapted to prove uniqueness. An equivalent notion of solution, based
on explicit treatment of traces of ρ at the constraint, was introduced by the authors
of [7]. This notion of solution leads to the following stability estimate.

Theorem A.3. Fix s1, s2 ∈ BV([0, T ]; [0,Σ]), ρ1
0, ρ

2
0 ∈ L1(R; [0, R]) ∩BV(R) and

q1, q2 ∈ BV([0, T ];R+). Denote by ρ1 a BV-regular solution to (52) with data
ρ1

0, q
1, s1 and ρ2 an admissible weak solution to (52) with data ρ2

0, q
2, s2. Suppose

that the flux functions (t, ρ) 7→ F (s1(t), ρ), F (s2(t), ρ) satisfy (53). Then for a.e.
t ∈ (0, T ), we have:

‖ρ1(t)− ρ2(t)‖L1 ≤‖ρ1
0 − ρ2

0‖L1 + 2

∫ t

0

|q1(τ)− q2(τ)|dτ

+ 2

∫ t

0

‖F (s1(τ), ·)− F (s2(τ), ·)‖L∞ dτ

+

∫ t

0

∣∣∣∣∂ρF (s1(τ), ·)− ∂ρF (s2(τ), ·)
∣∣∣∣
L∞

TV(ρ1(τ)) dτ .

(54)

In particular, Problem (52) admits at most one BV-regular solution.

Proof. Since our interest to details lies rather on the numerical approximation point
of view, we do not fully prove this statement but we give the essential steps leading
to this stability result.

• Definition of solution. First, the authors of [7] introduce a subset of R2 called
germ, which can be seen as the set of all the possible traces of a solution to (52).
Then, they say that ρ is a solution to (52) if it satisfies entropy inequalities away
from the interface – i.e. with ϕ ∈ C∞c (R∗ × R+) in the entropy inequalities – and
if the couple constituted of left-side and the right-side traces of ρ belongs to this
so-called germ.
• Equivalence of the two definitions. The next step is to prove that this latter
definition of solution is equivalent to Definition A.1. This part is done using good
choices of test functions, see [7, Theorem 3.18] or [6, Proposition 2.5, Theorem 2.9].
• First stability estimate. One first shows that if s1 = s2, then for a.e. t ∈ (0, T ),
one has

‖ρ1(t)− ρ2(t)‖L1 ≤ ‖ρ1
0 − ρ2

0‖L1 + 2

∫ t

0

|q1(τ)− q2(τ)|dτ . (55)

The proof starts with the classical doubling of variables method of Kružkov [25,
Theorem 1] and then uses the germ structure, what the authors of [7] called
L1-dissipativity, see [7, Definition 3.1] and [6, Lemma 2.7].
• Proof of estimate (54). The proof is based upon estimate (55) and elements
borrowed from [8, 18]. Most details can be found in the proof of [21, Theorem
2.1].

Remark 13. Though the definition of solutions with the germ explicitly involves
the traces of ρ, we did not discuss the existence of such traces. A first way to ensure
such existence is to deal with BV-regular solutions. That way, traces do exist and
are to be understood in the sense of BV functions. Outside the BV framework,
existence of strong traces for solutions to (52) is ensured provided an assumption
on the fundamental diagram like (15), see [2, 29]. Finally, if one does not want to
impose such a condition on the flux, (which is our case in this appendix), one can
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follow what the authors of [7] proposed (in Section 2) and consider the “singular
mapping traces.”

A.2. Existence of BV-regular solutions. We now turn to the proof of the ex-
istence of BV-regular solutions by the means of a finite volume scheme.

Fix ρ0 ∈ L1(R; [0, R]). For a fixed spatial mesh size ∆x and time mesh size ∆t,
let xj = j∆x, tn = n∆t. We define the grid cells Kj+1/2 = (xj , xj+1) and N ∈ N∗
such that T ∈ [tN , tN+1). We write

R× [0, T ] ⊂
N⋃
n=0

⋃
j∈Z
Pnj+1/2, Pnj+1/2 = Kj+1/2 × [tn, tn+1).

We choose to discretize the initial data ρ0 and the functions s, q with
(
ρ0
j+1/2

)
j
,

(sn)n and (qn)n where for all j ∈ Z and n ∈ {0, . . . , N}), ρ0
j+1/2, sn and qn are

their mean values on each cell Kj+1/2 and [tn, tn+1). Following [6], the marching
formula of the scheme is the following: for all n ∈ {0, . . . , N − 1} and j ∈ Z:

ρn+1
j+1/2 = ρnj+1/2 −

∆t

∆x

(
Fnj+1(ρnj+1/2, ρ

n
j+3/2)− Fnj (ρnj−1/2, ρ

n
j+1/2)

)
, (56)

where

Fnj (a, b) =

{
Fn(a, b) if j 6= 0

min {Fn(a, b), qn)} if j = 0,
(57)

Fn being a monotone consistent and Lipschitz numerical flux associated to
F (sn, ·). We then define

ρ∆(x, t) = ρnj+1/2 if (x, t) ∈ Pnj+1/2 and s∆(t), q∆(t) = sn, qn if t ∈ [tn, tn+1).

Let ∆ = (∆x,∆t). For the convergence analysis, we will assume that ∆ → 0,
with λ = ∆t/∆x, verifying the CFL condition

λ sup
s∈[0,Σ]

(∥∥∥∥∂Fs

∂a

∥∥∥∥
L∞

+

∥∥∥∥∂Fs

∂b

∥∥∥∥
L∞

)
︸ ︷︷ ︸

L

≤ 1, (58)

where Fs = Fs(a, b) is the numerical flux – associated to F (s, ·) – we use in the
scheme (56). From now, the analysis of the scheme follows the same path as in
Section 4. In that order, we prove that the scheme (56)-(57) is L∞ stable, satisfies
discrete entropy inequalities similar to (29) and approximate entropy/constraint
inequalities similar to (30)-(31). Only the compactness for (ρ∆)∆ is left to obtain
since the L1

loc compactness for the sequences (s∆)∆ and (q∆)∆ is clear. One way
to do so is to derive uniform BV bounds.

Lemma A.4. We suppose that ρ0 ∈ L1(R; [0, R]) ∩BV(R) and that q verifies the
assumption

∃ε > 0, ∀t ∈ [0, T ], ∀s ∈ [0,Σ], q(t) ≤ max
ρ∈[0,R]

F (s, ρ)− ε := qε(s). (59)

Then there exists a constant Cε = Cε(‖∂sF‖L∞) nondecreasing with respect to
its argument such that for all n ∈ {0, . . . , N − 1},

TV(ρ∆(tn+1)) ≤ TV(ρ0) + 4R+ Cε

(
n∑
k=0

|qk+1 − qk|+
n∑
k=0

|sk+1 − sk|

)
, (60)
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where ρ∆ =
(
ρnj+1/2

)
n,j

is the finite volume approximation constructed with the

scheme (56)-(57), using the Godunov numerical flux when j = 0 in (57).

Proof. Fix n ∈ {0, . . . N − 1}. With this set up we can follow the proofs of [13,
Section 2] to obtain the following estimate:∑
j∈Z
|ρn+1
j+1/2 − ρ

n+1
j−1/2| ≤TV(ρ0) + 4R

+ 2

n∑
k=0

∣∣(ρ̂sk+1(qk+1)− ρ̂sk(qk)
)
−
(

qρsk+1(qk+1)− qρsk(qk)
)∣∣ ,

where for all k ∈ {0, . . . , n}, the couple
(
ρ̂sk(qk), qρsk(qk)

)
∈ [0, R]2 is uniquely

defined by the conditions

F (sk, ρ̂sk(qk)) = F (sk, qρsk(qk)) = qk and ρ̂sk(qk) > qρsk(qk).

Denote by Ω(ε) the open subset

Ω(ε) =
⋃

s∈[0,Σ]

Ωs(ε)

where for all s ∈ [0,Σ], Ωs(ε) = (qρs(qε(s)), ρ̂s(qε(s))). By Assumption (59), the
continuous function (s, ρ) 7→ |∂ρF (s, ρ)| is positive on the compact subset [0,Σ] ×
[0, R]\Ω(ε). Hence, it attains its minimal value C0 > 0. Consequently, for all
s ∈ [0,Σ], if one denotes by Is : [0, qρs(qε(s))] → [0, qε(s)] the increasing part of
F (s, ·), this function carries out a C1-diffeomorphism. Moreover,

∀q ∈ [0, qε(s)],
∣∣∣(I−1

s )
′
(q)
∣∣∣ ≤ 1

C0
.

Then, for all k ∈ {0, . . . , n},∣∣
qρsk+1(qk+1)− qρsk(qk)

∣∣ =
∣∣(I−1

sk+1)(qk+1)− qρsk(qk)
∣∣

≤ 1

C0
|qk+1 − qk|+

∣∣(I−1
sk+1)(qk)− qρsk(qk)

∣∣
=

1

C0
|qk+1 − qk|+

∣∣(I−1
sk+1)(qk)− (I−1

sk+1) ◦ Isk+1

(
qρsk(qk)

)∣∣
≤ 1

C0

(
|qk+1 − qk|+

∣∣qk − Isk+1

(
qρsk(qk)

)∣∣)
=

1

C0

(
|qk+1 − qk|+

∣∣F (sk, qρsk(qk)
)
− F

(
sk+1, qρsk(qk)

)∣∣)
≤ 1

C0

(
|qk+1 − qk|+ ‖∂sF‖L∞ |sk+1 − sk|

)
≤1 + ‖∂sF‖L∞

C0

(
|qk+1 − qk|+ |sk+1 − sk|

)
.

Using the same techniques, one can show that the same inequality holds when
considering

∣∣ρ̂sk+1(qk+1)− ρ̂sk(qk)
∣∣. Therefore, inequality (60) follows with

Cε = 4×
(

1 + ‖∂sF‖L∞
C0

)
.
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Remark 14. Recall we suppose that F : [0,Σ]×[0, R] is continuously differentiable,
but if we look in the details of the proof above, we actually need F = F (s, ρ) to be
continuously differentiable with respect to s and

∀s ∈ [0,Σ], F (s, ·) ∈ C1([0, R]\{ρs}), ρs = argmax
ρ∈[0,R]

F (s, ρ).

Corollary 1. Fix ρ0 ∈ L1(R; [0, R]) ∩ BV(R), s ∈ BV([0, T ], [0,Σ]) and q ∈
BV([0, T ],R+). Suppose that q verifies Assumption (59). Let ρ∆ =

(
ρnj+1/2

)
n,j

be

the finite volume approximate solution constructed with the scheme (56)-(57), using
the Godunov numerical flux when j = 0 in (57), and any other monotone consistent
and Lipschitz numerical flux when j 6= 0. Then there exists ρ ∈ C([0, T ]; L1

loc(R))
such that

∀t ∈ [0, T ], ρ∆(t) −→
∆→0

ρ(t) in L1
loc(R).

Proof. Since s and q have bounded variation, inequality (60) leads to an uniform
in time BV bound for the sequence (ρ∆)∆. Then the result from [22, Appendix]
establish the compactness statement.

Theorem A.5. Fix ρ0 ∈ L1(R; [0, R]) ∩ BV(R), s ∈ BV([0, T ]; [0,Σ]), F ∈
C1([0,Σ] × [0, R]) verifying (53) and q ∈ BV([0, T ];R+). Suppose that in (57),
we use the Godunov flux when j = 0 and any other monotone consistent and Lips-
chitz numerical flux when j 6= 0. Finally, suppose that q satisfies (59). Then under
the CFL condition (58), the scheme (56)-(57) converges to an admissible weak so-
lution ρ, to (52), which is also BV-regular. More precisely, there exists a constant
Cε = Cε(‖∂sF‖L∞) nondecreasing with respect to its argument such that

∀t ∈ [0, T ], TV(ρ(t)) ≤ TV(ρ0) + 4R+ Cε (TV(q) + TV(s)) . (61)

Proof. From the scheme (56), one can derive approximate entropy/constraint in-
equalities analogous to (30)-(31) of Section 4. Let ρ be the limit to the finite
volume scheme, the compactness of (ρ∆)∆ coming from the last corollary. We
already know that ρ ∈ C([0, T ]; L1

loc(R)). By passing to the limit in the approx-
imate entropy/constraint inequalities verified by (ρ∆)∆ we get that ρ satisfies the
entropy/constraint inequalities of Definition A.1. This shows that ρ is an admis-
sible weak solution to Problem (52). Finally, from (60), the lower semi-continuity
of the BV semi-norm ensures that ρ ∈ L∞([0, T ]; BV(R)) and verifies (61). This
concludes the proof.

Corollary 2. Fix ρ0 ∈ L1(R; [0, R])∩BV(R), s ∈ BV([0, T ]; [0,Σ]), F ∈ C1([0,Σ]×
[0, R]) verifying (53) and q ∈ BV([0, T ];R+). Suppose that q satisfies Assumption
(59). Then Problem (52) admits a unique BV-regular solution ρ. Moreover, ρ
satisfies the bound (61).

Proof. Uniqueness comes from Theorem 54, the existence and the BV bound comes
from Theorem A.5.

Remark 15. Under the hypotheses of Corollary 2, if we prove the existence of an
other admissible weak solution ρ to (11) (by another method, splitting for instance),
then Theorem A.3 ensures that ρ = ρ.
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