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Abstract. The well-known Lighthill-Whitham-Richards (LWR) kinematic mo-

del of traffic flow models the evolution of the local density of cars by a non-
linear scalar conservation law. The transition between free and congested flow

regimes can be described by a flux or velocity function that has a discontinuity

at a determined density. A numerical scheme to handle the resulting LWR
model with discontinuous velocity was proposed in [J.D. Towers, A splitting

algorithm for LWR traffic models with flux discontinuities in the unknown, J.

Comput. Phys., 421 (2020), article 109722]. A similar scheme is constructed
by decomposing the discontinuous velocity function into a Lipschitz continu-

ous function plus a Heaviside function and designing a corresponding splitting

scheme. The part of the scheme related to the discontinuous flux is handled by
a semi-implicit step that does, however, not involve the solution of systems of
linear or nonlinear equations. It is proved that the whole scheme converges to a

weak solution in the scalar case. The scheme can in a straightforward manner
be extended to the multiclass LWR (MCLWR) model, which is defined by a

hyperbolic system of N conservation laws for N driver classes that are distin-
guished by their preferential velocities. It is shown that the multiclass scheme

satisfies an invariant region principle, that is, all densities are nonnegative and
their sum does not exceed a maximum value. In the scalar and multiclass cases
no flux regularization or Riemann solver is involved, and the CFL condition is
not more restrictive than for an explicit scheme for the continuous part of the

flux. Numerical tests for the scalar and multiclass cases are presented.
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1. Introduction.

1.1. Scope. The multiclass Lighthill-Whitham-Richards (MCLWR) model is a gen-
eralization of the well-known Lighthill-Whitham-Richards (LWR) model [25, 28]
to multiple classes of drivers and was formulated independently by Wong and
Wong [31] and Benzoni-Gavage and Colombo [1]. The model is given by the follow-
ing system of conservation laws in one space dimension, where the sought unknowns
are the densities φi = φi(x, t) of vehicles of class i, i = 1, . . . , N , as a function of
distance x and time t [1, 31]:

∂tφi + ∂x
(
φivi(φ)

)
= 0, i = 1, . . . , N. (1.1)

Here φ = φ1+· · ·+φN denotes the total density of vehicles. The velocity function vi
is assumed to depend on φ, where we assume that

vi(φ) = vmax
i V (φ), i = 1, . . . , N, (1.2)

where vmax
1 < vmax

2 < · · · < vmax
N are the maximum velocities of the N classes of

vehicles and V is a hindrance function that models the drivers’ attitude to reduce
speed in the presence of other cars. This function is usually assumed to be con-
tinuous and piecewise smooth on an interval [0, φmax], where φmax > 0 denotes a
maximum vehicle density, with

V (0) = 1, V ′(φ) < 0, V (φmax) = 0.

The simplest function having all these properties is the linear interpolation V (φ) =
1−φ/φmax. However, equation (1.1) is studied herein under the assumption that V is
piecewise continuous with one decreasing jump at a density value φ∗ ∈ (0, φmax),
that is

V (φ) =

{
Vf(φ) for 0 6 φ 6 φ∗,

Vc(φ) for φ∗ < φ 6 φmax,
Vf ∈ C1[0, φ∗], Vc ∈ C1[φ∗, φmax],

Vf(0) = 1, V ′f (φ) 6 0 on [0, φ∗], V ′c (φ) 6 0 on [φ∗, φmax], Vf(φmax) = 0,

αV := Vf(φ
∗)− Vc(φ∗) > 0.

(1.3)

We consider (1.1) on the domain ΠT := (−L,L)× (0, T ), where L > 0 and T > 0,
along with the initial and boundary conditions

φi(x, 0) = φi,0(x) ∈ [0, φmax], x ∈ (−L,L),

φi(−L, t) = ri(t) ∈ [0, φmax], t ∈ (0, T ),

φi(L, t) = si(t) ∈ [0, φmax], t ∈ (0, T ), i = 1, . . . , N ;

(1.4a)

F(t) ∈ (vmax)Ts(t)Ṽ
(
s(t)

)
, t ∈ (0, T ); vmax := (vmax

1 , . . . , vmax
N )T. (1.4b)

Here and throughout the paper, we denote by a tilde the multivalued version of a
given discontinuous function. The non-standard boundary condition (1.4b) on the
total density is required in case that s(t) = φ∗, where s(t) := (s1(t), . . . , sN (t))T

and s(t) = s1(t) + · · ·+ sN (t). This implies that we assign values to F(t) according
to

F(t) =

{
(vmax)Ts(t)V (φ∗−) if the traffic ahead of x = L is free-flowing,

(vmax)Ts(t)V (φ∗+) if the traffic ahead of x = L is congested.
(1.5)

This assumption is motivated in a wider sense by models of phase transitions
between free and congested traffic flow regimes [13, 14], and more specifically by
treatments of the single-class scalar version of (1.1)–(1.4). In the scalar case the
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model can be formulated as the following initial-boundary value problem for a scalar
conservation law defined on ΠT :

∂tφ+ ∂xf(φ) = 0, (x, t) ∈ ΠT f(φ) = vmaxφV (φ),

φ(x, 0) = φ0(x) ∈ [0, φmax], x ∈ (−L,L),

φ(−L, t) = r(t) ∈ [0, φmax], t ∈ (0, T ),

φ(L, t) = s(t) ∈ [0, φmax], F(t) ∈ f̃
(
s(t)

)
t ∈ (0, T ),

(1.6)

with a jump in V or equivalently, in the flux f , see [29, 30], where F(t) ∈ f̃(s(t))
represents the non-standard boundary condition of the flux discontinuity, see [29].

It is the purpose of the present contribution to introduce a numerical scheme
for the MCLWR model with discontinuous flux (1.1)–(1.3) that is based on the
available treatment [29] of the scalar model (1.6). The scalar version of the scheme
slightly differs from that of [29] but we prove that it produces approximations that
also converge to a weak solution. Numerical experiments provide evidence that
it approximates the same solutions as the scheme of [29]. In the multiclass case
we prove satisfaction of an invariant region principle, that is, numerical solutions
assume values in

D :=
{

(φ1, . . . , φN )T ∈ RN : φ1 > 0, . . . , φN > 0, φ = φ1 + · · ·+ φN 6 φmax

}
under corresponding assumptions on the initial and boundary data.

1.2. Related work. The MCLWR model (1.1) has been studied intensively in re-
cent years. The system (1.1), (1.2) has some interesting properties and in particular
admits a separable entropy function for an arbitrary number of driver classes. We
refer to [1,2,5,7,9–11,19,20,31–37] for numerical and analytical treatments and em-
phasize that to our knowledge, a velocity function discontinuous in the unknowns
has not been considered so far for the MCLWR model.

Conservation laws with discontinuous flux function arise in many physical ap-
plications including flow in porous media [22], sedimentation [8, 18], and the LWR
traffic model [26, 30]. Here we limit the discussion to analyses where the flux is
a discontinuous function of the unknown (as opposed to the more widely studied
discontinuous dependence on spatial position). This property implies that standard
numerical methods cannot be applied directly due to the presence of waves that
travel at infinite speed, namely so-called zero waves. These waves carry informa-
tion about the flux but this value is transported instantaneously, which excludes
applying explicit schemes due to the lack of regularity of the flux. Gimse [21] was
the first to present a solution to this problem. He studied a conservation law where
the flux function has a single jump. He discussed the existence of the zero wave, gen-
eralized the method of convex hull construction, and solved the Riemann problem
using a front tracking algorithm.

Carrillo [12] studied conservation laws with a discontinuous flux function where
the flux is allowed to have discontinuities on a finite subset of real numbers. The
proof of existence of solutions is based on the comparison principle and an entropy
inequality involving a version of semi-Kružkov entropies. Dias and Figueira [15]
studied a related problem by using a mollification technique to smooth out discon-
tinuities. They showed that solutions to a suitably regularized problem converge to
solutions of the original problem in the limit. They also defined the notions of weak
solution and weak entropy solution. The mollification technique was implemented
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in [16, 17]. Moreover, Dias and Figueira [16] proposed a numerical scheme for Rie-
mann problem. Specifically, they introduced a procedure to obtain a new Lipschitz
continuous flux function with the same lower convex envelope of the original flux,
and then a standard Lax-Friedrichs method is employed.

Martin and Vovelle [27] considered the problem of numerical approximation in
the Cauchy-Dirichlet problem for a scalar conservation law with a flux function
having finitely many discontinuities. The well-posedness of this problem had been
proved by Carrillo. An implicit finite volume scheme is constructed in [27] and
Newton’s method is employed to solve the resulting system of nonlinear equations.
Furthermore, convergence to the unique entropy solution is shown.

Lu et al. [26] explicitly constructed the entropy solutions for the LWR traffic
flow model with a piecewise quadratic flow-density relationship. Their approach is
based on constructions of entropy solutions to a sequence of approximate problems
in which the flow-density relationship is continuous but tends to the discontinuous
flux when a small parameter in this sequence tends to zero.

Buĺıček et al. [3] introduced new concepts of entropy weak and measure-valued
solutions that are consistent with the standard ones if the flux is continuous. They
identified a given discontinuous flux function with a continuous curve that consists
of the graph of this flux and abscissae that fill the jumps. Consequently, instead of a
discontinuous flux function of the unknown, they deal with an implicit relation that
represents a curve. One has one degree of freedom to set up the “optimal” unknown
(independent variable). These ideas are combined in [4], where the authors treat the
case of a flux function discontinuous in spatial position and the unknown. Through
appropriate estimates for entropy measure-valued solutions well-posedness is shown.

Wiens et al. [30] applied Dias and Figueira’s mollification approach to solving
a conservation law with a piecewise linear flux function in which there is a single
discontinuity at a critical point. They introduced a mollified function and then the
analytical solution to the corresponding Riemann problem is derived in the limit.
Furthermore they constructed a Riemann solver that forms the basis for a high-
resolution finite volume scheme of Godunov type and used an alternate approach
that eliminates the severe CFL constraint by incorporating the effect of zero waves
directly into the local Riemann solver.

Towers [29] presented a finite difference scheme that implements a splitting con-
sistent with the decomposition the flux f(u) = p(u) + g(u), where p is a Lipschitz
continuous function and g is a function of Heaviside type that includes the jumps
of f . The scheme has the form (see [29, Eq. (3.11)])

{
U

n+1/2
j = G̃−1

(
Un
j − λg

n+1/2
j+1

)
, j = M,M − 1, . . . , 1,

g
n+1/2
j =

(
U

n+1/2
j − Un

j + λg
n+1/2
j+1

)
/λ, j = M,M − 1, . . . , 1,

Un+1
j = U

n+1/2
j − λ∆−p̃

(
U

n+1/2
j+1 − Un+1/2

j

)
, j = 1, . . . ,M,

(1.7)

which can be written in conservation form as follows:

U
n+1/2
j = Un

j − λ
(
g
n+1/2
j+1 − gn+1/2

j

)
,

Un+1 = U
n+1/2
j − λ∆−p̃

(
U

n+1/2
j+1 , U

n+1/2
j

)
.

The first part of the scheme is implicit and consistent with ut + g(u)x = 0, but
the resulting equations can be solved by evaluation of a piecewise linear function.
Hence, an iterative solver like Newton’s method is not required. The second part
of the scheme is consistent with ut + p(u)x = 0 and is explicit, and can be solved
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Figure 1. (a) Piecewise continuous velocity function V (φ) with
discontinuity at φ = φ∗, (b) continuous and discontinuous portions
pV (φ) (solid line) and gV (φ) (dashed line).

by any scheme suitable for a scalar conservation law with Lipschitz continuous flux.
Towers [29] focused on the Godunov flux for the explicit part but also presented a
simple flux-limited Lax-Wendroff-type modification to the Godunov scheme.

1.3. Outline of the paper. The remainder of the paper is organized as follows.
In Section 2 we present a numerical scheme for the LWR traffic flow model. We
first introduce some assumptions and the notion of weak solution in Section 2.1.
Next, Section 2.2 is devoted to the presentation of our scheme for the scalar case
(N = 1) and we imposed the appropriate CFL condition. Then, in Section 2.3, we
prove that under the CFL condition it satisfies uniform L∞ and TVD properties.
Moreover we prove some kind time continuity estimates and to the end this section
we prove convergence of our numerical solutions to a weak solution. In Section 3
we extend the algorithm to the multiclass case (N > 1) and prove that the scheme
preserves the invariant region D. In Section 4 we present several numerical examples
to confirm all the results mentioned before. Section 5 collects some conclusions.

2. Construction of the numerical scheme in the scalar case. Before describ-
ing the numerical scheme we introduce some assumptions and the definition of weak
solutions proposed in [16], which is employed herein.

2.1. Preliminaries. To outline the basic idea, and to make the comparison with
[29] transparent, we define the functions

gV (φ) := αVH(φ∗ − φ), pV (φ) := V (φ)− gV (φ), (2.1)

where pV is a Lipschitz continuous, piecewise smooth and decreasing function, while
gV is a non-negative and decreasing function, see Figure 1. Furthermore, as in [29],
we can equivalently specify

G(t) ∈ g̃V
(
s(t)

)
, (2.2)
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where we recall that g̃V denotes the multivalued version of gV . Moreover, we assume
that the initial density function φ0 satisfies

φ0(x) ∈ [0, φmax] for x ∈ (−L,L), φ0 ∈ BV ([−L,L]), gV (φ0) ∈ BV ([−L,L]).

The boundary functions r and s are assumed to satisfy

r(t), s(t) ∈ [0, φmax] for t ∈ [0, T ], r, s ∈ BV ([0, T ]).

We also assume that G(t) ∈ [0, αV ] for all t ∈ [0, T ], and G ∈ BV ([0, T ]).

Definition 2.1 (Weak solution [16]). A function φ ∈ L∞(ΠT ) is said to be a
weak solution to the initial-boundary value problem (1.6) if there exists a function

q ∈ L∞(ΠT ) satisfying q(x, t) ∈ f̃(φ(x, t)) a.e. such that for all test functions
ψ ∈ C1

0 ([−L,L]× [0, T )),∫ T

0

∫ L

−L

(
φψt + qψx

)
dxdt+

∫ L

−L
φ0(x)ψ(x, 0) dx = 0.

2.2. Numerical scheme. The domain ΠT is discretized as follows. We choose a
partition {Ij}Mj=1 of [−L,L] composed of uniform cells Ij = [xj−1/2, xj+1/2), where
xj+1/2 = xj + ∆x/2, that are centered in xj and have length |Ij | = ∆x = 2L/M .
Then, for ∆t > 0, we let tn = n∆t for n = 0, . . . ,N , where N is an integer such
that T ∈ [tN , tN +∆t). The unknowns φnj approximate the cell average of the exact
solution φ(·, tn) in the cell Ij . The initial condition is discretized by

φ0
j =

1

∆x

∫
Ij

φ0(x) dx, j = 1, . . . ,M,

and the boundary conditions with F(t) ∈ f̃(s) are discretized as follows:

φ
n+1/2
0 = φn0 = r(tn) = rn, φ

n+1/2
M+1 = φnM+1 = s(tn) = sn,

rn ∈ [0, φmax], sn ∈ [0, φmax], g
n+1/2
M+1 ∈ [0, αV ],

g
n+1/2
M+1 = gnM+1 = G(sn)

=


αV if sn < φ∗,

αV if sn = φ∗ and traffic ahead of x = L is free-flowing,

0 if sn = φ∗ and traffic ahead of x = L is congested,

0 if sn > φ∗.

(2.3)

Before proposing our scheme we recall that the basic idea of a splitting scheme
consists in solving within each time step, first the PDE

∂tφ+ ∂x
(
vmaxφgV (φ)

)
= 0, (2.4)

followed by the solution of the conservation law with continuous flux

∂tφ+ ∂x
(
vmaxφpV (φ)

)
= 0. (2.5)

Note that in the scalar case the constant vmax is immaterial. For the remainder of
the analysis of the scalar case we assume that t or x are rescaled so that vmax = 1.

Based on the form of the flux function of equations (2.4) and (2.5) and the
properties of the functions gV and pV , we may write a numerical scheme for (1.6)
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Figure 2. (a) function z 7→ G̃V (z;φ) given by (2.9a) with λvmax =
1/2, αV = 0.3, and φ = 0.8, (b) its inverse z 7→ G̃−1

V (z;φ) given by
(2.9b).

that is motivated by Scheme 4 of [6] in the following form:

φ
n+1/2
j = φnj − λ

(
φnj g

n+1/2
V,j+1 − φ

n
j−1g

n+1/2
V,j

)
,

φn+1
j = φ

n+1/2
j − λ

(
φ
n+1/2
j pV

(
φ
n+1/2
j+1

)
− φn+1/2

j−1 pV
(
φ
n+1/2
j

))
,

j = 1, . . . ,M.

(2.6)

The first half-step in (2.6) is semi-implicit and is consistent with (2.4) whereas the
second half-step is explicit and consistent with (2.5). Scheme 4 of [6] exploits the
density times velocity structure of the flux by calculating the numerical flux by
evaluating density on the left cell and velocity (if non-negative) on the right cell
adjacent to a cell interface. This idea goes back to a discrete traffic model proposed
by Hilliges and Weidlich [23].

In order to evaluate the first line in (2.6), we start by computing the values
g
n+1/2
V,j from j = M + 1 to j = 1 (in decreasing order). This is motivated by the

following argument, where we start from the semi-implicit equation

φ
n+1/2
j = φnj − λ

(
φnj gV

(
φ
n+1/2
j+1

)
− φnj−1gV

(
φ
n+1/2
j

))
(2.7)

along with a known value G(φ
n+1/2
M+1 ) arising from the boundary condition. Next,

we write gV (φ
n+1/2
j+1 ) as g

n+1/2
V,j+1 and then rearrange (2.7) as

φ
n+1/2
j − λφnj−1gV

(
φ
n+1/2
j

)
= φnj − λφnj g

n+1/2
V,j+1 . (2.8)

Let us now define the function

GV (z;φ) := z − λφgV (z), z, φ ∈ [0, φmax]

along with its multivalued version (with respect to z) G̃V (·;φ). Then G̃V is strictly
increasing and has a unique inverse z 7→ G̃−1

V (z;φ), see Figure 2. Explicitly, we get

G̃V

(
z;φ
)

:=


z − λαV φ for z ∈ [0, φ∗),

[φ∗ − λαV φ, φ
∗] for φ = φ∗,

z for z ∈ [φ∗, φmax],

(2.9a)
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G̃−1
V

(
z;φ
)

:=


z + λαV φ for z ∈ [−λαV φ, φ

∗ − λαV φ),

φ∗ for z ∈ [φ∗ − λαV φ, φ
∗],

z for z ∈ [φ∗, φmax].

(2.9b)

Consequently, we may express (2.8) as

G̃V

(
φ
n+1/2
j ;φnj−1

)
= φnj − λφnj g

n+1/2
V,j+1 ,

which allows us to obtain φ
n+1/2
j by applying G̃−1

V (z;φ) to both sides, that is

φ
n+1/2
j = G̃−1

V

(
φnj − λφnj g

n+1/2
V,j+1 ;φnj−1

)
. (2.10)

Now that φ
n+1/2
j is available, we solve for g

n+1/2
V,j the equation

φ
n+1/2
j = φnj − λ

(
φnj g

n+1/2
V,j+1 − φ

n
j−1g

n+1/2
V,j

)
, (2.11)

provided that φnj−1 > 0. If φnj−1 = 0, we define directly

g
n+1/2
V,j = gV

(
φ
n+1/2
j

)
.

The numerical scheme can be summarized in Algorithm 2.1:

Algorithm 2.1 (BCOV scheme, scalar case).

Input: approximate solution vector {φnj }Mj=1 for t = tn

g
n+1/2
V,M+1 ← G(φ

n+1/2
M+1 ) (using (2.3))

do j = M,M − 1, . . . , 1

φ
n+1/2
j ← G̃−1

V

(
φnj − λφnj g

n+1/2
V,j+1 ;φnj−1

)
if φnj−1 6= 0 then

g
n+1/2
V,j ←

φ
n+1/2
j − φnj + λg

n+1/2
V,j+1 φ

n
j

λφnj−1

else
g
n+1/2
V,j ← gV (φ

n+1/2
j )

endif
enddo
do j = 1, 2, . . . ,M

φn+1
j ← φ

n+1/2
j − λ

(
φ
n+1/2
j pV

(
φ
n+1/2
j+1

)
− φn+1/2

j−1 pV
(
φ
n+1/2
j

))
enddo
Output: approximate solution vector {φn+1

j }Mj=1 for t = tn+1 = tn + ∆t

Next, we demonstrate that the numerical scheme (2.11) is consistent with (2.4).

Lemma 2.1. Assume that φ
n+1/2
j ∈ [0, φmax] for all j. Then g

n+1/2
V,j ∈ g̃V (φ

n+1/2
j )

for all j. In particular g
n+1/2
V,j ∈ [0, αV ] for all j.

Proof. Let us first assume that φj−1 = 0. Then the result follows from the definition
of the function gV and the corresponding assignment to g

n+1/2
V,j in Algorithm 2.1.

If φj−1 6= 0, then (2.10) and (2.9) imply that

φ
n+1/2
j − λφnj−1g

n+1/2
V,j ∈ G̃V

(
φ
n+1/2
j ;φnj−1

)
.

Therefore, by a straightforward case-by-case study (of the cases arising in (2.9)) we
conclude that g

n+1/2
V,j ∈ g̃V (φ

n+1/2
j ).
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Now, to derive CFL conditions, we write the scheme (2.6) in incremental form

φ
n+1/2
j = φnj + C

n+1/2
g,j+1/2∆+φ

n+1/2
j −Dn+1/2

g,j−1/2∆−φ
n
j , (2.12a)

φn+1
j = φ

n+1/2
j + C

n+1/2
p,j+1/2∆+φ

n+1/2
j −Dn+1/2

p,j−1/2∆−φ
n+1/2
j (2.12b)

with the spatial difference operators ∆+Vj := Vj+1 − Vj and ∆−Vj := Vj − Vj−1

and the incremental coefficients

C
n+1/2
g,j+1/2 :=

λφ
n
j

gV (φ
n+1/2
j )− gV (φ

n+1/2
j+1 )

φ
n+1/2
j+1 − φn+1/2

j

if φ
n+1/2
j+1 6= φ

n+1/2
j ,

0 otherwise,

D
n+1/2
g,j−1/2 := λgV (φ

n+1/2
j ),

C
n+1/2
p,j+1/2 :=

λφ
n+1/2
j

pV (φ
n+1/2
j )− pV (φ

n+1/2
j+1 )

φ
n+1/2
j+1 − φn+1/2

j

if φ
n+1/2
j+1 6= φ

n+1/2
j ,

0 otherwise,

D
n+1/2
p,j−1/2 := λpV (φ

n+1/2
j ).

To have an L∞ estimate (Lemma 2.2 below) and the Total Variation Diminishing
(TVD) property (Lemma 2.3 below) sufficient conditions are

0 6 D
n+1/2
p,j−1/2, C

n+1/2
p,j+1/2 6

1

2
, C

n+1/2
g,j+1/2 > 0, 0 6 D

n+1/2
g,j−1/2 6 1 for all j.

First, we observe the following fact about g̃V . If z1, z2 ∈ [0, φmax] and z1 6= z2, then

gV,1 ∈ g̃V (z1), gV,2 ∈ g̃V (z2) =⇒ gV,2 − gV,1
z2 − z1

6 0. (2.13)

This property and Lemma 2.1 imply that

D
n+1/2
g,j−1/2, C

n+1/2
g,j+1/2 > 0 for all j.

Next, the properties of the function pV ensure that

C
n+1/2
p,j+1/2, D

n+1/2
p,j−1/2 > 0 for all j.

Finally, to enforce the inequalities

D
n+1/2
p,j−1/2, C

n+1/2
p,j+1/2 6

1

2
and D

n+1/2
g,j−1/2 6 1 for all j,

we impose the CFL conditions

λ
(
φmax max

16j6M

∣∣p′V (φj)
∣∣+ max

16j6M
pV (φj)

)
6

1

2
, λαV 6 1. (2.14)

2.3. Convergence of the scalar scheme. The goal is to prove convergence of
approximate solution to a weak solution of (1.6). The discrete solutions {φn+1/2

j }
constructed via the scheme (2.6) are extended to the whole domain ΠT by defining
the piecewise constant function

φ∆(x, t) =

N∑
n=0

M∑
j=1

χj(x)χn(t)φ
n+1/2
j (2.15)

where ∆ = (∆x,∆t), and χj(x) and χn(t) are the characteristic functions of cell Ij
and the time interval [tn, tn + ∆t), respectively. The ratio λ = ∆t/∆x is always
kept constant, so the limits ∆t→ 0, ∆x→ 0, and ∆→ 0 are equivalent.
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We start by proving an L∞ estimate on φ∆. In the remainder of this section it
is always assumed that the CFL condition (2.14) is in effect.

Lemma 2.2. If φ0
j ∈ [0, φmax] for j = 1, . . . ,M , then

φnj , φ
n+1/2
j ∈ [0, φmax] for all j = 1, . . . ,M and n = 1, . . . ,N . (2.16)

Proof. Taking n = 0 and j = M in (2.10) yields

φ
1/2
M = G̃−1

V

(
φ0
M − λφ0

Mg
1/2
V,M+1;φ0

M−1

)
. (2.17)

The boundary condition g
1/2
V,M+1 = G(t0) ⊆ [0, αV ] together with the assumption

implies that

−λαV φ
0
M 6 φ0

M − λφ0
Mg

1/2
V,M+1 6 φmax.

Since G̃−1
V (·;φ) is a nondecreasing function and maps [−λαV φ, φmax] onto [0, φmax],

(2.17) implies that φ
1/2
M ∈ [0, φmax]. It follows from (2.1) that g

1/2
V,M ∈ [0, αV ]. Rea-

soning in this way for j = M−1,M−2, . . . , 1 yields φ
1/2
j ∈ [0, φmax] for j = 1, . . . ,M .

Since φ
1/2
0 , φ

1/2
M+1 ∈ [0, φmax] by (2.3), and taking into account (2.12), we find that

φ1
j is a convex combination of φ

1/2
j−1, φ

1/2
j and φ

1/2
j+1. Thus, φ1

j ∈ [0, φmax] for
j = 1, . . . ,M . Repeating this argument inductively for n = 1, . . . ,N we obtain
(2.16).

Lemma 2.3. The discrete approximate solutions generated by the scheme (2.12)
satisfy the following spatial variation bounds:

M∑
j=0

∣∣φnj+1 − φnj
∣∣ 6 TV(φ0) + TV(r) + TV(s),

M∑
j=0

∣∣φn+1/2
j+1 − φn+1/2

j

∣∣ 6 TV(φ0) + TV(r) + TV(s).

(2.18)

Proof. Applying the operator ∆+ to (2.12a) and rearranging yields(
1 + C

n+1/2
g,j+1/2

)
∆+φ

n+1/2
j

=
(
1−Dn+1/2

g,j+1/2

)
∆+φ

n
j + C

n+1/2
g,j+3/2∆+φ

n+1/2
j+1 +D

n+1/2
g,j−1/2∆+φ

n
j−1.

Taking absolute values, summing over j = 1, . . . ,M − 1 and using (2.14) we get

M−1∑
j=1

(
1 + C

n+1/2
g,j+1/2

)∣∣∆+φ
n+1/2
j

∣∣
6

M−1∑
j=1

(
1−Dn+1/2

g,j+1/2

)∣∣∆+φ
n
j

∣∣+

M−1∑
j=1

C
n+1/2
g,j+3/2

∣∣∆+φ
n+1/2
j+1

∣∣
+

M−1∑
j=1

D
n+1/2
g,j−1/2

∣∣∆+φ
n
j−1

∣∣.
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Cancelling telescoping terms we obtain

M−1∑
j=1

∣∣∆+φ
n+1/2
j

∣∣+ C
n+1/2
g,3/2

∣∣∆+φ
n+1/2
1

∣∣
6

M−1∑
j=1

∣∣∆+φ
n
j

∣∣−Dn+1/2
g,M−1/2

∣∣∆+φ
n
M−1

∣∣+ C
n+1/2
g,M+1/2

∣∣∆+φ
n+1/2
M

∣∣
+D

n+1/2
g,1/2

∣∣∆+φ
n+1/2
0

∣∣.
(2.19)

The boundary condition implies

∆+φ
n+1/2
0 =

(
1−Dn+1/2

g,1/2

)
∆+φ

n
0 + C

n+1/2
g,3/2 ∆+φ

n+1/2
1 ,(

1 + C
n+1/2
g,M+1/2

)
∆+φ

n+1/2
M = ∆+φ

n
M +D

n+1/2
g,M−1/2∆+φ

n+1/2
1 .

After taking absolute values in the two previous equations, we get∣∣∆+φ
n+1/2
0

∣∣ 6 (1−Dn+1/2
g,1/2

)∣∣∆+φ
n
0

∣∣+ C
n+1/2
g,3/2

∣∣∆+φ
n+1/2
1

∣∣,(
1 + C

n+1/2
g,M+1/2

)∣∣∆+φ
n+1/2
M

∣∣ 6 ∣∣∆+φ
n
M

∣∣+D
n+1/2
g,M−1/2

∣∣∆+φ
n+1/2
M−1

∣∣. (2.20)

From (2.19) and (2.20)

M∑
j=0

∣∣∆+φ
n+1/2
j

∣∣ 6 M∑
j=0

∣∣∆+φ
n
j

∣∣. (2.21)

Reasoning in the same way as the proof of Lemma 5.2 in [29] we find that

M∑
j=0

∣∣∆+φ
n+1
j

∣∣ 6 M∑
j=0

∣∣∆+φ
n
j

∣∣+ |rn+1 − rn|+ |sn+1 − sn|.

It follows by induction that

M∑
j=0

∣∣φnj+1 − φnj
∣∣ 6 TV(φ0) + TV(r) + TV(s). (2.22)

From (2.21) and (2.22) we get (2.18).

Now, we prove some time continuity estimates. The proof of the first of them is
very similar to that of [29, Lemma 5.5], so we omit the details.

Lemma 2.4. The following discrete L1 time continuity estimate holds for n > 0:

M+1∑
j=0

|φn+1
j − φn+1/2

j | 6 Ω1, Ω1 := TV(φ0) + TV(r) + TV(s) + 2φmax.

Lemma 2.5. The following estimate holds:

M∑
j=1

∣∣φ1/2
j − φ0

j

∣∣ 6 Ω2, Ω2 :=

M∑
j=1

∣∣gV (φ0
j+1

)
− gV

(
φ0
j

)∣∣+ TV(φ0) + φmax. (2.23)

Proof. We define g0
V,j = gV (φ0

j ). The first equation in (2.6) with n = 0 implies

φ
1/2
j − φ0

j

= λφ0
j−1

(
g

1/2
V,j − g

0
V,j

)
− λφ0

j

(
g

1/2
V,j+1 − g

0
V,j+1

)
− λφ0

j

(
∆+g

0
V,j

)
− λg0

V,j

(
∆+φ

0
j−1

)
.
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Thus

φ
1/2
j − φ0

j − λφ0
j−1

(
g

1/2
V,j − g

0
V,j

)
= λφ0

j

(
g

1/2
V,j+1 − g

0
V,j+1

)
− λ
(
φ0
j∆+g

0
V,j + g0

V,j∆+φ
0
j−1

)
.

(2.24)

Taking absolute values in (2.24) and using (2.13) we find that∣∣φ1/2
j − φ0

j

∣∣+ λφ0
j−1

∣∣g1/2
V,j − g

0
V,j

∣∣
6 λφ0

j

∣∣g1/2
V,j+1 − g

0
V,j+1

∣∣+ λφ0
j

∣∣∆+g
0
V,j

∣∣+ λg0
V,j

∣∣∆+φ
0
j−1

∣∣.
Summing over j = 1, . . . ,M and cancelling telescoping terms yields

M∑
j=1

∣∣φ1/2
j − φ0

j

∣∣+ λφ0
0

∣∣g1/2
V,1 − g

0
V,1

∣∣
6 λφ0

M

∣∣g1/2
V,M+1 − g

0
V,M+1

∣∣+ λ

M∑
j=1

φ0
j

∣∣∆+g
0
V,j

∣∣+ λ

M∑
j=1

g0
V,j

∣∣∆+φ
0
j−1

∣∣. (2.25)

Applying the boundary condition in (2.25), Lemmas 2.1, 2.2, and the CFL condition
(2.14) we get (2.23).

Lemma 2.6. There exists a constant Ω3 that is independent of ∆ such that the
following time continuity estimate holds:

M+1∑
j=0

∣∣φn+1/2
j − φn−1/2

j

∣∣ 6 Ω3 for n > 1. (2.26)

Proof. For n > 2 and subtracting from the first half-step of (2.6) the corresponding
formula for φ

n−1/2
j and rearranging terms we get

φ
n+1/2
j − φn−1/2

j − λφn−1
j−1

(
g
n+1/2
V,j − gn−1/2

V,j

)
=
(
1− λgn+1/2

V,j+1

)
(φnj − φn−1

j ) + λg
n+1/2
V,j (φnj−1 − φn−1

j−1 )− λφn−1
j

(
g
n+1/2
V,j+1 − g

n−1/2
V,j+1

)
.

Taking absolute values and applying the CFL condition (2.14) yields∣∣φn+1/2
j − φn−1/2

j − λφn−1
j−1

(
g
n+1/2
V,j − gn−1/2

V,j

)∣∣
6
(
1− λgn+1/2

V,j+1

)∣∣φnj − φn−1
j

∣∣+ λg
n+1/2
V,j

∣∣φnj−1 − φn−1
j−1

∣∣
+
∣∣λφn−1

j

(
g
n+1/2
V,j+1 − g

n−1/2
V,j+1

)∣∣.
From (2.13) we get∣∣φn+1/2

j − φn−1/2
j

∣∣+
∣∣λφn−1

j−1

(
g
n+1/2
V,j − gn−1/2

V,j

)∣∣
6
(
1− λgn+1/2

V,j+1

)∣∣φnj − φn−1
j

∣∣+ λg
n+1/2
V,j

∣∣φnj−1 − φn−1
j−1

∣∣
+
∣∣λφn−1

j

(
g
n+1/2
V,j+1 − g

n−1/2
V,j+1

)∣∣.
(2.27)

Summing over j and cancelling telescoping terms we obtain

M∑
j=1

∣∣φn+1/2
j − φn−1/2

j

∣∣
6

M∑
j=1

∣∣φnj − φn−1
j

∣∣+ λg
n+1/2
V,1 |φn0 − φn−1

0 |+ λφn−1
M

∣∣gn+1/2
V,M+1 − g

n−1/2
V,M+1

∣∣
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− λgn+1/2
V,M+1

∣∣φnM − φn−1
M

∣∣.
The last inequality implies

M∑
j=1

∣∣φn+1/2
j − φn−1/2

j

∣∣ 6 M∑
j=1

∣∣φnj − φn−1
j

∣∣+ |rn − rn−1|+
∣∣G(tn)− G(tn−1)

∣∣.
We observe that

φnj − φn−1
j =

(
1−Bn−1

j+1/2 −A
n−1
j−1/2

)(
φ
n−1/2
j − φn−3/2

j

)
+An−1

j+1/2

(
φ
n−1/2
j+1 − φn−3/2

j+1

)
+Bn−1

j−1/2

(
φ
n−1/2
j−1 − φn−3/2

j−1

)
,

(2.28)

where

An−1
j+1/2 = −λ

∫ 1

0

∂1ϕ
(
θφ

n−1/2
j+1 + (1− θ)θφn−3/2

j+1 , θφ
n−1/2
j+1 + (1− θ)θφn−3/2

j+1

)
dθ,

Bn−1
j+1/2 = λ

∫ 1

0

∂2ϕ
(
θφ

n−1/2
j+1 + (1− θ)θφn−3/2

j+1 , θφ
n−1/2
j+1 + (1− θ)θφn−3/2

j+1

)
dθ.

Herein ϕ(φj+1, φj) = φjpV (φj+1) and ∂iϕ denotes the partial derivative of ϕ with
respect to the i-th argument (i = 1, 2). Since φ, pV (φ) > 0 and p′V (φ) 6 0, the
function ϕ(φj+1, φj) is nonincreasing with respect to φj+1 and nondecreasing with
respect to φj . This implies (together with the CFL condition)

0 6 An−1
j+1/2, B

n−1
j+1/2 6

1

2
. (2.29)

The remainder of the proof is similar to the proof of Lemma 5.6 in [29]. Details are
omitted.

Now, we are ready to prove the convergence of φ∆ as ∆→ 0.

Lemma 2.7. The functions φ∆ defined by (2.15) converge in L1(ΠT ) and boundedly
a.e. a along subsequence to a limit function φ ∈ C([0, T ], L1(−L,L)) ∩ L∞(ΠT )).

Proof. The proof is a standard argument using the L∞ estimate (Lemma 2.2), the
uniform spatial variation bound (Lemma 2.3), and the L1 Lipschitz continuity in
time estimate (Lemma 2.6).

In order to show that the limit function φ identified in Lemma 2.7 is a weak
solution in the sense of Definition 2.1, we must also prove the convergence of the
flux approximations. Instead of showing that the approximations {gn+1/2

V,j } converge
we show that the approximations {hn+1/2

j } converge, where we define

h
n+1/2
j := φ

n+1/2
j g

n+1/2
V,j for all j = 1, . . . ,M and n = 0, . . . ,N ,

and extend these quantities to functions defined on ΠT by

h∆(x, t) :=

N∑
n=0

M∑
j=1

χj(x)χn(t)h
n+1/2
j .

Now, we require additional time continuity estimates, which is the contents of the
following lemma. Its proof is very similar to that of Lemmas 5.8 and 5.9 in [29],
and is therefore omitted.
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Lemma 2.8. The following uniform estimates hold for n > 1, where the constant Ω4

is independent of ∆:

M∑
j=1

∣∣φn+1
j − φnj

∣∣ 6 Ω4, Ω4 := Ω2 + TV(s) + TV(r), (2.30)

M∑
j=1

∣∣φn+1/2
j − φnj

∣∣ 6 Ω1 + Ω4. (2.31)

The following lemma is needed to establish a spatial variation bound on the
approximations h

n+1/2
j .

Lemma 2.9. There exists a constant Ω5 that is independent of ∆ such that

M∑
j=1

φnj
∣∣∆+g

n+1/2
V,j

∣∣ 6 Ω5.

Proof. From the first half-step of the scheme we get

φ
n+1/2
j − φnj = −λ

(
φnj ∆+g

n+1/2
V,j + g

n+1/2
V,j ∆+φ

n
j−1

)
,

which can be rerranged as

λφnj ∆+g
n+1/2
V,j = −

(
φ
n+1/2
j − φnj

)
− λgn+1/2

V,j ∆+φ
n
j−1.

Taking absolute values and summing over j = 1, . . . ,M we get

λ

M∑
j=1

φnj
∣∣∆+g

n+1/2
V,j

∣∣ 6 M∑
j=1

∣∣φn+1/2
j − φnj

∣∣+ λ

M∑
j=1

g
n+1/2
V,j

∣∣∆+φ
n
j−1

∣∣.
From Lemma 2.1 and the CFL condition (2.14) we have

M∑
j=1

φnj
∣∣∆+g

n+1/2
V,j

∣∣ 6 1

λ

M∑
j=1

∣∣φn+1/2
j − φnj

∣∣+

M∑
j=1

∣∣∆+φ
n
j−1

∣∣.
The result is obtained from (2.31) in Lemma 2.8 and Lemma 2.3.

We are now ready to bound the spatial variation of the approximations h
n+1/2
j .

Lemma 2.10. There exists a constant Ω6 that is independent of ∆ such that

M∑
j=1

∣∣hn+1/2
j+1 − hn+1/2

j

∣∣ 6 Ω6. (2.32)

Proof. The first part of scheme (2.6) can be written as

φ
n+1/2
j = φnj − λ

(
φnj g

n+1/2
V,j+1 + g

n+1/2
V,j

(
φ
n+1/2
j − φnj−1

))
+ λφ

n+1/2
j g

n+1/2
V,j .

Applying the spatial difference operator to the above equation we get

∆+φ
n+1/2
j =

(
1− λgn+1/2

V,j+1

)
∆+φ

n
j + λ∆+h

n+1/2
j − λφnj+1∆+g

n+1/2
V,j+1

− λ∆+g
n+1/2
V,j

(
φ
n+1/2
j − φnj

)
+ λg

n+1/2
V,j ∆+φ

n
j−1 − λg

n+1/2
V,j+1 ∆+φ

n+1/2
j .

Thus

λ∆+h
n+1/2
j = ∆+φ

n+1/2
j −

(
1− λgn+1/2

V,j+1

)
∆+φ

n
j + λφnj+1∆+g

n+1/2
V,j+1

+ λ∆+g
n+1/2
V,j

(
φ
n+1/2
j − φnj

)
+ λg

n+1/2
V,j ∆+φ

n
j−1 + λg

n+1/2
V,j+1 ∆+φ

n+1/2
j .
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After taking absolute values and using |∆+g
n+1/2
V,j | 6 αV , Lemma 2.1 and the CFL

condition (2.14) we get

λ
∣∣∆+h

n+1/2
j

∣∣
6 2
∣∣∆+φ

n+1/2
j

∣∣+
∣∣∆+φ

n
j

∣∣+ λφnj+1

∣∣∆+g
n+1/2
V,j+1

∣∣+
∣∣φn+1/2

j − φnj
∣∣+
∣∣∆+φ

n
j−1

∣∣.
Summing over j = 1, . . . ,M we get

M∑
j=1

∣∣∆+h
n+1/2
j

∣∣
6

2

λ

M∑
j=1

∣∣∆+φ
n+1/2
j

∣∣+
2

λ

M∑
j=1

∣∣∆+φ
n
j

∣∣+
1

λ

M∑
j=1

∣∣φn+1/2
j − φnj

∣∣+

M∑
j=1

φnj+1

∣∣∆+g
n+1/2
V,j+1

∣∣.
Finally, the result follows from Lemma 2.3, (2.31) in Lemma 2.8, and Lemma 2.9.

The following lemma is required to prove the L1 Lipschitz continuity in time and
spatial variation bounds on {hn+1/2

j }.

Lemma 2.11. There exists a constant Ω7 that is independent of ∆ such that

∆x

M∑
j=1

N∑
n=1

φn−1
j

∣∣gn+1/2
V,j+1 − g

n−1/2
V,j+1

∣∣ 6 Ω7. (2.33)

Proof. From (2.27) we get

λφn−1
j

∣∣gn+1/2
V,j+1 − g

n−1/2
V,j+1

∣∣ 6 (1− λgn+1/2
V,j+2

)∣∣φnj+1 − φn−1
j+1

∣∣+ λg
n+1/2
V,j+1

∣∣φnj − φn−1
j

∣∣
−
∣∣φn+1/2

j+1 − φn−1/2
j+1

∣∣+ λφn−1
j+1

∣∣gn+1/2
V,j+2 − g

n−1/2
V,j+2

∣∣.
By induction we obtain

λφn−1
j

∣∣gn+1/2
V,j+1 − g

n−1/2
V,j+1

∣∣ 6 M∑
k=j+1

∣∣φnk − φn−1
k

∣∣+
∣∣gn+1/2

V,M+1 − g
n−1/2
V,M+1

∣∣
−

M∑
k=j+1

∣∣φn+1/2
k − φn−1/2

k

∣∣+
∣∣φnj − φn−1

j

∣∣. (2.34)

Recalling (2.28) we have

M∑
k=j+1

∣∣φnk − φn−1
k

∣∣
6

M∑
k=j+1

(
1−Bn−1

k+1/2 −A
n−1
k−1/2

)∣∣φn−1/2
k − φn−3/2

k

∣∣
+

M∑
k=j+1

An−1
k+1/2

∣∣φn−1/2
k+1 − φn−3/2

k+1

∣∣+

M∑
k=j+1

Bn−1
k−1/2

∣∣φn−1/2
k−1 − φn−3/2

k−1

∣∣.
Cancelling telescoping terms and applying (2.29) yields

M∑
k=j+1

∣∣φnk − φn−1
k

∣∣



202 R. BÜRGER, C. CHALONS, R. ORDOÑEZ AND L. M. VILLADA

6
M∑

k=j+1

∣∣φn−1/2
k − φn−3/2

k

∣∣+
1

2

∣∣φn−1/2
M+1 − φ

n−3/2
M+1

∣∣+
1

2

∣∣φn−1/2
j − φn−3/2

j

∣∣.
Then (2.34) becomes

λφn−1
j

∣∣gn+1/2
V,j+1 − g

n−1/2
V,j+1

∣∣
6

M∑
k=j+1

∣∣φn−1/2
k − φn−3/2

k

∣∣− M∑
k=j+1

∣∣φn+1/2
k − φn−1/2

k

∣∣+
1

2

∣∣φn−1/2
M+1 − φ

n−3/2
M+1

∣∣
+

1

2

∣∣φn−1/2
j − φn−3/2

j

∣∣+
∣∣φnj − φn−1

j

∣∣+
∣∣gn+1/2

V,M+1 − g
n−1/2
V,M+1

∣∣.
Summing over n > 2 and j = 1, . . . ,M, cancelling telescoping terms and multiplying
the result by ∆x we get

∆x

M∑
j=1

N∑
n=2

φn−1
j

∣∣gn+1/2
V,j+1 − g

n−1/2
V,j+1

∣∣ 6 S1 + · · ·+ S5,

where we define

S1 :=
2L

λ

M∑
j=1

∣∣φ3/2
j − φ1/2

j

∣∣, S2 :=
L

λ

N∑
n=2

∣∣sn−1/2 − sn−3/2
∣∣,

S3 :=
∆x

λ

M∑
j=1

N∑
n=2

∣∣φnj − φn−1
j

∣∣, S4 :=
2L

λ

N∑
n=2

∣∣gn+1/2
V,M+1 − g

n−1/2
V,M+1

∣∣,
S5 :=

∆x

2λ

M∑
j=1

N∑
n=2

∣∣φn−1/2
j − φn−3/2

j

∣∣.
In view of the bounds established so far, there holds

S1 6
2L

λ
Ω3, S2 6

L

λ
TV(s), S3 6 Ω4T, S4 6

2L

λ
TV(G), S5 6

Ω3

2
T.

These bounds in conjunction with |g3/2
V,j − g

1/2
V,j | 6 αV imply that there exists a con-

stant Ω7 such that (2.33) is valid.

Lemma 2.12. There exists a constant Ω8 that is independent of ∆ such that

∆t

N∑
n=0

M∑
j=1

∣∣hn+1/2
j+1 − hn+1/2

j

∣∣+ ∆x

N∑
n=1

M∑
j=1

∣∣hn+1/2
j − hn−1/2

j

∣∣ 6 Ω8. (2.35)

Proof. In light of the spatial variation bound (2.32) we find that

∆t

N∑
n=0

M∑
j=1

∣∣hn+1/2
j+1 − hn+1/2

j

∣∣ 6 Ω6T.

The first part of (2.6) implies

φ
n+1/2
j − φn−1/2

j

=
(
1− λgn+1/2

V,j+1

)(
φnj − φn−1

j

)
+ λ
(
h
n+1/2
j − hn−1/2

j

)
− λgn+1/2

V,j

(
φ
n+1/2
j − φnj−1

)
+ λg

n−1/2
V,j

(
φ
n−1/2
j − φn−1

j−1

)
− λφn−1

j

(
g
n+1/2
V,j+1 − g

n−1/2
V,j+1

)
=
(
1− λgn+1/2

V,j+1

)(
φnj − φn−1

j

)
+ λ
(
h
n+1/2
j − hn−1/2

j

)
− λgn+1/2

V,j

(
φ
n+1/2
j − φnj

)
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− λgn+1/2
V,j ∆+φ

n
j−1 + λg

n−1/2
V,j ∆+φ

n−1
j−1 + λg

n−1/2
V,j

(
φ
n−1/2
j − φn−1

j

)
− λφn−1

j

(
g
n+1/2
V,j+1 − g

n−1/2
V,j+1

)
.

Consequently,

λ
(
h
n+1/2
j − hn−1/2

j

)
=
(
φ
n+1/2
j − φn−1/2

j

)
−
(
1− λgn+1/2

V,j+1

)(
φnj − φn−1

j

)
+ λg

n+1/2
V,j

(
φ
n+1/2
j − φnj

)
+ λg

n+1/2
V,j ∆+φ

n
j−1 − λg

n−1/2
V,j ∆+φ

n−1
j−1 − λg

n−1/2
V,j

(
φ
n−1/2
j − φn−1

j

)
+ λφn−1

j

(
g
n+1/2
V,j+1 − g

n−1/2
V,j+1

)
.

Taking absolute values and using the CFL condition (2.14) we get

λ
∣∣hn+1/2

j − hn−1/2
j

∣∣
6
∣∣φn+1/2

j − φn−1/2
j

∣∣+
∣∣φnj − φn−1

j

∣∣+∣∣∆+φ
n
j−1

∣∣+
∣∣∆+φ

n−1
j−1

∣∣
+
∣∣φn+1/2

j − φnj
∣∣+
∣∣φn−1/2

j − φn−1
j

∣∣+ λφn−1
j

∣∣gn+1/2
V,j+1 − g

n−1/2
V,j+1

∣∣.
Multiplying this inequality by ∆x and summing over j and n we get

∆x

N∑
n=1

M∑
j=1

∣∣hn+1/2
j − hn−1/2

j

∣∣ 6 U1 + · · ·+ U5,

where we define

U1 :=
∆x

λ

N∑
n=1

M∑
j=1

∣∣φn+1/2
j − φn−1/2

j

∣∣, U2 :=
∆x

λ

N∑
n=1

M∑
j=1

∣∣φnj − φn−1
j

∣∣,
U3 :=

2∆x

λ

N∑
n=1

M∑
j=1

∣∣∆+φ
n
j−1

∣∣, U4 :=
2∆x

λ

N∑
n=1

M∑
j=1

∣∣φn+1/2
j − φnj

∣∣,
U5 := ∆x

N∑
n=1

M∑
j=1

φn−1
j

∣∣gn+1/2
V,j+1 − g

n−1/2
V,j+1

∣∣.
From (2.18), (2.26), (2.30), (2.31) and (2.33) we have

U1 6 Ω3T, U2 6 Ω4T, U3 6 2
(
TV(φ0) + TV(s) + TV(r)

)
T,

U4 6 2
(
Ω1 + Ω4

)
T, U5 6 Ω7.

Combining these bounds we see that there exists a constant Ω8 that is independent
of ∆ such that (2.35) is valid.

In the following lemma we state and prove convergence of the functions h∆ as
∆ → 0. To this end, we define Q(φ) := φgV (φ) and denote by Q̃ the multivalued
version of Q.

Lemma 2.13. The functions h∆ converge in L1(ΠT ) and boundedly a.e. along
subsequence to some limit function w ∈ L1(ΠT )∩L∞(ΠT ). Moreover, by a suitable
choice of a subsequence, we have w(x, t) ∈ Q̃(φ(x, t)) a.e. in ΠT , where φ(x, t) is
the limit of Lemma 2.7.

Proof. We observe that |hn+1/2
j | 6 φmaxαV . Then by Helly’s theorem [24] there

exists a function w ∈ L1(ΠT ) such that h∆ → w along a subsequence in L1(ΠT )
and boundedly a.e. in ΠT . To prove the second assertion, we assume (by extracting
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further subsequences if necessary) that φ∆ → φ, h∆ → w in L1(ΠT ) and fix a point
(x, t) ∈ ΠT where φ∆(x, t) → φ(x, t) and h∆(x, t) → w(x, t) as ∆ → 0. First, we
consider the case φ(x, t) = φ∗. Lemma 2.1 implies that 0 6 h∆(x, t) 6 αV φ

∆(x, t).
Then passing to the limit in the above inequality we obtain

w(x, t) ∈ [0, αV φ
∗] = Q̃(φ∗).

In case φ(x, t) 6= φ∗ first we consider φ(x, t) < φ∗, then Q̃(φ(x, t)) = αV φ(x, t).
For sufficiently small ∆ the inequality φ∆(x, t) < φ∗ implies that φ

n+1/2
j < φ∗ and

g̃V (φ
n+1/2
j ) = {αV }. Then, by Lemma 2.1 we get

h∆(x, t) =

N∑
n=0

M∑
j=1

χj(x)χn(t)h
n+1/2
j = αV

N∑
n=0

M∑
j=1

χj(x)χn(t)φ
n+1/2
j = αV φ

∆(x, t).

Thus w(x, t) = limh∆(x, t) = αV limφ∆(x, t) = αV φ(x, t) = Q̃(φ(x, t)).
In the case φ(x, t) > φ∗ there holds Q̃(φ(x, t)) = 0. In this case it is necessary

extend {gn+1/2
V,j } to functions defined on ΠT by

g∆
V (x, t) =

N∑
n=0

M∑
j=1

χj(x)χn(t)g
n+1/2
V,j ,

and we need to utilize the following consequence of Lemma 2.1:

g∆
V (x, t) ∈ g̃V (φ∆(x, t)), (x, t) ∈ ΠT .

For sufficiently small ∆, φ∆(x, t) > φ∗ implies that g̃V (φ∆(x, t)) = {0}, hence
g∆
V (x, t) = 0. Finally observe that 0 6 h∆(x, t) 6 φ∆(x, t)g∆

V (x, t) = 0 for suffi-

ciently small ∆. Hence w(x, t) = Q̃(φ(x, t)) = 0.

Theorem 2.14 (Main result). The functions φ∆ converge in L1(ΠT ) and boundedly
a.e. along subsequence to some φ ∈ C([0, T ], L1(−L,L)) ∩ L∞(ΠT ). The limit
function φ(x, t) is a weak solution in sense of Definition 2.1.

Proof. The convergence is ensured by Lemma 2.7. It remains to prove that the
limit φ is a weak solution. Let us fix a point (x, t) ∈ ΠT , then Lemma 2.13 implies
that w(x, t) ∈ Q̃(φ(x, t)) a.e. in ΠT . If φ(x, t) 6= φ∗, then Q̃(φ(x, t)) = Q(φ(x, t)).
Thus w(x, t) = Q(φ(x, t)), then we define q(x, t) = φpV (φ)+Q(φ(x, t)) = f(φ(x, t)).
In the case where φ(x, t) = φ∗ we take w(x, t) ∈ [0, αV φ

∗] and define

q(x, t) = φ∗pV (φ∗) + w(x, t) ∈ [φ∗pV (φ∗), φ∗pV (φ∗) + αV φ
∗] = f̃(φ∗).

In either case q(x, t) ∈ f̃(φ(x, t)).
We note that the two steps of (2.6) imply

φn+1
j −φnj +λ

(
φnj g

n+1/2
V,j+1 −φ

n
j−1g

n+1/2
V,j +φ

n+1/2
j p

n+1/2
V,j+1 −φ

n+1/2
j−1 p

n+1/2
V,j

)
= 0. (2.36)

We now choose a test function ψ ∈ C1
0 ((−L,L)× [0, T )) and define ψn

j := ψ(xj , t
n).

Multiplying (2.36) by ∆xψn
j and summing the result over j and n yields

∆x∆t

N∑
n=0

M∑
j=1

φn+1
j − φnj

∆t
ψn
j + ∆x∆t

N∑
n=0

M∑
j=1

φnj g
n+1/2
V,j+1 − φnj−1g

n+1/2
V,j

∆x
ψn
j

+ ∆x∆t

N∑
n=0

M∑
j=1

φ
n+1/2
j p

n+1/2
V,j+1 − φ

n+1/2
j−1 p

n+1/2
V,j

∆x
ψn
j = 0.
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A summation by parts yields

∆x∆t

N∑
n=0

M∑
j=1

φn+1
j

ψn+1
j − ψn

j

∆t
+ ∆x

M∑
j=1

φ0
jψ

0
j

+∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
φnj g

n+1/2
V,j+1

+∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
φ
n+1/2
j p

n+1/2
V,j+1 = 0.

(2.37)

An application of (2.12) yields, as ∆x,∆t→ 0,

∆x∆t
N∑

n=0

M∑
j=1

φn+1
j

ψn+1
j − ψn

j

∆t
= ∆x∆t

N∑
n=0

M∑
j=1

φ
n+1/2
j

ψn+1
j − ψn

j

∆t
+O(∆x).

This equation and Lemma 2.3 imply that the two first sums in (2.37) converge to∫ T

0

∫ L

−L
φψt dxdt+

∫ L

−L
φ0(x)ψ(x, 0) dxdt.

Concerning the last term in (2.37), we get

∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
φ
n+1/2
j p

n+1/2
V,j+1

= ∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
φ
n+1/2
j p

n+1/2
V,j

+ ∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x

(
φ
n+1/2
j p

n+1/2
V,j+1 − φ

n+1/2
j p

n+1/2
V,j

)
.

By properties of the function pV we get the estimate

φ
n+1/2
j p

n+1/2
V,j+1 − φ

n+1/2
j p

n+1/2
V,j = φ

n+1/2
j

(
p
n+1/2
V,j+1 − p

n+1/2
V,j

)
6 φmax‖p′V ‖∞∆x.

Thus ∣∣∣∣∣∆x∆t

N∑
n=0

M∑
j=1

(
ψn
j+1 − ψn

j

)
∆x

(
φ
n+1/2
j p

n+1/2
V,j+1 − φ

n+1/2
j p

n+1/2
V,j

)∣∣∣∣∣
6 2MTφmax∆x‖ψt‖∞‖p′V ‖∞,

which tends to zero as ∆x→ 0. Therefore the last term in (2.37) converges to∫ T

0

∫ L

−L
φpV (φ)ψx dxdt

as ∆x→ 0. The second term in (2.37) can be written as

∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
φnj g

n+1/2
V,j+1

= ∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
φ
n+1/2
j g

n+1/2
V,j + ∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
φnj ∆+g

n+1/2
V,j
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+ ∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
g
n+1/2
V,j

(
φnj − φ

n+1/2
j

)
.

Using Lemmas 2.9, 2.1, and 2.8 we get∣∣∣∣∣∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
φnj ∆+g

n+1/2
V,j

∣∣∣∣∣ 6 ∆x‖ψx‖∞Ω5T,∣∣∣∣∣∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
g
n+1/2
V,j

(
φnj − φ

n+1/2
j

)∣∣∣∣∣ 6 αV ∆x‖ψx‖∞
(
Ω1 + Ω4

)
T.

Consequently, as ∆x→ 0,

∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
φnj ∆+g

n+1/2
V,j → 0,

∆x∆t

N∑
n=0

M∑
j=1

ψn
j+1 − ψn

j

∆x
g
n+1/2
V,j

(
φnj − φ

n+1/2
j

)
→ 0.

Then substituting g∆
V (xj , t

n) = g
n+1/2
V,j and applying the dominated convergence the-

orem we obtain that the second term in (2.37) converges to∫ T

0

∫ L

−L
wψx dx dt.

Collecting the previous results we get∫ T

0

∫ L

−L
(φψt + qψx) dxdt+

∫ L

−L
φ0(x)ψ(x, 0) dx = 0,

so φ is a weak solution in sense of Definition 2.1.

3. Extension to the MCLWR model. Algorithm 2.1 cannot be applied directly
in a component-wise manner for each class i in the multiclass case (1.1)–(1.4), but
we can first solve for the total density φ and then update the densities φ1, . . . , φN
for each class. The multiclass version of the scalar scheme (1.6) can be written as

φ
n+1/2
i,j = φni,j − λvmax

i

(
φni,jgV

(
φ
n+1/2
j+1

)
− φni,j−1gV

(
φ
n+1/2
j

))
,

φn+1
i,j = φ

n+1/2
i,j − λvmax

i

(
φ
n+1/2
i,j pV

(
φ
n+1/2
j+1

)
− φn+1/2

i,j−1 pV
(
φ
n+1/2
j

))
,

i = 1, . . . , N, j = 1, . . . ,M,

(3.1)

where the following quantity is an approximate value of the total density φ:

φ
n+1/2
j := φ

n+1/2
1,j + · · ·+ φ

n+1/2
N,j .

In order to solve (3.1), we need to impose the non-standard boundary condition
(1.4b). Recalling that V (φ) = gV (φ) + pV (φ) we can equivalently specify for the
multiclass case the condition (2.2). The correspondence when s(t) = φ∗ is

F(t) = (vmax)Ts(t)V (φ∗−)⇔ G(t) = αV ,

F(t) = (vmax)Ts(t)V (φ∗+)⇔ G(t) = 0.
(3.2)

Coming back to (3.1), we define Φn
j := (φn1,j , . . . , φ

n
N,j)

T. Summing over i, assuming
that gV is evaluated at the new time step, and replacing gV (φ

n+1/2
j+1 ) by g

n+1/2
V,j+1 yields

φ
n+1/2
j = φnj − λ(vmax)T

(
g
n+1/2
V,j+1 Φn

j − gV
(
φ
n+1/2
j

)
Φn

j−1

)
. (3.3)
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This can be rearranged as

φ
n+1/2
j − λ(vmax)TΦn

j−1gV
(
φ
n+1/2
j

)
= φnj − λ(vmax)TΦn

j g
n+1/2
V,j+1 . (3.4)

Let us now define the function GV (z; Φ) := z − λ(vmax)TΦgV (z) and denote by
G̃V (·; Φ) its multivalued version (with respect to z). Then G̃ is strictly increasing
and has a unique inverse z 7→ G̃−1

V (z; Φ). Expressing (3.4) as

G̃V

(
φ
n+1/2
j ; Φn

j−1

)
= φnj − λ(vmax)TΦn

j g
n+1/2
V,j+1 (3.5)

which allows us to obtain φ
n+1/2
j by applying G̃−1

V (·; Φn
j−1) to both sides, that is

φ
n+1/2
j = G̃−1

V

(
φnj − λ(vmax)TΦn

j g
n+1/2
V,j+1 ; Φn

j−1

)
.

Now that φ
n+1/2
j is available, we solve for g

n+1/2
V,j the equation

φ
n+1/2
j = φnj − λ(vmax)T

(
g
n+1/2
V,j+1 Φn

j − g
n+1/2
V,j Φn

j−1

)
(cf. (3.3)). This yields

g
n+1/2
V,j =

φ
n+1/2
j − φnj + λg

n+1/2
V,j+1 (vmax)TΦn

j

λ(vmax)TΦn
j−1

,

provided that Φn
j−1 6= 0. If Φn

j−1 = 0 then we set g
n+1/2
V,j = gV (φ

n+1/2
j ). The nume-

rical scheme for the multiclass model can be summarized in the following algorithm.

Algorithm 3.1 (BCOV scheme, multiclass case).

Input: approximate solution vector {φni,j}Mj=1, i = 1, . . . , N for t = tn

g
n+1/2
V,M+1 ← G(φ

n+1/2
M+1 ) (using (2.3) and (3.2))

do j = M,M − 1, . . . , 1

φ
n+1/2
j ← G̃−1

V

(
φnj − λg

n+1/2
V,j+1 (vmax)TΦn

j ; Φn
j−1

)
if Φn

j−1 6= 0 then

g
n+1/2
V,j ←

φ
n+1/2
j − φnj + λg

n+1/2
V,j+1 (vmax)TΦn

j

λ(vmax)TΦn
j−1

else
g
n+1/2
V,j ← gV (φ

n+1/2
j )

endif
enddo
do j = 1, . . . ,M

do i = 1, . . . , N

φ
n+1/2
i,j ← φni,j − λvmax

i

(
φni,jg

n+1/2
V,j+1 − φni,j−1g

n+1/2
V,j

)
enddo

enddo
do j = 1, . . . ,M

do i = 1, . . . , N

φn+1
i,j ← φ

n+1/2
i,j − λvmax

i

(
φ
n+1/2
i,j pV

(
φ
n+1/2
j+1

)
− φn+1/2

i,j−1 pV
(
φ
n+1/2
j

))
enddo

enddo
Output: approximate solution vectors {φn+1

i,j }Mj=1, i = 1, . . . , N for t = tn+1 =
tn + ∆t

Remark 3.1. We recall that g
n+1/2
V,M+1 = G(φ

n+1/2
M+1 ), the boundary condition that

appears in Algorithm 3.1, is defined using (2.3) for the total density φ
n+1/2
M+1 . We

illustrate this boundary condition in Section 4.5.



208 R. BÜRGER, C. CHALONS, R. ORDOÑEZ AND L. M. VILLADA

The problem of interest to us is to show that D is an invariant region of the
scheme. To this end we first consider the evolution of the total density φ. Summing
over i = 1, . . . , N the second equation in (3.1) yields

φn+1
j = φ

n+1/2
j − λ(vmax)T

(
pV
(
φ
n+1/2
j+1

)n+1/2
Φ

n+1/2
j − pV

(
φ
n+1/2
j

)
Φn

j−1

)
.

The above equation can be written in incremental form as

φn+1
j = φ

n+1/2
j + C

n+1/2
j+1/2 ∆+φ

n+1/2
j −Dn+1/2

j−1/2 ∆−φ
n+1/2
j , (3.6)

where we define

C
n+1/2
j+1/2 :=


λ(vmax)TΦ

n+1/2
j

pV (φ
n+1/2
j )− pV (φ

n+1/2
j+1 )

φ
n+1/2
j+1 − φn+1/2

j

if φ
n+1/2
j+1 6= φ

n+1/2
j ,

0 if φ
n+1/2
j+1 = φ

n+1/2
j ,

D
n+1/2
j−1/2 :=


λpV (φ

n+1/2
j )

(vmax)T
(
Φ

n+1/2
j − Φ

n+1/2
j−1

)
φ
n+1/2
j − φn+1/2

j−1

if φ
n+1/2
j 6= φ

n+1/2
j−1 ,

0 if φ
n+1/2
j = φ

n+1/2
j−1 .

Since pV (φ) is a non-increasing positive function we have C
n+1/2
j+1/2 , D

n+1/2
j−1/2 > 0. To

ensure that |Cn+1/2
j+1/2 | 6 1/2 and |Dn+1/2

j−1/2 | 6 1/2 we impose the CFL condition

λφmax max
16j6M

∣∣p′V (φnj )
∣∣ · max

16i6N
vmax
i 6

1

2
, λ max

16j6M
p(φnj ) · max

16i6N
vmax
i 6

1

2
. (3.7)

Lemma 3.1. Assume that Φ0
j ∈ D for j = 1, . . . ,M . Then Φn

j ,Φ
n+1/2
j ∈ D for

j = 1, . . . ,M .

Proof. We claim that

Φ
n+1/2
j ∈ D for all j = 1, . . . ,M

⇒ g
n+1/2
V,j ∈ [0, αV ] for all j = 1, . . . ,M .

(3.8)

In the case Φn
j−1 = 0 the result follows from the definition of the function gV and

(2.1). Suppose that Φn
j−1 6= 0, summing over i = 1, . . . , N the first equation in (3.1)

yields

φ
n+1/2
j = G̃−1

V

(
φnj − λ(vmax)TΦn

j g
n+1/2
V,j+1 ; Φn

j−1

)
.

Using (3.5) and (3.3) we find that

φ
n+1/2
j − λ(vmax)TΦn

j−1g
n+1/2
V,j ∈ G̃V

(
φ
n+1/2
j ; Φn

j−1

)
.

Thus, a straightforward case-by-case study and (3.5) prove that (3.8) is valid. The
remainder of the proof is similar to the proof of Lemma 2.2.

4. Numerical examples. We now present some numerical simulations to illus-
trate the behaviour of solutions to system (1.1) by using Algorithms 2.1 and 3.1 for
the scalar and multiclass case, respectively. In the scalar case, we compare numer-
ical approximations with those generated by the scheme (1.7) proposed by Towers
in [29]. In all numerical examples for both the scalar (N = 1) and system (N > 2)
cases we use the discontinuous velocity function

V (φ) =

{
1− φ/φmax for 0 6 φ 6 φ∗,

−wf(1− φmax/φ) for φ∗ < φ 6 φmax,
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Figure 3. Example 1: numerical solution with M = 800 and
comparison with the exact solution of the Riemann problem (a)
with φL = 0.3 and φR = 0.9 at simulated time T = 1.8, (b) with
φL = 0.9 and φR = 0.3 at simulated time T = 1.5. Here and in
Figures 4 and 5 we label with ‘Towers scheme’ the scheme (1.7) pro-
posed in [29] and by ‘BCOV scheme’ the scheme of Algorithm 2.1
advanced in the present work.

where φ∗ = 0.5, wf = 0.2, φmax = 1, and αV = 0.3.
In all numerical experiments computations are performed on a finite interval

[−1, 1] that is subdivided into M subintervals of length ∆x = 2/M , and the
time step is computed by ∆t = ∆x/2 in the scalar case (N = 1) and ∆t =
∆x/(2 max{vmax

1 , . . . , vmax
N }) in the multiclass case (N > 2). These choices ensure

that the respective CFL conditions (2.14) and (3.7) are satisfied.

4.1. Example 1: scalar Riemann problem (N = 1). We consider the Riemann
problem for the scalar equation ∂tφ+ ∂x(φV (φ)) = 0 with initial data

φ0(x) =

{
φL for x < 0.2,

φR for x > 0.2
(4.1)

(no boundary conditions are involved). For φL = 0.3 and φR = 0.9, the solution
consists of two shock waves with negative velocities of propagation, namely a shock
wave connecting φL with φ∗ that travels at velocity σ1 = −0.55 and another shock
wave connecting φ∗ with φR with velocity σ2 = −0.2. Figure 3 (a) shows the
numerical approximations to the solution of this problem computed with M = 800
for both schemes at simulated time T = 1.8.

For φL = 0.9 and φR = 0.3, the solution consists of a shock wave connecting φL

with φ∗ that travels at velocity σ1 = −0.575 and a rarefaction wave connecting φ∗

with φR. In Figure 3 (b) we display the numerical solutions computed with M = 800
for both schemes at simulated time T = 1.5. In both scenarios, all waves are
approximated correctly by both schemes.

4.2. Example 2: scalar problem (N = 1), smooth initial datum. In this
example we compare numerical approximations for equation (1.1) obtained by both
schemes (Towers scheme (1.7) and Algorithm 2.1), starting from the initial function
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T = 0.1 T = 0.3

Towers BCOV Towers BCOV

M eM (φ∆) eM (φ∆) eM (φ∆) eM (φ∆)

100 1.32e-2 1.76e-2 1.63e-2 2.39e-2
200 6.55e-3 9.22e-3 8.59e-3 1.31e-2
400 3.29e-3 4.46e-3 4.25e-3 6.46e-3
800 1.72e-3 2.403-3 2.12e-3 3.31e-3

1600 8.00e-4 1.18e-3 9.29e-4 1.563-3

Table 1. Example 2: approximate L1 errors eM (u) with ∆x = 2/M .
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Figure 4. Example 2: numerical solutions for M = 100 at simu-
lated times (a) T = 0.1, (b) T = 0.3.

φ0(x) = exp(−(x + 0.2)2/(0.04)) for x ∈ [−1, 1]. Numerical approximations are
computed at simulated times T = 0.1 and T = 0.3 with discretizations M = 100×2l,
l = 0, 1, . . . , 4. Table 1 displays the corresponding approximate L1 errors obtained
by utilizing a reference solution computed by the Towers scheme with Mref = 12800.
We observe that the approximate L1 errors decrease as the grid is refined. In
Figure 4 we display the numerical approximations for M = 100 and compare them
with the reference solution.

4.3. Example 3: scalar problem (N = 1), non-standard boundary condi-
tion. This example comes from [29, Example 6.2] and is designed to illustrate that
when s(tn) = φ∗, the solutions depend on the boundary condition F(t) ∈ f̃(φ∗). For
this example we consider the Riemann problem with initial data (4.1) with φL = 1/4
and φR = 1/2. We compute the solution twice, once using G(t) = αV (equivalently,
F(t) = 1/2), and the second time using G(t) = 0 (equivalently, F(t) = 1/4). As
shown in Figure 5, in the first case the solution corresponds to a shock wave con-
necting φL with φR with speed of propagation σ = 1, and in the second case the
solution corresponds to a stationary shock (σ = 0) connecting φL with φR.
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Figure 5. Example 3: numerical solutions depending on the
boundary conditions F(t) ∈ f̃(φ∗) with M = 1600 at simulated
time T = 0.5, with (a) F(t) ∈ f̃(φ∗−) (free flow), (b) F(t) ∈
f̃(φ∗+) (congested flow).
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Figure 6. Example 4: density profiles simulated with M = 1600
at (a) T = 0.2, (b) T = 0.4, (c) T = 0.6.

4.4. Example 4: multiclass case (N = 3), preservation of invariant region.
To illustrate the invariant region property of the proposed scheme (Lemma 3.1), we
consider the case N = 3 and the Riemann initial data

φ0(x) =

{
(0.1, 0.1, 0.1)T for x < 0.5,

(0.4, 0.5, 0.1)T for x > 0.5,

with velocities vmax = (1, 3, 10)T. The solution consists of a stationary shock plus
two shock waves that travel with negative velocities. The numerical simulation at
three simulated times is displayed in Figure 6. The profile for each class and the
total density are displayed in this figure. Furthermore we can see that the profile
of the total density in Figure 6 looks like the profile of Figure 3 (a).
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Figure 7. Example 5: numerical solution for a free-flow regime
(G(t) = αV ): (a) initial condition, (b, c) density profiles with M =
1600 at simulated times (b) T = 0.1, (c) T = 0.2.
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Figure 8. Example 5: simulated total density computed with
BCOV scheme with N = 3 and M = 1600: (a) free flow (G(t) =
αV ), (b) congested flow (G(t) = 0).

4.5. Example 5: multiclass case (N = 3), non-standard boundary condi-
tion. It is the purpose of this example to illustrate the boundary condition

g
n+1/2
V,M+1 = G

(
φ
n+1/2
M+1

)
,

where G(·) is specified in (2.3), that appears within Algorithm 3.1. To this end
consider N = 3 and the velocities and Riemann initial data

vmax = (1, 3, 6)T, Φ(x, 0) = Φ0(x) =

{
ΦL = (0.05, 0.08, 0.12)T for x < 0,

ΦR = (0.14, 0.16, 0.2)T for x > 0.

Observe that φR = φ∗ = s(t), where φR is the total density of the right state ΦR.
As in Example 3 we show that the solution depends on the boundary condition

F(t) ∈ (vmax)Ts(t)Ṽ (s(t)). We start with the initial condition shown in Figure 7 (a)
and compute the solution twice, once using G(t) = αV , and the second time using
G(t) = 0. In Figures 7 (b) and (c) we display the profile for each class and total
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Figure 9. Example 5: numerical solution for a congested flow
regime (G(t) = 0): density profiles with M = 1600 at simulated
times (a) T = 0.1, (b) T = 0.2. The initial condition is the same
as in Figure 7 (a).

T = 0.02 T = 0.12

M eM (φ∆) eM (φ∆)

100 1.39e-2 3.87e-2
200 7.90e-3 2.47e-2
400 4.20e-3 1.55e-2
800 2.00e-3 9.20e-3

1600 1.00e-3 5.10e-3

Table 2. Example 6: approximate L1 errors eM (u) with ∆x = 2/M .

density for the first case G(t) = αV at two different simulated times. We can see
that in this case a free-flow regime is produced, which is verified in Figure 8 (a).
In Figure 9 we display the profiles for each class and total density for the second
case G(t) = 0 at two different simulated times. In contrast to the previous cases, a
congested flow regime is produced, as is illustrated in Figure 8 (b).

4.6. Example 6: multiclass case (N = 5), smooth initial condition. In this
example we consider N = 5, the velocities vmax = (1, 2, 3, 4, 5)T, and the initial
condition

Φ(x, 0) = Φ0(x) = (0.15, 0.2, 0.3, 0.2, 0.15)Tψ(x), ψ(x) = exp
(
−50(x+ 2)2/3

)
.

We display in Figure 10 numerical approximation computed with M = 1600 at
simulation times T = 0.02 and T = 0.12. We observe the dynamics of each indi-
vidual densities φi and the total density φ, which exhibits a shock wave due to the
discontinuity in the flux. This behaviour is similar to that presented in Figure 4. In
Figure 11 we display the evolution of φ∆(·, t) for t ∈ [0, 0.12], and we compare the
solution with the approximation of the continuous problem (where αV = 0). For
the discontinuous case the shock is more clearly observed than in the continuous
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Figure 10. Example 6: numerical solutions obtained with BCOV
scheme with N = 5 and M = 1600 at simulated times (a) T = 0.02,
(b) T = 0.12.
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Figure 11. Example 6: simulated total density obtained with
BCOV scheme with N = 5 and M = 1600: (a) discontinuous
problem, (b) continuous problem.

case. In Figures 12 and 13 we compare the numerical approximation computed
with M = 100, with a reference solution at simulated times T = 0.02 and T = 0.12.
In Table 2 we compute the approximate L1 error based on a reference solution ob-
tained by the BCOV scheme with Mref = 12800. We observe that the approximate
L1 errors decrease as the grid is refined.

4.7. Example 7: multiclass case (N = 5), bimodal smooth initial condi-
tion. In this example we considerN = 5, the velocity vector vmax = (1, 1.5, 2, 6, 7)T,
and the initial condition

Φ(x, 0) = Φ0(x) = (0.17, 0.17, 0.16, 0, 0)Tψ1(x) + (0, 0, 0, 0.245, 0.245)Tψ2(x),
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Figure 12. Example 6: comparison of reference solution (Mref =
12800) with approximate solutions computed by BCOV scheme
with M = 100 at simulated time T = 0.02.

T = 0.1 T = 0.2 T = 0.3

M eM (φ∆) eM (φ∆) eM (φ∆)
100 7.42e-2 9.50e-2 1.06e-1
200 4.12e-2 5.50e-2 6.49e-2
400 2.27e-2 3.34e-2 3.88e-2
800 1.24e-2 1.97-2 2.35e-2

1600 6.50e-3 1.10e-2 1.35e-2

Table 3. Example 7: Approximate L1 errors eM (u) with ∆x = 5/M .

where we define

ψ1(x) := exp
(
−10(x− 2)2

)
, ψ2(x) := exp

(
−50(x− 1)2/4

)
for x ∈ [0, 5]. We compute numerical approximation at simulated times T = 0.1,
T = 0.2 and T = 0.3 with different discretizations by using M = 100 × 2l and
l = 0, 1, . . . , 4. In Table 3 we compute the L1 error comparing with respect to a
reference solution computed by the BCOV scheme with Mref = 12800. We observe
that the approximate L1 errors decrease as the grid is refined. Figure 14 shows
results for M = Mref = 12800. The numerical results of Figure 14 indicate that
jumps in the total density φ only occur from smaller to higher values in an increasing
x-direction. This phenomenon occurs because the speeds of the last two classes are
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Figure 13. Example 6: comparison of reference solution (Mref =
12800) with approximate solutions computed by BCOV scheme
with M = 100 at simulated time T = 0.12.
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Figure 14. Example 7: numerical solution computed with BCOV
scheme with N = 5 and M = 12800 at simulated times (a) T = 0.1,
(b) T = 0.2 and (c) T = 0.3.

greater than the first three. Furthermore, in Figure 15 we show the simulated total
density computed by the BCOV scheme with N = 5 and M = 1600.

5. Conclusions. We have proposed a numerical scheme for an MCLWR model
with a velocity function that is discontinuous in the solution variable. The treatment
is motivated and in part based on the numerical scheme proposed by Towers [29].
However, in contrast to that approach we assume that the discontinuity is present in
the velocity function (not in the flux); this observation makes it possible to construct
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Figure 15. Example 7: simulated total density computed with
BCOV scheme with N = 5 and M = 1600.

an alternative scheme based on Scheme 4 of [6]. Furthermore, we have seen that
our scheme can easily be extended to the multiclass case. We have proved for the
scalar case that the numerical approximations convergence to a weak solution and
for the multiclass case that the scheme preserves an invariant region. Examples 1
to 3 indicate that the scheme converges to the same weak solution as that of [29],
and all numerical examples indicate that our scheme converges in both the scalar
and multiclass cases.

The present analysis and numerical method can be extended in several directions.
Concerning the model itself, at the moment a certain shortcoming is the limitation
to the initial-boundary value problem on a fixed road segment. This is due to the
particular boundary condition (1.5). It seems desirable to obtain a formulation for
a closed road with periodic boundary conditions (a configuration that is commonly
studied in traffic modeling to analyze, say, the formation of stop-and-go waves; cf.,
e.g., [5,11]). However, it is not obvious whether the way the boundary condition is
posed allows “gluing together” the ends of the computational domain to create a
“seamless” closed circuit. Open issues also include the incorporation of discontinu-
ities in spatial position (akin to the treatment in [9]), and the discussion of the notion
of entropicity. In fact, the issue of convergence to an entropy solution is an open
problem even in the scalar case for both the scheme advanced in [29] as well as the
present approach. Likewise, we recall that for general N the MCLWR model with a
Lipschitz continuous function V admits a separable entropy function (see [1,2]) that
can be utilized, for instance, to construct entropy stable schemes [10]. It remains to
be explored whether these concepts are meaningful for the MCLWR model with a
discontinuous velocity function V . Finally, it is clear that the numerical method is
formally first-order accurate and can possibly improved by known techniques (e.g.,
weighted essentially non-oscillatory (WENO) reconstructions in combination with
higher-order time integrators).
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