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Abstract. We discuss the complete synchronization for a Kuramoto-like model

for power grids with frustration. For identical oscillators without frustration,
it will converge to complete phase and frequency synchronization exponentially

fast if the initial phases are distributed in a half circle. For nonidentical oscil-

lators with frustration, we present a framework leading to complete frequency
synchronization where the initial phase configurations are located inside the

half of a circle. Our estimates are based on the monotonicity arguments of
extremal phase and frequency.

1. Introduction. Synchronization in complex networks has been a focus of interest
for researchers from different disciplines[1, 2, 4, 8, 15]. In this paper, we investi-
gate synchronous phenomena in an ensemble of Kuramoto-like oscillators which is
regarded as a model for power grid. In [9], a mathematical model for power grid is
given by

P isource = Iθ̈iθ̇i +KD(θ̇i)
2 −

N∑
l=1

ail sin(θl − θi), i = 1, 2, . . . , N, (1)

where P isource > 0 is power source (the energy feeding rate) of the ith node, I ≥ 0
is the moment of inertia, KD > 0 is the ratio between the dissipated energy by
the turbine and the square of the angular velocity, and ail > 0 is the maximum
transmitted power between the ith and lth nodes. The phase angle θi of ith node
is given by θi(t) = Ωt+ θ̃i(t) with a standard frequency Ω (50 or 60 Hz) and small

deviations θ̃i(t). Power plants in a big connected network should be synchronized
to the same frequency. If loads are too strong and unevenly distributed or if some
major fault or a lightening occurs, an oscillator (power plant) may lose synchro-
nization. In that situation the synchronization landscape may change drastically
and a blackout may occur. The transient stability of power grids can be regarded
as a synchronization problem for nonstationary generator rotor angles aiming to
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restore synchronism subject to local excitations. Therefore, the region of attraction
of synchronized states is a central problem for the transient stability.

By denoting ωi =
P isource
KD

and assuming ail
KD

= K
N (∀i, l ∈ {1, 2, . . . , N}) and I = 0

in (1), Choi et. al derived a Kuramoto-like model for the power grid as follows [5]:

(θ̇i)
2 = ωi +

K

N

N∑
l=1

sin(θl − θi), θ̇i > 0, i = 1, 2, . . . , N. (2)

Here, the setting θ̇i > 0 was made in accordance to the observation in system (1)
that the grid is operating at a frequency close to the standard frequency with small
deviations. In order to ensure that the right-hand side of (2) is positive, it is reason-
able to assume that ωi > K, i = 1, 2, . . . , N . This model can be used to understand
the emergence of synchronization in networks of oscillators. As far as the authors
know, there are few analytical results. In [5], the authors considered this model
with identical natural frequencies and prove that complete phase synchronization
occurs if the initial phases are distributed inside an arc with geodesic length less
than π/2.

If (θ̇i)
2 in (2) is replaced by θ̇i, the model is the famous Kuramoto model [13]; for

its synchronization analysis we refer to [3, 6, 10], etc. Sakaguchi and Kuramoto [16]
proposed a variant of the Kuramoto model to describe richer dynamical phenomena
by introducing a phase shift (frustration) in the coupling function, i.e., by replacing
sin(θl − θi) with sin(θl − θi + α). They inferred the need of α from the empirical
fact that a pair of oscillators coupled strongly begin to oscillate with a common
frequency deviating from the simple average of their natural frequencies. Some
physicists also realized via many experiments that the emergence of the phase shift
term requires larger coupling strength K and longer relaxation time to exhibit
mutual synchronization compared to the zero phase shift case. This is why we
call the phase shift a frustration. The effect of frustration has been intensively
studied, for example, [11, 12, 14]. In power grid model using Kuramoto oscillators,
people use the phase shift to depict the energy loss due to the transfer conductance
[7]. In this paper, we will incorporate the phase shift term in (2) and study the
Kuramoto-like model with frustration α ∈ (−π4 ,

π
4 ):

(θ̇i)
2 = ωi +

K

N

N∑
l=1

sin(θl − θi + α), θ̇i > 0, i = 1, 2, . . . , N. (3)

We will find a trapping region such that any nonstationary state located in this
region will evolve to a synchronous state.

The contributions of this paper are twofold: First, for identical oscillators without
frustration, we show that the initial phase configurations located in the half circle
will converge to complete phase and frequency synchronization. This extends the
analytical results in [5] in which the initial phase configuration for synchronization
needs to be confined in a quarter of circle. Second, we consider the nonidentical
oscillators with frustration and present a framework leading to the boundness of
the phase diameter and complete frequency synchronization. To the best of our
knowledge, this is the first result for the synchronization of (3) with nonidentical
oscillators and frustration.

The rest of this paper is organized as follows. In Section 2, we recall the defi-
nitions for synchronization and summarize our main results. In Section 3, we give
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synchronization analysis and prove the main results. Finally, Section 4 is devoted
to a concluding summary.

Notations. We use the following simplified notations throughout this paper:

νi := θ̇i, i = 1, 2, . . . , N, ω := (ω1, ω2, . . . , ωN ),

ω̄ := max
1≤i≤N

ωi, ω := min
1≤i≤N

ωi, D(ω) := ω̄ − ω,

θM := max
1≤i≤N

θi, θm := min
1≤i≤N

θi, D(θ) := θM − θm,

νM := max
1≤i≤N

νi, νm := min
1≤i≤N

νi, D(ν) := νM − νm,

θνM ∈ {θj |νj = νM}, θνm ∈ {θj |νj = νm}.

2. Preliminaries. In this paper, we consider the system

(θ̇i)
2 = ωi +

K

N

N∑
l=1

sin(θl − θi + α), θ̇i > 0, α ∈ (−π
4
,
π

4
),

θi(0) = θ0
i , i = 1, 2, . . . , N.

(4)

Next we introduce the concepts of complete synchronization and conclude this in-
troductory section with the main result of this paper.

Definition 2.1. Let θ := (θ1, θ2, . . . , θN ) be a dynamical solution to the system
(4). We say

1. it exhibits asymptotically complete phase synchronization if

lim
t→∞

(θi(t)− θj(t)) = 0, ∀i 6= j.

2. it exhibits asymptotically complete frequency synchronization if

lim
t→∞

(θ̇i(t)− θ̇j(t)) = 0, ∀i 6= j.

For identical oscillators without frustration, we have the following result.

Theorem 2.2. Let θ := (θ1, θ2, . . . , θN ) be a solution to the coupled system (4) with
α = 0, ωi = ω0, i = 1, 2, . . . , N and ω0 > K. If the initial configuration

θ0 ∈ A := {θ ∈ [0, 2π)N : D(θ) < π},

then there exits λ1, λ2 > 0 and t0 > 0 such that

D(θ(t)) ≤ D(θ0)e−λ1t, t ≥ 0. (5)

and

D(ν(t)) ≤ D(ν(t0))e−λ2(t−t0), t ≥ t0. (6)

Next we introduce the main result for nonidentical oscillators with frustration.
For ω̄ < 1

2 sin2 |α| , we set

Kc :=
D(ω)

√
2ω̄

1−
√

2ω̄ sin |α|
> 0.

For suitable parameters, we denote by D∞1 and D∞∗ the two angles as follows:

sinD∞1 = sinD∞∗ :=

√
ω̄ +K(D(ω) +K sin |α|)

K
√
ω −K

, 0 < D∞1 <
π

2
< D∞∗ < π.
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Theorem 2.3. Let θ := (θ1, θ2, . . . , θN ) be a solution to the coupled system (4) with

K > Kc and [ω, ω̄] ⊂
[
K + 1, 1

2 sin2 |α|

)
. If

θ0 ∈ B := {θ ∈ [0, 2π)N | D(θ) < D∞∗ − |α|},
then for any small ε > 0 with D∞1 + ε < π

2 , there exists λ3 > 0 and T > 0 such that

D(ν(t)) ≤ D(ν(T ))e−λ3(t−T ), t ≥ T. (7)

Remark 1. If the parametric conditions in Theorem 2.3 are fulfilled, the reference
angles D∞1 and D∞∗ are well-defined. Indeed, because K > Kc and ω̄ < 1

2 sin2 |α| ,

we have
D(ω)

√
2ω̄

1−
√

2ω̄ sin |α|
< K, 1−

√
2ω̄ sin |α| > 0.

This implies √
2ω̄(D(ω) +K sin |α|)

K
< 1.

Then, by ω ≥ K + 1 and K ≤ ω̄ we obtain

sinD∞1 = sinD∞∗ :=

√
ω̄ +K(D(ω) +K sin |α|)

K
√
ω −K

≤
√

2ω̄(D(ω) +K sin |α|)
K

< 1.

Remark 2. In order to make 1 < K + 1 < 1
2 sin2 |α| , it is necessary to assume

α ∈
(
−π4 ,

π
4

)
. This is the reason for the setting α ∈

(
−π4 ,

π
4

)
.

3. Synchronization analysis.

3.1. Synchronization estimates: Identical oscillators without frustration.
In this subsection we consider the system (4) with identical natural frequencies and
zero frustration:

(θ̇i)
2 = ω0 +

K

N

N∑
l=1

sin(θl − θi), θ̇i > 0, i = 1, 2, . . . , N. (8)

To obtain the complete synchronization, we need to derive a trapping region. We
start with two elementary estimates for the transient frequencies.

Lemma 3.1. Suppose θ := (θ1, θ2, . . . , θN ) be a solution to the coupled system (8),
then for any i, j ∈ {1, 2, . . . , N}, we have

(θ̇i − θ̇j)(θ̇i + θ̇j) =
2K

N

N∑
l=1

cos(θl −
θi + θj

2
) sin

θj − θi
2

.

Proof. It is immediately obtained by (8).

Lemma 3.2. Suppose θ := (θ1, θ2, . . . , θN ) be a solution to the coupled system (8)
and Ω > K, then we have

θ̇i ≤
√
ω0 +K.

Proof. It follows from (8) and θ̇i > 0 that we have

(θ̇i)
2 = ω0 +

K

N

N∑
l=1

sin(θl − θi) ≤ ω0 +K.
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Next we give an estimate for trapping region and prove Theorem 2.2. For this
aim, we will use the time derivative of D(θ(t)) and D(ν(t)). Note that D(θ(t))
is Lipschitz continuous and differentiable except at times of collision between the
extremal phases and their neighboring phases. Therefore, for the collision time t
at which D(θ(t)) is not differentiable, we can use the so-called Dini derivative to
replace the classic derivative. In this manner, we can proceed the analysis with
differential inequality for D(θ(t)). For D(ν(t)) we can proceed in the similar way.
In the following context, we will always use the notation of classic derivative for
D(θ(t)) and D(ν(t)).

Lemma 3.3. Let θ := (θ1, θ2, . . . , θN ) be a solution to the coupled system (8) and
Ω > K. If the initial configuration θ(0) ∈ A, then θ(t) ∈ A, t ≥ 0.

Proof. For any θ0 ∈ A, there exists D∞ ∈ (0, π) such that D(θ0) < D∞. Let

T :=
{
T ∈ [0,+∞)

∣∣∣D(θ(t)) < D∞, ∀ t ∈ [0, T )
}
.

Since D(θ0) < D∞, and D(θ(t)) is a continuous function of t, there exists η > 0
such that

D(θ(t)) < D∞, t ∈ [0, η).

Therefore, the set T is not empty. Let T ∗ := sup T . We claim that

T ∗ =∞. (9)

Suppose to the contrary that T ∗ < ∞. Then from the continuity of D(θ(t)), we
have

D(θ(t)) < D∞, t ∈ [0, T ∗), D(θ(T ∗)) = D∞.

We use Lemma 3.1 and Lemma 3.2 to obtain

1

2

d

dt
D(θ(t))2 = D(θ(t))

d

dt
D(θ(t)) = (θM − θm)

(
θ̇M − θ̇m

)
= (θM − θm)

1

θ̇M + θ̇m

2K

N

N∑
l=1

cos

(
θl −

θM + θm
2

)
sin

(
θm − θM

2

)

≤ (θM − θm)
1

θ̇M + θ̇m

2K

N

N∑
l=1

cos
D∞

2
sin

(
θm − θM

2

)

≤ (θM − θm)
1√

ω0 +K

K

N

N∑
l=1

cos
D∞

2
sin

(
θm − θM

2

)

= −
2K cos D

∞

2√
ω0 +K

D(θ)

2
sin

D(θ)

2

≤ −
K cos D

∞

2

π
√
ω0 +K

D(θ)2, t ∈ [0, T ∗).

Here we used the relations

−D
∞

2
< −D(θ)

2
≤ θl − θM

2
≤ 0 ≤ θl − θm

2
≤ D(θ)

2
<
D∞

2

and

x sinx ≥ 2

π
x2, x ∈

[
−π

2
,
π

2

]
.



548 XIAOXUE ZHAO AND ZHUCHUN LI

Therefore, we have

d

dt
D(θ) ≤ −

K cos D
∞

2

π
√
ω0 +K

D(θ), t ∈ [0, T ∗), (10)

which implies that

D(θ(T ∗)) ≤ D(θ0)e
−
K cos D

∞
2

π
√
ω0+K

T∗

< D(θ0) < D∞.

This is contradictory to D(θ(T ∗)) = D∞. The claim (9) is proved, which yields the
desired result.

Now we can give a proof for Theorem 2.2.

Proof of Theorem 2.2. According to Lemma 3.3, we substitute T ∗ = ∞ into (10),

then (5) is proved with λ1 =
K cos D

∞
2

π
√
ω0+K

.

On the other hand, by (5) there exist t0 and δ(0 < δ < π
2 ) such that D(θ(t)) ≤ δ

for t ≥ t0. Now we differentiate (8) to find

ν̇i =
K

2Nνi

N∑
l=1

cos(θl − θi)(νl − νi).

Using Lemma 3.2, we now consider the temporal evolution of D(ν(t)):

d

dt
D(ν) = ν̇M − ν̇m

=
K

2NνM

N∑
l=1

cos(θl − θνM )(νl − νM )− K

2Nνm

N∑
l=1

cos(θl − θνm)(νl − νm)

≤ K cos δ

2NνM

N∑
l=1

(νl − νM )− K cos δ

2Nνm

N∑
l=1

(νl − νm)

≤ K

2N

cos δ√
ω0 +K

N∑
l=1

(νl − νM )− K

2N

cos δ√
ω0 +K

N∑
l=1

(νl − νm)

=
K cos δ

2N
√
ω0 +K

N∑
l=1

(νl − νM − νl + νm)

= − K cos δ

2
√
ω0 +K

D(ν), t ≥ t0.

This implies that

D(ν(t)) ≤ D(ν(t0))e
− K cos δ

2
√
ω0+K

(t−t0)
, t ≥ t0,

and proves (6) with λ2 = K cos δ
2
√
ω0+K

.

Remark 3. Theorem 2.2 shows, as long as the initial phases are confined inside an
arc with geodesic length strictly less than π, complete phase synchronization occurs
exponentially fast. This extends the main result in [5] where the initial phases for
synchronization need to be confined in an arc with geodesic length less than π/2.
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3.2. Synchronization estimates: Nonidentical oscillators with frustration.
In this subsection, we prove the main result for nonidentical oscillators with frus-
tration.

Lemma 3.4. Let θ := (θ1, θ2, . . . , θN ) be a solution to the coupled system (4), then
for any i, j ∈ {1, 2, . . . , N}, we have

(θ̇i − θ̇j)(θ̇i + θ̇j) ≤ D(ω) +
K

N

N∑
l=1

[sin(θl − θi + α)− sin(θl − θj + α)] .

Proof. By (4) and for any i, j ∈ {1, 2, . . . , N}

(θ̇i − θ̇j)(θ̇i + θ̇j) = (θ̇i)
2 − (θ̇j)

2,

the result is immediately obtained.

Lemma 3.5. Let θ := (θ1, θ2, . . . , θN ) be a solution to the coupled system (4) and
ω ≥ K + 1, then we have

θ̇i ∈
[√

ω −K,
√
ω̄ +K

]
, ∀i = 1, 2, . . . , N.

Proof. From (4), we have

ω −K ≤ (θ̇i)
2 ≤ ω̄ +K, ∀i = 1, 2, . . . , N,

and also because θ̇i > 0.

The following lemma gives a trapping region for nonidentical oscillators.

Lemma 3.6. Let θ := (θ1, θ2, . . . , θN ) be a solution to the coupled system (4) with
K > Kc and [ω, ω̄] ⊂ [K + 1, 1

2 sin2 |α| ). If the initial configuration θ0 ∈ B, then

θ(t) ∈ B for t ≥ 0.

Proof. We define the set T and its supremum:

T :=
{
T ∈ [0,+∞)

∣∣∣D(θ(t)) < D∞∗ − |α|, ∀ t ∈ [0, T )
}
, T ∗ := sup T .

Since θ0 ∈ B, and note that D(θ(t)) is a continuous function of t, we see that the
set T is not empty and T ∗ is well-defined. We now claim that

T ∗ =∞.

Suppose to the contrary that T ∗ < ∞. Then from the continuity of D(θ(t)), we
have

D(θ(t)) < D∞∗ − |α|, t ∈ [0, T ∗), D(θ(T ∗)) = D∞∗ − |α|.

We use Lemma 3.4 to obtain

1

2

d

dt
D(θ)2 = D(θ)

d

dt
D(θ) = D(θ)

(
θ̇M − θ̇m

)
≤D(θ)

1

θ̇M + θ̇m

[
D(ω) +

K

N

N∑
l=1

(sin(θl − θM + α)− sin(θl − θm + α))

]
︸ ︷︷ ︸

I

.
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For I, we have

I = D(ω) +
K cosα

N

N∑
l=1

[sin(θl − θM )− sin(θl − θm)]

+
K sinα

N

N∑
l=1

[cos(θl − θM )− cos(θl − θm)] .

We now consider two cases according to the sign of α.
(1) α ∈ [0, π4 ). In this case, we have

I ≤ D(ω) +
K cosα sinD(θ)

ND(θ)

N∑
l=1

[(θl − θM )− (θl − θm)]

+
K sinα

N

N∑
l=1

[1− cosD(θ)]

= D(ω)−K [sin(D(θ) + α)− sinα]

= D(ω)−K [sin(D(θ) + |α|)− sin |α|] .

(2) α ∈ (−π4 , 0). In this case, we have

I ≤ D(ω) +
K cosα sinD(θ)

ND(θ)

N∑
l=1

[(θl − θM )− (θl − θm)]

+
K sinα

N

N∑
l=1

[cosD(θ)− 1]

= D(ω)−K [sin(D(θ)− α) + sinα]

= D(ω)−K [sin(D(θ) + |α|)− sin |α|] .
Here we used the relations

sin(θl − θM )

θl − θM
,

sin(θl − θm)

θl − θm
≥ sinD(θ)

D(θ)
,

and
cosD(θ) ≤ cos(θl − θM ), cos(θl − θm) ≤ 1, l = 1, 2, . . . , N.

Since D(θ(t)) + |α| < D∞∗ < π for t ∈ [0, T ∗), we obtain

I ≤ D(ω)−K [sin(D(θ) + |α|)− sin |α|] (11)

≤ D(ω) +K sin |α| −K sinD∞∗
D∞∗

(D(θ) + |α|). (12)

By (12) and Lemma 3.5 we have

1

2

d

dt
D(θ)2

≤ D(θ)
1

θ̇M + θ̇m

(
D(ω) +K sin |α| −K sinD∞∗

D∞∗
(D(θ) + |α|)

)
=
D(ω) +K sin |α|

θ̇M + θ̇m
D(θ)− K sinD∞∗

D∞∗ (θ̇M + θ̇m)
D(θ)(D(θ) + |α|)

≤ D(ω) +K sin |α|
2
√
ω −K

D(θ)− K sinD∞∗
D∞∗ 2

√
ω̄ +K

D(θ)(D(θ) + |α|), t ∈ [0, T ∗).
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Then we obtain

d

dt
D(θ) ≤ D(ω) +K sin |α|

2
√
ω −K

− K sinD∞∗
2D∞∗

√
ω̄ +K

(D(θ) + |α|), t ∈ [0, T ∗),

i.e.,

d

dt
(D(θ) + |α|) ≤ D(ω) +K sin |α|

2
√
ω −K

− K sinD∞∗
2D∞∗

√
ω̄ +K

(D(θ) + |α|)

=
K sinD∞∗
2
√
ω̄ +K

− K sinD∞∗
2D∞∗

√
ω̄ +K

(D(θ) + |α|), t ∈ [0, T ∗).

Here we used the definition of sinD∞∗ . By Gronwall’s inequality, we obtain

D(θ(t)) + |α| ≤ D∞∗ + (D(θ0) + |α| −D∞∗ )e
− K sinD∞∗

2D∞∗
√
ω̄+K

t
, t ∈ [0, T ∗),

Thus

D(θ(t)) ≤ (D(θ0) + |α| −D∞∗ )e
− K sinD∞∗

2D∞∗
√
ω̄+K

t
+D∞∗ − |α|, t ∈ [0, T ∗).

Let t→ T ∗− and we have

D(θ(T ∗)) ≤ (D(θ0) + |α| −D∞∗ )e
− K sinD∞∗

2D∞∗
√
ω̄+K

T∗

+D∞∗ − |α| < D∞∗ − |α|,

which is contradictory to D(θ(T ∗)) = D∞∗ − |α|. Therefore, we have

T ∗ =∞.

That is,

D(θ(t)) ≤ D∞∗ − |α|, ∀ t ≥ 0.

Lemma 3.7. Let θ := (θ1, θ2, . . . , θN ) be a solution to the coupled system (4) with
K > Kc and [ω, ω̄] ⊂ [K + 1, 1

2 sin2 |α| ). If the initial configuration θ(0) ∈ B, then

d

dt
D(θ(t)) ≤ D(ω) +K sin |α|

2
√
ω −K

− K

2
√
ω̄ +K

sin(D(θ) + |α|), t ≥ 0.

Proof. It follows from (11) and Lemma 3.5, Lemma 3.6 and that we have

1

2

d

dt
D(θ)2 = D(θ)

d

dt
D(θ)

≤ D(θ)
1

θ̇M + θ̇m
[D(ω)−K (sin(D(θ) + |α|)− sin |α|)]

=
D(ω) +K sin |α|

θ̇M + θ̇m
D(θ)− K sin(D(θ) + |α|)

θ̇M + θ̇m
D(θ)

≤ D(ω) +K sin |α|
2
√
ω −K

D(θ)− K sin(D(θ) + |α|)
2
√
ω̄ +K

D(θ), t ≥ 0.

The proof is completed.

Lemma 3.8. Let θ := (θ1, θ2, . . . , θN ) be a solution to the coupled system (4) with
K > Kc and [ω, ω̄] ⊂ [K + 1, 1

2 sin2 |α| ). If the initial configuration θ(0) ∈ B, then

for any small ε > 0 with D∞1 + ε < π
2 , there exists some time T > 0 such that

D(θ(t)) < D∞1 − |α|+ ε, t ≥ T.
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Proof. Consider the ordinary differential equation:

ẏ =
D(ω) +K sin |α|

2
√
ω −K

− K

2
√
ω̄ +K

sin y, y(0) = y0 ∈ [0, D∞∗ ). (13)

It is easy to find that y∗ = D∞1 is a locally stable equilibrium of (13), while y∗∗ =
D∞∗ is unstable. Therefore, for any initial data y0 with 0 < y0 < D∞∗ , the trajectory
y(t) monotonically approaches y∗. Then, for any ε > 0 with D∞1 + ε < π

2 , there
exists some time T > 0 such that

|y(t)− y∗| < ε, t ≥ T.
In particular, y(t) < y∗ + ε for t ≥ T. By Lemma 3.7 and the comparison principle,
we have

D(θ(t)) + |α| < D∞1 + ε, t ≥ T,
which is the desired result.

Remark 4. Since

sinD∞1 ≥
D(ω)

K
+ sin |α| > sin |α|,

we have D∞1 > |α|.

Proof of Theorem 2.3. It follows from Lemma 3.8 that for any small ε > 0, there
exists some time T > 0 such that

sup
t≥T

D(θ(t)) < D∞1 − |α|+ ε <
π

2
.

We differentiate the equation (4) to find

ν̇i =
K

2Nνi

N∑
l=1

cos(θl − θi + α)(νl − νi), νi > 0.

We now consider the temporal evolution of D(ν(t)):

d

dt
D(ν) = ν̇M − ν̇m

=
K

2NνM

N∑
l=1

cos(θl − θνM + α)(νl − νM )− K

2Nνm

N∑
l=1

cos(θl − θνm + α)(νl − νm)

≤ K

2NνM

N∑
l=1

cos(D∞1 + ε)(νl − νM )− K

2Nνm

N∑
l=1

cos(D∞1 + ε)(νl − νm)

≤K cos(D∞1 + ε)

2N
√
ω̄ +K

N∑
l=1

(νl − νM − νl + νm)

=− K cos(D∞1 + ε)

2
√
ω̄ +K

D(ν), t ≥ T,

where we used

cos(θl − θνM + α), cos(θl − θνm + α) ≥ cos(D∞1 + ε), and νM , νm ≤
√
ω̄ +K.

Thus we obtain

D(ν(t)) ≤ D(ν(T ))e
−K cos(D∞1 +ε)

2
√
ω̄+K

(t−T )
, t ≥ T,

and proves (7) with λ3 =
K cos(D∞1 +ε)

2
√
ω̄+K

.
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4. Conclusions. In this paper, we presented synchronization estimates for the
Kuramoto-like model. We show that for identical oscillators with zero frustration,
complete phase synchronization occurs exponentially fast if the initial phases are
confined inside an arc with geodesic length strictly less than π. For nonidentical
oscillators with frustration, we present a framework to guarantee the emergence of
frequency synchronization.
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