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Abstract. Unlike the classical kinetic theory of rarefied gases, where micro-

scopic interactions among gas molecules are described as binary collisions, the

modelling of socio-economic phenomena in a multi-agent system naturally re-
quires to consider, in various situations, multiple interactions among the in-

dividuals. In this paper, we collect and discuss some examples related to

economic and gambling activities. In particular, we focus on a linearisation
strategy of the multiple interactions, which greatly simplifies the kinetic de-

scription of such systems while maintaining all their essential aggregate fea-

tures, including the equilibrium distributions.

1. Introduction. Unlike the classical kinetic theory of rarefied gases, where bi-
nary collisions are dominant, socio-economic phenomena are often characterised by
simultaneous interactions among a large number N � 1 of individuals, which lead
to highly non-linear Boltzmann-type equations for the evolution of the distribution
function of the agents. The study of Boltzmann-type equations in presence of mul-
tiple interactions is quite recent. The theoretical approach to generalised Maxwell
models with multiple interactions has been studied in [4] by resorting to the Fourier-
transformed version of the kinetic equation, like in the case of the classical binary
Maxwell-type interactions. In that paper, existence and uniqueness of solutions to
the initial value problem were studied together with the large time behaviour, both
in the case of convergence to a stationary state or of convergence to a self-similar
solution.

The prototype of the kinetic models considered in [4] may be briefly described
as follows. Given a certain number N � 1 of identical particles with pre-collisional
state V = (v1, v2, . . . , vN ), the N -particle interaction is understood as a random
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linear transformation of V into the post-collisional state V ∗ = (v∗1 , v
∗
2 , . . . , v

∗
N ),

where

v∗i = avi + b

N∑
j=1

vj i = 1, . . . , N, (1)

and the parameters a, b ∈ R may be fixed or randomly distributed with a certain
number of moments bounded. The transformation (1) is nothing but a generalisa-
tion of a binary collision, which is recovered in the particular case N = 2. Denoting
by f = f(v, t) the density of particles with state v ∈ R at time t ≥ 0, and pos-
tulating the validity of molecular chaos, the evolution of any observable quantity
ϕ, i.e. any quantity which may be expressed as a function of v, is given by the
Boltzmann-type equation

d

dt

∫
R
ϕ(v)f(v, t) dv =

1

τN

∫
RN

N∑
i=1

〈ϕ(v∗i )− ϕ(vi)〉
N∏
j=1

f(vj , t) dv1 . . . dvN , (2)

where τ denotes a relaxation time and 〈·〉 is the average with respect to the distribu-
tions of the random parameters a, b contained in (1). The collision integral on the
right-hand side of (2) takes into account the whole set of microscopic states, conse-
quently it depends on the N -product of the density functions f(v1, t) · . . . ·f(vN , t).
Thus, the evolution of f obeys a highly non-linear Boltzmann-type equation. On
the other hand, the collision integral features a constant collision kernel, chosen
equal to 1 without loss of generality. This corresponds, in the jargon of the classical
kinetic theory, to consider Maxwellian interactions.

Remarkably, in [4] the main suggested application of (2) is in an economic con-
text. Specifically, the interacting particles are considered as a community of agents
participating in various economical trades and V is the vector of their non-negative
wealth. The post-collisional state V ∗ gives the new wealth of the community of
agents after a single economic trade. Unlike the classical interpretation of V as a
vector of velocities, which are defined on the whole space R, in economic applica-
tions each vi takes values in R+, thus the domain of integration in (2) has to be
changed accordingly.

A further important fact noticed in [4] is that, under the additional assump-
tion of a very large number of interacting agents (N → ∞), the economic game
described by (1) may be suitably linearised and the Boltzmann-type equation (2)
becomes linear as well. Taking advantage of such a linearisation strategy, a par-
ticular application to economy of the multiple-interaction kinetic setting has then
been studied in detail in [5]. There, a linearised model of a multiple-trading activity
is derived in the limit of a large number of traders, whose behaviour reproduces,
among other properties, the formation of power-like tails in the wealth distribution
for large times.

More recently, the Maxwellian description introduced in [4] has been applied to
study the jackpot, an online lottery-type game which occupies a big portion of the
gambling market on the web [25]. The large number of gamblers taking part in each
round of the game allows one to treat them as a particular multi-agent economic
system reminiscent of the kinetic description given in [4]. In this case, the N -particle
interaction consists in a generalisation of (1):

v∗i = avi + bi

N∑
j=1

vj + cYi, i = 1, . . . , N. (3)
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Here, a = 1 − ε > 0 and c = εβ > 0 are fixed constants depending on a small
parameter 0 < ε � 1. Conversely, the bi’s are random parameters of the form
bi = ε(1−δ)I(A− i) with 0 < δ < 1 and I denoting a function which takes the value
1 if its argument vanishes and the value 0 otherwise. Finally, A ∈ {1, . . . , N} is a
discrete random variable giving the index of the gambler who wins in a particular
round. The quantity vi ≥ 0 in (3) represents the number of tickets, hence the
amount of money, put into the game by the ith gambler while v∗i is the new number
of tickets, i.e. the new amount of money, owned by the ith gambler after the draw
of the winning ticket. Two main differences with respect to (1) need to be stressed.
First, the post-collisional state V ∗ does not only depend on the pre-collisional state
V but also on Y = (Y1, Y2, . . . , YN ), where each Yi ≥ 0 is a random variable
describing the refilling of tickets by gamblers to compensate for possible losses.
Second, the random parameters bi depend on the gambler index i through the pre-
collisional state V . Owing to the definition of the random variable I(A − i), it is
easy to realise that, in each round, only one gambler will end up with the whole
amount of money put into the game in that round.

A third significant example of economic application of the multiple-interaction
setting comes from taxation and redistribution. In this case, the Boltzmann-type
equation (2) describes the evolution of the wealth density produced by trades in
which a percent amount of the invested wealth is taxed and simultaneously redis-
tributed among all the traders. Here, the multiple interaction takes the form

v∗i = aivi +

N∑
j=1

bjvj + cwi, i = 1, . . . , N,

with

ai = 1− (1 + α)λ− (1− α)ηi, bi =
α

N
(λ+ ηi).

Specifically, λ ∈ (0, 1] is the fixed percent amount of wealth that the ith agent
invests in the transaction, ηi ∈ R is a random variable modelling the intrinsic
risk of the transaction and α ∈ [0, 1] is the rate of taxation. Last, c = λ and
wi ≥ 0 is a random variable which quantifies the gain returned by the trade to the
ith trader. The main difference with respect to (1) is the presence of N different
random variables bi.

The previous examples share a common modelling feature: every interaction
involves a certain fixed number N of individuals, typically such that N > 2. Then
the nature of the interaction, including in particular the number of the involved
individuals, determines the properties of the large time equilibrium or self-similar
density, i.e. the analogous of the Maxwellian distribution in the classical kinetic
theory, which depicts the emerging aggregate characteristics of the system. In
general, it is difficult to extract precise information on f from the highly non-linear
kinetic equation (2). Nevertheless, in all the considered cases if the number of
interacting individuals is large enough then, in the limit N → ∞, a linearisation
of both the multiple interaction rule and the Boltzmann-type equation is possible,
which makes the problem more amenable to analytical investigation.

Remarkably, such an asymptotic regime, whose mathematical derivation is actu-
ally only formal, turns out to capture a quite detailed representation of the large
time trend of the solution to (2). In particular, numerical simulations of the “real”
N -particle interactions clearly indicate that the solution of the linearised kinetic
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model is in very good agreement with that of (2) even for a moderate number of
interacting agents, say N = O(102), cf. [25].

In the rest of the paper we will present the main results about the three aforemen-
tioned examples of economic games and their asymptotic linearisation. While the
first two examples, here summarised respectively in Sections 3, 4, may be found in
full detail in the original papers [5, 25], the third example is new and is exhaustively
discussed in Section 5. Numerical tests are finally presented in Section 6.

For the sake of completeness, we remark that related examples of linearisation of
economical interactions have been proposed in [23] in connection with the problem
of price formation in a multi-agent society in which agents interact by exchanging
two types of goods. The results in [23] have been subsequently generalised in [6]
to a society in which one has the simultaneous presence of two classes of agents:
dealers and speculators. Both classes adopt the same strategy, but speculators play
on quantities of goods to be exchanged to have a better return. However, in these
examples the density function depends on two variables, and it does not fall in the
description of [4].

2. Maxwell-type models in socio-economic problems. We start by sum-
marising the hallmarks of the application of the collisional kinetic theory to socio-
economic problems.

Let us consider a large community of agents, who aim to improve their wealth
condition by interacting with each other. As usual in the kinetic description, we
assume that the agents are indistinguishable [18]. This means that at any time
t ≥ 0 the state of a generic representative agent is completely characterised by their
wealth, which is expressed by the amount v ∈ R+ of owned money. Consequently,
the state of the community of agents can be described by a distribution function
f = f(v, t). The precise meaning of f is the following: given a sub-domain D ⊆ R+,
the quantity ∫

D

f(v, t) dv

is proportional to the number of individuals possessing a wealth v ∈ D at time
t ≥ 0. If one assumes the following normalisation condition:∫

R+

f(v, t) dv = 1,

then f may be conveniently understood as a probability density, hence
∫
D
f(v, t) dv

becomes the probability that at time t ≥ 0 the wealth of a representative agent of
the system belongs to D.

The time evolution of the density f is due to the fact that the community of agents
performs economical trades, which we also call games to stress the difference with
the classical collisions of gas particles. The games happen at regular or random
time intervals and involve, in general, a certain random number of agents, that
continuously upgrade their wealth at each new trade. In analogy with the classical
kinetic theory of rarefied gases, we refer to a single upgrade of the quantity v as
an interaction. In order to avoid additional difficulties, we may assume that the
number of agents involved in an interaction is actually fixed, say N � 1. Then, once
the details of the microscopic interaction have been prescribed, the evolution of the
density f obeys the Boltzmann-type equation (2), which is a generalisation of the
bilinear Boltzmann equation for Maxwell pseudo-molecules. As already mentioned
in the Introduction, Maxwell-type agents are such that their interaction kernel,
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which in essence models the frequency of the interactions, is constant. In particular,
it does not depend on the pre-interaction states of the agents.

An interesting motivation for the choice of a constant interaction kernel in socio-
economic applications is provided in [4]. Maxwell models satisfy the very strong
condition of scaling invariance, which implies that the time dynamics predicted by
the model are invariant under the transformation v → νv, where ν is a constant. In
the economic context, this property means that the agents do not change their way
of trading if they move to a new currency. Moreover, a constant interaction kernel
also translates the realistic idea that the various amounts of money put into the
game by different agents are uncorrelated. As we will see, the forthcoming examples
fit perfectly into this assumption.

From the mathematical point of view, the choice of a constant interaction kernel
has the further property that, by choosing ϕ(v) = e−iξv in (2), where i is the
imaginary unit and ξ ∈ R, and v∗i like in (1), one obtains a closed form for the
Fourier-transformed Boltzmann-type equation, which reads:

∂tf̂(ξ, t) =
1

Nτ

〈
f̂((A+B)ξ, t)f̂(Bξ, t)N−1

〉
− 1

τ
f̂(ξ, t),

where, as usual, f̂ denotes the Fourier transform of the distribution function f :

f̂(ξ, t) :=

∫
R+

f(v, t)e−iξv dv.

Note that for socio-economic problems, in which the microscopic state v takes only
non-negative values, one may also resort to the Laplace-transformed Boltzmann-
type equation by choosing ϕ(v) = e−sv in (2) with either s ∈ R or s ∈ C.

3. Economic trades with a large number of traders. In [5], the authors
study an interesting economic application of the general theory of Maxwell models
with multiple collisions discussed in [4]. They consider a community of individuals
participating in a collective trade subject to a certain number of clearly identified
conditions. In the original formulation, each trade involves a random number N ≥ 2
of randomly chosen traders. Here, for the sake of simplicity, we consider N � 1
fixed and we denote by vi ≥ 0, i = 1, . . . , N , the wealth of the ith trader before
the trade. The aforementioned conditions of the trade are the following:

1. the traders form a sum (total capital)

S :=

N∑
i=1

vi,

and proceed to trade it;
2. the new sum S∗ resulting from the trade is obtained by multiplying S by a

random number θ ≥ 0 distributed according to a given probability density
g : R+ → R+:

S∗ = θS =

N∑
i=1

v∗i ,

where v∗i := θvi for each i;
3. the sum S∗ is returned to the traders in accordance to the following rule:

given a fixed or random number γ ∈ (0, 1), the part S∗1 := (1 − γ)S∗ is split
among the traders proportionally to their initial contributions, whereas the
remaining part S∗2 := γS∗ is distributed among all the traders equally. Hence,
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the trade is completely defined in terms of the probability density g and the
parameter γ.

In [5], the qualitative analysis of the kinetic model resulting from these micro-
scopic rules is confined to the simple case in which the random number θ assumes
only two fixed values, in particular θ = 0, s > 0 with P(θ = 0) = q ∈ [0, 1] and
P(θ = s) = 1− q. Therefore, the distribution g takes the form

g(θ) = qδ(θ) + (1− q)δ(θ − s), (4)

where δ(θ) denotes the Dirac delta centred at θ = 0. Consequently, the outcome of
the game depends on the three positive parameters γ, s, q.

The trade just described is an example of the multiple interaction setting consid-
ered in [4]. Indeed, it can be equivalently reformulated as a linear transformation of
the pre-interaction wealth vector (v1, v2, . . . , vN ) into the post-interaction wealth
vector (v∗1 , v

∗
2 , . . . , v

∗
N ) as

v∗i =

0 with probability q

aNvi + bN
∑
j 6=i

vi with probability 1− q, i = 1, . . . , N, (5)

where the constant coefficients aN and bN are expressed through the parameters
N , γ, s as

aN :=

(
1− N − 1

N
γ

)
s, bN :=

γs

N
(N ≥ 2).

The economic interpretation of this toy model is the following. A group of N
agents produces some good to be sold in the market. The probability density g
models the market conditions. In particular, the two-value assumption (4) indicates
that the market is risky: there is a probability q to lose all the invested capital S
and a probability 1− q to sell the produced good at a price proportional to S with
proportionality coefficient s. Thus, s > 1 means that the trade produces a profit
while s < 1 means that part of the invested capital is lost. The two parameters
q, s in (4) completely define the market conditions. In addition to this, the trade
has also a social part: the amount of money S∗ possibly earned from the trade
is returned to the agents in accordance with certain rules tuned by the control
parameter 0 < γ < 1. In particular, the authors of [5] interpret γ as a taxation-
like parameter, considering that a fraction 1 − γ of the post-trade capital S∗ is
redistributed uniformly to the traders so as to mitigate excessive differences among
them.

Under some standard assumptions, the Boltzmann-type kinetic equation (2) re-
sulting from the interaction rules just described may be fruitfully written in Laplace-
transformed form as

∂tf̂(ξ, t) + f̂(ξ, t) = QN (f̂)(ξ, t) (6)

where, owing to (5),

QN (f̂)(ξ, t) = qf̂N (0, t) + (1− q)f̂(aNξ, t)f̂
N−1(bNξ, t), ξ ≥ 0

and f̂(ξ, t) denotes the Laplace transform of f(v, t):

f̂(ξ, t) :=

∫ +∞

0

f(v, t)e−ξv dv.
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As noticed in [4], the operator QN has a relatively simple asymptotics for large
N , indeed

f̂(0, t) =

∫ +∞

0

f(v, t) dv = 1 for all t ≥ 0,

f̂(aNξ, t)→ f̂
(
(1− γ)sξ, t

)
,

f̂N−1(bNξ, t) = f̂N−1
(γs
N
ξ, t
)
∼
(

1− α(t)γs

N
ξ

)N−1
→ e−α(t)γsξ,

where α(t) := −∂ξ f̂(0, t). Therefore, the asymptotic equation resulting from (6)
for N →∞ is

∂tf̂(ξ, t) + f̂(ξ, t) = q + (1− q)f̂
(
(1− γ)sξ, t

)
e−α(t)γsξ (7)

along with the boundary condition

f̂(0, t) = 1, t ≥ 0.

Differentiating (7) with respect to ξ and putting ξ = 0 further allows one to discover

α(t) = e((1−q)s−1)t,

which leads to the surprising fact that, in the limitN →∞, the Laplace-transformed
Boltzmann-type kinetic equation (2) becomes linear and can be treated analytically.

We refer the interested reader to [5] for details on the analysis (7), the role
of the parameter γ and the investigation of the possible formation of fat tails in
the equilibrium distribution for certain values of s and q. Here, we remark that,
in spite of its simplicity, this model exhibits a great variety of interesting trends,
which highlight once more the power and flexibility of the kinetic approach to the
study of multi-agent systems.

4. Online jackpot games. As documented in [26], the mathematical-physical
modelling of gambling activities and of their related socio-economic implications
has recently gained a considerable momentum, see also [27]. Typically, the goal is
to understand the aggregate behaviour of a system of gamblers, aiming ultimately
at adolescent gambling prevention and possibly also virtual gambling regulation.
In [26], the authors consider in particular the behaviour of online gamblers, that
they study first by extracting a large dataset from the publicly available history page
of a gambling website and then by resorting to methods of the statistical physics
for the interpretation of the collected data. One of the conclusions that they draw
is that the statistical distribution of the winnings exhibits, at equilibrium, a fat tail
like the typical wealth curves of standard economies.

From our point of view, the huge number of gamblers and the well-defined rules
of the game make it possible to treat the population of gamblers as a multi-agent
economic system, in which the individuals invest part of their personal wealth in the
hope to obtain a significant improvement of their economic condition. In particular,
each round of the game can be modelled as a multiple interaction among a certain,
possibly high, number N of gamblers, who participate simultaneously in the game.
In this way, resorting to kinetic equations of Boltzmann and Fokker-Planck type
under suitable linearisations for N large, cf. [25], we obtain a detailed interpreta-
tion of the datasets collected in [26]. Out of such a model-based assessment, we
discover for instance that, unlike a real economy, fat tails do not actually form in
the distribution of the jackpot winnings.
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Interestingly, some related problems have been studied before. For instance, the
presence of a site cut, i.e. a percentage withdrawn by the website manager from the
winnings, reminds of a dissipation effect, thereby suggesting that the time evolution
of the distribution function of the winnings may be described similarly to other well-
known dissipative kinetic models. We recall, in particular, the model of the Maxwell-
type granular gas studied in [12] or the model of the Pareto tail formation in self-
similar solutions of an economy undergoing recession [20]. Nevertheless, unlike [12,
20], where the dissipation of the energy and of the mean value, respectively, was
artificially restored by a suitable scaling of the variables, in this case the percentage
cut on each wager is actually refilled randomly through the persistent activity of
the gamblers. A second striking difference is the necessity to take into account a
high number of participants in the jackpot game. In [26], the authors conjecture
that the shape of the steady distribution of the winnings emerging from the jackpot
game does not change as the number of participants increases and, consequently,
that it is sufficient to describe the evolution of the winnings for a very small number
of gamblers (binary interactions in the limit). Nevertheless, as already anticipated,
this does not lead to a correct interpretation of the tail of the distribution, hence of
the type of economy underlying the jackpot game. Instead, by adopting a multiple-
interaction kinetic description inspired by [5], we explain that the game mechanism
does not actually give rise to a power-law-type steady distribution of the winnings
and therefore cannot be fully compared to a real economy.

4.1. Maxwell-type models. The rules of the jackpot game are quite simple: the
gamblers participating in a round of the game place a bet with a certain number
of lottery tickets. There is only one winning ticket in each round of the game,
which is uniformly drawn among all those played in that round. The player holding
the winning ticket wins all the wagers, after a site cut (percentage cut) has been
subtracted.

Let us consider a number N of gamblers who participate in a sequence of rounds
and let vi ≥ 0, i = 1, . . . , N , be the amount of money owned by the ith gambler
at a certain point of the game. Taking into account the game rules summarised
before, we express the update of the amount of money after one round of the game
as

v∗i = (1− ε)vi + ε(1− δ)
N∑
j=1

vjI(A− i) + εβYi, i = 1, . . . , N, (8)

where:

1. 0 < ε ≤ 1 is the fraction of money played in that round by the gamblers;
2. 0 < δ ≤ 1 is the percentage cut operated by the site on the total winning

ε
∑N
j=1 vj ;

3. A ∈ {1, . . . , N} is a discrete random variable giving the index of the gambler
who wins in that round;

4. I is a sort of characteristic function such that I(0) = 1 and I(n) = 0 for all
n ∈ Z \ {0}, so that in (8) the gambler with i = A earns all the money put
into the round.

The further term εβYi models the refilling of the amount of money available to
wagers that the gamblers operate by drawing on their personal reserves of wealth.
In particular, β ≥ 0 is a fixed constant identifying the rate of refilling and the Yi’s
are non-negative, independent and identically distributed random variables giving
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the amount of refilled money. It is worth stressing that, in the absence of this
term, the fixed cut operated by the site would cause a progressive reduction of the
total amount of money in the hands of the gamblers, so that, in the long run, the
gamblers would remain without money to play.

Assuming that the probability to hold the winning tickets is proportional to the
number of tickets bought to play the round, we characterise the random variable A
via the following law:

P(A = i) =
vi
N∑
j=1

vj

, i = 1, . . . , N.

Under the multiple-interaction rule (8), the evolution of the distribution function
f = f(v, t) of the winnings of a prototypical gambler may be obtained by resorting
to a multiple-collision Boltzmann-type model of the form (2), that here we rewrite
by integrating explicitly on R+:

d

dt

∫
R+

ϕ(v)f(v, t) dv =
1

τN

∫
RN+

N∑
i=1

〈ϕ(v∗i )− ϕ(vi)〉
N∏
j=1

f(vj , t) dv1 . . . dvN , (9)

where 〈·〉 denotes the average with respect to the distributions of the random vari-
ables A, Yi. It is worth observing that the interaction integral on the right-hand
side of (9) has a constant unitary kernel, which, in the jargon of the classical ki-
netic theory, corresponds to considering Maxwellian interactions. The reason for
this choice is twofold: on one hand, it is clear that the interaction rule (8) guaran-
tees v∗i ≥ 0 for all vi ≥ 0 and all i = 1, . . . , N , thus all microscopic interactions (8)
are physically admissible and none of them needs be excluded from the statistical
description of the system, cf. [8]. On the other hand, in the jackpot game one may
realistically assume no correlation among the wagers of different gamblers, which
translates perfectly in the assumption of Maxwellian interactions.

In order to better understand the role of the site cut, let us consider the evolution
of the mean amount of money owned by a gambler, i.e.

M1(t) :=

∫
R+

vf(v, t) dv.

Choosing ϕ(v) = v in (9) and considering that〈
N∑
i=1

v∗i

〉
= (1− ε)

N∑
i=1

vi + ε(1− δ)
N∑
j=1

vj

N∑
i=1

P(A = i) + εβ

N∑
i=1

〈Yi〉

= (1− εδ)
N∑
i=1

vi +Nεβm,

where we have denoted by m ≥ 0 the mean of the Yi’s, we discover

dM1

dt
= −εδ

τ
M1 +

εβ

τ
m. (10)

As expected, the presence of a percentage cut δ > 0 operated by the website manager
leads to an exponential decay of the mean at a rate proportional to δ itself, which
however may be compensated, on average, by the refilling operated by the players
to continue to gamble.
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As far as the computation of higher order moments of f is concerned, analytic
results may instead not always be obtained due to the strong non-linearity of the
Boltzmann-type equation (9).

4.2. Linearised model for large N . Although it gives a precise picture of the
evolution of the jackpot game, the highly non-linear Boltzmann-type equation (9)
has essentially to be treated numerically in order to extract from it useful detailed
information.

Nevertheless, a considerable simplification occurs for a large number N of gam-
blers. Indeed, in this situation we have

N∑
i=1

vi = N · 1

N

N∑
i=1

vi ≈ NM1(t), (11)

which corresponds to approximating the empirical mean wealth of the gamblers
participating in a round with the theoretical mean wealth owned by the entire
population of potential gamblers. As a consequence, the interaction rule (8) may
be linearised as

v∗ = (1− ε)v +Nε(1− δ)M1(t)I(Ā− 1) + εβY, (12)

where we have suppressed the index i of the gamblers as it is now inessential. The
new discrete random variable Ā ∈ {0, 1} indicates simply whether the generic gam-
bler wins (Ā = 1) or not (Ā = 0) in a single round. In view of the linearisation (11),
we deduce the law of Ā from that of A as

P(Ā = 1) =
v

NM1(t)
, P(Ā = 0) = 1− v

NM1(t)
.

In particular, we notice that the usual properties 0 ≤ P(Ā = 0), P(Ā = 1) ≤ 1
might not be strictly satisfied if N is not large enough, but are more and more
met as N grows. This is actually not a major problem, because we will be mostly
interested in the asymptotic regime N →∞.

As a consequence of the new interaction rule (12), the Boltzmann-type equation
describing the evolution of the distribution function f of the gambler’s winnings
linearises as well as

d

dt

∫
R+

ϕ(v)f(v, t) dv =
1

τ

∫
R+

〈ϕ(v∗)− ϕ(v)〉 f(v, t) dv. (13)

This equation makes possible an explicit computation of the statistical moments of
f . In particular, by choosing ϕ(v) = v, it is easy to see that it provides the same
evolution of the first moment as (10).

Nevertheless, we point out that if the fraction ε of money played by each gambler
is fixed independently of the total number N of gamblers, the total fraction εN of
money played in a single round tends to blow as N increases, which is not consistent
with the jackpot game. Therefore, we further assume that the product εN actually
equals a constant value, say κ > 0, so that the percent amount of money played in
each round remains finite for every ε, N :

εN =: κ. (14)
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4.3. Steady distributions with slim tails. We now take advantage of the lin-
earised model (12), (13) to investigate the shape of the large time statistical dis-
tribution of the gambler’s winnings. To this purpose, we rely on the asymptotic
procedure of the quasi-invariant limit, upon observing from (12) that in the regime
of small ε, or equivalently of large N owing to (14), interactions are indeed quasi-
invariant. In order to approach the steady state in such a regime, we scale the
relaxation time scale as τ = ε in (13) and we choose ϕ(v) = e−iξv, where now i de-
notes the imaginary unit and ξ ∈ R. We obtain therefore the following time-scaled
Fourier-transformed version of the kinetic equation (13):

∂tf̂(ξ, t) =
1

ε

∫
R+

〈
e−iξv

∗
− e−iξv

〉
f(v, t) dv,

where f̂ denotes the Fourier transform of the distribution function f :

f̂(ξ, t) :=

∫
R+

f(v, t)e−iξv dv.

Taking now the limit ε ↘ 0, see [25] for the details, this procedure shows that
for a large number N of gamblers and on a large time scale the non-linear kinetic
model (8), (9) is well approximated by the Fourier-transformed linear equation

∂tf̂ =

[
i

κM1(t)

(
e−iκM1(t)(1−δ)ξ − 1

)
− ξ
]
∂ξ f̂ − iβmξf̂ . (15)

In order to gain further insights into the physical variable v, it is useful to consider
in particular the regime of small κ. Then[

i

κM1(t)

(
e−iκM1(t)(1−δ)ξ − 1

)
− ξ
]
∂ξ f̂ ≈

[
−δξ − iκM1(t)

2
(1− δ)2ξ2

]
∂ξ f̂

and, within this approximation, we transform back (15) as

∂tf =
κ(1− δ)2M1(t)

2
∂2v(vf) + ∂v

(
(δv − βm)f

)
, (16)

which is a Fokker-Planck equation with time-dependent diffusion coefficient. Re-
calling from (10) that, in the time scaling t → t/ε, it results M1(t) → β

δm for
t → +∞, we are in a position to identify from (16) the unique stationary solution
with unitary mass, say f∞, which plays here the role of the Maxwellian distribution
in the classical kinetic theory:

f∞(v) =

(
µ
βm

)µ
Γ(µ)

vµ−1e−
µ
βmv, µ :=

2δ2

κ(1− δ)2
. (17)

Such an f∞ is a gamma probability density function, which has clearly bounded
moments of any order. Therefore, we conclude that no fat tail is produced in this
case in the stationary distribution of the gambler’s winnings.

As a matter of fact, this results proves the uniform boundedness of all moments of
f∞, hence the slimness of its tail, only for the linearised kinetic model (12), (13) in
the limit regime ε↘ 0 or, equivalently, N →∞. Nevertheless, the theory developed
so far suggests that also the “real” kinetic model (8), (9) may behave in the same
way, as it will be indeed confirmed by the numerical tests in Section 6.
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5. Taxation and wealth redistribution. Kinetic models of wealth distribution
in a multi-agent society often tried to take into account the effects of realistic
features, such as taxation and redistribution. One of the the first attempts to
deal with the problem of taxation by means of simple stochastic models may be
found in [13]. There, a simple stochastic exchange game mimicking taxation and
redistribution is introduced and its large-time trend studied in detail. Specifically,
the taxation mechanism is modelled by extracting randomly some agents, whose
wealth is redistributed to other agents according to the Pólya’s urn scheme. In the
continuum limit, the individual wealth distribution is shown to converge to a gamma
probability density, whose form factor coincides with the redistribution weight.

A different attempt may be found in [14], where it is suggested that inelastic
binary collisions may be regarded as the application of taxes and that their redis-
tribution may reproduce the salient features of empirical wealth distributions. The
model in [14] is reminiscent of the inelastic kinetic model introduced in [20]. It
takes into account a simple granular closed-system model, in which the collisions
are inelastic and the loss of energy is redistributed among the particles of the system
according to a certain criterion.

Parellelly to the contributions just mentioned, classical kinetic models of wealth
redistribution have been formulated also at the continuous level, taking advantage
of kinetic Boltzmann-type equations. In this case, either binary interactions [3]
or interactions with a background [22] are dominant. In particular, in [3, 22] the
novelty was to introduce a simple taxation mechanism at the level of the single
trade, which produces a portion of wealth subsequently redistributed to the agents
according to some precise rules. The redistribution mechanism is assumed to be
sufficiently flexible to return to the agents either a constant amount of wealth,
independent of the agent’s wealth itself, or an amount of wealth proportional (or
inversely proportional) to the agent’s wealth. In these models, the redistribution
mechanism is conceived in such a way to keep the mean wealth of the system
constant in time. Such a conservation allows the statistical distribution of the
system to reach a certain asymptotic profile, which may provide information on the
effect of the underlying taxation mechanism [18, 22].

Taxation and consequent wealth redistribution furnish a further prototypical
example of multiple interactions in a multi-agent society, that can be treated by
means of the methodology introduced in [4]. In particular, the forthcoming analysis
provides physical bases to recognise whether the redistribution mechanism described
in [3, 22] directly at the level of binary interactions is actually consistent with a
more realistic multiple interaction setting.

Let us consider a population of N agents and let vi ≥ 0 be the wealth of the
ith agent. We suppose that each agent performs economical transactions with an
external background, whose wealth is modelled by a microscopic variable w ≥ 0
sampled from a known distribution with given probability density g = g(w). For
the sake of simplicity, we assume that the background distribution does not change
in time. We describe the update of the wealth vi after a transaction as:

v∗i = (1−λ)vi +λw+ viηi−α(λ+ ηi)vi +
α

N

N∑
j=1

(λ+ ηj)vj , i = 1, . . . , N (18)

where λ ∈ (0, 1] is the percent amount of wealth that the ith agent invests in
the transaction, ηi ∈ R is a random variable modelling the intrinsic risk of the
transaction and α ∈ [0, 1] is the rate of taxation. We assume that the ηi’s are
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independent and identically distributed, in particular with zero mean and strictly
positive variance:

〈ηi〉 = 0,
〈
η2i
〉

=: σ2 > 0, (19)

As before, 〈·〉 denotes the average with respect to the common distribution of the
ηi’s. In essence, in (18) the term −α(λ+ηi)vi establishes that a percentage α of the
invested wealth is taxed, taking duly into account the actual risk of the investment;

while the term α
N

∑N
j=1(λ + ηj)vj means that the total wealth obtained from the

taxation is evenly redistributed to all the individuals of the society (for instance,
in terms of supplied services). Actually, we observe that the wealth redistribution
is often non-uniform in the population, since social welfare policies are typically
focused on low-income individuals. Modelling a wealth-dependent redistribution
would probably require to introduce a non-linear dependence of the redistribution
term in (18) on the vj ’s. Nevertheless, non-linear microscopic interactions often
prevent from obtaining directly explicit aggregate descriptions of the multi-agent
system. Therefore, here we prefer not to pursue such a generalisation, sticking
instead to the simpler but equally representative case of the uniform wealth redis-
tribution.

5.1. Analysis of the microscopic interaction rule. In order to be physically
admissible, rule (18) has to guarantee that v∗i ≥ 0, i = 1, . . . , N , for all v1, . . . , vN ,
w ≥ 0. A sufficient condition for this is clearly

(1− λ+ ηi − αλ− αηi)vi +
α

N

N∑
j=1

(λ+ ηj)vj ≥ 0,

which is certainly satisfied if e.g.,{
1− (1 + α)λ+ (1− α)ηi ≥ 0

ηi ≥ −λ,
∀ i = 1, . . . , N

and finally if

ηi ≥ max

{
−λ, −1− (1 + α)λ

1− α

}
∀ i = 1, . . . , N.

Moreover, in order to guarantee the fulfillment of (19) it is necessary that 1− (1 +
α)λ > 0, i.e. λ < 1

1+α . In conclusion, under these conditions a truncation from
the left of the support of the ηi’s provides the necessary physical consistency to the
interaction rule (18).

5.2. Boltzmann-type kinetic description. In view of the analysis of the micro-
scopic interactions just performed, we conclude that a Maxwellian kinetic model,
i.e. one with constant interaction kernel, is appropriate for the particle system at
hand. Indeed, under the restrictions on the ηi’s set forth above, none of the micro-
scopic interactions (18) needs to be excluded from the statistical description of the
system, cf. [8, 21]. Therefore, if f = f(v, t) denotes the probability density function
of the wealth of a generic individual at time t > 0, the Boltzmann-type equation
ruling the evolution of f under the multiple interaction rule (18) is of the form (2)
and, in particular, for this application reads

d

dt

∫
R+

ϕ(v)f(v, t) dv =
1

τN

∫
RN+1
+

N∑
i=1

〈ϕ(v∗i )− ϕ(vi)〉
N∏

j=1

f(vj , t)g(w) dv1 . . . dvN dw.

(20)
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Choosing ϕ(v) = v and denoting by

M1(t) :=

∫
R+

vf(v, t) dv, m :=

∫
R+

wg(w) dw

the mean wealth of the agents and of the background, respectively, by a direct
calculation we find that

dM1

dt
=
λ

τ
(m−M1), (21)

namely that M1 = M1(t) relaxes exponentially fast in time on m.
By far more intricate is to obtain from (18), (20) the evolution of the variance

of the wealth distribution, which nevertheless provides useful information on the
effectiveness of the taxation-redistribution policy in mitigating social inequalities.
In order to investigate this issue, a linearisation of the multiple-interaction model
for N large is a particularly fruitful strategy.

5.3. Linearised model for large N . In (18), the term responsible for the multi-
plicity of simultaneous interactions is clearly the redistribution one:

RN :=
α

N

N∑
j=1

(λ+ ηj)vj =
αλ

N

N∑
j=1

vj +
α

N

N∑
j=1

vjηj .

Considering that the vj ’s are sampled from the probability distribution described

by f , when N is sufficiently large we have 1
N

∑N
j=1 vj ≈M1. Concerning the other

term contributing to RN , we observe that〈
α

N

N∑
j=1

vjηj

〉
= 0, Var

 α

N

N∑
j=1

vjηj

 =
α2σ2

N2

N∑
j=1

v2j .

If we assume that the second moment of f is bounded, so that 1
N

∑N
j=1 v

2
j remains

bounded for all N , we deduce that Var
(
α
N

∑N
j=1 vjηj

)
→ 0 as N → ∞, which

then implies that the random variable α
N

∑N
j=1 vjηj converges to zero almost surely.

Therefore, for N sufficiently large we may well approximate RN as

RN ≈ αλM1

and consider the linearised time-dependent interaction rule

v∗ = (1− λ)v + λw + vη − α(λ+ η)v + αλM1(t), (22)

where we have dropped the index i, which is now inessential. Arguing like before,
we see that a sufficient condition guaranteeing that v∗ ≥ 0 for all v, w ≥ 0 is

η ≥ −1− (1 + α)λ

1− α
together with λ < 1

1+α , which is indeed consistent with the previous findings.
In view of this, a Maxwellian kinetic model is appropriate also in this case. In

particular, the Boltzmann-type kinetic model reads now

d

dt

∫
R+

ϕ(v)f(v, t) dv =
1

τ

∫
R2

+

〈ϕ(v∗)− ϕ(v)〉 f(v, t)g(w) dv dw (23)

whence, by letting ϕ(v) = v, we discover that the time evolution of the mean wealth
of the population is again ruled by (21). Hence, the linearised model preserves the
average trend of the full multiple-interaction model.
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To characterise the large time trend of the variance Σ of the wealth distribution:

Σ(t) := M2(t)−M2
1 (t) with M2(t) :=

∫
R+

v2f(v, t) dv,

it is convenient to consider the quasi-invariant interaction regime: one assumes to
be sufficiently close to equilibrium, so that each interaction produces a very small
variation of wealth from v to v∗. Upon introducing a small parameter ε > 0,
this regime may be mimicked by setting λ = σ2 = ε in (22) (small effect of the
interactions) and also τ = ε in (23) (larger time scale, closeness to equilibrium).
Notice that the aforesaid scaling of the variance of η amounts to writing η =

√
εY ,

where Y is the standardisation of η (thus, in particular, 〈Y 〉 = 0 and
〈
Y 2
〉

= 1).
This leads to the scaled interaction rule

v∗ = (1− ε)v + εw +
√
εvY − α(ε+

√
εY )v + αεM1(t)

and to the scaled Boltzmann-type equation

d

dt

∫
R+

ϕ(v)f(v, t) dv =
1

ε

∫
R2

+

〈ϕ(v∗)− ϕ(v)〉 f(v, t)g(w) dv dw. (24)

For ϕ(v) = v we have
dM1

dt
= m−M1, (25)

while for ϕ(v) = v2 and in the asymptotic regime ε↘ 0 we obtain

dM2

dt
=
(
(2− α)2 − 5

)
M2 + 2(m+ αM1)M1. (26)

In particular, (25) gives the evolution of the mean wealth for every ε > 0, whereas (26)
approximates the large time trend of the second moment of f for any sufficiently
small value of ε.

From (25) we see that M1 → M∞1 := m as t → +∞. Consequently, upon
observing that (2− α)2 − 5 < 0 for all α ∈ [0, 1], from (26) we deduce that

M2 →M∞2 :=
2(1 + α)

5− (2− α)2
m2

when t → +∞. Thus the limit value, say Σ∞, approached by the variance of the
wealth distribution for large times is

Σ∞ = M∞2 − (M∞1 )
2

=
(1− α)2

5− (2− α)2
m2. (27)

Meaningful considerations may be made by inspecting the trend of Σ∞ with
respect to the taxation rate α. If the mean wealth m of the background is constant
then Σ∞ decreases monotonically to zero for α ranging from 0 to 1. In particular, the
maximum of social equality is obtained with a full taxation of the invested capital
corresponding to α = 1, see Figure 1. A more interesting scenario is obtained if
we assume that m varies instead with α and, in particular, that it increases as α
approaches 1. This models the fact that the background benefits from the taxation
of the population. Following this idea, we may set

m =
m0

(1− α)γ
, m0, γ > 0,

so that the limit value of the variance of the wealth distribution becomes

Σ∞ =
(1− α)2(1−γ)

5− (2− α)2
m2

0.
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Figure 1. The asymptotic wealth variance Σ∞ vs. the taxation
rate α for both constant and α-dependent mean wealth m of the
background.

A standard computation shows that, depending on γ, this function may reach a
global minimum for α ∈ (0, 1), meaning that there exists an optimal taxation
rate which guarantees the least social inequality. For instance, for γ = 3

2 such a

minimum is attained for α = 1
3 ≈ 33%, see Figure 1 again. In spite of the fact that

the society becomes richer and richer on average for α ↗ 1 (because M1 relaxes
to m as t → +∞ and m blows as α ↗ 1), we notice that in this case the optimal
taxation rate is realistically not α = 1. The reason is that now also the variance
blows as α ↗ 1, thus the richness accumulated on average by the society tends to
be unevenly distributed for too high taxation rates.

Remark 1. Let us momentarily go back to the multiple-interaction rule (18) and
let us consider the quasi-invariant regime also in (20). Thus we set λ = τ = ε,
ηi =

√
εYi with 〈Yi〉 = 0 and

〈
Y 2
i

〉
= 1 for all i = 1, . . . , N . For ϕ(v) = v2, some

technical calculations show that, in the asymptotic limit ε↘ 0, it holds

dM2

dt
=
(
(2− α)2 − 5

)
M2 + 2(m+ αM1)M1 −

α2

N
M2. (28)

This equation differs from (26) only in the last term on the right-hand side, which
however vanishes for N → ∞. Consequently, we conclude that the second order
moment, hence also the wealth variance, produced by the linearised model is con-
sistent with that of the original multiple-interaction model in the limit of a high
number of individuals participating in the simultaneous interactions.

By applying the quasi-invariant limit procedure to (24) with a sufficiently smooth
and compactly supported test function ϕ, for instance ϕ ∈ C3

c (R+), we may further
detail the previous picture by determining an explicit asymptotic approximation
of the whole distribution function f valid for large times in the regime of small
interaction parameters. In particular, for ε↘ 0 we find that f satisfies the Fokker-
Planck equation

∂tf =
(1− α)2

2
∂2v(v2f)− ∂v[(m+ αM1(t)− (1 + α)v)f ], (29)
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which, recalling that M1 → m for t→ +∞, if α < 1 admits the following unique sta-
tionary solution with unitary mass (the analogous of the Maxwellian in the classical
kinetic theory):

f∞(v) =
(µm)1+µ

Γ(1 + µ)
· e
−µmv

v2+µ
, µ :=

2(1 + α)

(1− α)2
. (30)

Such an f∞ is an inverse gamma probability density function with mean m and
variance Σ∞, see (27). Consistently with standard wealth distribution curves, it
exhibits a Pareto-type fat tail [15] with Pareto exponent (or index) equal to 1 + µ.
We observe that the Pareto exponent depends explicitly on the taxation rate α and,
in particular, that it increases as α ↗ 1. Such an exponent is the same for both
a constant and an α-dependent mean wealth m of the background. In particular,
in both cases high taxation rates make the tail of the distribution slimmer and
slimmer.

For α = 1, the expression (30) of f∞ ceases to be valid. Going back to (29), one
realises that in such a case the stationary distribution becomes f∞(v) = δ(v −m),
which clearly makes sense only if m does not blow for α↗ 1.

Remark 2. Fokker-Planck equations like (29) modelling wealth redistribution in
presence of taxation have been recently considered also in [2], where the quasi-
invariant limit is applied to the Boltzmann-type equation with taxation proposed
in [3]. In agreement with the present case, the effect of taxation at the level of the
kinetic equation is to increase the value of the Pareto index featured by the steady
state of the Fokker-Planck equation. Unlike (29), however, the drift term in the
Fokker-Planck equation derived in [2] does not depend on time.

At the level of binary interactions, taxation effects may be replaced by a control
aiming to minimise the Gini coefficient [11]. Also in this case, the Fokker-Planck
equation resulting in the quasi-invariant regime coincides with the one considered
in [2] and produces an equilibrium distribution with a higher Pareto index than in
the uncontrolled case.

6. Numerical tests. In this section, we provide numerical insights into the vari-
ous models discussed before, resorting to direct Monte Carlo methods for collisional
kinetic equations and to the recent structure preserving methods for Fokker-Planck
equations. For a comprehensive presentation of numerical methods for kinetic equa-
tions, we refer the interested reader to [9, 18, 19].

As a first step towards a more detailed study of numerical methods for Maxwellian
kinetic equations with multiple interactions, we consider classical direct simulation
Monte Carlo methods. We rewrite (2) in strong form as

∂tf(v, t) =
1

τ

〈∫
RN−1

+

(
1
∗J

N∏
i=1

f(∗vi, t)−
N∏
i=1

f(vi, t)

)
dv2 . . . dvN

〉

=
1

τ

(
Q+(f, . . . , f)(v, t)− f(v, t)

)
, (31)

where Q+ is the gain operator:

Q+(f, . . . , f)(v, t) :=

〈∫
RN−1

+

N∏
i=1

1
∗J
f(∗vi, t) dv2 . . . dvN

〉
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and ∗J is the Jacobian of the transformation from the pre-interaction variables
{∗vi}Ni=1 to the post-interaction variables {vi}Ni=1. Furthermore, N > 1 is the num-
ber of agents simultaneously interacting in a single interaction and 〈·〉 denotes the
expectation taken with respect to the random part of the microscopic interactions.

We introduce a time mesh tn := n∆t, n ≥ 1, ∆t > 0, and we consider the
following time-discrete version of (31) through a forward scheme:

fn+1(v) =

(
1− ∆t

τ

)
fn(v) +

∆t

τ
Q+(fn, . . . , fn)(v),

where fn(v) := f(v, tn). We observe that by choosing ∆t = τ the first term on the
right-hand side (loss part of the equation) disappears, hence at each time step only
the gain operator Q+ needs to be computed.

In the following, we provide numerical evidence of the consistency of the lineari-
sation of the multiple-interaction Boltzmann-type models discussed in the previous
sections. More specifically, we show that for N � 1 the dynamics described by those
models are indeed nicely caught by the corresponding linear models with suitably
modified interactions and that the latter are also able to capture the stationary dis-
tributions in the quasi-invariant interaction regime. We stress that this represents a
real reduction of complexity with respect to the original multiply collisional kinetic
models: indeed, it makes it possible to resort to reduced models, such as linear
kinetic equations and Fokker-Planck-type operators, for which detailed analytical
and numerical insights are accessible.

6.1. Online jackpot games. In Section 4 we presented a kinetic model with mul-
tiple interactions for virtual-item jackpot games. We recall that the microscopic
dynamics are given by (8). To model the background distribution, we rely on the
detailed discussion in [25], which is essentially based on the results of [10, 16]. In
particular, we consider for the Yi’s a log-normal probability density with unitary
mean m = 〈Yi〉 = 1, specifically:

Yi ∼
1√
4πy

exp

(
− (log y + 1)

2

2

)
.

Furthermore, in all the numerical tests we fix τ = 0.1 and β = δ = 0.2, meaning that
the rate of refilling by the gamblers equals the percentage of the site cut. See [25]
for a systematic study of other relevant cases.

We solve both the multiple-interaction and the linearised Boltzmann-type equa-
tions (9), (13) by a direct simulation Monte Carlo scheme, following the ideas sum-
marised at the beginning of Section 6. We consider a random sample of 106 particles
with initial uniform distribution of the winnings for v ∈ [0, 2], thus

f0(v) = f(v, 0) =
1

2
χ[0, 2](v), (32)

where χA is the characteristic function of the set A.
In Figure 2 we compare the evolution of the multiple-interaction model in the

cases N = 5, N = 100 and that of the linearised model. We observe that if N is
sufficiently large then the solution of the former model is well approximated by that
of the latter model. Conversely, for N small strong differences appear, meaning that
in such a case the multiple-interaction dynamics are quite poorly approximated by
the linearised ones.
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Figure 2. Evolution at times t = 1, 5, 25 of the multiple-
interaction model (8), (9) with N = 5, N = 100 and of its linearised
version (12), (13).
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Figure 3. Comparison between the large time solution (t = 25)
of the linearised model (12), (13) and the equilibrium distribution
f∞ (17) computed from the Fokker-Planck equation (16) in the
quasi-invariant regime. Top row: κ = 0.1, bottom row: κ =
0.01. The right column displays the log-log plots of the graphs in
the left column.

In Figure 3 we show instead the consistency between the linear model (12), (13)
and the Fokker-Planck asymptotic model (16) obtained in the quasi-invariant limit
and for small values of κ. In particular, we consider κ = 0.1 and κ = 0.01.
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Figure 4. Comparison between the equilibrium distribution
f∞ (17) and the large time solution of the multiple-interaction
model with N = 102 and N = 103 for κ = 0.1. The right panel is
the log-log plot of the graph in the left panel, which gives a closer
insight into the tails of the compared distributions.

Finally, in Figure 4 we compare the large time distribution of the multiple-
interaction model for increasing numbers of gamblers and the steady distribu-
tion (17) computed from the Fokker-Planck asymptotic approximation of the lin-
earised model. We fix κ = 0.1 and we consider N = 102, N = 103. We clearly
observe that forN large enough the linearised model approximates well the multiple-
interaction model also in the quasi-invariant regime.

6.2. Taxation and wealth redistribution. The second series of tests is devoted
to the taxation and wealth redistribution model presented in Section 5. To describe
statistically the background we choose a uniform distribution with probability den-
sity function

g(w) = χ[ 1
10 ,

11
10 ]

(w),

whereby the mean wealth of the background is m = 0.6. Furthermore, we fix the
taxation rate α = 0.1 and we choose λ = 1

2(1+α) = 0.3125, which, according to

the analysis of Section 5.1, guarantees the admissibility of the interactions (18).
Finally, we model the random variables ηi as uniformly distributed with zero mean
and variance equal to λ

10 , cf. (19).
Starting from the initial condition (32), in Figure 5 we compare the evolution of

the multiple-interaction model (18), (20) with N = 2, N = 5, N = 100 and that of
its linearised version (22), (23). Also in this case, we observe that for increasing N
the linearisation produces a consistent approximation of the more complex multiple-
interaction dynamics. Interestingly, a value of N as small as N = 100 appears to
be sufficient for the linearised model to be a good approximation of the multiple-
interaction model.

Moreover, in the left panel of Figure 6 we show the convergence of the large time
solution of the linearised model (22), (23) to the equilibrium distribution f∞ (30)
produced by the Fokker-Planck approximation (29) in the quasi-invariant limit.
In order to mimic such a small parameter regime we set τ = λ and we consider
decreasing values of λ of the form λ = 1

2(1+α)k with k = 1, 10, so as to guarantee

simultaneously the admissibility of the interaction (22).
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Figure 5. Evolution at times t = 5, 10, 25 of the multiple-
interaction model (18), (20) with N = 2, N = 5, N = 100 and
of its linearised version (22), (23). The bottom row displays the
log-log plots of the graphs in the top row to better appreciate the
approximation of the tail of the distribution.
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Figure 6. Left: comparison of the equilibrium distribution 30
and the large time distribution of the linearised model (22), (24)
in the quasi-invariant limit. Right: comparison of the evolution of
the energy of the multiple-interaction model (20) with N = 10 for
decreasing λ and the solution to (28) obtained in the quasi-invariant
limit.

Finally, to check in particular the convergence of the energy of the multiple-
interaction model to the solution of (28) in the quasi-invariant regime, in the right
panel of Figure 6 we plot the time evolution of M2 computed out of the numerical
solution of the multiple-interaction model (18), (20) with N = 10 and several de-
creasing values of λ of the form λ = 1

2(1+α)k with k = 1, 10, 100. Like before, this

choice mimics the quasi-invariant limit. Furthermore, we also plot the numerical
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solution of system (25)-(28) for duly comparison. In all cases, the initial data are
fixed to M1(0) = 1, M2(0) = 4

3 .

7. Conclusions. In recent years, the kinetic theory has proved to be a flexible and
powerful tool to describe social and economic phenomena [18]. In various situations,
the precise description requires to take into account that any individual interacts
simultaneously with a large number of other individuals. This implies that multi-
ple simultaneous interactions have to be taken into account in collision-like kinetic
models. In this paper, we have presented the main contributions to this new and
challenging research line, which are concerned with socio-economic aspects. In par-
ticular, we have discussed two main examples: a model of the economical aspects of
online jackpot games and a simple model of taxation and redistribution policy. The
common aspect of these models is that the multiple interaction mechanism, which
in principle gives rise to a highly non-linear version of the Boltzmann-type kinetic
equation, can be greatly simplified, through a suitable linearisation, in the limit of a
large number of individuals participating in each interaction. Numerical evidences
then help to justify, at least formally, the simplified models obtained in the limit,
suggesting that such an asymptotic approximation is often quite reliable also for a
number of simultaneously interacting agents as moderately large as O(102). It is
worth pointing out that in this paper we have regarded the number N of simultane-
ously interacting agents as fixed. However, in more realistic scenarios N may vary
from interaction to interaction and also in time, for instance because of an evolv-
ing topology of the social connections among the agents. In this case, it should be
considered more properly as a random variable or an uncertain quantity. As a conse-
quence, the linearisation method presented here should be probably complemented
with other techniques, for instance from uncertainty quantification or mean field
analysis, to still gain a clear insight into the evolution of the aggregate quantities
of the system. We mention in this direction the computational advancements [1, 7]
in related fields.

The kinetic modelling presented in this paper can be extended to cover other
social situations, in which the emerging macroscopic state is still determined by
interactions among many individuals. Among others, relevant cases that fit into
this class are linked to human activities in social networks [24], which are assuming
more and more relevance in determining the behaviour of the individuals. This
new form of collective activity is very recent, since online social networking sites
reached a very high popularity only in the last decade, inducing more and more
individuals to connect with others who share similar interests [17]. In particular,
similarly to the case of the online gambling [25], it has been noticed that there
is often an abuse of insights of social networking sites [17]. This makes it topical
to introduce and discuss some of these aspects, in which the multiple-interaction
dynamics are the relevant ones, with the aim of extracting information about the
aggregate macroscopic behaviour of the individuals. Results will be presented in a
companion paper.
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