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Abstract. A generic feature of bounded confidence type models is the for-
mation of clusters of agents. We propose and study a variant of bounded
confidence dynamics with the goal of inducing unconditional convergence to
a consensus. The defining feature of these dynamics which we name the No
one left behind dynamics is the introduction of a local control on the agents
which preserves the connectivity of the interaction network. We rigorously
demonstrate that these dynamics result in unconditional convergence to a con-
sensus. The qualitative nature of our argument prevents us quantifying how
fast a consensus emerges, however we present numerical evidence that sharp
convergence rates would be challenging to obtain for such dynamics. Finally,
we propose a relaxed version of the control. The dynamics that result maintain
many of the qualitative features of the bounded confidence dynamics yet ulti-
mately still converge to a consensus as the control still maintains connectivity
of the interaction network.

1. Introduction. Mathematical models of opinion formation have long been ob-
jects of theoretical interest. Models in this context are often posed in an agent
based framework where the potential for agents to interact is encoded in a net-
work [6,12,17,20,26,28]. The rise of social networks as some of the main forums for
the exchange of ideas clearly motivates the need to continue the study of these mod-
els. Analysis of the metadata associated with social networks shows that an emer-
gent feature is the formation of polarized communities or “echo chambers” [9–11,23].
In this paper we study a class of models that exhibit this phenomenon. We are es-
pecially interested in the emergence of a consensus - when the opinions of all agents
agree.

The defining feature of the agent-based approach is the study of how locally
defined interaction rules affect globally observed behavior among the agents. Models
of opinion formation often have the feature that agents can only interact if they
are connected in an underlying network structure. Therefore, a hallmark of the
study of these models is examining how the interplay between the topology of the
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underlying network and the interaction rules affect the distribution of opinions
among the agents [19, 24, 27]. Of particular interest is how these factors can lead
to the emergence of a consensus among the agents. Models in this context have
the generic assumption that the opinion of a given agent is continuously influenced
by those to whom it is connected in the network according to relatively simple
interaction rules which are globally defined. Often these rules carry an assumption
of local consensus; if agents interact only with each other then they should agree in
some sense. This assumption can also be interpreted as saying that there are only
attractive forces present among the agents. One might assume that the attractive
nature of the interactions causes the emergence of consensus to be a ubiquitous
feature of this class of models, however this is not the case. The manner in which
agents are connected in the underlying network has a large effect on the distribution
of opinions observed among the agents [19,27]. The interplay between the network
structure and the interaction rules can often cause the analysis of these models to be
very involved; a popular strategy is to use simplifying assumptions on the network
structure such as symmetry of connections or static connections that do not change
throughout the evolution of the model [20,24,25,29]. Given an interaction rule, the
second strategy could be viewed as studying a “linearization” of a model with the
same interaction rule but dynamic connections. A main takeaway from the study
of these models is that a necessary condition for the emergence of a consensus is
the persistence of a suitable degree of connectivity in the network throughout the
evolution of the dynamics. This allows for “heterophilic” interactions; agents with
disparate opinions interact and due to the attractive nature of the interaction rules
eventually agree [19].

We study a class of models inspired by the Hegselmann-Krause bounded con-
fidence model [12] in which the connections between agents are dynamic; a con-
nection forms between agents when their opinions are within an interaction range.
This dynamic (combined with an attractive interaction rule) causes the formation
of “clusters” of opinions in the long time limit to be a generic behavior; consensus
is rare. In fact, it is relatively easy to show that a consensus can only occur if the
initial opinions of all the agents are within the interaction range of each other. For
this reason much of the study of this class of models has focused on characteriz-
ing the clustering behavior [2, 3, 7, 14, 16, 18]. We take a different viewpoint in this
manuscript and instead investigate controls on collections of agents [5, 21] other-
wise evolving according to bounded confidence dynamics that result in consensus.
The interaction range in bounded confidence dynamics causes interactions between
agents to be “homophilic”; agents only interact with agents who are sufficiently
“similar”. This tendency causes the interaction network of a collection of agents to
quickly become disconnected and prevents a consensus from occurring despite the
fact that agents who do interact attract each other. Therefore, the controls that we
impose on agents are generally motivated by maintaining connectivity among the
agents.

We investigate two different ways of augmenting the bounded confidence dynam-
ics with the goal of achieving consensus. The first strategy which we dub the no one
left behind dynamics imposes the rule that once agents become connected they re-
main connected. We prove rigorously that under this augmentation of the bounded
confidence dynamics, connectivity of the initial interaction network is sufficient for
a consensus to emerge for agents whose opinions can be of arbitrary dimension.
If we restrict agent opinions to being one dimensional we can quantify how fast a
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consensus is reached as we derive explicit convergence rates. Here, an interesting
phenomenon is observed as we find that the convergence occurs in two stages. Be-
fore all agents are within the interaction range provided by the bounded confidence
dynamics the convergence is linear, afterwards the convergence to consensus spon-
taneously becomes exponential. The preservation of connections among agents is
sufficient to preserve the connectivity of the network however it isn’t necessary. If
the existence of paths between agents is maintained then the connectivity of the
interaction network is maintained as well. The second strategy which we dub the
relaxed no one left behind dynamics takes advantage of this observation and de-
mands that agents who are connected by a path in the interaction network remain
connected by a path. We find numerical evidence that this less restrictive control is
sufficient for consensus as well. We also demonstrate numerically that this strategy
is, in a sense, an interpolation between the bounded confidence dynamics and the
no one left behind dynamics - most agents evolve according to the bounded con-
fidence dynamics and a high degree of clustering initially occurs. However several
“bridging” agents alter their trajectories in order to maintain connectivity of the
interaction network and ensure convergence to a consensus.

2. Bounded confidence opinion dynamics. We will consider a collection of
N agents where the opinion of the ith agent is denoted by xi ∈ Rd. We will be
concerned with a class of opinion dynamics that take the form:

ẋi =

N∑
j=1

aij(xj − xi), aij =
Φij∑N
k=1 Φik

with Φij = Φ(|xj − xi|). (2.1)

Here, Φ represents the so-called interaction function and can be thought of as
encoding how much influence one agent exerts over another, i.e. if aij 6= 0 then
agent j is influencing agent i with strength aij . The coefficients aij can be thought
of as encoding the structure of a directed network on which the agents interact. As
the aij ’s are time dependent, the structure of the network changes in time as well.
We will refer to this network as the interaction network and denote it by G = (V,E)
where V is the set of agents. Throughout the following we will assume that the
interaction function has compact support on the interval [0, 1], that it is positive on
its support and has a minimum and maximum on this interval:

m = min
r∈[0,1]

Φ(r) , M = max
r∈[0,1]

Φ(r). (2.2)

This assumption encodes that individuals will only interact and share ideas if their
opinions are close enough to begin with. Notice that these conditions on the interac-
tion function allow for a discontinuity at x = 1 from above in general; a prototypical
example would be the indicator function on the interval [0, 1], i.e. Φ(r) = 1[0,1](r).

This model represents a continuous version of the bounded confidence opinion
dynamics introduced in [12]. Notice that in general aij 6= aji and thus the dynamics
are not symmetric (the center of mass is not preserved). However, if aij > 0 then
we must also have aji > 0, in other words if j influences i then i must influence j.

Remark 1. Notice that since the interaction coefficients aij satisfy
∑N
j=1 aij = 1

we can rewrite the dynamics (2.1) as:

ẋi = xi − xi, xi =

N∑
j=1

aijxj , (2.3)
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so xi moves towards xi; the average opinion of all agents within the interaction
radius of agent i weighted by their influence on agent i (see figure 1).

Figure 1. The movement of an agent according to the bounded
confidence dynamics (2.3).

In this manuscript we will be concerned with conditions that cause the opinions
of all agents to converge to a consensus.

Definition 1. We say that the dynamics (2.1) converge to a consensus if there
exists x∗ such that:

lim
t→+∞

xi(t) = x∗ for any i. (2.4)

We will see that due to the local consensus assumption, the notion of connectivity
is crucial to the formation of a consensus.

Definition 2. We say that the configuration of agents {x1, ...,xN } is connected
if for any two agents i and j there exists a path between i and j; that is a subset
{ i1, ..., im } ⊆ { 1, ..., N } such that i1 = i, im = j and:

aik,ik+1
6= 0 for all k.

Clearly, connectedness of the initial configuration is a necessary condition for
the emergence of a consensus. Due to the local consensus assumption, two agents
who initially do not have a path between them will never become connected and
therefore will not converge on the same opinion. However, connectedness of the
initial condition is not sufficient for the emergence of a consensus as the dynamics
do not necessarily preserve connectedness between two agents (see for instance figure
3-left); the dynamics (2.1) must be modified in some manner for connectedness of
the initial condition to be sufficient for consensus.

3. No one left behind - enforcing consensus.

3.1. Critical region. We now modify the dynamics (2.1) with the aim of preserv-
ing connectivity between agents. We will distinguish between the 1-dimensional and
d-dimensional cases. The intuitive idea is to introduce a control on the bounded
confidence dynamics that causes an agent to alter its trajectory if it is close to
disconnecting with a neighbor. With this aim in mind we introduce the notion of a
critical region associated with each agent (see also an illustration in figure 2).

Definition 3. Fix 0 ≤ r∗ ≤ 1 and let {x1, ...,xN } ⊆ Rd be a configuration of
agents. The critical region associated with agent i is given by:

Bi = {x ∈ Rd | 1− r∗ ≤ |x− xi| ≤ 1 and 〈xi − xi,x− xi〉 ≤ 0}. (3.1)
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where xi is given by (2.3).

Figure 2. Illustration of the critical regions (3.1) in R (interval
behind xi) and R2 (semi-annulus region). The opinion xi is at-
tracted toward the local average xi and hence moves with velocity
xi − xi. In the “No-left behind dynamics” (1), xi can only move
only if there is no one in its critical region Bi. Thus, xi freezes
whereas xj is free to move in the left illustration.

3.2. No one left behind dynamics in R. Notice that the critical region of any
agent depends on the local average that the agent will move its opinion towards,
(2.3); the critical region of an agent is always “behind” the agent in the sense that
it is always in the opposite direction of the direction of movement of the agent.
The critical region is the main tool used to enforce connectivity preservation in
the bounded confidence dynamics (2.1). We first illustrate the main idea in one
dimension.

Model 1 (1D NOLB). Consider a collection of agents with opinions {x1, ..., xN }
in R. The 1-D No one left behind dynamics are given by:

ẋi = µi
(
xi − xi

)
, µi =

{
0 if there exists xj ∈ Bi
1 otherwise (3.2)

where xi is the local average defined in (2.3).

The scalar µi can be interpreted as a local control on the opinion of the ith
agent. Under the dynamics given by Model 1 an agent evolves according to the
normal bounded confidence model (2.1) unless there is another agent in its critical
region in which case it does not move. In other words if the normal bounded
confidence dynamics will cause an agent’s opinion to change in such a way that it
will become disconnected from one of its neighbors then it will stop moving and not
leave its neighbor behind.

Remark 2. In addition to the network defined by the interactions among agents,
the critical region allows one to impose an additional network structure on the
collection of agents; there exists a link from agent i to agent j if agent j is in the
critical region of agent i. We will refer to this network as the behind graph and
denote it by GB = (V,EB) where V is the set of agents { 1 . . . N } and EB is the set
of edges:

(i, j) ∈ EB if j ∈ Bi. (3.3)
In this notation we could write (3.2) as:

ẋi = µi
(
xi − xi

)
, µi =

{
0 if there exists j such that (i, j) ∈ EB
1 otherwise
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“No one left behind” dynamics

Figure 3. Simulation of the opinion dynamics without and with
control (resp. left and right figure), e.g. solving resp. (2.3) and
Model 1 with r∗ = 1

2 . With the control (right), the dynamics
converge to a consensus.

Note that while the nature of bounded confidence dynamics forces the interaction
network to be undirected, the behind graph must be directed as the presence of agent
j in the behind region of agent i does not imply the opposite. Note also that if one
denotes G = (V,E) as the interaction graph (i.e. (i, j) ∈ E if aij , aji > 0), then the
behind graph EB is a directed subgraph of E - see Figure 4.

We examine the effect that the augmented dynamics have on the long time be-
havior of the opinions in Figure 3 and note that for the same initial condition that
normal bounded confidence dynamics do not result in a consensus but four “clusters”
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Figure 4. A configuration of agents (top) and the resulting inter-
action graph (edge set E, black) and behind graph (edge set EB),
light blue). Note that the behind graph is a directed subgraph of
the interaction graph.

of opinions whereas the controlled dynamics preserve the connectivity of the agents
and result in a consensus. Interestingly, we find that the dynamics introduced in
Model (1) are not sufficient to ensure consensus in dimensions larger than one.

3.3. No one left behind dynamics in Rd. Given that the dynamics defined
in Model (1) are sufficient for convergence to a consensus for a connected initial
configuration in one dimension (see Remark 4 and Theorem 2), one might expect
that they should be sufficient for consensus in the d - dimensional case as well.
Interestingly, this is not the case as the following example illustrates.

Example 1. We illustrate that the dynamics introduced in Model (1) do not ensure
consensus in dimension 2 - this example can clearly be generalized to larger dimen-
sions. Consider 6 clusters of opinions located on a regular hexagon with equal sides
of length d = 1 − r∗

2 with r∗ � 1. We denote the vertices of this regular hexagon
as xi with i = 1, . . . , 6, and the number of opinions in the cluster xi as N (xi).
Consider for instance, we have the following distribution of agents (see fig. 5):

N (x1) = N (x6) = 1, N (x2) = N (x5) = 10, N (x3) = N (x4) = 100.

In this setting, all the agents have another agent in their critical region. Thus, if
one uses the same dynamics as in the one dimensional setting (3.2), we find µi = 0
for all i and therefore the agents are stuck in this initial configuration. Thus, the
“naive” control fails to achieve consensus.

Figure 5. Counter-example in multi-dimension. Blue arrow is the
velocity of each cluster. In this setting, every agent has someone
in its critical region Bi. Thus, the naive control in Model 1 would
prevent anyone from moving.
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Clearly, in the d-dimensional case, the condition that an agent may not move
if another agent is in its critical region must be weakened in order to achieve a
consensus. However, we still want to maintain the property that an agent may not
move away (and possibly disconnect) from agents in its critical region as we know
that connectivity is necessary for consensus. With this in mind we introduce the
notion of admissible velocity.

Definition 4. Let {x1, ...,xN } ⊆ Rd be a configuration of agents. The cone of
admissible velocity associated with agent i is given by:

Ci = {v ∈ Rd | 〈v,xj − xi〉 ≥ 0 for all xj ∈ Bi}. (3.4)

where Bi is the critical region (3.1) associated to agent i. If the critical region Bi is
empty, then Ci = Rd.

Remark 3. We note that we can define the cone of admissible velocities in terms
of the behind graph introduced in Remark 2. We just have to replace xj ∈ Bi by
(i, j) ∈ EB in the definition of Ci.

Figure 6. The velocity of agent i is the projection of the desired
velocity xi − xi onto the cone of admissible velocity Ci.

We can now weaken the dynamics introduced in Model 1 by merely enforcing that
the velocity of an agent belong to its cone of admissible velocity via a projection
operator [13]. Intuitively, instead of forcing an agent to stop whenever its critical
region is nonempty it can “take care” of agents in its critical region by moving closer
to those agents and its local average (if possible).

Model 2 (NOLB). Let {x1, ...,xN } ⊆ Rd be a configuration of agents. The no
one left behind (NOLB) dynamics are given by:

x′i = PCi
(
xi − xi

)
(3.5)

where xi is the average velocity defined in (2.3) and PCi : Rd → Ci is the projection
operator associated to the cone of admissible velocities Ci (3.4).
Remark 4. We note that the 1-D NOLB dynamics introduced in Model 1 are a
special case of the general NOLB dynamics introduced in Model 2. Indeed, in one
dimension the cone of admissible velocity is given by

Ci = {v ∈ R | v · (xj − xi) ≥ 0 ∀xj ∈ Bi}.
Now, if Bi is empty then we must have that Ci = R and therefore the projection
operator PCi must be the identity, i.e

x′i = PCi
(
xi − xi

)
= xi − xi.
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On the other hand, if there exists xj ∈ Bi (and assuming without loss of generality
that xi ≥ xi) we must have that xj ≤ xi which implies that:

Ci = {v ∈ R | v ≤ 0 } .
Since xi − xi ≥ 0 we therefore must have that

x′i = PCi
(
xi − xi

)
= 0.

We illustrate the dynamics (3.5) and its long term behavior in Figure 7. As in
the 1D case, a consensus is reached after some time whereas the classical dynamics
generate multiple clusters.

"Classical" dynamics

"No one left behind" dynamics

Figure 7. 2D simulation of opinion dynamics without and with
control (resp, top and bottom figure), e.g. solving resp. (1) and
(3.5) with r∗ = 1

2 . With the control (bottom), the dynamics con-
verge to a consensus.

We now rigorously show that augmenting the bounded confidence dynamics in
this manner is sufficient to ensure consensus in the case that the initial configuration
of the agents is connected.

4. Convergence to a consensus.

4.1. Preservation of connectivity. A unifying feature of the classical bounded
confidence dynamics and the NOLB dynamics is that due to the local consensus
assumption they both result in a configuration of agents {xi(t) } contracting in
space. More specifically let us denote the convex hull of a configuration {xi(t) } by
Ω(t), i.e.

Ω(t) = Conv{x1(t), ...,xN (t)}.
The agents contract in the following sense (see [14] for a proof).

Proposition 1. If {xi }i evolves according to the bounded confidence dynamics or
the NOLB dynamics then the convex hull Ω satisfies:

Ω(t1) ⊂ Ω(t0) for any t1 ≥ t0 (4.1)
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The contractive nature of the dynamics implies that for at least a subsequence
of times the configuration approaches a limiting configuration thanks to Bolzano-
Weierstrass theorem.

Corollary 1. There exists a limiting configuration {x∞i }i and a sequence of times
(tn)n such that tn →∞ and xi(tn)→ x∞i as n→∞.

Another consequence is that the so-called diameter of the configuration d(t) is
decaying.

Corollary 2. Denote the diameter d(t) = max1≤i,j≤N |xi(t)−xj(t)|. The diameter
is non-increasing:

d(t2) ≤ d(t1) for any t2 ≥ t1.
So in both the bounded confidence model and the NOLB model, agents remain

close to each other in the sense of Proposition 1. However, we have already seen that
the bounded confidence dynamics do not converge to a consensus from a connected
initial condition; contractiveness alone is not sufficient for consensus.

The fundamental property of the NOLB dynamics (3.5) that distinguish them
from the classical bounded confidence dynamics is that they rule out the possibility
of agents who are connected later becoming disconnected as illustrated in Figures
3 and 7. The mechanism through which the local control accomplishes this can be
seen in the following result.

Proposition 2. Fix 0 ≤ r∗ ≤ 1. Suppose that at time t the opinions of agents i
and j evolve according to (3.5) and satisfy: 1− r∗ ≤ |xi(t)− xj(t)| ≤ 1 (i.e. agent
i and agent j are within the critical distance of each other), then:

d

dt
|xi(t)− xj(t)| ≤ 0. (4.2)

Proof. As agent i and agent j are within the critical distance of each other we can
assume that either agent i is in the critical region of agent j or vice versa, otherwise
we would be finished. Without loss of generality assume that agent j is in the
critical region of agent i. First notice that:

d

dt
|xi − xj |2 = −2〈(PCi(xi − xi),xj − xi)〉 − 2〈(PCj (xj − xj),xi − xj)〉.

Denote vi = PCi(x̄i−xi). Since j is in the critical region of agent i by assumption,
it must satisfy 〈vi,xj −xi〉 ≥ 0, therefore 〈PCi(x̄i−xi),xj −xi〉 ≥ 0. We can prove
similarly that 〈PCj (x̄j − xj),xi − xj〉 ≥ 0 and therefore,

d

dt
|xi − xj |2 ≤ 0.

The critical region acts as a “trap”. If the distance between two agents is less
than or equal to 1 but starts to increase they will eventually be within the critical
distance of each other and their distance cannot increase any longer.

Corollary 3. Suppose |xi(t0)− xj(t0)| ≤ 1. Then |xi(t)− xj(t)| ≤ 1 for all t ≥ t0.
Proof. Suppose for the sake of contradiction that there exists T > t0 such that
|xi(T ) − xj(T )| > 1. Since the solution to the dynamics is continuous there must
exist an exit time t1 satisfying |xi(t1) − xj(t1)| = 1 and |xi(t) − xj(t)| < 1 for
t < t1. Thus there must exist some δ > 0 such that 1 − r ≤ |xi(t) − xj(t)| ≤ 1 for
t1 − δ < t < t1. Therefore, by Proposition 2 |xi(t)− xj(t)| is decaying on this time
interval, a contradiction as |xi(t1)− xj(t1)| = 1.
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So, adding the control indeed prevents situations like the ones presented in Fig-
ures 3 and 7 and preserves connectivity.

Corollary 4. The dynamics (3.5) preserve connectivity, i.e. if the configuration
{xi(t0)}i is connected, then {xi(t)}i will be connected for any t ≥ t0.

We will now examine how the preservation of connectivity enforced by (3.5) leads
to a consensus.

4.2. Emergence of a consensus. We will now see that under the NOLB dynamics
defined in (3.5), connectedness of the initial condition is sufficient for convergence to
a consensus. In fact, this demonstrates that connectedness of the initial condition
is equivalent to emergence of a consensus as we have previously noted that it is
at least necessary. We will examine the convergence in two cases. In the general
multidimensional case we are prevented from employing traditional ODE methods
due to the discontinuous nature of the vector field of the NOLB dynamics. We
find that the interplay between the contractive nature of the dynamics and the
preservation of connectivity allows us to circumvent this difficulty and deduce that a
connected initial configuration is sufficient for convergence to a consensus. However
we aren’t able to say anything in general about the rate at which the dynamics
converge to a consensus. In the one dimensional case this information is available
and we derive explicit rates of convergence.

4.2.1. Multi dimensional case. We first examine the general multi dimensional case.
Before proceeding to the main results we note that in the special case that r∗ = 1
that connectivity of the initial condition is not sufficient for convergence to a con-
sensus; the large value of r∗ prevents some agents who are connected from exerting
influence over each other.

Example 2. For simplicity we examine the one dimensional case. Suppose that
r∗ = 1 and consider the initial configuration given by:

x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) = 4.

Here, x1 will move towards x2 and x4 will move towards x3. However, since r∗ = 1,
x2 and x3 may never move towards each other despite their connection as x1 and
x4 will always be in their respective critical regions - see Figure 8. Additionally we
note that this example provides an illustration that the vector field associated to
the NOLB dynamics is not continuous as the dynamics converge to a state that is
not an equilibrium.

We will now show that the situation described in Example 2 is indeed a special
case. As long as 0 < r∗ < 1 we will see that the control is sufficient to guarantee
consensus given that the initial configuration is connected. Our main obstacle in this
argument is discontinuities in the flow caused by the definition of the critical region
and the discontinuity in the interaction function, Φ. Since this rules out many of
the standard tools in ODE theory, our argument will rely on the interplay between
the contractive nature of the dynamics and the fact that they preserve connectivity
of the configuration of agents. Our strategy to show that the NOLB dynamics
result in a consensus will be to show that the limiting configuration provided by
Corollary 1, X∞, is a consensus. In general this isn’t sufficient to conclude that
X(t) even converges, much less to a consensus. However, the contractive nature of
the dynamics allows us to say more.
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Figure 8. Preserving connectivity does not imply the convergence
to a consensus. Here, when r∗ = 1, the extreme points x1 and x4
will converge towards x2 and x3 respectively. However, x2 and x3
cannot move since x1 and x4 are always in their respective critical
regions.

We will proceed by contradiction and show that if X∞ is not a consensus then it
is possible to find a term in the sequence {x(tn) } provided by Corollary 1 that when
taken as initial condition of the dynamics results in points of Ω∞ being outside of
the convex hull of the configuration at a finite time - a contradiction of Proposition
1. We now prove the main result.

Theorem 1. Assume r∗ < 1 and that {xi(0) }i is connected. Then if {xi(t) }i
evolves according to the NOLB dynamics (3.5) it will converge to a consensus.

Proof. If {xi }i evolves according to the NOLB dynamics then by Corollary 1 (con-
tractiveness) we know there exists a limiting configuration X∞ = {x∞i }i and a
sequence of times (tn)n such that tn →∞ and xi(tn)→ x∞i as n→∞. Note that
since by assumption X(0) is connected we must have by Corollary 3 (preservation
of connectivity) that X∞ is connected as well. We denote by p and q the extreme
points such that:

‖x∞p − x∞q ‖ = max
ij
‖x∞i − x∞j ‖.

Denote N∞p as the set of neighbors of p. The main difficulty in the proof is to
handle neighbors of x∞p at a distance exactly 1. We call them extreme neighbors
and denote them by E∞p :

N∞p = {j | ‖x∞j − x∞p ‖ ≤ 1} (4.3)
E∞p = {j | ‖x∞j − x∞p ‖ = 1}. (4.4)

We are going to investigate 3 cases detailed in figure 9.

• Case 1. no extreme neighbors E∞p = ∅.
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3 cases

case 1:

case 2:

case 3:

Figure 9. The convex hull Ω(tn) has to converge to a limit configu-
ration Ω∞. The dynamics converge to a consensus if Ω∞ is reduced
to a single point which we prove by contradiction. We distinguish
three cases of limit configuration Ω∞ depending on if the extreme
point x∞p has a so-called extreme neighbor j, i.e. ‖x∞p − x∞j ‖ = 1.

If all the neighbors of x∞p are at distance 0, then the dynamics converge to a
consensus. Thus, we need to look at the case where there exists j ∈ N∞p neighbor
of p at distance 0 < ‖x∞j − x∞p ‖ < 1 (the distance 1 is excluded in Case 1).

Denote Ω(t) and Ω∞ the convex hull of {xi(t) }i and {x∞i } respectively. Since
the dynamics is contracting (Proposition 1), we must have Ω∞ ⊆ Ω(t) for any t.
Take now a supporting hyperplane that is tangent to Ω∞ at the extreme point x∞p
(see figure 10). More specifically, we parametrize this supporting hyperplane using
ϕp : Rd → R affine function

ϕp(x) = 〈up,x〉+ b

where the vector up and constant b are such that ϕp(x
∞
p ) = 0 and ϕp(x) > 0 for

all x in Ω∞ where x 6= x∞p .
If there exists j such that 0 < ‖x∞p − x∞j ‖ < 1, then the coefficient a∞pj satisfies:

a∞pj =
Φ∞pj∑N
k=1 Φ∞pk

> 0.

Therefore, the local average x∞p =
∑N
k=1 a

∞
pkx
∞
j is different from x∞p . Moreover

since x∞p ∈ Ω∞, we deduce ϕp(x
∞
p ) > 0.

We will get a contradiction if we can show that the sequence xp(tn) once closed
to x∞p will cross the hyperplane {ϕp = 0}. Thus, we investigate the values of
ϕp(xp(tn)). Its time evolution is given by:

d

dt
[ϕp(xp(tn))] = 〈up, PCp(tn)(xp(tn)− xp(tn))〉. (4.5)

To get rid of the projection operator, we notice that the projection is actually
increasing the scalar product if up is in Cp(tn) thanks to the following lemma (the
proof is in appendix).

Lemma 1. Let {xi }i ⊆ Rd and consider C = {v | 〈v,xi〉 ≥ 0 for all i }. If u is
in C then:

〈PC(x),u〉 ≥ 〈x,u〉 for all x ∈ Rd. (4.6)
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Figure 10. If the limit configuration {x∞k }k is not a consensus,
the extreme point xp(tn) will eventually get inside the convex hull
Ω∞ which gives a contradiction.

It remains to show that up ∈ Cp(tn). Notice that 〈x − x∞p ,up〉 ≥ 0 for all x in
Ω∞ and therefore up ∈ Cx∞p . Eventually this is true for the approximating sequence
xp(tn) as well: up ∈ Cxp∗ (tn) for tn large enough. Indeed, take any k 6= p. There

are two cases. First case, xk(tn) → x∞p and therefore ‖xk(tn) − xp(tn)‖ n→+∞−→ 0,
meaning that xk(tn) will not be in the critical region of agent p, i.e. k /∈ Bxp(tn)

(r∗ < 1). In the second case, xk(tn)→ x∞k 6= x∞p . Then

〈up,xk(tn)− xp(tn)〉 = 〈up,xk(tn) + x∞k − x∞p + x∞p − x∞k − xp∗(tn)〉
= 〈up,xk(tn)− x∞k 〉+ 〈up,x∞p − xp∗(tn)〉+ 〈up,x∞k − x∞p 〉
≥ −2‖up‖δn + 〈x∞k − x∞p ,up〉

using Cauchy-Schwarz with δn = max(‖xk(tn) − x∞k ‖, ‖xp(tn) − x∞p ‖). Since

δn
n→+∞−→ 0 and 〈x∞k −x∞p ,up〉 > 0, we conclude that: 〈up,xk(tn)−xp(tn)〉 > 0 for

tn large enough, i.e. up ∈ Cp(tn).
We can now continue our computation (4.5):

d

dt
[ϕp(xp(tn))] = 〈up, PCp(tn)(xp(tn)− xp(tn))〉

≥ 〈up,xp(tn)− xp(tn)〉
= ϕp(xp(tn)− ϕp(xp(tn)) → ϕp(x

∞
p )−ϕp(x

∞
p ) > 0

(4.7)

by continuity of ϕp. Indeed, xp(tn)
n→+∞−→ x∞p since Φ has only a discontinuity at

distance 1 and the case 1 assumption avoids this possibility for any coefficients apk.
We deduce a contradiction since we have two conflicting properties:

i) ϕp(xp(tn))→ ϕp(x
∞
p ) = 0 since xp(tn)→ x∞p , (4.8)

ii)
d

dt
[ϕp(xp(tn))] ≥ ϕp(x∞p ) > 0 for large tn. (4.9)

• Case 2. there exists an extreme neighbor (i.e. E∞p 6= ∅) AND there
exists j such that 0 < ‖x∞j − x∞p ‖ < 1.

In this situation, agent p might connect with a neighbor k only at infinity and
thus the local average xp(tn) might not converge to x∞p as tn → +∞. But thanks
to the non-extreme neighbor j, we are going to have a contradiction as in Case 1.
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The coefficient apj is lower bounded at infinity since:

lim inf
n→∞

apj(tn) ≥ lim inf
n→∞

Φ(‖xp(tn)− xj(tn)‖)
N ·M ≥ m

N ·M > 0

where m and M are respectively the minimum and maximum of Φ on the interval
[0, 1]. This is enough to show that, as in case 1, the derivative d

dt [ϕp(xp(tn))] is
bounded below by a positive constant (for large tn) leading to a contradiction.
Indeed,

lim inf
tn→+∞

〈up,xp(tn)〉 = lim inf
tn→+∞

 ∑
k=1..N, k 6=j

apk〈up,xk(tn)〉 + apj〈up,xj(tn)〉


≥ 0 +

m

N ·M 〈up,x
∞
j 〉 > 0.

Thus, we conclude that:

lim inf
n→∞

(
ϕp(xp(tn))−ϕp(xp(tn))

)
≥ c > 0

and we may apply the same argument as in Case 1.

• Case 3. there exists an extreme neighbor (i.e. E∞p 6= ∅) AND for all
j ∈ N∞p , ‖x∞p − x∞j ‖ = 0 or ‖x∞p − x∞j ‖ = 1.

This is the most delicate case since the neighbors at distance exactly one might
appear only asymptotically (i.e. at “t = ∞”). However, the assumption is also
helping: a finite-time, non-extreme neighbor j of p must converge to p as we will
see. More precisely, by the assumption of Case 3, any neighbor j of xp(tn) must
satisfy one of the two following scenarios:

1. ‖xj(tn)− xp(tn)‖ n→+∞−→ 0
2. ‖xj(tn)− xp(tn)‖ = 1 for all n

Indeed, if there exists a time tn such that ‖xj(tn)−xp(tn)‖ < 1, then it is impossible
that ‖xj(t) − xp(t)‖ = 1 at a later time t > tn (Proposition 2). Since the limit
‖xj(tn) − xp(tn)‖ cannot be in (0, 1) due to the assumption of Case 3, it must
converge to zero.

To prove that a consensus emerges, we have to rule out scenario 2: neighbors
of xp(tn) cannot stay at a distance exactly 1. Notice that this is precisely what is
happening in the counter-example of figure 8: ‖x3(t)− x2(t)‖ = 1 for all t. But in
this counter-example r∗ = 1 which is not the case in the present scenario.

Let’s proceed once again by contradiction and assume that there exists j such
that ‖xj(tn)− xp(tn)‖ = 1 for all tn. Denote Ep all the neighbors j of p satisfying
this property. Under such assumption, we must have: d

dt‖xj(tn)−xp(tn)‖2 = 0 and
therefore:

〈PCp(tn)(xp(tn)− xp(tn)),xj(tn)− xp(tn)〉 = 0. (4.10)

A key observation is to notice that the desired velocity xp(tn) − xp(tn) converges
to the average over the neighbors in Ep. Indeed, we rewrite:

xp(tn)− xp(tn) =

N∑
j=1

apj(tn)
(
xj(tn)− xp(tn)

)
.
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If j /∈ Ep, either apj(tn) = 0 (j not a neighbor of p) or xj(tn) − xp(tn)
n→+∞−→ 0.

Thus,

xp(tn)− xp(tn)
n→+∞−→

∑
j∈Ep

a∞pj
(
x∞j − x∞p

)
. (4.11)

Moreover, a∞pj = c > 0 for all j ∈ Ep since Φ(‖xj(tn)− xp(tn)‖) = Φ(1) > 0.
We can now pass to the limit in (4.10):

〈PC∞p
( ∑
k∈Ep

c(x∞k − x∞p )
)
,x∞j − x∞p 〉 = 0, (4.12)

where C∞p is the critical region defined by:

C∞p = {v ∈ Rd | (v,x∞j − x∞p ) ≥ 0 ∀j ∈ Ep}. (4.13)

Notice that the definition of C∞p only includes extreme neighbors (i.e. j ∈ Ep).
Indeed, the other neighbor xk converges to xp as tn → +∞. Since r∗ < 1, xk(tn) is
no longer in the critical region Bxp(tn) for tn large enough.

Summing the previous expression over the neighbors j in Ep gives:

〈PC∞p (v),v〉 = 0 with v =
∑
j∈Ep

(x∞j − x∞p ). (4.14)

Since CC∞p is a convex cone, we deduce that:

〈PC∞p (v), PC∞p (v)〉 = 〈PC∞p (v),v〉, (4.15)

and therefore PC∞p (v) = 0.
To get a contradiction, we use once again up define from the supporting hyper-

plane at x∞p (see figure 10), we have:

〈PC∞p (v),up〉 ≥ 〈v,up〉 (4.16)

since up is in the cone C∞p . We deduce:

〈PC∞p (v),up〉 ≥
∑
j∈Ep
〈x∞j ,up〉 > 0, (4.17)

since x∞j is strictly inside the convex hull Ω∞ (p being an extreme point). This
proves that PCx∞p

(v) 6= 0, a contradiction, and concludes the proof.

4.2.2. 1-D case. We now investigate consensus in the special case that the dynamics
are one dimensional. We know from the previous section that consensus occurs
however in this case we will also be able to quantify the rate at which this consensus
emerges. Our main tool will be estimates on the diameter d(t). Recall from Remark
4 that in one dimension Model (2) reduces to Model (1) - we will use the notation in
the latter in the following. We will see that the control µi causes the convergence to
occur in two stages. Clearly if a consensus emerges there must exist a time τ after
which all agents are directly interacting with each other, that is |xi(t)− xj(t)| ≤ 1
for any i and j and t > τ ; in this case the network on which agents interact is
fully connected. Before this time there necessarily exist pairs of agents who do not
interact but are merely connected by a path. We will first examine the case where
all agents are interacting - in this case the dynamics converge towards a consensus at
an exponential rate that depends on the extreme values of the interaction function.
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Proposition 3. Suppose d(0) ≤ 1. Then:

d(t) ≤ d(0)e−
m
M ·t (4.18)

where m = minx∈[0,1] Φ(x) and M = maxx∈[0,1] Φ(x).

Proof. Fix t and denote p and q such that d(t) = |xp− xq|. Notice that since p and
q are the two agents with extreme opinions we must have that µp = µq = 1 as they
cannot have any agents in their critical regions. We aim to get a bound on (d2)′ in
terms of d2 in order to apply Gronwall’s lemma. By the Cauchy-Schwarz inequality
we have that:

d

dt
[d2(t)] = 2(ẋp − ẋq, xp − xq) = 2

(
(xp − xq)(xp − xq)− (xp − xq)2

)
≤ 2
(
|xp − xq||xp − xq| − |xp − xq|2

)
.

(4.19)

To obtain the bound we desire all that remains is to bound |xp − xq| above by
a constant multiple of |xp − xq|. We will exploit the fact that the local averages
xp and xq must be inside the convex hull of opinions and therefore since agents p
and q are the agents with the most extreme opinions the difference between their
local averages must be smaller than the difference between their opinions. Denote
ηi = min(api, aqi) and notice that since Φ is bounded and d(0) ≤ 1 we must have
that ηi ≥ m

MN where m and M are given by (2.2). Notice that:

|xp − xq| =
∣∣∣∣∣
N∑
i=1

apixi −
N∑
i=1

aqixi

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

(api − ηi)xi −
N∑
i=1

(aqi − ηi)xi
∣∣∣∣∣

=:

∣∣∣∣∣
N∑
i=1

ãpixi −
N∑
i=1

ãqixi

∣∣∣∣∣ .
(4.20)

Let η =
∑N
i=1 ηi. We have by (4.20) that:

|xp − xq| = (1− η)

∣∣∣∣∣
N∑
i=1

ãpixi
1− η

−
N∑
i=1

ãqixi
1− η

∣∣∣∣∣ := (1− η) |x̃p − x̃q| (4.21)

Notice that
N∑
i=1

ãqi
1− η

=

N∑
i=1

ãpi
1− η

= 1, (4.22)

and therefore we must have that x̃p and x̃q are in the convex hull of {xi }Ni=1 so
necessarily we have that |x̃p − x̃q| ≤ |xp − xq|. Therefore by (4.21) we have that
|xp − xq| ≤ (1− η)|xp − xq| which by (4.19) implies:

d

dt
[d2(t)] ≤ 2

(
(1− η)|xp − xq||xp − xq| − |xp − xq|2

)
= −2η|xp − xq|2.

(4.23)

Finally, since by definition of the weights aiq, aip and η we have that η ≥ m
M we

can conclude using (4.23) that:

d

dt
[d2(t)] = 2d(t)d′(t) ≤ −m

M
d(t). (4.24)

An application of Gronwall’s lemma provides the final result.
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So, in the case that all agents are interacting, i.e. that |xi(t) − xj(t)| ≤ 1 for
any i and j, a consensus is reached exponentially fast at a rate that depends on the
maximum and minimum values of the interaction function. However, starting from
an initial condition that is connected does not mean that all agents are directly
interacting; any two agents are merely connected by a path. We now examine the
rate of convergence for t < τ , i.e. before all agents are interacting.

Theorem 2. Suppose the initial condition {xi(0)}i is connected and let η = m
M ·N .

There exist δ > 0 and T > 0 such that while d(t) ≥ 1, we have:

d(t) ≤ d(0) + ηδ(N · T − t). (4.25)

Thus, after t ≥ N · T + d0−1
ηδ , the diameter is converging exponentially fast toward

zero.

Proof. Denote p and q such that d(t) = xq(t) − xp(t). Suppose d(t) > 1, the case
d(t) ≤ 1 has been treated in proposition 3. We analyze the behavior of p and q
separately as they do not affect each other. We fix the two constant δ > 0 and
T > 0 satisfying the two technical conditions:

δ + 2T ≤ min(r∗, 1− r∗) (4.26)
T 2

2N2
η
(
η(1− δ − 2T )− 2N(δ + 2T )

)
≥ δ. (4.27)

It is always possible to find such constant (see lemma 2).
We split the study of ẋp at a given time t∗ in two cases.

• Case 1. suppose there exists p1 such that δ ≤ |xp(t∗)− xp1(t∗)| ≤ 1.
In this case, we can easily deduce a lower bound for the speed of p:

ẋp =

N∑
j=1

(xj − xp)ajp ≥ (xp1 − xp)ap,p1 ≥ δη

with η = m
M ·N . Thus, since we have on the other end ẋq ≤ 0, we deduce that the

diameter is decaying at a minimum speed δη.

• Case 2. |xp(t∗)− xi(t∗)| < δ or |xp(t∗)− xi(t∗)| > 1 for any i 6= p.
In other words, all the neighbors of p are at a distance less than δ. We cannot

find a lower bound for ẋp anymore. Instead, we show that a neighbor of a neighbor
(denoted p2) will become a new neighbor of p in a finite time less than T .

Since connectivity is preserved, there exists p1 and p2 such that: p ∼ p1, p1 ∼ p2
and p 6∼ p2. Therefore, we deduce (see figure )

|xp(t∗)− xp1(t∗)| ≤ δ, |xp1(t∗)− xp2(t∗)| ≤ 1, |xp(t∗)− xp2(t∗)| > 1.

By triangular inequality, we deduce that |xp1(t∗) − xp2(t∗)| ≥ 1 − δ. Let us show
that after time T , we have |xp(t∗ + T )− xp2(t∗ + T )| ≤ 1.

Figure 11. Situation in the case 2. The extreme point xp needs
xp2 the neighbor of its neighbor xp1 to be pushed further to the
right.
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First, we show that ẋp2 ≤ 0 thanks to xp1 . During the time interval t ≤ T , as
the velocity |ẋi| ≤ 1 for any i, we have:

|xp1(t∗ + t)− xp2(t∗ + t)| ≥ |xp1(t∗)− xp2(t∗)| − 2 · t ≥ 1− δ − 2T ≥ 1− r∗,
by the assumption (4.26). As the consequence, xp1 is always in the critical region
of the agent p2. Thus, xp2 can only move left, which implies ẋp2 ≤ 0.

Second, we show that xp increases by at least δ during the period T which will
imply that p ∼ p2. The main idea is to show that xp1 is going to pull out xp. To
prove it, we compute

ẋp = µp(x̄p − xp) = 1 ·
∑
k

ap,k(xk − xp)

= ap,p1(xp1 − xp) +
∑
k 6=p1

ap,k(xk − xp) ≥
η

N
(xp1 − xp) + 0,

since xk − xp ≥ 0. We now need to find a lower bound for xp1 − xp. With this aim,
we compute the time derivative:

ẋp1 − ẋp = µp1(x̄p1 − xp1)− µp(x̄p − xp)
≥ (x̄p1 − xp1)− (δ + T ).

Here, we use that ẋp1 is necessarily positive as p2 is in its critical region, thus
we have a lower bound by replacing µp1 by 1. We now also suppose that xp has
not connected with p2 (otherwise there is no need to go further) and therefore its
neighbors are at a distance bounded by δ + T on the time interval [t∗, t∗ + T ].

Following the same inequality as for ẋp, we deduce that:

x̄p1 − xp1 = ap1,p2(xp2 − xp1) +
∑
k 6=p2

ap1,k(xk − xp1)

≥ η

N
(1− δ − 2T ) + (xp − xp1) ≥ η

N
(1− δ − 2T )− (δ + T ).

Therefore,
ẋp1 − ẋp ≥

η

N
(1− δ − 2T )− 2(δ + T ).

We conclude that:

xp1(t∗ + t)− xp(t∗ + t) ≥ xp1(t∗)− xp(t∗) +

∫ t

0

η

N
(1− δ − 2T )− 2(δ + T ) dt

≥ 0 +
( η
N

(1− δ − 2T )− 2(δ + T )
)
t.

Coming back to xp, we obtain:

xp(t∗ + T )− xp(t∗) ≥
∫ T

0

η

N
(xp1(t∗ + t)− xp(t∗ + t)) dt

≥ η

N

( η
N

(1− δ − 2T )− 2(δ + T )
) T 2

2
≥ δ,

using (4.27). Therefore, at time t∗ + T , we have xp2(t∗ + T )− xp(t∗ + T ) ≤ 1, and
thus p ∼ p2.

To conclude, since there is only a finite number of particles N , situations as in
case 2 can only appear a finite number of time (less than N times) and thus spread
over a period less than N ·T . Thus, outside these periods, the decay of d(t) satisfies
ḋ ≤ −ηδ leading to the upper-bound (4.25) which concludes the proof.
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linear decay exp. decay

Figure 12. The decay of the diameter d(t) is first linear and then
exponential after the diameter d(t) becomes less than 1.

Remark 5. Notice that we could not derive an explicit decay rate in the multi-
dimension case. Indeed, in one dimension, we exploited the property that the no
one left behind dynamics preserve the ordering of the agents and in particular that
the diameter forming agents are the same agents for all time (i.e. p and q are time
independent). In multiple dimensions it is possible for the diameter forming agents
to change - this prevents us from applying the techniques used in one dimension to
multiple dimensions.

4.3. Diameter decay: Numerical experiments. From the previous results, we
can see that convergence to a consensus occurs in two stages. Before the diameter
d becomes less than 1 the convergence is at least linear, after d is less than 1 the
convergence becomes exponential. The estimation of the convergence rates provided
by Theorem 2 is fairly rough. We would like to explore numerically if in practice
the decay of the diameter is faster.

We perform 100 realizations of the NOLB dynamics with initial conditions for
the configuration xi taken from a uniform distribution on the interval [0, 10] (1D
simulation). We then compute the evolution of the diameter d(t) = maxi,j |xi(t)−
xj(t)| for all the realizations. In Figure 13-left, we plot the decay of the ‘median’
of the diameter (red) along with the slowest and fastest decay (dashed blue). To
measure the disparity of d(t), we also plot the 5% and 95% quantile. We observe
two phases in the decay of the diameter: initially d(t) decays quickly and then starts
to slow down until it reaches the distance 1 when it decays exponentially fast. We
notice that there are a large variation between the different realizations. Indeed, if
we denote τ the stopping time at which d reaches 1:

τ = min
t≥0
{d(t) ≤ 1}, (4.28)

then we observe that τ varies between 22 time units (fastest realization) and 50 time
units(slowest realization). Thus, finding a sharp decay rate for the NOLB dynamics
seems challenging.

Additionally, we would like to explore how the the radius, r∗, of the critical region
affects the convergence. Naively one might expect that lower values of r∗ result in
faster convergence as agents are more free to move. However, we find that this is not
the case; intuitively since lower values of r∗ allow for more freedom of movement
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agents can have a higher degree of clustering which hinders the emergence of a
consensus. For each value of r∗ ranging from 0 to 1, we run 100 simulations of the
NOLB dynamics and estimate the stopping time τ (4.28). The results are plotted in
Figure 13-right. We find that indeed τ is lower for higher values of r∗. Interestingly,
this effect seems to become less prominent for r∗ ≥ 0.2.
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Figure 13. Left: diameter d(t) over time for 100 realizations
(quantile representation). Right: stopping time τ (4.28) depend-
ing on the size of the critical region r∗.

5. Relaxed no one left behind. In this section we will investigate whether it
is possible to weaken the constraints imposed by the NOLB dynamics and still
maintain convergence to a consensus. The critical ingredient in the argument used
to show the convergence to consensus of the NOLB dynamics was the preservation of
connectivity of the entire configuration of agents. However, the dynamics introduced
in (3.5) preserve connectivity between individual agents by Proposition 2 - once
two agents begin interacting they continue to do so throughout the evolution of the
dynamics as each agent “takes care of” every agent in its critical region. However
while this is clearly sufficient to preserve connectivity of the whole configuration, it
isn’t necessary. Instead of maintaining direct connectivity between agents we need
only to maintain a path between them.

Instead of preventing all disconnections as in the NOLB dynamics, we could
allow individual agents to disconnect as long as they remain connected to a mutual
neighbor - an agent does not have to “take care” of an agent in its behind region
if one of its neighbors is already doing so. This intuition can be made rigorous via
a description using the behind graph. We name the resulting dynamics relaxed no
one left behind as we remove constraints while maintaining (global) connectivity.
It is however unclear whether the new dynamics will lead to a faster convergence
to consensus.

5.1. Model introduction. Before introducing the model, we formally define what
we mean by a relaxed behind graph. We recall that we denote by G = (V,E)
and GB = (V,EB) respectively the interacting graph and the behind graph. V =
{1 . . . N} is the set of all N opinions while E and EB are the edge sets defined as:
• (i, j) ∈ E if ‖xi − xj‖ ≤ 1,
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• (i, j) ∈ EB if j ∈ Bi.
The behind graph EB is a directed subgraph of E (see remark 2). To define the
relaxed behind graph, we identify unnecessary edges. If two agents i and j are
neighbors then it is possible that their behind regions overlap and therefore possible
that a third agent, k, might be in both behind regions. In terms of the behind graph
this means that there is an edge from agent i to agent k and from agent j to agent k.
However since i and j are neighbors, only one of those edges needs to be present in
the behind graph for the interaction graph of the configuration of agents to remain
connected; i does not need to take care of k if j is already doing so (or vice versa).
Therefore, we could remove one of those edges from the behind graph creating a
new edge set ẼB (see Figure 14); if the configuration of agents evolves according to
the NOLB dynamics in terms of the relaxed edge set ẼB the interaction graph will
still remained connected as paths between agents are maintained.

We now define formally a relaxed behind graph.

Definition 5. Given a configuration of agents {xi }i ⊆ Rd, their corresponding
behind graph GB = (V,EB) and interaction graph G = (V,E), we say that G̃B =

(V, ẼB) is a relaxed behind graph of GB if:

• G̃B is a subgraph of GB

• for any (i, j) ∈ E, if (i, k) ∈ ẼB then (j, k) /∈ ẼB .

Figure 14. An example of how the behind graph can be relaxed
while still ensuring that the interaction graph remains connected.
The interaction graph is represented by undirected and directed
edges, the behind graph is represented by only the blue directed
edges. Agent 3 is in the behind region of both agent 2 and agent 4
and agents 2 and 4 are connected in the interaction graph therefore
we may remove the edge from agent 4 to agent 3.

Note that the relaxed behind graph is not unique as one has degrees of freedom
in which edges are removed ((i, k) is removed or (j, k)). However, given any full
behind graph any two relaxed behind graphs will have the same number of edges.
We can now define a relaxed version of the NOLB dynamics. Intuitively this new
model is exactly the NOLB dynamics however instead of using the full behind graph
it is defined in terms of a relaxed behind graph.
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Model 3 (RNOLB). Let {x1, ...,xN } ⊆ Rd be a configuration of agents with
behind graph GB and let G̃B = (V, ẼB) be a relaxed behind graph corresponding
to GB . The relaxed no one left behind (RNOLB) dynamics are given by:

x′i = PC̃i
(
xi − xi

)
(5.1)

where PC̃i : Rd → C̃i is the projection operator associated to the cone of velocities
C̃i given by:

C̃i = {v ∈ Rd | 〈v,xj − xi〉 ≥ 0 ∀j such that (i, j) ∈ ẼB}. (5.2)

We now present an algorithm to easily calculate the relaxed behind graph. In-
tuitively, at each time, t, an order is randomly computed for the agents. Then,
according to the order each agent projects its velocity towards agents in its behind
region that have not already been projected towards by neighboring agents earlier
in the order; each agent “takes care of” agents in its behind region that have not
already been taken care of by one of its neighbors. In Figure 15 we demonstrate
that under these dynamics that individual agents are indeed allowed to disconnect
however the connection of the whole configuration is maintained.

Algorithm 1 Compute relaxed behind graph
1: procedure Compute relaxed behind graph
2: Choose an order σ ∼ Unif(permutations of { 1, . . . , N })
3: for i ∈ { 1, . . . , N } do
4: for j ∈ { 1, . . . , N } do
5: if (i, j) ∈ EB and there is no k such that (i, k) ∈ E and (k, j) ∈ ẼB

then
6: Add (i, j) to ẼB
7: end if
8: end for
9: end for

10: end procedure

Notice that in the example of the NOLB dynamics in Figure 15 that the connec-
tivity of the whole configuration of agents is maintained and further that once any
two agents connect they remain connected. In particular this is true for the agents
corresponding to the red and blue trajectories. However in the RNOLB dynamics
these two agents become immediately disconnected. Nonetheless, the connectivity
of the whole configuration is maintained as the green agent “takes care” of the blue
agent and preserves the existence of a path between the red and blue agents. Indeed,
it is clear that two agents i and j connected by a path cannot become disconnected.

Proposition 4. The RNOLB dynamics maintain connectivity of the whole config-
uration of agents.

5.2. RNOLB as an interpolation between NOLB and bounded confidence.
In this section we conduct a numerical experiment in one dimension to demonstrate
that, in a sense, the RNOLB dynamics can be seen as an “interpolation” between
the Hegselmann Krause dynamics (2.1) and the NOLB dynamics defined in Model
2. One of the hallmarks of the bounded confidence dynamics is the formation of
clusters of opinions. The requirement of the NOLB dynamics that agents not move
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"No one left behind" dynamics Relaxed "No one left behind" dynamics

Figure 15. The NOLB dynamics do not allow the red agent to dis-
connect from the blue agent (illustrated with a purple chain). The
RNOLB dynamics allow this disconnection to occur but maintain
connectivity of the whole configuration.

if there is another agent in their critical region prevents the formation of clusters (see
for example, Figures 3 and 7). Agents with opinions on the interior of the convex
hull of opinions always have another agent in their critical region and are prevented
from moving until the boundary of the convex hull has contracted sufficiently close
to them. We will see that the weaker conditions of the RNOLB model allow cluster
formation to occur initially while still maintaining convergence to a consensus (for
a connected initial condition).

To measure the amount of clustering in a configuration of agents we introduce a
simple metric. Let R = L/N where L is the length of the range of possible opinions
and N is the number of agents. Given a configuration of agents {xi }i and an agent
in the configuration xj , we count the number of agents who are within R of xj .
We then take the average over all agents in the configuration. We will refer to this
metric as the clustering number. If the configuration of agents is initially uniformly
distributed the clustering number is 2 (in one dimension). If agents begin to cluster
the clustering number should increase as agents begin to collect more neighbors
within R. Clearly, the maximum clustering number for any configuration is the
number of agents in the configuration and if a consensus is reached that maximum
will be attained.

In the top three plots of Figure 16 we show the long term behavior of the RNOLB,
NOLB, and bounded confidence dynamics for the same initial condition. As ex-
pected, the bounded confidence dynamics do not reach a consensus and the NOLB
and RNOLB dynamics do. Additionally, we qualitatively observe the formation of
distinct clusters in the bounded confidence dynamics and the lack of clusters in
the NOLB dynamics. Interestingly, in the RNOLB dynamics we initially observe
the formation of clusters that are qualitatively very similar to those observed in
the bounded confidence dynamics. However, instead of remaining distinct (as in
the bounded confidence model) these clusters eventually merge and a consensus is
reached.

This qualitative observation is supported by measuring the clustering number of
each configuration as time evolves - this is plotted in the bottom left plot of Figure
16. Notice that in the initial period of cluster formation (roughly before t = 10)
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Figure 16. The RNOLB dynamics can be seen as an interpolation
between NOLB and bounded confidence.

that the clustering number of the bounded confidence dynamics is the fastest to
increase whereas the NOLB dynamics is the slowest which reflects the strong for-
mation of clusters in the bounded confidence dynamics and weak cluster formation
in NOLB. Notably, in this period the clustering number of the RNOLB dynamics
increases more slowly than the clustering number of the bounded confidence dynam-
ics but faster than the clustering number of the NOLB dynamics. This supports our
qualitative observation that RNOLB is - in a sense - an interpolation of bounded
confidence and NOLB as it has (at least initially) more clustering than NOLB as it
allows for free movement of many agents on the interior of the convex hull, but less
clustering than bounded confidence as it forces some “moderating” agents to main-
tain their position in order to preserve connectivity and eventually reach consensus.
We can also observe this interpolation in the evolution of the variance of each con-
figuration which is shown in the bottom right plot of Figure 16. Counter-intuitively,
strong clustering causes the decay speed of the variance to reduce as agents in in-
dividual clusters can (at least initially) move away from each other. This effect is
observed in the example in Figure 16 as the NOLB dynamics have the fastest decay
in variance, the bounded confidence dynamics have the slowest, and the variance
decay of RNOLB is faster than bounded confidence but slower than NOLB which
reflects the varying amount of clustering observed in the three different models. We
also observe that due to the higher degree of clustering, the RNOLB dynamics are
slower to converge to a consensus then the NOLB dynamics. Despite this, we still
observe exponential convergence once all agents are within the interaction range of
each other.

5.3. Diameter decay in RNOLB. In our previous results concerning the NOLB
dynamics we show rigorously that convergence to a consensus occurs in two stages;
when the diameter of the configuration of agents is greater than one the rate is
linear, afterwards it spontaneously becomes exponential. Our estimates of these
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rates were fairly rough and in an attempt to discover whether the rates are faster
in practice we simulated 100 realizations of the NOLB dynamics and found a large
disparity in stopping times which suggests that our estimates are unlikely to be
improved. Here, we repeat this experiment for the RNOLB dynamics in order
to investigate whether there is a similar phase transition in the convergence and
disparity in stopping times - see Figure 17 for the results.

We perform 100 realizations of the RNOLB dynamics with initial conditions
drawn from a uniform distribution on the interval [0, 10]. We then again compute
the evolution of the diameter of the configuration d(t) for all realizations and plot
the decay of the median of the diameter, the slowest and fastest decay, and the 5%
and 95% quantiles. Here, we again observe two phases of convergence with clear
exponential convergence again emerging once the diameter reaches 1. However,
compared to the NOLB dynamics convergence is much slower and there is a much
larger disparity between stopping times. The fastest evolution reaches a diameter
of 1 at ≈ 50 time units whereas the slowest evolution takes greater than 200 time
units. This suggests that it will be difficult to obtain tight convergence rates in the
case of the RNOLB dynamics as well.

Figure 17. Diameter, d(t) over time for 100 realizations of the
RNOLB dynamics (quantile representation).

6. Conclusion and future work. In this paper we studied variants of the Hegsel-
mann -Krause bounded confidence dynamics introduced in [12]. The modifications
we introduced were aimed at mitigating the generic cluster forming behavior seen
in the bounded confidence dynamics and inducing consensus among the agents.
Motivated by the attractive nature of the interaction in bounded confidence dy-
namics we introduced a variant dubbed No one left behind (NOLB) that maintains
connectivity between agents. We rigorously demonstrated that this control is suf-
ficient for unconditional convergence to a consensus regardless of the dimension of
agent opinions. Due to the nonlinear and discontinuous nature of the dynamics
the argument relies on the interplay between two key properties of the dynamics;
contractivity and the preservation of connectivity of the configuration of agents. In
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one dimension we were able to derive explicit convergence rates that quantify how
fast a consensus is reached. Additionally, we conducted numerical experiments that
suggest that tighter bounds on the convergence rates are likely not possible.

The NOLB dynamics maintain local, pairwise connectivity between agents, how-
ever our argument for unconditional convergence to a consensus relied only on
global connectivity of the configuration of agents. Motivated by this we introduced
a second variant to the bounded confidence dynamics we dubbed Relaxed no one
left behind (RNOLB) aimed at maintaining the existence of paths between pairs
of agents. We find that while this modification still results in unconditional con-
vergence to a consensus, it retains more of the qualitative features of the bounded
confidence dynamics; notably the emergence of clusters in the beginning of its evo-
lution. For this reason the RNOLB dynamics can be regarded as an interpolation
between the bounded confidence dynamics and the NOLB dynamics. We presented
numerical investigations into the variance of agent opinions and a metric we dub
the clustering number that further support this view.

To our knowledge, models with a bounded confidence type interaction (one that
depends on an interaction radius) have only been studied in a Euclidean setting.
Motivated by this observation we hope to study the behavior of models with a
bounded confidence style interaction in topology other than Euclidean space, eg.
the circle. It would be interesting to extended this study and investigate whether
the corresponding NOLB and RNOLB dynamics result in consensus in such spaces.
Empirical studies of models of decentralized collective behavior outside of statistical
physics have been challenging in the past due to lack of data that both describes
their motion and their pairwise interactions. However, there has been some progress
in recent years in biological studies of swarming animals such as birds and ants
[1, 4, 22]. We believe the advent of social media provides a data source through
which an empirical study of consensus in the context of opinion formation could be
possible [8,15]. A possible goal of such a study would be to confirm the phenomenon
found in this study; connectivity in the interaction network of agents is a main driver
of consensus.

Appendix A. Appendix.

Lemma 1. Let {ui }i ⊆ Rd and consider C = { v | 〈v, ui〉 ≥ 0 for all i }. If u is in
C then 〈PC(x), u〉 ≥ 〈x, u〉 for all x in Rd.

Proof. PC(x) is by definition the solution to the minimization problem:

minimize f(y) =
1

2
‖y − x‖2

subject to gi(y) = 〈y, ui〉 ≥ 0

Since C is closed and convex there exists a unique minimizer y∗ and since the
constraints are linear the Karush-Kuhn-Tucker conditions imply that:

∇f(y∗) =
∑
i

λi∇gi(y∗)

where λi ≥ 0. Therefore:

y∗ = x+
∑
i

λiui
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which implies by definition of C that:

〈PC(x), u〉 = 〈x+
∑
i

λiui, u〉 = 〈x, u〉+
∑
i

λi〈ui, u〉 ≥ 〈x, u〉

as desired.

Lemma 2. For any 0 < r∗ < 1, η > 0 and N > 0, there exist T > 0 and δ > 0
such that:

δ + 2T ≤ min(r∗, 1− r∗) (A.1)
T 2

2N2
η
(
η(1− δ − 2T )− 2N(δ + 2T )

)
≥ δ. (A.2)

Proof. We let δ = T 3 and show that for T > 0 sufficiently small both equations are
satisfied. Indeed, the substitution leads to:

T 3 + 2T ≤ min(r∗, 1− r∗) (A.3)
1

2N2
η
(
η(1− T 3 − 2T )− 2N(T 3 + 2T )

)
≥ T (A.4)

Since min(r∗, 1− r∗) > 0 and T 3 + 2T
T→0−→ 0, there exists T1 > 0 such that (A.3) is

satisfied for 0 < T ≤ T1. Similarly, for the equation (A.4), we notice that

1

2N2
η
(
η(1− T 3 − 2T )− 2N(T 3 + 2T )

) T→0−→ η2

2N2
> 0.

Therefore, there exists T2 > 0 such that (A.4) is satisfied for 0 < T ≤ T2. Taking
T = min(T1, T2) and δ = T 3, we deduce a solution to (4.26)-(4.27).
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