NETWORKS AND HETEROGENEOUS MEDIA d0i:10.3934/nhm.2020024
(©American Institute of Mathematical Sciences
Volume 15, Number 3, September 2020 pp- 389-404

A BGK KINETIC MODEL WITH LOCAL VELOCITY
ALIGNMENT FORCES

Young-PiL CHor*

Department of Mathematics
Yonsei University
Seoul 03722, Republic of Korea

SEOK-BAE YUN

Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Republic of Korea

ABSTRACT. The global Cauchy problem for a local alignment model with a
relaxational inter-particle interaction operator is considered. More precisely, we
consider the global-in-time existence of weak solutions of BGK model with local
velocity-alignment term when the initial data have finite mass, momentum,
energy, and entropy. The analysis involves weak/strong compactness based on
the velocity moments estimates and several velocity-weighted L°° estimates.

1. Introduction. In this paper, we are interested in the kinetic model which de-
scribes the particle system where the alignment effect of the ensemble and the
relaxation process through binary collisions compete:

hf+v-Vof +Vy-((u—v)f) =M(f) -/, (1.1)

subject to initial data
flz,v,0) =: fo(z,v).
Here f = f(x,v,t) denotes the number density function on the phase point (z,v) €

T¢ x R? at time ¢ € R;. The local Maxwellian M(f) = M(f)(x,v,t) is implicitly
defined through the moments of f:

plz,t) = flx,v,t)dv,  p(x,t)u(z,t) ::/ vf(z,v,t)dv,

R4 R4

and

plx, )T (z,t) := é/Rd lv — u(x, t)|*f(z,v,t) dv
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by the formula

- plx,t) v — u(z, t)]?
M(f)(z,v,t) = mexp (_QT(W> .

The study of collective dynamics of self-propelled particle systems, in which sim-
ple local interaction laws between the particles eventually lead to the emergence of
global collective behaviors, has received much attention recently. The most common
such rules imposed on the constituent particles are rules of alignment phenomena
and collisional interactions. As such, kinetic equations where the local alignment
phenomena and collisional interactions are combined as in (1.1) arise in various
physical or modelling contexts. For example in [6, 16, 17] a local alignment kinetic
model with a Fokker-Planck type inter-particle interaction is considered, which arise
as a coarse limit of a variant of Cucker-Smale flocking models [12, 18]. To be more
specific, the local particle velocity can be obtained by taking into account the fol-
lowing local averaged particle velocity:

_ f’]rd < Rd Kr(x - y)wf(yv ’LU) dydw
de xRd K'r(x - y)f(ya ’LU) dydw ’
where K" is called a communication weight and r represents the radius of particle

interactions, i.e., the support of K. This type of particle velocity is considered in
[18] to describe the flocking behaviors. In [17], the rigorous justification of the limit

u'(z,t)

(1.2)

v —u as r—20

in the weak sense is investigated. At the formal level, we expect the kernel K"
converges to the Dirac measure &g, thus the limiting function will be the local
particle velocity u. We refer to [4, 11] for recent surveys on the Cucker-Smale
type flocking models. Similar models also arise in the context of traffic model of
Paveri-Fontana type where the evolution of the velocity distribution of the vehicles
are explained by the adjustment of velocity with respect to the desired velocity
(alignment), and the acceleration of the vehicles (traffic collision operator) [9, 20].
The main motivation of our model (1.1) comes from the collisional alignment model
of [16, 17]. Instead of the Fokker-Planck type diffusive approximation of the collision
operator as in [16, 17], we are considering relaxational approximation of the collision
operator.

Closely related models are kinetic-fluid equations with inter-particle interaction
operators, in which a collisional kinetic equation and fluid equations are coupled
through drag force terms. More precisely, v in the local alignment force satisfies
the fluid equations, for instance, incompressible Navier-Stokes system, see [8, 10]
where the existence theories for weak/strong solutions of the Navier-Stokes-BGK
system are discussed. When the local velocity alignment force is ignored, our main
equation (1.1) becomes the BGK model of Boltzmann equation [3], which is one
of the most widely employed model equation of the Boltzmann equation providing
reliable results on various problems in rarefied gas dynamics. Some of previous
works on the BGK model can be summarized as follows. For the Cauchy problem
in the framework of weak solutions, see [21, 28, 29]. The existence of strong solutions
with uniqueness can be found in [19, 22, 25]. Behaviors of solutions that stays near
global equilibriums are studied in [2, 24, 26, 27]. For results on stationary solutions,
see [1, 23].

In the current work, we establish the global-in-time existence of weak solutions
to the equation (1.1). The main difficulties are the nonlinear terms fu in the
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local alignment force and the local Maxwellian M(f). In many previous works
[5, 7, 14, 15, 18] on kinetic collective behavior models, the method of characteristics
are crucially used to estimate the propagation of velocity support of solution f.
However, in our case, due to the lack of regularity of v and the BGK operator term,
that types of support estimates of f in velocity cannot be applied. Instead of that,
we regularize the local particle velocity u, and linearize the equation (1.1). We then
do some Cauchy estimates in the velocity-weighted L°°(T¢ x R?) space. Finally,
we provide some uniform bound estimates in regularization parameters and pass to
the limit which requires some weak and strong compactness arguments.

Let us now introduce a notion of weak solutions to the system (1.1).

Definition 1.1. We say that f is a weak solution to the system (1.1) if the following
conditions are satisfied:

(i) f € Lo(0,T; (LY N L) (T? x RY))",
(ii) for all ¢ € C}(T? x R x [0, 7)) with ¢(x,v,T) = 0,

T
- / fodo dzdv — / / F O +v-Vigp+ (u—v)-V,0)drdvdt
T4 xR4 0 JTdxRd

:/OT/WW (M(]) = f) & dedvdt,

We are now ready to state our main result:
Theorem 1.2. Let T > 0. Suppose that the initial data fo satisfy
fo € L®(T? x RY)
and

/ (14 v]? + [In fo(z, v)]) folz,v) dzdv < oo.
TdxR4

Then there exists at least one weak solution to the system (1.1) in the sense of
Definition 1.1 satisfying the following estimates:

()
1FC D)l < Clifoll=
and
(ii)
/ (14 |v)* + |In f(z,v,t)|) f(z,v,t) dedv < 0o
T4 xR4
for almost every t € (0,T) and C > 0.

Remark 1.3. We can easily apply our strategy for the existence result for the
equation (1.1) with u” appeared in (1.2) instead of uw under the assumption K" €
LY(T9).

We introduce several notations used throughout the paper. For functions f(x,v),
g(x), ||f|lz» and ||g||z» denote the usual LP(T¢ x R%)-norm and LP(T¢)-norm, re-
spectively. | f[|Le represents a weighted L°*-norm:

[fllLge == esssup (L+ [v|*)f(z,v).
(z,v) €T xR?
For any nonnegative integer s, H* denotes the s-th order L? Sobolev space. C*([0,T7;
E) is the set of s-times continuously differentiable functions from an interval [0, 7] C

lLi (T x R%) denotes the set of nonnegative L'(T? x R?) functions.
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R into a Banach space E, and LP(0,T; E) is the set of the LP functions from an
interval (0,7") to a Banach space E. We denote by C' a generic, not necessarily
identical, positive constant, and C' = Cy ... or C = C(a,p,...) stands for the
positive constant depending on «, 3, . ...

This paper is organized as follows: In the following section 2, we introduce a
regularized equation of (1.1) and study the global-in-time existence of weak solutions
to the regularized equation. For this, we construct the approximated solutions to the
regularized equation, and provide that they are Cauchy sequences in the velocity-
weighted L°(T? x R?) space. We also establish uniform bound estimates in the
regularizing parameter. In Section 3, we then use this uniform bounds to drive weak
solution of (1.1) through the weak limit of the regularized distribution function and
the strong limit of macroscopic fields.

2. A regularized equation. In order to show the existence of weak solutions to
(1.1), it is required to regularize the equation to remove the singularity in the local
alignment force. In this section, we introduce a regularized equation and provide
the global-in-time existence of weak solutions of that. Let us regularize the local
particle velocity u by using a mollifier 0. (z) = =%0(z /) with 0 < § € C5°(T¢)
satisfying

O(x)dx = 1.
Td
Then our regularized equation is defined as follows:
Ofetv-Vafe+ Vo ((uz —v)fe) = M(fe) - [, (2.1)

subject to regularized initial data:
(fe(x,v,0)) =: (fore(z,v)), (x,v)€T¢x R

Here
((peuc) x 0c)(x, 1)

(pe % 0c) (2, ) + (1 + [((peuc) * be) (2, 1)[?)

ug(w,t) =
with
pe(z,t) = /d fe(z,v,t)dv and  (peue)(x,t) = /d vfe(x,v,t)dv,
and the regularized H?nitial data fo . is defined by :

2
foe=mnx* {f01f0<1/e} +ee ;
where 14 denotes the characteristic function on A and 7 is the standard mollifier.
Note that fy . satisfies
(i) fo. — fostrongly in LP(T9 x RY) for all p < oo and weakly-* in L>(T¢ x R%),
(ii) lloy/Joel72 = llov/follZ2 strongly.

In the following two sections, we prove the proposition below on the global-in-time
existence of weak solutions and some uniform bound estimates of the regularized
system (2.1).

Proposition 2.1. Let T > 0. For any € > 0, there exists at least one weak solution
fe of the regularized equation (2.1) on the interval [0,T] in the sense of Definition
1.1. Furthermore we have

(i) kinetic energy estimate

sup / [v2fo(2,v,t) dedv < C,
Td xR

0<t<T
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(i) third moment & entropy estimates:

sup / (\ In fo(z,v,t)| + |v|3) fe(z,v,t) dadv < C,
0<t<T JTdxR4

where C' = C(fo,T) > 0 is independent of €.

2.1. A linearized equation. In order to obtain the existence of solutions to the
regularized equation (2.1), we first construct the approximated solutions in the
following way:

OfI v Vo fl™ 4 Vo (W™ — o) f2F) = M(f1) = £, (2.2)
with the initial data and first iteration step:
[z, v,t)|t=0 = foe(zx,v) forall n>1

and

oz, 0,t) = foe(z,v), (z,0,t) €T xR x (0,T).
Here (ol % 0.)(x,1)

e,n pgu? * (S .’ﬂ,

u(x,t) =

D = ) + o1 [(rap) % )@ D)
with

p?(m,t):/ i (x,v,t)dv and (p?u?)(axt):/ vfl(xz,v,t) dv.
Rd Rd

In the proposition below, we provide the global-in-time solvability of the regularized
and linearized equation (2.2) and uniform-in-n bound estimates of solutions.

Proposition 2.2. Let T > 0 and ¢ > d+ 2. For any n € N, there exists a
unique solution fI' of the reqularized and linearized system (2.2) such that fI' €
L*>=(0,T; Lgo(']I‘d x R%)). Moreover, we have

sup [IfZ(, )z < Cllfoelln=
0<t<T

and
sup_(1£2Co s Dllzge + IV 2o Dllag ) < Ce
T

0<t<
where C' > 0 is independent of both n and €, and C¢ > 0 is independent of n.

Before presenting the details of proof of Proposition 2.2, we list several technical
lemmas showing some bound estimates related to the local Maxwellian. First two
lemmas below are concerned with the upper bound estimates of local Maxwellian,
and the third one is a type of Lipschitz continuity of the local Maxwellian.

Lemma 2.1. [22, p.291] Suppose ||f|[Le < oo for ¢ > d + 2. Then there ezists a
positive constant Cy, which depends only on q, such that

M)l < Cqllfllge (> d+2 orq=0).
Lemma 2.2. [25, Proposition 4.1] Assume that f satisfies

L0l + Vel < Ca,
2. p+|ul+T < Cy,
3. p, T > Cs,

for some constants C; >0 (i = 1,2,3). Then, we have

Mg + 1920 MDllzge < Cr {1 e + Ve f e }
where Cp > 0 depends only on Cy, Co, Cs and the final time T.
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Lemma 2.3. [25, Proposition 6.1] Assume f, g satisfy (h denotes either f or g)
1. ||h||LgO < Chq,
2. pn+ un| +Th < C,
3. pthh > CB:

for some constants C; > 0 (i = 1,2,3). Then, we have
[M(f) = M)z < Crllf = gllze,
where Cp > 0 depends only on Cy, Co, Cs and the final time T.

Proof of Proposition 2.2. For the proof, we first introduce the following backward
characteristics:

an_‘—l(s) = (Xf?_‘—l(s)’ ‘/an—,—l(s)) = (X;L—H(S; i, U)’ Vvan—’_l(s; t,x, U))
defined by

di X0t (s) = VIH(s), 0<s<T,
; (2.3)

VI ) = us (X2 (s), ) = VA (s),

with the terminal datum
ZrHN(t) = (z,v).
Due to the regularization, the characteristics (2.3) is well-defined, thus global-in-

time existence of solutions to (2.2) can be obtained by the Cauchy-Lipschitz exis-
tence theory. It follows from (2.3) that V**1(s) satisfies

t
VIit(s) = vel ™ — 675/ uS™ (X2 (1), T)e” dr. (2.4)
On the other hand, we get
ol = | [ sy
R4

- / (L4 [0l + [o]0) 2 (2, 0) do
R
< Ol o

for ¢ > d and

)l =| [ sz ao

= [0l ) o) 2 v do
Rd
<Cll 2l

for ¢ > d + 1. Subsequently, these imply

((pEug) x 0c)(x, 1)
(P2 % 0=) (1) + (1 + |(p2ur) * 02) (2, 1)[?)

s,n| _
‘ua -

IN

1 n, n
RUCACORLDICH] (2.5)

IN

C
Zloruzl

< CIfP
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and
[Vaug”|

< |[((pZu) x Vabe)(x, 1)

= (P2 be)(x, 1) + e(1 4 [(prul) x 0c) (z, 1) %)
[((pgug) > ) (x, )| (|pg * Vabe| + 2¢|pfud * Oc||pfus * Vabe|)

((p2 % 02) (2, 8) + (1 + |(prup)  0c) (x, 1)[2))?
1 1 2

< g|p?ug * V0| + §|p? * V0| + g|p?U? * V0|

< Gl e,
where C; > 0 is independent of n. This together with (2.4) yields

+

t
] < [V (s)] +/ [uSs™ (X2 (), ) dr < [V (s)| + Cre.
Furthermore, we have

t
Ve XEH( <C+ [ VL) dn
t
VoV <C4 [ Ve ) e Ve X2 )] dr

t
<cicC / 12 i [V X4 (7).

Along that characteristics we obtain from (2.2) that
I (@0, 1) = TV o (2201(0))

t
*/ @D A (£1( 205 (s), 5)) ds.
0

Then it is easy to check from (2.9) that

t
IF2F2 G D)l < Orllfocllie + CT/ IMfZ(ZEH (st ),9) L= ds
0

T
< Crllfocllz~ + Cr / 172 )| e ds
0

395

(2.6)

due to Lemma 2.1. Applying the Gronwall’s inequality, we conclude the first asser-

tion. In order to prove the second estimate, we use (2.7) to obtain
L+ [o] < T+ [V2TH(s)| + Cre.

Using the above estimate, we find

foe(ZETH0) = fo(ZIFH0) (1 + Cre + [VIFHO))(1 + Cre + [VIFH(0)]) 7

< Creglfoellog (1 +Jv))™
for 0 < g < oo. Similarly, with the aid of Lemma 2.1, we estimate

M(fINZEH(s), 5)

< M(FINZE(s),8)(1 + Cre + V2T ()T (1 + O + [V (s)]) 7

< CT,&q
S C'T,E,q

M) g (1 + o)1
[flzge (L o)~
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This together with (2.9) gives

IF2F1 G D)lloge < Cregllfoc]

t
L+ CTM/ 1S2 o 8) e ds. (2.10)
0

This yields

sup sup ||f€n(7 '7t)HL2° < CT,&QHfO,E

|L§°7
0<t<T neN

and subsequently, we find
|Vr,vzg+1(3)‘ S OT,E
for all n > 1 due to (2.8). Then we also use similar argument as above to get
\vavf;’“(x,v,tﬂ
< CrlVawfo(ZIH0)][Vaw Z2H(0)]
t
FCr [ [9an MU (Z27(5), )1V 227 5)
0
S CT,EHV:v,va,E”LgO(]- + |v|)_q
t
4 Cre [ IV MU (14 ol) 7 ds
0

< CT,eHVw,va,EHLff(l + |,U|)—q
t
+Cre [ (12 + 172 ie) (14 ol) 7 ds
0

due to Lemma 2.2. Hence we obtain

Hvx,vfanJrlHLgc < OT,6| v:c,va,sHLgo

, (2.11)
40 [ (W2 + 1V 2 ) ds.
0

Combining (2.10) and (2.11), we have

12 ) oo + [ Vaw f27H (0] Lo
t
< Cre (Ifocllz +1enfocliz) + Cre [ (2lez + Vot o) ds
0
which concludes the desired result. O

Corollary 2.1. Let ¢ > d+ 1. For any T > 0 and n € N, there exists a
unique solution fI' of the reqularized and linearized system (2.2) such that fI' €
L>(0,T; Le* (T4 x R%)). Moreover, we have

(i) lower bound estimates for the local particle density and temperature:
pt>C. and T > C.,
(#i) upper bound estimates for the macroscopic fields:
pe + ul |+ T < Ce

for all0 <t <T, where C; is independent of n.
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Proof. (i) We take into account the integration of (2.9) and recall how we regularized
fo to see

fi(z,v,t)dv > e%/ fo.e(Z2(0)) dv
Rd Rd

> / e IVIOF gy (2.12)
]Rcl

2/ ce=Ce+1D? gy >
]R:i

where we used
t
V2 (s)] < Clol + C/ [ue™ (X2 (7), )| dr < C(Jv| + C2) < C(1 + |u])

for all 0 < s < T'. This gives the lower bound for p?. On the other hand, it follows
from [21, Proposition 2.1] that

Pl (@, t) < Coll 2|20 (1)

for ¢ > d or ¢ = 0. This combined with the above lower bound estimate for p?
asserts 1" > C. for some C,, which is independent of n. Note that this is essential
for the local Maxwellian to be well-defined.

(ii) Straightforward computations give

" =/ frdv < Cl|f2 |1 < C,
Rd

1 C
2l = | [ rode] < Sy <0 and
2
1 1 C C
mn _ n|,, |2 - n M £n 2
12— [ a2 | [ froao) < Syt + S <o

O

2.2. Cauchy estimate for f”. In this part, we show that fI' is a Cauchy sequence
in L‘X’(O,T;L(‘;"(Td x R%)). Tt follows from (2.9) that

f?—i_l(ma v, t) - fen(xv v, t)
= eI (fo.(Z2FH0)) — fo,.(Z22(0)))
* / eADE=) (M(f2) (204 (s), 5) — M(F271) (Z2(s), 5)) ds

= eV (fo.(Z27H(0) — foe(22(0))) (2.13)

+ / D) (M(2) (22 (), 8) — M(2) (Z2(5), 9)) ds

t
b [ IO (M) (22(5). ) - MU (22(9),5) ds
0
=1+ 1+ Is.
Here I is readily estimated as

Il < C(l + ‘U|)_q||v$,vf0,s

12| Z2H(0) = Z2(0),
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where C > 0 is independent of n and €. For the estimate of I3, we use Lemma 2.2
to find

t
o= [ eI, M) (022 () + (1 @) 22(5).5)
0
(2241 (s) - Z2(s)) ds
t
Cll+ o)™ [ 19 MU | 227 () = Z2(5)] ds
t
CoU+ 1) [ (2 + 1928
X |Z2%1(s) - Z2(s)) ds.
It follows from Lemma 2.3 that
Iy < C.(1+ o) / 1 = £21) s 9)llae ds.
Putting these estimates into (2.13) gives

G2 = 3G )l

< C|Z2H0) - Z2(0 |+C/II FE= 120 9) g ds (2.14)

t
el / |20 (s) — Z7(s)| ds.
0

We next present Cauchy estimate for the characteristic Z"*1. For this, we first
notice that

‘pa_pa 1_‘/ fs gldv

for ¢ > d and

<CIfFE = f2 g

otz = = | [ ot - ] < ol - s

for ¢ > d + 1. This yields

us™ — usn
(pLu?) * 6. B (P2~ tul ™) % 0e
PO+ e(L+ [prur x 0c%)  p2= Vb, +e(1+ |2 ul~ " %02
(plul — p2~tul 1) % 0,
pr %0 + (1t [prul x 6c]?)
(2 ur =) % 02) (P2 = p2) % 0 + & (|pp ul = % 0.2 — |pzsu2*952))‘

IN

+

(p2 % 0+ e(1 + |prul x 0-|2)) (p2 7" % 0 + (1 + [p2~ ul ™ % 0.[2))

n—1, n— 1 n—1, n— n— n
Si(p — Pe 1’U,€ 1)*9|+ |(ps lua 1)*9€||(p5 1_p5>*96|

2
+ 22 ™) O [ (p2 ™ Ml T — plul) % 6|
SCsl\f?—f?_llngo7
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where C. > 0 is independent of n. Then, by using the above combined with (2.6),
we obtain from (2.3) that

VL (s) = VE(s)| = e / (uE™ (X2 (r), 7) — usm (XD (7),7))eT dr

t
<c / e (X7 (), 7) — uSn N (X (7), 1) dr
t
+C [ |uen e (), 7) —u (X ), ) dr
t
<c. / 1 = 270 ) dr

t
el / XL () — X7(7)] dr.

Thus we get
t
|22 (s) = Z2(s)| < Cs/o 172 = F27D 6 Dl dr

t
+C’E/ |Z§+1(T)—Z§(T)|d7.

Applying Gronwall inequality to the above, we have

t

22746 = 22 < € [ = 22 d

for all 0 < s <t < T. We then combine this with (2.14) to conclude
12244 (t) — Z2 (0| + N2 = 2t

; 1 X (2.15)
=< Cs/o 1224 (s) = Z2(s)llLee + I(f2 = £271) 0o 8) Lo ds.

2.3. Proof of Proposition 2.1. We now provide the details of proof of the global-
in-time existence of weak solutions to the regularized equation (2.1).

2.3.1. Euwistence of weak solutions. It follows from (2.15) that fI is a Cauchy se-
quence in L*>(0,T; Lgo(']l‘d x R9)) from which, for a fixed ¢ > 0, there exists a
limiting function f. such that

sup ||f;l(7 7t) - fE('v 7t)||Lg° —0 (216)
0<t<T

asn — oo. Then it remains to show that the liming function f. solves the regularized
equation (2.1). Since there is no singularity in the local alignment force, it suffices
to have

IM(f2) = M(f)llge = 0

as n — o0o. Since ¢ > d + 2, for ¢(v) = 1,v, and |v|?, we estimate

/Rd Fro(v) dv — /Rd fep(v) dv
< /Rd f2 = flo(v)dv < || f2 - fa“L;"’/R

$(v)

P dv < O f* ~ fellpee-
a (1+|v|)q U— HfE fHLq



400 YOUNG-PIL CHOI AND SEOK-BAE YUN

This together with (2.16) yields

Pe = Pes  PLUL = Pelc,
and
p2ul? + dpl T — peluc|® + dp-Te
in L>(T? x (0,T)) as n — oo. Here (p.,ue,T.) denote the macroscopic fields

constructed from f,. On the other hand, the lower bound estimate of p is obtained
in (2.12), and this gives

P = pey, ul —ue, and T =T,

as n — oo, uniformly in « and ¢. The convergence of fI* in || - ||Lm(07T;LSQ) and the
uniform convergence of (p2, uZ, T™) to (pe, ue, Tc) imply that f. and (pe, ue, T:) also
satisfy the assumptions of Lemma 2.3. This concludes from Lemma 2.3 and (2.16)
that

IM(fZ) = M(f)llge < Cellff = fellge =0

as n — 0o. This completes the proof of the existence part.

2.3.2. Uniform-in-¢ bound estimates. In this part, we show the uniform-in-¢ bound
estimates of solutions obtained in the above. Since the third moment and entropy
estimates can be obtained by using almost the same arguments as in [10, Section
5], we only provide the kinetic energy estimate (i). We first notice from [16, Lemma
2.5] that

pe(x)
su O (x —y)————dax < C, 2.17
ye% /Jl‘d ( ) O *pg(.%‘) ( )

where C > 0 is independent of €. On the other hand, a straightforward computation
yields

1d
1% |v|2 f. dedv = / v (uf —v)fe dedv
Td xR4 TdxRd
1 1
< f/ [u|?pe do — f/ [v|? f. dadv
2 Td 2 Td x R4
1
< 7/ [us|?pe da.
2 Jpa
Note that
s (2 t)|2 _ ‘ ((peuc) x 0c)(x, 1) ?
= (pe x 0c) (2, 1) +e(1 4 |((peuc) * 0c) (2, 1)[?)

2
dede O (z — y)wfe(y, w, t) dydw

0 * pe(x,t)
 Jrixpa Oc(@ — Yol fe(y, w, t) dyduw
- O % pe(x,t)

i

and this together with (2.17) gives

£12 pe() 2
Pelus dxg/ ( Osx—ydx) w|* fe (y, w) dydw
/Td e TdxRe \JTd ( )95 * pe() o fe(w, )

<C [v| fo(z,v) dadv,
Td xR4



A BGK KINETIC MODEL WITH LOCAL VELOCITY ALIGNMENT FORCES 401

where C > 0 is independent of €. Hence we have

4 |v|2 fe(z,v,t) dedv < C |v|2 fo(z, v, t) dedo,
dt Jpaypa Td xR

i.e.,
/ v|*fo (2, v,t) dzdv < C 0|2 fo.c (2, v) dedo,
Td xR Td xRd
where C' > 0 is independent of . This concludes the desired result.

3. Proof of Theorem 1.2. We are now ready to send the regularization parameter
€ — oo in the regularized equation (2.1). We will use several compactness arguments
based on the Dunford-Pettis theorem and the velocity averaging lemma. Since the
compactness of the BGK relaxation operator and the macroscopic fields are already
discussed in [10, Section 6], we sketch the idea of proofs here. In the previous
section, we obtained

T
[ [ @il s n s oD fleeddede < C, (31)
0 Td x R4

where C' > 0 is independent of e. Then by Dunford-Pettis theorem, we find that f.,
f-v and f.|v|? are weakly compact in L'(T? x R? x (0,7)), and thus there exists
f e LY(T? x R? x (0,7T)) such that f., f-v, f-|v|? converge to f, fv, f|v|* weakly
in L' (T? x R? x (0,T)) respectively, which also implies

Ps:/ Jedv— [ fdv=p, psue:/ vfedv— [ vfdv=pu,
Rd Rd R4 R4
and
oL+ pefuc = [ floldo— [ floPdo=dsT + pluf
R4 R4

in L!(T¢x (0,7T)). Then with the aid of the velocity averaging lemma [13], the above
convergence actually is strong, which gives the almost everywhere convergence of
the macroscopic fields:

pe = p aeonT!x[0,7], u.—u aeonE, and T. =T aeonFE, (3.2)

where
E = {(x,t) € T? x (0,T) | p(z,t) # 0}. (3.3)

Concerning the compactness of the local Maxwellian, we use the entropy bound es-
timate in (3.1) together with Dunford-Pettis theorem to have the weak compactness
of M(f) in L*(T? x R? x (0,T)). In fact, we can also show that M(f.) converges
weakly to M(f) in L}(T¢ x R? x (0,T)), see [10, Section 6.3] for details.

Employing the previous convergence estimates, we can pass to the limit € — 0
in the regularized equation (2.1) except the term f.uZ in the local alignment force.
Thus in the rest of this section, we will show that

fouf = fu i L0, T; IP(T? x RY)) for p E(ﬁﬁ)‘

For this, we use a similar argument as in [16]. By the strong convergence (3.2), we
get

(petie) %0 — pu, p.*0. —p ae. and LP(T¢ x (0,T))-strong,
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up to a subsequence, for all p € (1,(d +2)/(d +1)). Let

p2lat) = [ flvtp) o

for a given test function (v). Consider a test function ¢ (z,v,t) := ¢(z,t)p(v) with
¢ € CX(T4 x (0,T)) and ¢ € C°(R?). Then we obtain

/ / feult dedvdt = / / usp? ¢ dadt.
Td xR2

Note that if p € (1,(d+2)/(d + 1)), then p/(2 — p) € (1,(d + 2)/d), and we use
Holder’s inequality and Proposition 2.1 (i) to deduce

1/2
luzptller < Ipllnellpe ) | V/Peull 2 < oo,

Thus there exists a function m € L>(0,T; L?(T%)) such that
d+2
wEpf = m in LP(0,T;IP(TY) forall pe (1,952,
d+1
up to a subsequence. We then claim that
m = up?, where p¥ = / fedv and pu = / uf dv.
Rd Rd
By using the set E appeared in (3.3), we first easily estimate
€ 1/2
u2pf e ey < Cllpcll s ammim) =0 as &= 0.
This implies that it suffices to check
m = up?¥ whenever p > 0.
For this, we introduce a set
E° .= {(z,t) € T* x (0,T) : p(z,t) > 6} .

By the compactness of p. and p. x 6. and Egorov’s theorem, for any n > 0, there
exists a set C,, C E% with |E? \ C,| < 1 on which both p. and p. * 0. uniformly
converge to p as € — 0. This yields that p. x . > 6/2 in C,, for sufficiently small
€ > 0. This yields

e @ (peuc) % 0

== o s m=up¥ in C
ePe €+p6*6/’ P il

and subsequently, this asserts
m=up? on F,

since n > 0 and § > 0 were arbitrary. Hence we have

T T T
/ / feult) dedvdt — / / up? pdxdt = / / fup dedvdt
0 Td x R4 0 Td 0 Td x R4

for all test functions of the form ¢ (z,v,t) = ¢(x,t)p(v).

Incorporating all of the above observations allows us to send ¢ — 0 in (2.1) to
conclude that the limiting function f is the weak solution to our main equation (1.1)
in the sense of Definition 1.1. L bound and kinetic energy estimates in Theorem
1.2 can be easily obtained.
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