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Abstract. The global Cauchy problem for a local alignment model with a
relaxational inter-particle interaction operator is considered. More precisely, we

consider the global-in-time existence of weak solutions of BGK model with local

velocity-alignment term when the initial data have finite mass, momentum,
energy, and entropy. The analysis involves weak/strong compactness based on

the velocity moments estimates and several velocity-weighted L∞ estimates.

1. Introduction. In this paper, we are interested in the kinetic model which de-
scribes the particle system where the alignment effect of the ensemble and the
relaxation process through binary collisions compete:

∂tf + v · ∇xf +∇v · ((u− v)f) =M(f)− f, (1.1)

subject to initial data

f(x, v, 0) =: f0(x, v).

Here f = f(x, v, t) denotes the number density function on the phase point (x, v) ∈
Td × Rd at time t ∈ R+. The local Maxwellian M(f) =M(f)(x, v, t) is implicitly
defined through the moments of f :

ρ(x, t) :=

∫
Rd

f(x, v, t) dv, ρ(x, t)u(x, t) :=

∫
Rd

vf(x, v, t) dv,

and

ρ(x, t)T (x, t) :=
1

d

∫
Rd

|v − u(x, t)|2f(x, v, t) dv
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by the formula

M(f)(x, v, t) :=
ρ(x, t)√

(2πT (x, t))d
exp

(
−|v − u(x, t)|2

2T (x, t)

)
.

The study of collective dynamics of self-propelled particle systems, in which sim-
ple local interaction laws between the particles eventually lead to the emergence of
global collective behaviors, has received much attention recently. The most common
such rules imposed on the constituent particles are rules of alignment phenomena
and collisional interactions. As such, kinetic equations where the local alignment
phenomena and collisional interactions are combined as in (1.1) arise in various
physical or modelling contexts. For example in [6, 16, 17] a local alignment kinetic
model with a Fokker-Planck type inter-particle interaction is considered, which arise
as a coarse limit of a variant of Cucker-Smale flocking models [12, 18]. To be more
specific, the local particle velocity can be obtained by taking into account the fol-
lowing local averaged particle velocity:

ur(x, t) :=

∫
Td×Rd K

r(x− y)wf(y, w) dydw∫
Td×Rd Kr(x− y)f(y, w) dydw

, (1.2)

where Kr is called a communication weight and r represents the radius of particle
interactions, i.e., the support of Kr. This type of particle velocity is considered in
[18] to describe the flocking behaviors. In [17], the rigorous justification of the limit

ur → u as r → 0

in the weak sense is investigated. At the formal level, we expect the kernel Kr

converges to the Dirac measure δ0, thus the limiting function will be the local
particle velocity u. We refer to [4, 11] for recent surveys on the Cucker-Smale
type flocking models. Similar models also arise in the context of traffic model of
Paveri-Fontana type where the evolution of the velocity distribution of the vehicles
are explained by the adjustment of velocity with respect to the desired velocity
(alignment), and the acceleration of the vehicles (traffic collision operator) [9, 20].
The main motivation of our model (1.1) comes from the collisional alignment model
of [16, 17]. Instead of the Fokker-Planck type diffusive approximation of the collision
operator as in [16, 17], we are considering relaxational approximation of the collision
operator.

Closely related models are kinetic-fluid equations with inter-particle interaction
operators, in which a collisional kinetic equation and fluid equations are coupled
through drag force terms. More precisely, u in the local alignment force satisfies
the fluid equations, for instance, incompressible Navier-Stokes system, see [8, 10]
where the existence theories for weak/strong solutions of the Navier-Stokes-BGK
system are discussed. When the local velocity alignment force is ignored, our main
equation (1.1) becomes the BGK model of Boltzmann equation [3], which is one
of the most widely employed model equation of the Boltzmann equation providing
reliable results on various problems in rarefied gas dynamics. Some of previous
works on the BGK model can be summarized as follows. For the Cauchy problem
in the framework of weak solutions, see [21, 28, 29]. The existence of strong solutions
with uniqueness can be found in [19, 22, 25]. Behaviors of solutions that stays near
global equilibriums are studied in [2, 24, 26, 27]. For results on stationary solutions,
see [1, 23].

In the current work, we establish the global-in-time existence of weak solutions
to the equation (1.1). The main difficulties are the nonlinear terms fu in the
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local alignment force and the local Maxwellian M(f). In many previous works
[5, 7, 14, 15, 18] on kinetic collective behavior models, the method of characteristics
are crucially used to estimate the propagation of velocity support of solution f .
However, in our case, due to the lack of regularity of u and the BGK operator term,
that types of support estimates of f in velocity cannot be applied. Instead of that,
we regularize the local particle velocity u, and linearize the equation (1.1). We then
do some Cauchy estimates in the velocity-weighted L∞(Td × Rd) space. Finally,
we provide some uniform bound estimates in regularization parameters and pass to
the limit which requires some weak and strong compactness arguments.

Let us now introduce a notion of weak solutions to the system (1.1).

Definition 1.1. We say that f is a weak solution to the system (1.1) if the following
conditions are satisfied:

(i) f ∈ L∞(0, T ; (L1
+ ∩ L∞)(Td × Rd))1,

(ii) for all φ ∈ C1c (Td × Rd × [0, T ]) with φ(x, v, T ) = 0,

−
∫
Td×Rd

f0φ0 dxdv −
∫ T

0

∫
Td×Rd

f (∂tφ+ v · ∇xφ+ (u− v) · ∇vφ) dxdvdt

=

∫ T

0

∫
Td×Rd

(M(f)− f)φdxdvdt.

We are now ready to state our main result:

Theorem 1.2. Let T > 0. Suppose that the initial data f0 satisfy

f0 ∈ L∞(Td × Rd)
and ∫

Td×Rd

(
1 + |v|2 + | ln f0(x, v)|

)
f0(x, v) dxdv <∞.

Then there exists at least one weak solution to the system (1.1) in the sense of
Definition 1.1 satisfying the following estimates:

(i)
‖f(·, ·, t)‖L∞ ≤ C‖f0‖L∞

and
(ii) ∫

Td×Rd

(
1 + |v|2 + | ln f(x, v, t)|

)
f(x, v, t) dxdv <∞

for almost every t ∈ (0, T ) and C > 0.

Remark 1.3. We can easily apply our strategy for the existence result for the
equation (1.1) with ur appeared in (1.2) instead of u under the assumption Kr ∈
L1(Td).

We introduce several notations used throughout the paper. For functions f(x, v),
g(x), ‖f‖Lp and ‖g‖Lp denote the usual Lp(Td × Rd)-norm and Lp(Td)-norm, re-
spectively. ‖f‖L∞q represents a weighted L∞-norm:

‖f‖L∞q := ess sup
(x,v)∈Td×Rd

(1 + |v|q)f(x, v).

For any nonnegative integer s, Hs denotes the s-th order L2 Sobolev space. Cs([0, T ];
E) is the set of s-times continuously differentiable functions from an interval [0, T ] ⊂

1L1
+(Td × Rd) denotes the set of nonnegative L1(Td × Rd) functions.



392 YOUNG-PIL CHOI AND SEOK-BAE YUN

R into a Banach space E, and Lp(0, T ;E) is the set of the Lp functions from an
interval (0, T ) to a Banach space E. We denote by C a generic, not necessarily
identical, positive constant, and C = Cα,β,... or C = C(α, β, . . . ) stands for the
positive constant depending on α, β, . . . .

This paper is organized as follows: In the following section 2, we introduce a
regularized equation of (1.1) and study the global-in-time existence of weak solutions
to the regularized equation. For this, we construct the approximated solutions to the
regularized equation, and provide that they are Cauchy sequences in the velocity-
weighted L∞(Td × Rd) space. We also establish uniform bound estimates in the
regularizing parameter. In Section 3, we then use this uniform bounds to drive weak
solution of (1.1) through the weak limit of the regularized distribution function and
the strong limit of macroscopic fields.

2. A regularized equation. In order to show the existence of weak solutions to
(1.1), it is required to regularize the equation to remove the singularity in the local
alignment force. In this section, we introduce a regularized equation and provide
the global-in-time existence of weak solutions of that. Let us regularize the local
particle velocity u by using a mollifier θε(x) = ε−dθ(x/ε) with 0 ≤ θ ∈ C∞0 (Td)
satisfying ∫

Td

θ(x) dx = 1.

Then our regularized equation is defined as follows:

∂tfε + v · ∇xfε +∇v · ((uεε − v)fε) =M(fε)− fε, (2.1)

subject to regularized initial data:

(fε(x, v, 0)) =: (f0,ε(x, v)), (x, v) ∈ Td × Rd.
Here

uεε(x, t) :=
((ρεuε) ? θε)(x, t)

(ρε ? θε)(x, t) + ε(1 + |((ρεuε) ? θε)(x, t)|2)

with

ρε(x, t) =

∫
Rd

fε(x, v, t) dv and (ρεuε)(x, t) =

∫
Rd

vfε(x, v, t) dv,

and the regularized initial data f0,ε is defined by

f0,ε = η ?
{
f01f0<1/ε

}
+ εe−|v|

2

,

where 1A denotes the characteristic function on A and η is the standard mollifier.
Note that f0,ε satisfies

(i) f0,ε → f0 strongly in Lp(Td×Rd) for all p <∞ and weakly-∗ in L∞(Td×Rd),
(ii) ‖v

√
f0,ε‖2L2 → ‖v

√
f0‖2L2 strongly.

In the following two sections, we prove the proposition below on the global-in-time
existence of weak solutions and some uniform bound estimates of the regularized
system (2.1).

Proposition 2.1. Let T > 0. For any ε > 0, there exists at least one weak solution
fε of the regularized equation (2.1) on the interval [0, T ] in the sense of Definition
1.1. Furthermore we have

(i) kinetic energy estimate

sup
0≤t≤T

∫
Td×Rd

|v|2fε(x, v, t) dxdv ≤ C,
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(ii) third moment & entropy estimates:

sup
0≤t≤T

∫
Td×Rd

(
| ln fε(x, v, t)|+ |v|3

)
fε(x, v, t) dxdv ≤ C,

where C = C(f0, T ) > 0 is independent of ε.

2.1. A linearized equation. In order to obtain the existence of solutions to the
regularized equation (2.1), we first construct the approximated solutions in the
following way:

∂tf
n+1
ε + v · ∇xfn+1

ε +∇v ·
(
(uε,nε − v)fn+1

ε

)
=M(fnε )− fn+1

ε , (2.2)

with the initial data and first iteration step:

fnε (x, v, t)|t=0 = f0,ε(x, v) for all n ≥ 1

and
f0ε (x, v, t) = f0,ε(x, v), (x, v, t) ∈ Td × Rd × (0, T ).

Here

uε,nε (x, t) =
((ρnεu

n
ε ) ? θε)(x, t)

(ρnε ? θε)(x, t) + ε(1 + |(ρnεunε ) ? θε)(x, t)|2)

with

ρnε (x, t) =

∫
Rd

fnε (x, v, t) dv and (ρnεu
n
ε )(x, t) =

∫
Rd

vfnε (x, v, t) dv.

In the proposition below, we provide the global-in-time solvability of the regularized
and linearized equation (2.2) and uniform-in-n bound estimates of solutions.

Proposition 2.2. Let T > 0 and q > d + 2. For any n ∈ N, there exists a
unique solution fnε of the regularized and linearized system (2.2) such that fnε ∈
L∞(0, T ;L∞q (Td × Rd)). Moreover, we have

sup
0≤t≤T

‖fnε (·, ·, t)‖L∞ ≤ C‖f0,ε‖L∞

and

sup
0≤t≤T

(
‖fnε (·, ·, t)‖L∞q + ‖∇x,vfnε (·, ·, t)‖L∞q

)
≤ Cε,

where C > 0 is independent of both n and ε, and Cε > 0 is independent of n.

Before presenting the details of proof of Proposition 2.2, we list several technical
lemmas showing some bound estimates related to the local Maxwellian. First two
lemmas below are concerned with the upper bound estimates of local Maxwellian,
and the third one is a type of Lipschitz continuity of the local Maxwellian.

Lemma 2.1. [22, p.291] Suppose ‖f‖L∞q < ∞ for q > d + 2. Then there exists a
positive constant Cq, which depends only on q, such that

‖M(f)‖L∞q ≤ Cq‖f‖L∞q (q > d+ 2 or q = 0).

Lemma 2.2. [25, Proposition 4.1] Assume that f satisfies

1. ‖f‖L∞q + ‖∇x,vf‖L∞q < C1,

2. ρ+ |u|+ T < C2,
3. ρ, T > C3,

for some constants Ci > 0 (i = 1, 2, 3). Then, we have

‖M(f)‖L∞q + ‖∇x,vM(f)‖L∞q ≤ CT
{
‖f‖L∞q + ‖∇x,vf‖L∞q

}
,

where CT > 0 depends only on C1, C2, C3 and the final time T .
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Lemma 2.3. [25, Proposition 6.1] Assume f, g satisfy (h denotes either f or g)

1. ‖h‖L∞q < C1,

2. ρh + |uh|+ Th < C2,
3. ρh, Th > C3,

for some constants Ci > 0 (i = 1, 2, 3). Then, we have

‖M(f)−M(g)‖L∞q ≤ CT ‖f − g‖L∞q ,
where CT > 0 depends only on C1, C2, C3 and the final time T .

Proof of Proposition 2.2. For the proof, we first introduce the following backward
characteristics:

Zn+1
ε (s) := (Xn+1

ε (s), V n+1
ε (s)) := (Xn+1

ε (s; t, x, v), V n+1
ε (s; t, x, v))

defined by

d

ds
Xn+1
ε (s) = V n+1

ε (s), 0 ≤ s ≤ T,

d

ds
V n+1
ε (s) = uε,nε (Xn+1

ε (s), s)− V n+1
ε (s),

(2.3)

with the terminal datum
Zn+1
ε (t) = (x, v).

Due to the regularization, the characteristics (2.3) is well-defined, thus global-in-
time existence of solutions to (2.2) can be obtained by the Cauchy-Lipschitz exis-
tence theory. It follows from (2.3) that V n+1

ε (s) satisfies

V n+1
ε (s) = vet−s − e−s

∫ t

s

uε,nε (Xn+1
ε (τ), τ)eτ dτ. (2.4)

On the other hand, we get

|ρnε (x)| =
∣∣∣∣∫

Rd

fnε (x, v) dv

∣∣∣∣
=

∫
Rd

(1 + |v|q)(1 + |v|q)−1fnε (x, v) dv

≤ C‖fnε ‖L∞q
for q > d and

|(ρnεunε )(x)| =
∣∣∣∣∫

Rd

vfnε (x, v) dv

∣∣∣∣
=

∫
Rd

|v|(1 + |v|q)(1 + |v|q)−1fnε (x, v) dv

≤ C‖fnε ‖L∞q
for q > d+ 1. Subsequently, these imply

|uε,nε | =
∣∣∣∣ ((ρnεu

n
ε ) ? θε)(x, t)

(ρnε ? θε)(x, t) + ε(1 + |(ρnεunε ) ? θε)(x, t)|2)

∣∣∣∣
≤ 1

ε
|((ρnεunε ) ? θε)(x, t)|

≤ C

ε
‖ρnεunε ‖L∞

≤ Cε‖fnε ‖L∞q

(2.5)
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and

|∇xuε,nε |

≤ |((ρnεunε ) ?∇xθε)(x, t)|
(ρnε ? θε)(x, t) + ε(1 + |(ρnεunε ) ? θε)(x, t)|2)

+
|((ρnεunε ) ? θε)(x, t)| (|ρnε ?∇xθε|+ 2ε|ρnεunε ? θε||ρnεunε ?∇xθε|)

((ρnε ? θε)(x, t) + ε(1 + |(ρnεunε ) ? θε)(x, t)|2))
2

≤ 1

ε
|ρnεunε ?∇xθε|+

1

ε2
|ρnε ?∇xθε|+

2

ε
|ρnεunε ?∇xθε|

≤ Cε‖fnε ‖L∞q ,

(2.6)

where Cε > 0 is independent of n. This together with (2.4) yields

|v| ≤ |V n+1
ε (s)|+

∫ t

s

|uε,nε (Xn+1
ε (τ), τ)| dτ ≤ |V n+1

ε (s)|+ CT,ε. (2.7)

Furthermore, we have∣∣∇x,vXn+1
ε (s)

∣∣ ≤ C +

∫ t

s

|∇x,vV n+1
ε (τ)| dτ,

∣∣∇x,vV n+1
ε (s)

∣∣ ≤ C +

∫ t

s

‖∇xuε,nε (·, τ)‖L∞ |∇x,vXn+1
ε (τ)| dτ

≤ C + Cε

∫ t

s

‖fnε ‖L∞q |∇x,vX
n+1
ε (τ)| dτ.

(2.8)

Along that characteristics we obtain from (2.2) that

fn+1
ε (x, v, t) = e(d−1)tf0,ε(Z

n+1
ε (0))

+

∫ t

0

e(d−1)(t−s)M(fnε (Zn+1
ε (s), s)) ds.

(2.9)

Then it is easy to check from (2.9) that

‖fn+1
ε (·, ·, t)‖L∞ ≤ CT ‖f0,ε‖L∞ + CT

∫ t

0

‖M(fnε (Zn+1
ε (s; t, ·, ·), s))‖L∞ ds

≤ CT ‖f0,ε‖L∞ + CT

∫ T

0

‖fnε (·, ·, s)‖L∞ ds

due to Lemma 2.1. Applying the Gronwall’s inequality, we conclude the first asser-
tion. In order to prove the second estimate, we use (2.7) to obtain

1 + |v| ≤ 1 + |V n+1
ε (s)|+ CT,ε.

Using the above estimate, we find

f0,ε(Z
n+1
ε (0)) = f0,ε(Z

n+1
ε (0))(1 + CT,ε + |V n+1

ε (0)|)q(1 + CT,ε + |V n+1
ε (0)|)−q

≤ CT,ε,q‖f0,ε‖L∞q (1 + |v|)−q

for 0 < q <∞. Similarly, with the aid of Lemma 2.1, we estimate

M(fnε )(Zn+1
ε (s), s)

≤M(fnε )(Zn+1
ε (s), s)(1 + CT,ε + |V n+1

ε (s)|)q(1 + CT,ε + |V n+1
ε (s)|)−q

≤ CT,ε,q‖M(fnε )‖L∞q (1 + |v|)−q

≤ CT,ε,q‖fnε ‖L∞q (1 + |v|)−q.
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This together with (2.9) gives

‖fn+1
ε (·, ·, t)‖L∞q ≤ CT,ε,q‖f0,ε‖L∞q + CT,ε,q

∫ t

0

‖fnε (·, ·, s)‖L∞q ds. (2.10)

This yields

sup
0≤t≤T

sup
n∈N
‖fnε (·, ·, t)‖L∞q ≤ CT,ε,q‖f0,ε‖L∞q ,

and subsequently, we find

|∇x,vZn+1
ε (s)| ≤ CT,ε

for all n ≥ 1 due to (2.8). Then we also use similar argument as above to get

|∇x,vfn+1
ε (x, v, t)|

≤ CT |∇x,vf0,ε(Zn+1
ε (0))||∇x,vZn+1

ε (0)|

+ CT

∫ t

0

|∇x,vM(fnε )
(
Zn+1
ε (s), s

)
||∇x,vZn+1

ε (s)| ds

≤ CT,ε‖∇x,vf0,ε‖L∞q (1 + |v|)−q

+ CT,ε

∫ t

0

‖∇x,vM(fnε )‖L∞q (1 + |v|)−q ds

≤ CT,ε‖∇x,vf0,ε‖L∞q (1 + |v|)−q

+ CT,ε

∫ t

0

(
‖fnε ‖L∞q + ‖∇x,vfnε ‖L∞q

)
(1 + |v|)−q ds

due to Lemma 2.2. Hence we obtain

‖∇x,vfn+1
ε ‖L∞q ≤ CT,ε‖∇x,vf0,ε‖L∞q

+ CT,ε

∫ t

0

(
‖fnε ‖L∞q + ‖∇x,vfnε ‖L∞q

)
ds.

(2.11)

Combining (2.10) and (2.11), we have

‖fn+1
ε (t)‖L∞q + ‖∇x,vfn+1

ε (t)‖L∞q

≤ CT,ε
(
‖f0,ε‖L∞q + ‖∇x,vf0,ε‖L∞q

)
+ CT,ε

∫ t

0

(
‖fnε ‖L∞q + ‖∇x,vfnε ‖L∞q

)
ds,

which concludes the desired result.

Corollary 2.1. Let q > d + 1. For any T > 0 and n ∈ N, there exists a
unique solution fnε of the regularized and linearized system (2.2) such that fnε ∈
L∞(0, T ;L∞q (Td × Rd)). Moreover, we have

(i) lower bound estimates for the local particle density and temperature:

ρnε > Cε and Tnε > Cε,

(ii) upper bound estimates for the macroscopic fields:

ρnε + |unε |+ Tnε < Cε

for all 0 ≤ t ≤ T , where Cε is independent of n.
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Proof. (i) We take into account the integration of (2.9) and recall how we regularized
f0 to see ∫

Rd

fnε (x, v, t) dv ≥ e2t
∫
Rd

f0,ε(Z
n
ε (0)) dv

≥
∫
Rd

εe−|V
n
ε (0)|2dv

≥
∫
Rd

εe−Cε(1+|v|)2dv ≥ Cε,

(2.12)

where we used

|V n+1
ε (s)| ≤ C|v|+ C

∫ t

s

|uε,nε (Xn+1
ε (τ), τ)| dτ ≤ C(|v|+ Cε) ≤ Cε(1 + |v|)

for all 0 ≤ s ≤ T . This gives the lower bound for ρnε . On the other hand, it follows
from [21, Proposition 2.1] that

ρnε (x, t) ≤ Cq‖fnε ‖L∞q (Tnε )d/2

for q > d or q = 0. This combined with the above lower bound estimate for ρnε
asserts Tnε > Cε for some Cε, which is independent of n. Note that this is essential
for the local Maxwellian to be well-defined.

(ii) Straightforward computations give

ρnε =

∫
Rd

fnε dv ≤ C‖fnε ‖L∞q ≤ Cε,

|unε | =
1

ρnε

∣∣∣∣∫
Rd

fnε v dv

∣∣∣∣ ≤ C

ρnε
‖fnε ‖L∞q ≤ Cε, and

Tnε =
1

ρnε

∫
Rd

fnε |v|2 dv −
1

ρnε

∣∣∣∣∫
Rd

fnε v dv

∣∣∣∣2 ≤ C

ρnε
‖fnε ‖L∞q +

C

ρnε
‖fnε ‖2L∞q ≤ Cε.

2.2. Cauchy estimate for fn. In this part, we show that fnε is a Cauchy sequence
in L∞(0, T ;L∞q (Td × Rd)). It follows from (2.9) that

fn+1
ε (x, v, t)− fnε (x, v, t)

= e(d−1)t
(
f0,ε(Z

n+1
ε (0))− f0,ε(Znε (0))

)
+

∫ t

0

e(d−1)(t−s)
(
M(fnε )

(
Zn+1
ε (s), s

)
−M(fn−1ε ) (Znε (s), s)

)
ds

= e(d−1)t
(
f0,ε(Z

n+1
ε (0))− f0,ε(Znε (0))

)
+

∫ t

0

e(d−1)(t−s)
(
M(fnε )

(
Zn+1
ε (s), s

)
−M(fnε ) (Znε (s), s)

)
ds

+

∫ t

0

e(d−1)(t−s)
(
M(fnε ) (Znε (s), s)−M(fn−1ε ) (Znε (s), s)

)
ds

=: I1 + I2 + I3.

(2.13)

Here I1 is readily estimated as

I1 ≤ C(1 + |v|)−q‖∇x,vf0,ε‖L∞q |Z
n+1
ε (0)− Znε (0)|,
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where C > 0 is independent of n and ε. For the estimate of I2, we use Lemma 2.2
to find

I2 =

∫ t

0

e(d−1)(t−s)∇x,vM(fnε )
(
αZn+1

ε (s) + (1− α)Znε (s), s
)

· (Zn+1
ε (s)− Znε (s)) ds

≤ Cε(1 + |v|)−q
∫ t

0

‖∇x,vM(fnε )‖L∞q |Z
n+1
ε (s)− Znε (s)| ds

≤ Cε(1 + |v|)−q
∫ t

0

(
‖fnε (·, ·, s)‖L∞q + ‖∇x,vfnε (·, ·, s)‖L∞q

)
× |Zn+1

ε (s)− Znε (s)| ds.

It follows from Lemma 2.3 that

I3 ≤ Cε(1 + |v|)−q
∫ t

0

‖(fnε − fn−1ε )(·, ·, s)‖L∞q ds.

Putting these estimates into (2.13) gives

‖(fn+1
ε − fnε )(·, ·, t)‖L∞q

≤ Cε|Zn+1
ε (0)− Znε (0)|+ Cε

∫ t

0

‖(fnε − fn−1ε )(·, ·, s)‖L∞q ds

+ Cε

∫ t

0

|Zn+1
ε (s)− Znε (s)| ds.

(2.14)

We next present Cauchy estimate for the characteristic Zn+1
ε . For this, we first

notice that

|ρnε − ρn−1ε | =
∣∣∣∣∫

Rd

(fnε − fn−1ε ) dv

∣∣∣∣ ≤ C‖fnε − fn−1ε ‖L∞q

for q > d and

|ρnεunε − ρn−1ε un−1ε | =
∣∣∣∣∫

Rd

v(fnε − fn−1ε ) dv

∣∣∣∣ ≤ C‖fnε − fn−1ε ‖L∞q

for q > d+ 1. This yields

|uε,nε − uε,n−1ε |

=

∣∣∣∣ (ρnεu
n
ε ) ? θε

ρnε ? θε + ε(1 + |ρnεunε ? θε|2)
− (ρn−1ε un−1ε ) ? θε

ρn−1ε ? θε + ε(1 + |ρn−1ε un−1ε ? θε|2)

∣∣∣∣
≤
∣∣∣∣ (ρnεu

n
ε − ρn−1ε un−1ε ) ? θε

ρnε ? θε + ε(1 + |ρnεunε ? θε|2)

∣∣∣∣
+

∣∣∣∣∣ ((ρn−1ε un−1ε ) ? θε)
(
(ρn−1ε − ρnε ) ? θε + ε

(
|ρn−1ε un−1ε ? θε|2 − |ρnεunε ? θε|2

))
(ρnε ? θε + ε(1 + |ρnεunε ? θε|2))

(
ρn−1ε ? θε + ε(1 + |ρn−1ε un−1ε ? θε|2)

) ∣∣∣∣∣
≤ 1

ε
|(ρnεunε − ρn−1ε un−1ε ) ? θε|+

1

ε2
|(ρn−1ε un−1ε ) ? θε||(ρn−1ε − ρnε ) ? θε|

+
2

ε
|(ρn−1ε un−1ε ) ? θε||(ρn−1ε un−1ε − ρnεunε ) ? θε|

≤ Cε‖fnε − fn−1ε ‖L∞q ,
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where Cε > 0 is independent of n. Then, by using the above combined with (2.6),
we obtain from (2.3) that

|V n+1
ε (s)− V nε (s)| =

∣∣∣∣e−s ∫ t

s

(uε,nε (Xn+1
ε (τ), τ)− uε,n−1ε (Xn

ε (τ), τ))eτ dτ

∣∣∣∣
≤ C

∫ t

s

∣∣uε,nε (Xn+1
ε (τ), τ)− uε,n−1ε (Xn+1

ε (τ), τ)
∣∣ dτ

+ C

∫ t

s

∣∣uε,n−1ε (Xn+1
ε (τ), τ)− uε,n−1ε (Xn

ε (τ), τ)
∣∣ dτ

≤ Cε
∫ t

s

‖(fnε − fn−1ε )(·, ·, τ)‖L∞q dτ

+ Cε

∫ t

s

|Xn+1
ε (τ)−Xn

ε (τ)| dτ.

Thus we get

|Zn+1
ε (s)− Znε (s)| ≤ Cε

∫ t

0

‖(fnε − fn−1ε )(·, ·, τ)‖L∞q dτ

+ Cε

∫ t

s

|Zn+1
ε (τ)− Znε (τ)| dτ.

Applying Gronwall inequality to the above, we have

|Zn+1
ε (s)− Znε (s)| ≤ Cε

∫ t

0

‖(fnε − fn−1ε )(·, ·, τ)‖L∞q dτ

for all 0 ≤ s ≤ t ≤ T . We then combine this with (2.14) to conclude

‖Zn+1
ε (t)− Znε (t)‖L∞ + ‖(fn+1

ε − fnε )(·, ·, t)‖L∞q

≤ Cε
∫ t

0

‖Zn+1
ε (s)− Znε (s)‖L∞ + ‖(fnε − fn−1ε )(·, ·, s)‖L∞q ds.

(2.15)

2.3. Proof of Proposition 2.1. We now provide the details of proof of the global-
in-time existence of weak solutions to the regularized equation (2.1).

2.3.1. Existence of weak solutions. It follows from (2.15) that fnε is a Cauchy se-
quence in L∞(0, T ;L∞q (Td × Rd)) from which, for a fixed ε > 0, there exists a
limiting function fε such that

sup
0≤t≤T

‖fnε (·, ·, t)− fε(·, ·, t)‖L∞q → 0 (2.16)

as n→∞. Then it remains to show that the liming function fε solves the regularized
equation (2.1). Since there is no singularity in the local alignment force, it suffices
to have

‖M(fnε )−M(fε)‖L∞q → 0

as n→∞. Since q > d+ 2, for φ(v) = 1, v, and |v|2, we estimate∣∣∣∣∫
Rd

fnε φ(v) dv −
∫
Rd

fεφ(v) dv

∣∣∣∣
≤
∫
Rd

|fnε − f |φ(v) dv ≤ ‖fnε − fε‖L∞q

∫
Rd

φ(v)

(1 + |v|)q
dv ≤ C‖fnε − fε‖L∞q .
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This together with (2.16) yields

ρnε → ρε, ρnεu
n
ε → ρεuε,

and

ρnε |unε |2 + dρnεT
n
ε → ρε|uε|2 + dρεTε

in L∞(Td × (0, T )) as n → ∞. Here (ρε, uε, Tε) denote the macroscopic fields
constructed from fε. On the other hand, the lower bound estimate of ρnε is obtained
in (2.12), and this gives

ρnε → ρε, unε → uε, and Tnε → Tε

as n→∞, uniformly in x and t. The convergence of fnε in ‖ · ‖L∞(0,T ;L∞q ) and the

uniform convergence of (ρnε , u
n
ε , T

n
ε ) to (ρε, uε, Tε) imply that fε and (ρε, uε, Tε) also

satisfy the assumptions of Lemma 2.3. This concludes from Lemma 2.3 and (2.16)
that

‖M(fnε )−M(fε)‖L∞q ≤ Cε‖f
n
ε − fε‖L∞q → 0

as n→∞. This completes the proof of the existence part.

2.3.2. Uniform-in-ε bound estimates. In this part, we show the uniform-in-ε bound
estimates of solutions obtained in the above. Since the third moment and entropy
estimates can be obtained by using almost the same arguments as in [10, Section
5], we only provide the kinetic energy estimate (i). We first notice from [16, Lemma
2.5] that

sup
y∈Td

∫
Td

θε(x− y)
ρε(x)

θε ? ρε(x)
dx ≤ C, (2.17)

where C > 0 is independent of ε. On the other hand, a straightforward computation
yields

1

2

d

dt

∫
Td×Rd

|v|2fε dxdv =

∫
Td×Rd

v · (uεε − v)fε dxdv

≤ 1

2

∫
Td

|uεε|2ρε dx−
1

2

∫
Td×Rd

|v|2fε dxdv

≤ 1

2

∫
Td

|uεε|2ρε dx.

Note that

|uεε(x, t)|2 =

∣∣∣∣ ((ρεuε) ? θε)(x, t)

(ρε ? θε)(x, t) + ε(1 + |((ρεuε) ? θε)(x, t)|2)

∣∣∣∣2
≤

∣∣∣∣∣
∫
Td×Rd θε(x− y)wfε(y, w, t) dydw

θε ? ρε(x, t)

∣∣∣∣∣
2

≤
∫
Td×Rd θε(x− y)|w|2fε(y, w, t) dydw

θε ? ρε(x, t)
,

and this together with (2.17) gives∫
Td

ρε|uεε|2 dx ≤
∫
Td×Rd

(∫
Td

θε(x− y)
ρε(x)

θε ? ρε(x)
dx

)
|w|2fε(y, w) dydw

≤ C
∫
Td×Rd

|v|2fε(x, v) dxdv,
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where C > 0 is independent of ε. Hence we have

d

dt

∫
Td×Rd

|v|2fε(x, v, t) dxdv ≤ C
∫
Td×Rd

|v|2fε(x, v, t) dxdv,

i.e., ∫
Td×Rd

|v|2fε(x, v, t) dxdv ≤ C
∫
Td×Rd

|v|2f0,ε(x, v) dxdv,

where C > 0 is independent of ε. This concludes the desired result.

3. Proof of Theorem 1.2. We are now ready to send the regularization parameter
ε→∞ in the regularized equation (2.1). We will use several compactness arguments
based on the Dunford-Pettis theorem and the velocity averaging lemma. Since the
compactness of the BGK relaxation operator and the macroscopic fields are already
discussed in [10, Section 6], we sketch the idea of proofs here. In the previous
section, we obtained∫ T

0

∫
Td×Rd

(1 + |v|3 + | ln fε(x, v, t)|)fε(x, v, t) dxdvdt ≤ C, (3.1)

where C > 0 is independent of ε. Then by Dunford-Pettis theorem, we find that fε,
fεv and fε|v|2 are weakly compact in L1(Td × Rd × (0, T )), and thus there exists
f ∈ L1(Td × Rd × (0, T )) such that fε, fεv, fε|v|2 converge to f , fv, f |v|2 weakly
in L1(Td × Rd × (0, T )) respectively, which also implies

ρε =

∫
Rd

fε dv ⇀

∫
Rd

f dv = ρ, ρεuε =

∫
Rd

vfε dv ⇀

∫
Rd

vf dv = ρu,

and

dρεTε + ρε|uε|2 =

∫
Rd

fε|v|2dv ⇀
∫
Rd

f |v|2dv = dρT + ρ|u|2

in L1(Td×(0, T )). Then with the aid of the velocity averaging lemma [13], the above
convergence actually is strong, which gives the almost everywhere convergence of
the macroscopic fields:

ρε → ρ a.e on Td× [0, T ], uε → u a.e on E, and Tε → T a.e on E, (3.2)

where

E = {(x, t) ∈ Td × (0, T ) | ρ(x, t) 6= 0}. (3.3)

Concerning the compactness of the local Maxwellian, we use the entropy bound es-
timate in (3.1) together with Dunford-Pettis theorem to have the weak compactness
of M(f) in L1(Td × Rd × (0, T )). In fact, we can also show that M(fε) converges
weakly to M(f) in L1(Td × Rd × (0, T )), see [10, Section 6.3] for details.

Employing the previous convergence estimates, we can pass to the limit ε → 0
in the regularized equation (2.1) except the term fεu

ε
ε in the local alignment force.

Thus in the rest of this section, we will show that

fεu
ε
ε ⇀ fu in L∞(0, T ;Lp(Td × Rd)) for p ∈

(
1,
d+ 2

d+ 1

)
.

For this, we use a similar argument as in [16]. By the strong convergence (3.2), we
get

(ρεuε) ? θε → ρu, ρε ? θε → ρ a.e. and Lp(Td × (0, T ))-strong,
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up to a subsequence, for all p ∈ (1, (d+ 2)/(d+ 1)). Let

ρϕε (x, t) =

∫
Rd

fε(x, v, t)ϕ(v) dv

for a given test function ϕ(v). Consider a test function ψ(x, v, t) := φ(x, t)ϕ(v) with
φ ∈ C∞c (Td × (0, T )) and ϕ ∈ C∞c (Rd). Then we obtain∫ T

0

∫
Td×Rd

fεu
ε
εψ dxdvdt =

∫ T

0

∫
Td

uεερ
ϕ
ε φdxdt.

Note that if p ∈ (1, (d + 2)/(d + 1)), then p/(2 − p) ∈ (1, (d + 2)/d), and we use
Hölder’s inequality and Proposition 2.1 (i) to deduce

‖uεερϕε ‖Lp ≤ ‖ϕ‖L∞‖ρε‖1/2Lp/(2−p)‖
√
ρεu

ε
ε‖L2 <∞.

Thus there exists a function m ∈ L∞(0, T ;Lp(Td)) such that

uεερ
ϕ
ε ⇀m in L∞(0, T ;Lp(Td)) for all p ∈

(
1,
d+ 2

d+ 1

)
,

up to a subsequence. We then claim that

m = uρϕ, where ρϕ =

∫
Rd

fϕ dv and ρu =

∫
Rd

vf dv.

By using the set E appeared in (3.3), we first easily estimate

‖uεερϕε ‖Lp(E) ≤ C‖ρε‖
1/2

Lp/(2−p)(E)
→ 0 as ε→ 0.

This implies that it suffices to check

m = uρϕ whenever ρ > 0.

For this, we introduce a set

Eδ :=
{

(x, t) ∈ Td × (0, T ) : ρ(x, t) > δ
}
.

By the compactness of ρε and ρε ? θε and Egorov’s theorem, for any η > 0, there
exists a set Cη ⊂ Eδ with |Eδ \ Cη| < η on which both ρε and ρε ? θε uniformly
converge to ρ as ε → 0. This yields that ρε ? θε > δ/2 in Cη for sufficiently small
ε > 0. This yields

uεερ
ϕ
ε =

(ρεuε) ? θε
ε+ ρε ? θε

ρϕε → m = uρϕ in Cη,

and subsequently, this asserts

m = uρϕ on E,

since η > 0 and δ > 0 were arbitrary. Hence we have∫ T

0

∫
Td×Rd

fεu
ε
εψ dxdvdt→

∫ T

0

∫
Td

uρϕφdxdt =

∫ T

0

∫
Td×Rd

fuψ dxdvdt

for all test functions of the form ψ(x, v, t) = φ(x, t)ϕ(v).
Incorporating all of the above observations allows us to send ε → 0 in (2.1) to

conclude that the limiting function f is the weak solution to our main equation (1.1)
in the sense of Definition 1.1. L∞ bound and kinetic energy estimates in Theorem
1.2 can be easily obtained.
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