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Abstract. In this paper, we consider a stationary model for the flow through
a network. The flow is determined by the values at the boundary nodes of the

network. We call these values the loads of the network. In the applications,

the feasible loads must satisfy some box constraints. We analyze the structure
of the set of feasible loads. Our analysis is motivated by gas pipeline flows,

where the box constraints are pressure bounds.

We present sufficient conditions that imply that the feasible set is star-
shaped with respect to special points. Under stronger conditions, we prove

the convexity of the set of feasible loads. All the results are given for passive

networks with and without compressor stations.
This analysis is motivated by the aim to use the spheric-radial decomposi-

tion for stochastic boundary data in this model. This paper can be used for
simplifying the algorithmic use of the spheric-radial decomposition.

1. Introduction and motivation. In this paper, we analyze the structure of the
set of feasible loads in stationary gas networks.

Gas transport through a pipeline network has been the topic of many articles
in the last years. These models are often based on the Euler equations (see [4]) or
simplifications like the isothermal Euler equations (see [1, 2, 9, 10, 11, 12, 13]). An
overview about existing models and the components of a gas network can be found
in [5, 16]. In [10] the authors show the existence of a unique stationary state, while
in [11, 14] the model is analyzed for real gas. Optimal control problems with gas
networks are considered for example in [3]
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172 MARTIN GUGAT, RÜDIGER SCHULTZ AND MICHAEL SCHUSTER

It is important to take into account the uncertainty of the boundary data. This
leads to optimization problems with probabilistic constraints (see [17]). Especially
the model in [9] is quite interesting, because it gives a new access to this topic
with respect to uncertain boundary data. This model has also been studied and
extended in [12]. The aim in these works is stochastic optimization resp. to answer
the question, how large is the probability for a random Gaussian distributed load
vector to be feasible. The main tool in these works to compute this probability is
the so-called spheric-radial decomposition (see e.g. [21, 22, 6, 9, 8]).

Theorem 1.1. (spheric-radial decomposition, see [9], Theorem 2) Let ξ ∼
N (0, R) be the n-dimensional standard Gaussian distribution with zero mean and
positive definite correlation matrix R. Then, for any Borel measurable subset M ⊆
Rn it holds that

P(ξ ∈M) =

∫
Sn−1

µχ{r ≥ 0|rLv ∈M}dµη(v), (1)

where Sn−1 is the (n− 1)-dimensional sphere in Rn, µη is the uniform distribution
on Sn−1, µχ denotes the χ-distribution with n degrees of freedom and L is such that
R = LLT (e.g., Cholesky decomposition).

For optimization techniques, it is always an advantage to know, that the admis-
sible set has a special structure like convexity. For example using the integral in
Theorem 1.1 for a set M , a sampled point v ∈ Sn−1 and a square matrix L ∈ Rn

(which is a Cholesky decomposition of the covariance matrix of the distribution),
one has to compute the one-dimensional set {r ≥ 0 | rLv ∈ M}. This set can be
represented as a union of disjoint intervals, but for big graphs, the number of dis-
joint intervals can be very large. So the numerical computation of this union can be
very time-demanding. The idea of this paper is, that knowledge about the structure
of set M , which is the set of feasible loads in our model, allows to reduce the time
of computation enormously. E.g. if one know that M is convex or star-shaped with
respect to some point, the sets {r ≥ 0 | rLv ∈ M} are just convex intervals. This
implies that the algorithm for computing these unions of disjoint intervals can stop
as soon as it finds one interval.

The fact that star-shapedness is an important property in this context, was
already mentioned in Assumption 2.1 (ii) in [19]. There star-shapedness is required
to define a radial function which maps a ray to the intersection of the ray and a
given set. Then if the rays and the given set intersect transversally (cf. Assumption
2.2 (iii), [19]), the Implicit Function Theorem can be applied to this radial function
and gradients of probability functions can be computed. Convexity of a given set
implies this transversal intersection, if the mean of the Gaussian distribution is
in the interior of the given set. Thus convexity can be important for computing
gradients of probability functions, e.g. in [23] convexity is a general assumption.

In a nutshell, we analyze the set of feasible loads in the mathematical model of
gas transport, depending on the topology of the graph and on the pressure bounds
at the nodes. In [20], the authors also analyze the structure of feasible sets in the
context of gas transport, though in a different way. The main difference of their
model is, that they use a mixed-integer flow model for networks with compressor
stations. However, our results about convexity and star-shapedness for networks
with compressor stations are not stated in [20]. We will illustrate the difference
of the results in the appropriate sections. In Section 2, we shortly introduce the
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mathematical model. In Section 3, we give a result about convexity of a graph with
and without compressor edges and in Section 4 we give some results about when
the set of feasible loads is star-shaped to some point.

2. Mathematical modeling. We will use the model introduced in [12], which is
an extension of the model in [9]. The difference between these models is, that the
model in [9] does not support compressor stations, which are an important element
in gas transport. Compressor stations counteract the pressure drop along the pipes
caused by friction. The model in [12] supports these elements.

2.1. Model description. Consider a connected, directed graphG = (V+, E) which
represents a pipeline gas transport network. We set |V+| = n + 1 and |E| = m
(m,n ∈ N). We introduce the following notation for graphs:

Definition 2.1. Consider the connected, directed graph G = (V+, E):
(i) h(e) denotes the head node of an edge e and f(e) denotes the foot node of

an edge e for all e ∈ E
(ii) E0(v) := {e ∈ E|h(e) = v or f(e) = v} denotes all edges which are

connected to node v ∈ V+

(iii) The matrix A+
i,j ∈ Rn+1×m, A+

i,j = σ(vi, ej) with

σ(v, e) :=

 −1 if e ∈ E0(v) and f(e) = v
1 if e ∈ E0(v) and h(e) = v
0 if e /∈ E0(v)

is called the incidence matrix of the graph G.

The results of this paper mainly depend on the topology of the graph, so we
introduce different structures for a graph:

Definition 2.2. Consider the connected, directed graph G = (V+, E):

(i) The graph G is called linear, if E(v0) = 1 and |E(v)| ≤ 2 for all v ∈ V+

(ii) The graph G is called tree-structured, if there exists no edge e ∈ E with
h(e) = v0 and for all nodes v ∈ V+ there is at most one edge e ∈ E
with h(e) = v.

Note, that linear graphs are also tree-structured. Different types of graphs are
shown in Figure 1.

For this paper we consider a connected, directed, tree-structured graph G =
(V+, E) with |V+| = n+ 1 nodes and |E| = m = n edges. We assume, that the root
of the tree is the only influx node (gas enters the network) and all other nodes are
efflux nodes (gas leaves the network). An edge can either be a flux edge, so the
pressure decreases along the edge, or a compressor edge, so the pressure increases
along the edge. We define EF as the set of all flux edges and EC as the set of
compressor edges. We have E = EF ∪ EC with EF ∩ EC = ∅. We determine a
numbering for the nodes and edges of the graph. The input node gets the number
0 and all other nodes are numbered using breadth-first search or depth-first search.
Every edge e ∈ E gets the number max{h(e), f(e)}.

As notation, we state V = V+\{v0} and A as A+ without the first row, which
corresponds to the influx node. Then, the incidence matrix A for tree-structured
graphs is square. The following fact is easy to see:

Corollary 1. For a connected, directed, tree-structured graph, the incidence matrix
A is an upper triangular matrix with 1 at its diagonal. Moreover, if the graph is
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Figure 1. Example of differently structured graphs

linear, the incidence matrix is 1 at its diagonal, −1 at the diagonal above and 0
elsewhere.

Because of the triangular structure of the incidence matrix in tree-structured
graphs, the matrices are invertible. Using the Gaussian elimination, the following
can be shown:

Corollary 2. The inverse of the incidence matrix A of a connected, directed, tree-
structured graph is also upper triangular with values in {0, 1}. Moreover, if the graph
is linear, the inverse incidence matrix is 1 in the upper triangle and 0 elsewhere.

Let b+ ∈ Rn+1 with 1n+1b
+ = 0 denote the balanced load vector and assume bi <

0 for the node with gas influx and bi ≥ 0 for nodes with gas efflux (i ∈ {0, · · · , n}),
where 1n+1 is the vector of all ones in the dimension n + 1. Let q ∈ Rm denote
the flows in the edges and p+ ∈ Rn+1 denotes the pressures at the nodes. Again
we set b resp. p as b+ resp. p+ without the first component, corresponding to the
inflow node. For the pressure we consider the constraints p+ ∈ [p+,min, p+,max].
The conservation of mass for the graph is given by

A+q = b+ resp. Aq = b. (2)

The pressure drop in the flux edges e ∈ EF is given by the so-called Weymouth
equation (see e.g. [11])

p2f(e) − p
2
h(e) = φe|qe|qe, (3)

and for the compressor edges e ∈ EC we have(
ph(e)

pf(e)

)2

= ue, (4)

where φe and ue are constants. The compressor stations counteract the pressure
drop caused by friction in the pipes. For a more detailed model derivation we refer
to [5, 12, 18].

Now, we are interested in a solution of this model. The question that we consider
is: For a given load vector b ∈ Rn (in a tree-structured graph), when can we find
corresponding vectors of pressure and flow, so that the box constraints for the
pressure, the equation for mass conservation, the equation for the pressure drop
and the equation for the compressor stations are fulfilled? Therefore we define the
set of feasible loads (called feasible set, here M):

M =

{
b+ ∈ Rn+1 1

T
n+1b

+ = 0 and ∃(p+, q) ∈ Rn+1 × Rm:
p+ ∈ [p+,min, p+,max] and (2), (3), (4) are fulfilled

}
. (5)

Thus, a vector b ∈ Rn of given outflows is feasible if and only if (−1Tn b, b) ∈M .
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2.2. Model characterization. In general, it is not easy to see, when this set is
nonempty. For a given load vector, one has to find a pressure and a flow vector to
show this set is nonempty. Obviously a solution of this model might not be unique,
there may exist more solutions. For characterizing the set of feasible loads for a
tree-structured graph with no compressor edges, we define a function

g : Rn → Rn, g : b 7→ (AT )−1Φ|A−1b|(A−1b) (6)

The matrix Φ ∈ Rn×n is a diagonal matrix with the values φi at its diagonal. The
components gk(b) describe the pressure loss from the root to node vk (k = 1, · · · , n)
with the load vector b. In [9], the authors characterize the set of feasible loads for
tree-structured graphs without compressor stations. The idea is as follows: Consider
a feasible pressure at a certain node, i.e. the pressure at this node satisfies the box
constraints. With the function g, we can follow the change in this pressure along
the edges in the graph. We have to guarantee, that the changed pressure also fulfills
the box constraints at the other nodes. This is listed in the next theorem.

Theorem 2.3. (see [9], Corollary 1) If the network is a tree with a single entry
as its root, then the set of feasible nominations is given by

M =


(−1T b, b)
∈ R− × Rn+

(pmin
0 )2 ≤ min

k=1,··· ,n
[(pmax

k )2 + gk(b)]

(pmax
0 )2 ≥ max

k=1,··· ,n
[(pmin

k )2 + gk(b)]

max
k=1,··· ,n

[(pmin
k )2 + gk(b)] ≤ min

k=1,··· ,n
[(pmax

k )2 + gk(b)]

 (7)

A complete proof of Theorem 2.3 can be found in [9]. For tree-structured net-
works with compressor stations, the authors of [12] state a similar characterization.
The idea here is to separate a graph with mc compressor edges in mc+ 1 subgraphs
by removing the compressor edges, but still keep the property of the compressor
stations. The subgraphs and the nodes inside every subgraph are numbered by
breadth-first search resp. depth-first search. Then the notation is the following: Gi
denotes the subgraph with number i, pi,k, bi,k resp. gi,k denote the k-th component
of the pressure, load vector resp. pressure loss function of the subgraph Gi and vi,k
is the node with number k in Gi. This is shown in Figure 2.

v1,0

v1,1

v1,2

v2,0

v3,0

v2,1

v3,1

v4,0

v5,0

v4,1

v5,1

u1

u2

u3

u4

G1
G2

G3

G4

G5

Figure 2. Example for illustrating the notation (graph numbered
by breadth-first search)

In addition, we define p(i,j),k, b(i,j),k resp. g(i,j),k as the pressure, load vector
resp. pressure loss function, which belongs to the k-th subgraph between Gi and
Gj , s.t. p(i,j),1 and b(i,j),1 belong to Gi. Further, p(i,j),k,`, b(i,j),k,` resp. g(i,j),k,` is
the `-th component of p(i,j),k, b(i,j),k resp. g(i,j),k. Similarly, we set u(i,j),k as k-th
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control on the path from vi,0 to vj,0. An example of this notation for i = 1 and
j = 5 is shown in Figure 3. We also define k∗i,j as the largest index of all subgraphs,
the paths from the root to vi,0 and vj,0 pass. E.g. we have k∗2,5 = 1 and k∗2,4 = 2
(cf. Figure 2). Last we define n∗i,j as the number of subgraphs, the path from vi,0
to vj,0 pass and m∗

i,j as number of controls, the path from vi,0 to vj,0 pass. E.g.
it is n∗1,5 = 3 and m∗

1,5 = 2 (cf. Figure 2 and Figure 3). For better readability,
we only write k∗ instead of k∗i,j and n∗ resp. m∗ instead of n∗k∗,i resp. m∗

k∗,i

(i, j = 1, · · · , n). The notation is also explained in detail in [12] above Theorem 5.
Then the idea of guaranteeing feasibility is the same as explained above. In the next
theorem, a characterization of the set of feasible loads for tree-structured networks
with compressor stations is stated.

p(1,5),1,0

p(1,5),1,1

p(1,5),1,2

p(1,5),2,0

p(1,5),2,1

p(1,5),3,0

p(1,5),3,1

g(1,5),1,1

g(1,5),1,2
u(1,5),1

g(1,5),2,1
u(1,5),2

g(1,5),3,1

b(1,5),1,1

b(1,5),1,2 b(1,5),2,1 b(1,5),3,1

G1

G3 G5

Figure 3. Example for illustrating the triple and quadruple in-
dices on the path from G1 to G5

Theorem 2.4. (see [12], Theorem 5) For given pressure bounds p+,min, p+,max ∈
Rn+1 and controls ui ∈ R (i = 1, · · · ,m2) the following equivalence holds:

A vector b+ with 1
T b+ = 0 is feasible, i.e. b+ ∈ M , if and only if the following

inequalities hold: For all i = 1, · · · ,m2 + 1 holds (feasibility inside the subgraphs)

(pmini,0 )2 ≤ min
k=1,··· ,ni

[
(pmaxi,k )2 + gi,k(b̃i)

]
, (8)

(pmaxi,0 )2 ≥ max
k=1,··· ,ni

[
(pmini,k )2 + gi,k(b̃i)

]
, (9)

max
k=1,··· ,ni

[
(pmini,k )2 + gi,k(b̃i)

]
≤ min
k=1,··· ,ni

[
(pmaxi,k )2 + gi,k(b̃i)

]
. (10)

For all i, j = 1, · · · ,m2 + 1 with i < j holds (feasibility between the subgraphs)

1

Πk∗,i
(pmini,0 )2 + Σk∗,i(b̃) ≤

1

Πk∗,j
(pmaxj,0 )2 + Σk∗,j(b̃), (11)

1

Πk∗,i
(pmaxi,0 )2 + Σk∗,i(b̃) ≥

1

Πk∗,j
(pminj,0 )2 + Σk∗,j(b̃), (12)

1

Πk∗,i
(pmini,0 )2 + Σk∗,i(b̃) ≤

1

Πk∗,j
min

k=1,··· ,nj

[
(pmaxj,k )2 + gj,k(b̃j)

]
+ Σk∗,j(b̃), (13)

1

Πk∗,i
(pmaxi,0 )2 + Σk∗,j(b̃) ≥

1

Πk∗,j
max

k=1,··· ,nj

[
(pminj,k )2 + gj,k(b̃j)

]
+ Σk∗,j(b̃), (14)
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1

Πk∗,i
max

k=1,··· ,ni

[
(pmini,k )2 + gi,k(b̃i)

]
+ Σk∗,i(b̃) ≤

1

Πk∗,j
(pmaxj,0 )2 + Σk∗,j(b̃), (15)

1

Πk∗,i
min

k=1,··· ,ni

[
(pmaxi,k )2 + gi,k(b̃i)

]
+ Σk∗,i(b̃) ≥

1

Πk∗,j
(pminj,0 )2 + Σk∗,j(b̃), (16)

1

Πk∗,i
max

k=1,··· ,ni

[
(pmini,k )2 + gi,k(b̃i)

]
+ Σk∗,i(b̃)

≤ 1

Πk∗,j
min

k=1,··· ,nj

[
(pmaxj,k )2 + gj,k(b̃j)

]
+ Σk∗,j(b̃),

(17)

1

Πk∗,i
min

k=1,··· ,ni

[
(pmaxi,k )2 + gi,k(b̃i)

]
+ Σk∗,i(b̃)

≥ 1

Πk∗,j
max

k=1,··· ,nj

[
(pminj,k )2 + gj,k(b̃j)

]
+ Σk∗,j(b̃).

(18)

The values Σk∗,i and Πk∗,j are defined as

Σk∗,i(b̃) :=

n∗−2∑
k=1

1
m∗−k∏
`=1

u(k∗,i),`

g(k∗,i),n∗−k,f(eu(k∗,i),n∗−k
)(b̃(k∗,i),n∗−k)

+ g(k∗,i),1,f(eu(k∗,i),1
)(b̃(k∗,i),1)

(19)

and

Πk∗,i :=

m∗∏
k=1

u(k∗,i),k. (20)

A complete proof of Theorem 2.4 can be found in [12]. The sum defined in (19) as
a combination of pressure loss functions and controls, states the change in pressure
along a path between subgraphs, e.g. Σ1,4(b̃) gives the chance in pressure between
node v1,0 and v2,1 from Figure 2. One can see, that in both theorems (Theorem 2.3
and Theorem 2.4), the decision whether a given load vector is feasible or not only
depends on the pressure bounds. So for a given load vector, one has to check if a
number of inequalities depending on the load vector and the pressure bounds are
fulfilled. This is an enormous simplification to deal with the set of feasible loads.
We mention again here, that we distinguish between the load vector b+ (full load
vector) and b (load vector without the first component).

3. Convexity of the feasible set in linear graphs. Here, we will show that in
special cases, the feasible set M (defined in (5)) is convex. As it is mentioned in
Section 1, the computation of the probability for a random Gaussian distributed load
vector to be feasible by using the spheric-radial decomposition, simplifies a lot if one
knows that the set of feasible loads is convex. Also in this case it is possible to use
other algorithms (see e.g. [7]). Throughout this section, we assume that our graph
is linear, that is tree-structured without any branching. Thus, the numbering using
depth-first search equals the numbering using breadth-first search. We first show
a few auxiliary lemmas for the pressure loss function (defined for tree-structured
graphs without compressor edges in (6)). The first Lemma is about evaluating g(·)
at a convex combination of load vectors.
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Lemma 3.1. Let M ⊆ Rn≥0 be the set of feasible loads. For b, β ∈ M , constants

φi ≥ 0 (i = 1, · · · , n) and λ ∈ (0, 1), it holds (for all k = 1, · · · , n):

gk(λb+ (1− λ)β) = λ2gk(b) + (1− λ)2gk(β) + 2(λ− λ2)Σk(b, β),

with

Σk(b, β) =

k∑
i=1

φi

 n∑
j=i

bj

 n∑
j=i

βj

 . (21)

Proof. From Corollary 2 we know, that A−1 contains only non-negative values.
The load vectors b and β only corresponds to efflux nodes, so they also contain only
non-negative values and thus the pressure loss function can be written as

g(λb+ (1− λ)β) = (AT )−1Φ(A−1(λb+ (1− λ)β))2.

The square has to be understood component-by-component. We have

(
A−1(λb+ (1− λ)β)

)2
=



(
n∑
i=1

(λbi + (1− λ)βi)

)
...(

n∑
i=n

(λbi + (1− λ)βi)

)

2

=

= λ2



(
n∑
i=1

bi

)
...(

n∑
i=n

bi

)

2

+ (1− λ)2



(
n∑
i=1

βi

)
...(

n∑
i=1

βi

)

2

+ 2λ(1− λ)



(
n∑
i=1

bi

)(
n∑
i=1

βi

)
...(

n∑
i=n

bi

)(
n∑
i=1

βi

)
 .

We fix a k ∈ {1, · · · , n}. Together with(
(A−1)TΦ

)
ij

=

{
φj if i ≥ j
0 else

,

we get gk(λb+ (1− λ)β) =

= λ2
k∑
i=1

φi

 n∑
j=i

bj

2

+ (1− λ)2
k∑
i=1

φi

 n∑
j=i

βj

2

+2λ(1− λ)

k∑
i=1

φi

 n∑
j=i

bj

 n∑
j=i

βj

 ,

which is equivalent to

gk(λb+ (1−λ)β) = λ2gk(b) + (1−λ)2gk(β) + 2λ(1−λ)

k∑
i=1

φi

 n∑
j=i

bj

 n∑
j=i

βj

 ,

by using the definition of the function g (see (6)). With Σk(b, β) defined in (21) the
Lemma is proven.

We call the term Σk(b, β) the remainder term of g evaluated at a convex combi-
nation. In the next Lemma, we prove an estimate for this remainder term.
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Lemma 3.2. With the setting of Lemma 3.1, at least one of the following estimates
hold:

(i) Σk(b, β) ≤ gk(b),

(ii) Σk(b, β) ≤ gk(β).

Proof. For this proof, we use a classical contradiction argument. We suppose that

Σk(b, β) > gk(b) and Σk(b, β) > gk(β),

and thus it holds

2Σk(b, β) > gk(b) + gk(β). (22)

Since 2ab ≤ a2 + b2 for real numbers a and b, with this estimate and the definition
of Σk(b, β), it follows

2Σk(b, β) = 2

k∑
i=1

φi

 n∑
j=i

bj

 n∑
j=i

βj

 ≤ k∑
i=1

φi

 n∑
j=i

bj

2

+

k∑
i=1

φi

 n∑
j=i

βj

2

.

Now the terms on the right are equal to gk(b) resp. gk(β) and thus it follows

2Σk(b, β) ≤ gk(b) + gk(β), (23)

which is a contradiction to (22). Thus Lemma 3.2 is proven.

In the last auxiliary lemma, we prove an estimate for a difference of rest terms.

Lemma 3.3. With the setting of Lemma 3.1 and numbers k, ` ∈ {1, · · · , n} (with
k < `), at least one of the following estimates hold:

(i) Σk(b, β)− Σ`(b, β) ≥ gk(b)− g`(b),
(ii) Σk(b, β)− Σ`(b, β) ≥ gk(β)− g`(β).

Proof. We use again an contradiction argument to prove this statement. Suppose,
that

Σk(b, β)− Σ`(b, β) < gk(b)− g`(b) and Σk(b, β)− Σ`(b, β) < gk(β)− g`(β),

then we have

2 (Σk(b, β)− Σ`(b, β)) < gk(b)− g`(b) + gk(β)− g`(β). (24)

For the left term, we have

2 (Σk(b, β)− Σ`(b, β)) =

= 2

 k∑
i=1

φi

 n∑
j=i

bj

 n∑
j=i

βj

− ∑̀
i=1

φi

 n∑
j=i

bj

 n∑
j=i

βj

 ,

and because k < ` this implies

2 (Σk(b, β)− Σ`(b, β)) = −2
∑̀
i=k+1

φi

 n∑
j=i

bj

 n∑
j=i

βj

 .
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For the right term in (24) we have

gk(b)− g`(b) + gk(β)− g`(β) =

k∑
i=1

φi

 n∑
j=1

bj

2

−
∑̀
i=1

φi

 n∑
j=1

bj

2

+

k∑
i=1

φi

 n∑
j=1

βj

2

−
∑̀
i=1

φi

 n∑
j=1

βj

2

,

and again because k < ` it follows

gk(b)− g`(b) + gk(β)− g`(β) = −

 ∑̀
i=k+1

φi

 n∑
j=i

bj

2

+
∑̀
i=k+1

 n∑
j=i

βj

2
 .

Now, from a binomial formula, we know that −2ab ≥ −(a2 + b2) for real numbers
a and b. This leads to the estimate

2 (Σk(b, β)− Σ`(b, β)) ≥ gk(b)− g`(b) + gk(β)− g`(β),

which is a contradiction to (24). Thus the lemma is proven.

With these auxiliary lemmas we can state the following convexity Theorem. The
result is similar to Lemma 3.3 in [20]. But for that result, the authors only consider
the conservation of mass (2), not the conservation of momentum (3). For the model
considering both, conservation of mass and momentum, they only state, that the
set of feasible loads in general is non-convex (see Lemma 4.1 in [20]).

Theorem 3.4. Let pressure bounds p+,min, p+,max ∈ Rn+1 with pmax
i ≥ pmin

j (for
all i, j = 0, · · · , n) be given. Then, for a linear network graph with one single entry
and no compressor edges, the set of feasible loads is convex.

Proof. First note, that if the feasible set is empty or contains one element, it is
convex. Otherwise, it contains at least two elements. In particular we will use the
representation of the feasible set M of Theorem 2.3. The formulation (−1T b, b) ∈
R− × Rn+ is equivalent to 1

T b+ = 0 for graphs with one single entry. Consider

b+, β+ ∈ M . It holds 1T b+ = 0, 1Tβ+ = 0 and all inequalities in Theorem 2.3 are
fulfilled. We have to show, that for a λ ∈ (0, 1), the load vector λb+ + (1− λ)β+ is
also in M . First we have

1
T
(
λb+ + (1− λ)β+

)
= λ1T b+ + (1− λ)1Tβ+ = 0. (25)

Now we have to show, that the following inequalities (see (7)) for convex combina-
tions of loads for k, ` = 1, · · · , n hold:

0 ≤ (pmax
k )2 − (pmin

0 )2 + gk(λb+ (1− λ)β),

0 ≤ (pmax
0 )2 − (pmin

k )2 − gk(λb+ (1− λ)β),

0 ≤ (pmax
k )2 − (pmin

` )2 + gk(λb+ (1− λ)β)− g`(λb+ (1− λ)β).

(26)

To show the first inequality in (26) we define c1,k := (pmax
k )2−(pmin

0 )2 and t1,k(b, β) :
= c1,k + gk(λb+ (1− λ)β) and we want to show t1,k(b, β) ≥ 0. With Lemma 3.1 it
follows

t1,k(b, β) = c1,k + λ2gk(b) + (1− λ)2gk(β) + 2(λ− λ2)Σk(b, β).
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Because b and β are feasible, we can use the first inequality in Theorem 2.3 to get
the estimate

t1,k(b, β) ≥ 2(λ− λ2)c1,k + 2(λ− λ2)Σk(b, β).

Now we need an estimate of the form Σk(b, β) ≥ (−c1,k), but this is not true in
general. Here we use the restriction on the pressure bounds. Because pmax

i ≥ pmin
j

for all i, j = 0, · · · , n, it follows c1,k ≥ 0 for all k = 1, · · · , n. And because Σk(b, β) ≥
0, we have

t1,k(b, β) ≥ 0,

which implies the first inequality in (26).
We define c2,k := (pmax

0 )2 − (pmin
k )2, t2,k(b, β) := c2,k − gk(λb+ (1− λ)β) and we

use again Lemma 3.1 and get

t2,k(b, β) = c2,k + λ2gk(b) + (1− λ)2gk(β) + 2(λ− λ2)Σk(b, β).

Next because b and β are feasible, we use the second inequality in Theorem 2.3 to
get the estimate

t2,k(b, β) ≥ 2(λ− λ2)c2,k − 2(λ− λ2)Σk(b, β).

Now we use the result of Lemma 3.2 to get either

t2,k(b, β) ≥ 2(λ− λ2)c2,k − 2(λ− λ2)gk(b),

or t2,k(b, β) ≥ 2(λ− λ2)c2,k − 2(λ− λ2)gk(β).

Using again the second inequality in Theorem 2.3, both cases lead to

t2,k(b, β) ≥ 2(λ− λ2)c2,k − 2(λ− λ2)c2,k = 0,

which is obviously non-negative and thus, we have shown the second inequality in
(26). We define c3,k,` := (pmax

k )2 − (pmin
` )2 and t3,k,`(b, β) := c3,k,` + gk(λb + (1 −

λ)β)−g`(λb+(1−λ)β). In the case k = ` it follows directly t3,k,`(b, β) ≥ 0 (because
of c3,k,` ≥ 0 due to assumptions). In the case k 6= `, with Lemma 3.1 it follows

t3,k,`(b, β) = c3,k,` + λ2(gk(b)− g`(b)) + (1− λ)2(gk(β)− g`(β))

+ 2(λ− λ2)(Σk(b, β)− Σ`(b, β)).

Again because b and β are feasible, we use the third inequality in Theorem 2.3 to
get

t3,k,`(b, β) ≥ 2(λ− λ2)c3,k,` + 2(λ− λ2)(Σk(b, β)− Σ`(b, β)).

If ` < k, it follows Σ`(b, β) < Σk(b, β) and thus every term is positive, which implies
t3,k,`(b, β) ≥ 0. If ` > k, we use the statement of Lemma 3.3. With this, it follows
either

t3,k,`(b, β) ≥ 2(λ− λ2) (c3,k,` + (gk(b)− g`(b))) ,
or t3,k,`(b, β) ≥ 2(λ− λ2) (c3,k,` + (gk(β)− g`(β))) .

In both cases, we can use the third inequality in Theorem 2.3. It follows

t3,k,`(b, β) ≥ 2(λ− λ2)(c3,k,` − c3,k,`),
which is non-negative. Finally we have shown t3,k,` ≥ 0, so the load vector (λb +
(1− λ)β) is also feasible and thus the set of feasible loads is convex.

Remark 1. The assumption pmax
i ≥ pmin

j is not a natural restriction, because
otherwise, the trivial solution is no element of the set of feasible loads. We will
assume this later also to show star-shapedness. It is interesting to see, that this as-
sumption also occurs in the problem of maximizing booked capacities on stationary
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tree-structured graphs, in verifying constraint qualifications for certain problems
(see Theorem 1 in [15]).

We illustrate the results of Theorem 3.4 in the following examples.

Example 1: Consider the linear graph shown in Figure 4.

0 1 2

b0 b1 b2

Figure 4. Linear graph of example 1

We consider three different pressure bounds to show the results of Theorem
3.4. In the first case, we consider (p+,min)a = [2, 1, 1]T and (p+,max)a = [2, 2, 2]T

with the feasible set Ma, in the second case we consider (p+,min)b = [2, 1, 1]T

and (p+,max)b = [3, 2, 2]T with feasible set Mb and in the third case, we consider
(p+,min)c = [2.5, 1.5, 1]T and (p+,max)c = [3, 2.5, 2]T with feasible set Mc. Together
with φ1 = φ2 = 1, we get from Theorem 2.3 the feasible sets

Ma =
{
b ∈ R2

≥0 b1 ≤ −b2 +
√

3− b22
}
,

Mb =

{
b ∈ R2

≥0
b1 ≤ −b2 +

√
8− b22

b2 ≤
√

3

}
,

Mc =

 b ∈ R2
≥0

b1 ≥ −b2 +
√

2.25− b22
b1 ≤ −b2 +

√
6.75

b1 ≤ −b2 +
√

8− b22

 .

The feasible sets are shown in Figure 5.

−1 1 2 3

−1

1

2

3

b2

b1

(a)
p+,min = [2, 1, 1]T ,
p+,max = [2, 2, 2]T

−1 1 2 3

−1

1

2

3

b2

b1

(b)
p+,min = [2, 1, 1]T ,
p+,max = [3, 2, 2]T

−1 1 2 3

−1

1

2

3

b2

b1

(c)
p+,min = [2.5, 1.5, 1]T ,
p+,max = [3, 2.5, 2]T

Figure 5. Feasible sets for different pressure bounds

One can see, that the feasible sets of case (a) and (b) are convex and the feasible
set of case (c) is not. This fits to the result of Theorem 3.4 because in case (a) and

(b), the condition p+,max
i ≥ p+,min

j is fulfilled, but not in case (c).
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0 1 2 3

b0 b1 b2 b3

Figure 6. Linear graph of example 2

Example 2: Consider the linear graph shown in Figure 6.
We consider two different pressure bounds to show the results of Theorem 3.4.

In the first case, we consider (p+,min)a = [1, 1, 1, 1]T , (p+,max)a = [3, 3, 3, 3]T and in
the second case, we consider (p+,min)b = [2.5, 2, 1.5, 1]T , (p+,max)b = [3, 2.5, 2, 1.5]T .
With φ1 = φ2 = φ3 = 1, Theorem 2.3 implies

Ma =
{
b ∈ R3

≥0 (b1 + b2 + b3)2 + (b2 + b3)2 + b23 ≤ 8
}
,

Mb =


(b1 + b2 + b3)2 + (b2 + b3)2 + b23 ≥ 4
(b2 + b3)2 + b23 ≥ 1.75

b ∈ R3
≥0 (b1 + b2 + b3)2 ≤ 5

(b2 + b3)2 + b23 ≤ 5.25
(b1 + b2 + b3)2 + (b2 + b3)2 + b23 ≤ 8

 .

The feasible sets are shown in Figure 7 and Figure 8.

Figure 7. Set Ma for (p+,min)a = [1, 1, 1, 1]T and (p+,max)a = [3, 3, 3, 3]T

Figure 8. Set Mb for (p+,min)b = [2.5, 2, 1.5, 1]T and (p+,max)b =
[3, 2.5, 2, 1.5]T

In Figure 7 one can see, that the feasible set Ma is convex. In the view from
above one can see, that the picture is similar to the picture in the two-dimensional
case Figure 5 a). In Figure 8, the feasible set is obviously not convex. This is
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because the condition pmin
i ≤ pmax

j is not fulfilled for every i, j = 1, · · · , n. This
feasible set is similar to the set in the two dimensional example in Figure 5 (c).

Before we give a statement about convexity in a graph with compressor edges, we
shortly explain the idea how to treat graphs with compressor edges. The main idea
is to remove the compressor edges from the graph, but still keep the properties of
the compressors. That means we separate a graph with m ∈ N compressor edges to
m+ 1 subgraphs, which are not connected, but which interact with each other. We
numerate the subgraphs exactly like we numerate the nodes inside a subgraph (with
breadth-first search or depth-first search). This is explained in detail in [12], Section
3. We formulate an auxiliary lemma for the sum Σk∗,i(b) (defined in (19)) first.
For an easier notation, we can use the fact, that the graph is linear. The notation
in [12] is motivated by paths in tree-structured graphs, but for linear graphs, there
exists only one path in the graph. So for the next lemma, we state that gi,j(bi) is
the j-th component of the pressure loss function g for the i-th subgraph and bi is
the load vector (without the first component) for the i-th subgraph. Further, ni+1
is the number of nodes in the i-th subgraph, numbered from 0 to nk. Analogously,
φi,j belongs to the edge with number j in the i-th subgraph.

Lemma 3.5. For vectors b, β ∈ Rn≥0, constants φk ∈ R≥0 (i = 1, · · · , n) and

λ ∈ (0, 1), it holds (for i = 1, · · · , n):

Σk∗,i(λb+ (1− λ)β) = λ2Σk∗,i(b) + (1− λ)2Σk∗,i(β) + 2(λ− λ2)Σk∗,i(b, β).

The sum Σk∗,i(·) is defined in (19) and Σk∗,i(b, β) is defined as:

Σk∗,i(b, β) =


i−1∑

k=k∗+1

1
k−1∏
`=k∗

u`

nk∑
j=1

φk,j

 nk∑
α=j

bk,α

 nk∑
α=j

βk,α




+

nk∗∑
j=1

φk∗,j

nk∗∑
α=j

bk∗,α

nk∗∑
α=j

βk∗,α


Note, that for i, j ∈ {1, · · · ,m + 1} the index k∗ is defined as the largest index

of all subgraphs, the paths from the root to the i-th and to the j-th subgraph pass
(see [12] for details). This index does not influence our computation, so we do not
go into detail here.

Proof of Lemma 3.5. For i ∈ {1, · · · ,m+ 1} and b, β ∈M we have

Σk∗,i(λb+(1−λ)β) =

i−1∑
k=k∗+1

1
k−1∏
`=k∗

u`

gk,nk
(λbk+(1−λ)βk)+gk∗,nk∗ (λbk∗+(1−λ)βk∗).

Then from Lemma 3.1 it follows

Σk∗,i(λb+ (1− λ)β) =

i−1∑
k=k∗+1

1
k−1∏
`=k∗

u`

(
λ2gk,nk

(bk) + (1− λ)2gk,nk
(βk)
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+ 2(λ− λ2)

nk∑
j=1

φk,j

 nk∑
α=j

bk,α

 nk∑
α=j

βk,α


+

(
λ2gk∗,nk∗ (bk∗) + (1− λ)2gk∗,nk∗ (βk∗)

+ 2(λ− λ2)

nk∗∑
j=1

φk∗,j

nk∗∑
α=j

bk∗,α

(nk∗∑
α=1

βk∗,α

) ,

which can be written as

Σk∗,i(λb+ (1−λ)β) = λ2




i−1∑
k=k∗+1

1
k−1∏
`=k∗

u`

gk,nk
(bk)

+ gk∗,nk∗ (bk∗)



+ (1− λ)2




i−1∑
k=k∗+1

1
k−1∏
`=k∗

u`

gk,nk
(βk)

+ gk∗,nk∗ (βk∗)



+ 2(λ− λ2)




i−1∑
k=k∗+1

1
k−1∏
`=k∗

u`

nk∑
j=1

φk,j

 nk∑
α=j

bk,α

 nk∑
α=j

βk,α




+

nk∗∑
j=1

φk∗,j

nk∗∑
α=j

bk∗,α

nk∗∑
α=j

βk∗,α

 .

With the definition of the sum in (19) it follows

Σk∗,i(λb+ (1− λ)β) = λ2Σk∗,i(b) + (1− λ)2Σk∗,i + 2(λ− λ2)Σk∗,i(b, β),

and thus the lemma is proven.

For the next convexity theorem, we need a second auxiliary lemma.

Lemma 3.6. With the setting of Lemma 3.5, at least one of the following estimates
hold:

Σk∗,i(b, β) ≤ Σk∗,i(b),

or Σk∗,i(b, β) ≤ Σk∗,i(β).

Proof. The proof is similar to the proof of Lemma 3.2.

With these results, we can formulate a Theorem about convexity in general linear
graphs.

Theorem 3.7. Consider a linear graph G = (V, E) with compressor edges. Let
pressure bounds p+,min, p+,max ∈ Rn+1 with pmax

i ≥ pmin
j (for all i = 0, · · · , n),

constants φi ∈ Rn≥0 (i = 1, · · · , n) and controls ui (for i = 1, · · · ,m) be given.
Additionally, let

(pmax
i,0 )2 ≥ ui−1(pmax

i−1,0)2 (27)

hold for i = 2, · · · ,m + 1. Then the set of feasible loads for a linear graph with
compressor edges is convex.
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Proof. The proof is similar to the proof of Theorem 3.4. First mention, that if the
set of feasible loads is empty or contains only one element, it is convex. Otherwise,
let b+, β+ ∈M (let M be the set of feasible loads), then b, β ∈ Rn≥0. For λ ∈ (0, 1),

(25) holds. Also the inequalities (8)-(10) hold for the load vector (λb+(1−λ)β) for
every subgraph because of Theorem 3.4. We have to show, that inequalities (11)-
(18) hold for the convex combination (λb+(1−λ)β). For indices i, j ∈ {1, · · · ,m+1}
with i < j, the subgraph Gi is on the path from G1 to Gj , so the index k∗ is equal
to i and thus the sum Σk∗,i(·) is zero for the inequalities (11) - (18), but the sum
Σk∗,j(·) not. Define

c4,i,j :=
1

Πk∗,j
(pmax
j,0 )2 − 1

Πk∗,i
(pmin
i,0 )2,

with Πk∗,i defined in (20). Because k∗ = i, it is Πk∗,i = 1 and with (27), it follows

1

Πk∗,j
(pmax
j,0 )2 ≥ 1

Πk∗,j
uj−1(pmax

j−1,0)2 ≥ · · · ≥ 1

Πk∗,j

(
j−1∏
k=k∗

uk

)
(pmax
k∗,0)2.

With the definition of Πk∗,j (see 20), we have

1

Πk∗,j
(pmax
j,0 )2 ≥ (pmax

k∗,0)2.

Thus we have c4,i,j ≥ 0. We define

t4,i,j(b, β) = c4,i,j + Σk∗,j(λb+ (1− λ)β).

Then we can use Lemma 3.5 to get

t4,i,j(b, β) = c4,i,j + λ2Σk∗,j(b) + (1− λ)2Σk∗,j(β) + 2(λ− λ2)Σk∗,j(b, β).

Now we use inequality (11) itself for the feasible vectors b and β and get the estimate

t4,i,j(b, β) ≥ c4,i,j + λ2(−c4,i,j) + (1− λ)2(−c4,i,j) + 2(λ− λ2)Σk∗,j(b, β),

and from this it follows

t4,i,j(b, β) ≥ 2(λ− λ2)c4,i,j + 2(λ− λ2)Σk∗,j(b, β).

Because c4,i,j ≥ 0 and Σk∗,j(b, β) ≥ 0, it follows t4,i,j(b, β) ≥ 0 and thus, inequality
(11) holds for (λb+ (1− λ)β). For the next inequality, we define

c5,i,j :=
1

Πk∗,i
(pmax
i,0 )2 − 1

Πk∗,j
(pmin
k∗,j)

2,

and
t5,i,j(b, β) := c5,i,j − Σk∗,j(λb+ (1− λ)β).

Because Πk∗,i = 1 and Πk∗,j ≥ 1, we have c5,i,j ≥ 0. We use Lemma 3.5 to get

t5,i,j(b, β) = c5,i,j −
(
λ2Σk∗,j(b) + (1− λ)2Σk∗,j(β) + 2(λ− λ2)Σk∗,j(b, β)

)
.

Then, we use the inequality (12) itself for feasible b and β and get

t5,i,j(b, β) ≥ c5,i,j + λ2(−c5,i,j) + (1− λ)2(−c5,i,j)− 2(λ− λ2)Σk∗,j(b, β),

from which it follows

t5,i,j(b, β) ≥ 2(λ− λ2)c5,i,j − 2(λ− λ2)Σk∗,j(b, β).

Now we use Lemma 3.6. It follows either

t5,i,j(b, β) ≥ 2(λ− λ2)c5,i,j − 2(λ− λ2)Σk∗,j(b),

or t5,i,j(b, β) ≥ 2(λ− λ2)c5,i,j − 2(λ− λ2)Σk∗,j(β).
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In both cases, we can use again inequality (12) to get

t5,i,j(b, β) ≥ 2(λ− λ2)c5,i,j − 2(λ− λ2)c5,i,j ,

which is obviously non-negative. Thus inequality (12) holds for (λb + (1 − λ)β).
The proof for the inequalities (13), (15) and (17) works analogously to the proof of
(11) and the proof of (14), (16) and (18) works analogously to the proof of (12).
Then every inequality of Theorem 2.4 holds for the load vector (λb+ (1− λ)β) and
thus the theorem is proven.

Remark 2. The extra condition (pmax
i )2 ≥ ui−1(pmin

i−1)2 of Theorem 3.7 is sufficient
for convexity, but not necessary. The feasible set of a linear graph with compressor
edges can also be convex even if the extra condition is not fulfilled.

The following example illustrates the results.
Example 3. : Consider the minimal graph with a compressor edge shown in Figure
9.

0 1 2 3
e1 ∈ EF eC ∈ EC e3 ∈ EF

b0 b1 b2 b3

Figure 9. Linear graph with one compressor edge of example 3

We consider two different controls for pressure bounds (p+,min) = [1, 1, 1, 1]T and
(p+,max) = [3, 2, 2, 1.5]T to show the results to show the results of Theorem 3.7. In
the first case, we consider ua = 2 and in the second case, we consider ub = 4. Then
from Theorem 2.4 we get

Ma =

 b ∈ R3
≥0

(b1 + b2 + b3)2 ≤ 8
b23 ≤ 3
(b1 + b2 + b3)2 + 1

2b
2
3 ≤ 8.75

 ,

Mb =

 b ∈ R3
≥0

(b1 + b2 + b3)2 ≤ 8
b23 ≤ 3
(b1 + b2 + b3)2 + 1

4b
2
3 ≤ 8.75

(b1 + b2 + b3)2 + 1
4b

2
3 ≥ 0.4375

 .

The feasible sets are shown in Figure 10 and Figure 11.

Figure 10. Set Ma for (p+,min)a = [1, 1, 1, 1]T and (p+,max)a =
[3, 3, 3, 3]T
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Figure 11. Set Mb for (p+,min)b = [2.5, 2, 1.5, 1]T and (p+,max)b =
[3, 2.5, 2, 1.5]T

In both cases, one can see that the feasible sets are convex. Even if in case (b)
the condition (pmax

i,0 )2 ≥ ui−1(pmax
i−1,0)2 is not fulfilled. But this is stated in Remark

2. The condition pmax
i ≥ pmin

j is also not fulfilled in case (b), this leads to the case,
that the vector 03 /∈Mb.

4. Star-shapedness of the feasible set in tree-structured graphs. In this
section, we will show that for tree-structured graphs, the feasible set is star-shaped
to some special points. Like it is mentioned in Section 1, computing the intervals, in
which a line through a fixed point intersects the set of feasible loads, is much easier
if one knows that the set is star-shaped to this point. First we show the following
auxiliary lemma.

Lemma 4.1. Let G = (V, E) be a tree-structured graph without compressor edges.
For b ∈ Rn and λ ∈ (0, 1), the pressure loss function defined in (6) is:

g(λb) = λ2g(b). (28)

Proof. Consider b ∈ Rn and λ ∈ (0, 1). We have

g(λb) = (AT )−1Φ|A−1λb|(A−1λb)

= (AT )−1Φ|λ||A−1b|λ(A−1b)

= λ2(AT )−1Φ||A−1b|(A−1b)

= λ2g(b),

since λ is non-negative.

Now we formulate a theorem about when the set of feasible loads is star-shaped.
This result is equal to Lemma 4.2 in [20]. However, we state this theorem here
because we prove it differently and we will use the proof for a similar result for
networks with compressor stations later. As mentioned in Section 1, the main
difference between the models is the modeling of the compressor stations.

Theorem 4.2. Let pressure bounds p+,min, p+,max ∈ Rn+1 with pmax
i ≥ pmin

j (for
all i, j = 0, · · · , n) be given. If the network graph is tree-structured with one input
node and does not contain compressor edges, then the set of feasible loads M is
star-shaped with respect to the point 0 ∈ Rn+1.

Proof. Let M be the set of feasible loads. To show this result, we have to show that
for a feasible load vector b ∈ M ⊆ Rn≥0, the vector λb is also feasible for λ ∈ [0, 1].

That means the vector λb fulfills the inequalities in Theorem 2.3 (for b = 0, it is
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λb = 0). First mention, that 0 is feasible. If b = 0, it follows g(b) = 0 and because
pmax
i ≥ pmin

j for all i, j = 0, · · · , n, it follows pmax
i − pmin

j ≥ 0 for all i, j = 0, · · · , n.
Thus, all inequalities in Theorem 2.3 hold and 0 is feasible. So if the set of feasible
loads contains only one element, the statement of Theorem 4.2 is obviously true.
Else, consider b ∈M\{0}. For i ∈ 1, · · · , n, we define

c1,i := (pmax
i )2 − (pmin

0 )2,

and

t1,i(b) := c1,i + gi(λb).

Then with Lemma 4.1 we have

t1,i(b) = c1,i + λ2gi(b).

Because b is feasible, we can use the first inequality in Theorem 2.3. It follows

t1,i(b) ≥ c1,i − λ2c1,i.

Because c1,i ≥ 0 (due to pmax
i ≥ pmin

j ) and λ ∈ [0, 1], it follows t1,i(b) ≥ 0 and thus
the first inequality in Theorem 2.3 holds. Next define

c2,i := (pmax
0 )2 − (pmin

i )2,

and t2,i(b) := c2,i − gi(λb).

Then due to Lemma 4.1 we have

t1,i(b) = c1,i − λ2gi(b).

We use the second inequality of Theorem 2.3 and get

t1,i(b) ≥ c1,i − λ2c1,i,

and it follows t1,i(b) ≥ 0. Thus, the second inequality in Theorem 2.3 holds. Last,
we define

c3,i,j := (pmax
i )2 − (pmin

j )2,

and t3,i,j(b) := c3,i,j + gi(λb)− gj(λb).
With Lemma 4.1 it follows

t3,i,j(b) = c3,i,j + λ2(gi(b)− gj(b)).

We use the third inequality in Theorem 2.3, we have

t3,i,j(b) ≥ c3,i,j − λ2c3,i,j ,

so it follows t3,i,j(b) ≥ 0. Thus all inequalities of Theorem 2.3 are fulfilled for (λb)
and the proof is complete.

With the next example, we illustrate why we need the statement p+,max ≥ p+,min.
Example 4: Consider the minimal tree shown in Figure 12.

0

1 2

q1 q2

b0

b1b2

Figure 12. Graph of example 2
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We consider the two cases (p+,min)a = [2, 1, 1]T , (p+,max)a = [3, 2, 2]T with the
feasible set Ma) and (p+,min)b = [2.5, 1.5, 1]T , (p+,max)b = [3, 2.5, 2]T with the
feasible set Mb). Then, for φ1 = φ2, we get from Theorem 2.3

Ma =

 b ∈ R2
≥0

b1, b2 ≤
√

8
b21 ≤ 3 + b22
b22 ≤ 3 + b21

 ,

Mb =


b ∈ R2

≥0

b2 ≥ 1.5

b1 ≤
√

6.75

b2 ≤
√

8
b21 ≤ 1.75 + b22
b22 ≤ 5.25 + b21

 .

The feasible sets are shown in Figure 13.

−1 1 2 3

−1

1

2

3

b2

b1

(a)
p+,min = [2, 1, 1]T ,
p+,max = [3, 2, 2]T

−1 1 2 3

−1

1

2

3

b2

b1

(b)
p+,min = [2.5, 1.5, 1]T ,
p+,max = [3, 2.5, 2]T

Figure 13. Feasible sets for different pressure bounds

One can see, that in case (a), the set of feasible loads is star-shaped to the point
0 ∈ R2, in case (b) this is not true. This is because the condition for the pressure
bounds does not hold. But the set in case (b) still has the special property that
the intersection of every line through the root and the feasible set is convex. This
property is stated later in Lemma 4.4.

Example 5: Consider the minimal tree shown in Figure 14.

0

1 2

3

q1 q2

q3

b0

b1b2

b3

Figure 14. Graph of example 5



CONVEXITY AND STARSHAPEDNESS OF FEASIBLE SETS 191

We consider the two cases pmin
a = [1, 1, 1, 1]T , pmax

a = [3, 2, 2, 2]T with the feasible
set Ma and pmin

b = [2, 1, 1, 1]T , pmax
b = [3, 2, 2, 1.5]T with the feasible set Mb. From

Theorem 2.3 it follows

Ma =


b ∈ R3

≥0

b21 ≤ 8
(b2 + b3)2 + b23 ≤ 8
b21 ≤ 3 + (b2 + b3)2

(b2 + b3)2 + b23 ≤ 3 + b21
b23 ≤ 3

 ,

and Mb =


b ∈ R3

≥0

(b2 + b3)2 + b23 ≥ 1.75
b21 ≤ 8
(b2 + b3)2 + b23 ≤ 8
b21 ≤ 3 + (b2 + b3)2

b21 ≤ 1.25 + (b2 + b3)2 + b23
(b2 + b3)2 + b23 ≤ 3 + b21
b23 ≤ 3


.

The feasible sets are shown in Figure 15 and Figure 16.

Figure 15. Set Ma for (p+,min)a = [1, 1, 1, 1]T and (p+,max)a =
[3, 2, 2, 2]T

Figure 16. Set Ma for (p+,min)b = [2, 1, 1, 1]T and (p+,max)b =
[3, 2, 2, 1.5]T

As in Example 4, the feasible set in case (a) is star-shaped to the point 0 ∈ R3,
the set in case (b) is not. But again, the intersection of every line through the root
and the set of feasible loads is convex (see Lemma 4.4).

Next we show, that the statement of Theorem 4.2 also holds for tree-structured
graphs with compressor edges. This result is not stated in [20].
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Theorem 4.3. Let controls ui ∈ R (i = 1, · · · ,m) be given. Let pmax
i ≥ pmin

j hold

for every subgraph and let (27) hold, i.e. (pmax
i,0 )2 ≥ ui−1(pmax

i−1,0)2. Then the set of
feasible loads of a tree-structured graph with compressor edges is star-shaped to the
point 0 ∈ Rn.

Proof. Consider b+ ∈ Rn+1 and λ ∈ [0, 1]. We have to show, that the inequalities
(8)-(18) hold for the load vector λb. Theorem 4.2 we know, that (8)-(10) are fulfilled
for every subgraph. For the sum defined in (19) we know from Lemma 4.1 (i ∈
{1, · · · , n})

Σk∗,i(λb) = λ2Σk∗,i(b). (29)

The proof follows the structure of the proof of Theorem 4.2. We set

c4,i,j :=
1

Πk∗,j
(pmax
j,0 )2 − 1

Πk∗,i
(pmin
i,0 )2,

t4,i,j(b) := c4,i,j + Σk∗,j(λb)− Σk∗,i(λb),

and

c5,i,j :=
1

Πk∗,i
(pmax
i,0 )2 − 1

Πk∗,j
(pmin
j,0 )2,

t5,i,j(b) := c5,i,j + Σk∗,i(λb)− Σk∗,j(λb).

Then with (29) we have

t4,i,j(b) = c4,i,j + λ2(Σk∗,j(b)− Σk∗,i(b)),

and

t5,i,j(b) = c5,i,j + λ2(Σk∗,i(b)− Σk∗,j(b)).

Because b is feasible, we can use inequality (11) resp. (12) to get the estimates

t4,i,j(b) ≥ c4i,j + λ2(−c4i,j),

and

t5,i,j(b) ≥ c5i,j + λ2(−c5i,j).
From Theorem 3.7 we know that c4,i,j , c5,i,j ≥ 0 because of the condition (pmax

i,0 )2 ≥
ui−1(pmax

i−1,0)2. So both, t4,i,j(b) and t5,i,j(b) are non-negative due to our assump-
tions. Thus inequality (11) and (12) hold for (λb). All other inequalities can be
shown analogously. That means the feasible set for tree-structured graphs with com-
pressor edges is star-shaped to the point 0n+1 and thus the proof is complete.

The last statement in this section is motivated by case b) in Example 4 (see
Figure 13). Because we want to know, when the intersection of a line and the set
of feasible loads is convex, we formulate the following lemma.

Lemma 4.4. Let M ⊆ Rn be the set of feasible loads of a tree-structured graph.
Then, for a point b ∈ Rn, the set L := {β ∈M |β = λb (λ ∈ [0, 1])} is convex.

Remark 3. The statement of Lemma 4.4 is a generalized star-shapedness property
with respect to the point 0 ∈ Rn. A set S is star-shaped with respect to a point s if
s ∈ S and if for every direction d ∈ Rn, the line from s in direction d has a convex
intersection with the set S. If S is generalized star-shaped to the point s, the same
property holds for s /∈ S, so here the point s need not to be in the set S. For the
computation in the spheric-radial decomposition, this situation is as useful as the
classical star-shapedness property.
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Proof of Lemma 4.4. First, if the set L is empty or contains only one element, it is
convex. We only consider the case b ∈ Rn≥0, because otherwise, the set L contains

at most one element (the point ∈ Rn). This is, because all load vectors (without
the first component) are non-negative due to our network graph has only one inflow
node. We separate the proof in two parts. In the first part, we prove Lemma 4.4
for tree-structured networks without compressor edges, in the second part we prove
it for general tree-structured networks.

Part I: Proof for trees without compressor edges: We first prove this lemma
for trees without compressor edges. Consider b ∈ Rn≥0 and assume, that the feasible
set contains at least two elements. Consider β1, β2 ∈M with β1 = λ1b and β2 = λ2b
(0 ≤ λ1 < λ2 ≤ 1). Then, the inequalities in Theorem 2.3 hold for β1 and β2. We
have to show, that these inequalities also hold for β = λb for all λ ∈ [λ1, λ2]. The
first inequality for β1 is

(pmin
0 )2 − (pmax

k )2 ≤ gk(β1),

which is equal to
(pmin

0 )2 − (pmax
k )2 ≤ gk(λ1b).

From Lemma 4.1, it follows

(pmin
0 )2 − (pmax

k )2 ≤ λ21gk(b),

and this also holds for every λ ≥ λ1, especially for λ ∈ [λ1, λ2]. The second
inequality for β2 is

(pmax
0 )2 − (pmin

0 )2 ≥ gk(β2).

This is equal to
(pmax

0 )2 − (pmin
0 )2 ≥ gk(λ2b),

and due to Lemma 4.1 it follows

(pmax
0 )2 − (pmin

0 )2 ≥ λ22gk(b).

This also holds for λ ≤ λ2, especially for every λ ∈ [λ1, λ2]. The third inequality in
Theorem 2.3 is

(pmin
k )2 − (pmax

` )2 ≤ gk(β1)− g`(β1),

resp. (pmin
k )2 − (pmax

` )2 ≤ gk(β2)− g`(β2).

The term on the right in both cases has the same sign, because if gk(β1)−g`(β1) < 0,
then due to Lemma 4.1 this is equal to λ21(gk(b)−g`(b)) < 0 and the sign is indepen-
dent of λ1. Thus this also holds for β2 = λ2b. So if gk(b)− g`(b) ≥ 0, we follow the
argumentation of the first inequality, we have shown here. And if gk(b)− g`(b) < 0,
we follow the argumentation of the second inequality, we have shown here. Thus,
all inequalities in Theorem 2.3 hold for β = λb for all λ ∈ [λ1, λ2] and the lemma is
proven for trees without compressor stations.

Part II: Proof for general trees: Now we prove this lemma for general trees with
compressor edges. This part of the proof follows the structure of Part I. Consider
b ∈ Rn≥0 and β1, β2 ∈ M with β1 = λ1b and β2 = λ2b (0 ≤ λ1 < λ2 ≤ 1). We

have to show, that all inequalities in Theorem 2.4 hold for β = λb with λ ∈ [λ1, λ2].
The inequalities (8) - (10) follow directly from the first part of the proof. Consider
inequality (11):

1

Πk∗,i
(pmin
i,0 )2 − 1

Πk∗,j
(pmax
j,0 )2 ≤ Σk∗j(βk)− Σk∗,i(βk) (k = 1, 2).
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We follow the argumentation of the third inequality in Part I of the proof. The
term on the right is either negative or non-negative. If it is non-negative, we follow
the argumentation of the first inequality in Part I, if it is negative, we follow the
argumentation of the second inequality in Part I. We can use the same arguments to
show the inequalities (12) - (18) for β = λb with λ ∈ [λ1, λ2]. Thus, all inequalities
in Theorem 2.4 are fulfilled for β = λb with λ ∈ [λ1, λ2] and the set L is convex. So
Lemma 4.4 is proven.

The statement of Lemma 4.4 is mentioned and illustrated in Example 4 and
Example 5. This is listed here, because it also belongs to the problems mentioned
in Section 1.

5. Conclusion. In this paper we have shown that the structure of the set of feasible
loads in the context of stationary gas networks mainly depends on the topology of
the network graphs. In the easiest case, if the network graph is linear, convexity of
the set of feasible loads can be shown with very weak assumptions. If the network
graph is more complex, but still does not contain circles, we have shown, that
under weak assumptions, the feasible set is always star-shaped with respect to the
point 0 ∈ Rn. For even weaker assumptions, we introduced the generalized star-
shapedness (see Lemma 4.4), which is also very useful for the computation in the
spheric-radial decomposition.

In [9], also the case of a network, which is a cycle, is considered. Then, the
representation of the set of feasible loads shown in Theorem 2.3 is completed with
an equality. For this framework, one can also show, that the set of feasible loads is
star-shaped to the point 0 ∈ Rn. Convexity in this case does not hold, not even in
the simplest case of a network cycle of three nodes (see [9], Section 5).

As mentioned in Section 1, knowing the structure of the set of feasible loads helps
to analyze this model for random load vectors as it is done in [9] and [12]. There,
the authors use the spheric-radial decomposition to handle the probabilistic load
vectors. This leads to optimization problems with probabilistic constrains or chance
constraints (see [17]). The main part of using the spheric-radial decomposition (see
Theorem 1.1) is to compute the integral in (1). If one knows e.g. that the feasible
set is convex, this integral is a lot easier to compute and thus, this simplifies the
optimization done in [12].
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