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Abstract. We consider the 1D transport equation with nonlocal velocity field:

θt + uθx + νΛγθ = 0,

u = N (θ),

where N is a nonlocal operator and Λγ is a Fourier multiplier defined by

Λ̂γf(ξ) = |ξ|γ f̂(ξ). In this paper, we show the existence of solutions of this

model locally and globally in time for various types of nonlocal operators.

1. Introduction. In this paper, we study transport equations with nonlocal ve-
locity. One of the most well-known equation is the two dimensional Euler equation
in vorticity form,

ωt + u · ∇ω = 0,

where the velocity u is recovered from the vorticity ω through

u = ∇⊥(−∆)−1ω or equivalently û(ξ) =
iξ⊥

|ξ|2
ω̂(ξ).

Other nonlocal and quadratically nonlinear equations, such as the surface quasi-
geostrophic equation, the incompressible porous medium equation, Stokes equa-
tions, magneto-geostrophic equation in multi-dimensions, have been studied inten-
sively as one can see in [1, 2, 5, 6, 7, 8, 9, 13, 14, 15, 16, 19, 20, 23, 24, 25] and
references therein.
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We here consider the 1D transport equations with nonlocal velocity field of the
form

θt + uθx + νΛγθ = 0, x ∈ R, (1a)

u = N (θ), (1b)

where N is typically expressed by a Fourier multiplier. The differential operator
Λγ = (

√
−∆)γ is defined by the action of the following kernels [10]:

Λγf(x) = cγp.v.

∫
R

f(x)− f(y)

|x− y|1+γ
dy, (2)

where cγ > 0 is a normalized constant. Alternatively, we can define Λγ = (
√
−∆)γ

as a Fourier multiplier: Λ̂γf(ξ) = |ξ|γ f̂(ξ). The study of 1 is mainly motivated by
[11] where Córdoba, Córdoba, and Fontelos proposed the following 1D model

θt + uθx = 0, (3a)

u = −Hθ, (H: the Hilbert transform) (3b)

for the 2D surface quasi-geostrophic equation and proved the finite time blow-up
of smooth solutions. In this paper, we deal with 3a-3b and its variations with the
following objectives.

(1) The existence of weak solution with rough initial data. The existence of global-
in-time solutions is possible even if strong solutions blow up in finite time, as in
the case of the Burgers’ equation.
(2) The existence of strong solution when the velocity u is more singular than θ.
We intend to see the competitive relationship between nonlinear terms and viscous
terms.

More specifically, the topics covered in this paper can be summarized as follows.
• The model 1: N = −H and ν = 0. We first show the existence of local-in-time
solution in a critical space under the scaling θ0(x) 7→ θ0(λx). We then introduce
the notion of a weak super-solution and obtain a global-in-time weak super-solution
with θ0 ∈ L1 ∩ L∞ and θ0 ≥ 0.

• The model 2: N = −H(∂xx)−α, α > 0, ν = 1, and γ > 0. This is a regularized
version of 3a-3b which is also closely related to many equations as mentioned in [3].
In this case, we show the existence of weak solutions globally in time under weaker
conditions on α and γ compared to [3].

• The model 3: N = −H(∂xx)β, β > 0, ν = 1, and γ > 0. Since β > 0, the
velocity field is more singular than the previous two models. In this case, we show
the existence of strong solutions locally in time in two cases: (1) 0 < β ≤ γ

4 when
0 < γ < 2 and (2) 0 < β < 1 when γ = 2. We also show the existence of strong
solutions for 0 < β < 1

2 and γ = 2 with rough initial data. We finally show the

existence of strong solutions globally in time with 0 < β < 1
4 and γ = 2.

We will give detailed statements and proofs of our results in Section 3–5.

2. Preliminaries. All constants will be denoted by C that is a generic constant.
In a series of inequalities, the value of C can vary with each inequality. We use
following notation: for a Banach space X,

CTX = C([0, T ] : X), LpTX = Lp(0, T : X).
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The spatial derivatives are defined as

∂lf(t, x) =
∂lf

∂xl
(t, x), l ∈ N.

For l = 1, 2, 3, we also use the followings:

fx, fxx = ∂xxf, fxxx.

2.1. Hilbert transform. We now give some properties of the Hilbert transform
and related function spaces. The Hilbert transform is defined by

Hf(x) = p.v.

∫
R

f(y)

x− y
dy.

We will use the BMO space and its dual which is the Hardy space H1 which consists
of those f such that f andHf are integrable [17, Chapter 6]. By the following Cotlar
formula [12]

2H(fHf) = (Hf)2 − f2, (4)

we have fHf ∈ H1 and for any f ∈ L2,

‖fHf‖H1 ≤ ‖f‖2L2 . (5)

We have Λf(x) = Hfx(x) by using Ĥf(ξ) = −sgn(ξ)f̂(ξ), where Λ is defined in 2.

2.2. Function spaces. Since we are dealing with equations on R, we state some
definitions and function spaces on R.

Let f ∈ S ′, a tempered distribution. Then, its Fourier transform is defined by

f̂(ξ) =

∫
R
f(x)e−2πixξdx.

Let s ∈ R. The energy space Hs is defined by

Hs(R) =

{
f ∈ S ′ : ‖f‖2Hs =

∫
R

(1 + |ξ|2)s
∣∣∣f̂(ξ)

∣∣∣2 dξ <∞} .
We also define homogeneous spaces:

Ḣs(R) =

{
f ∈ S ′ : ‖f‖2Ḣs =

∫
R
|ξ|2s

∣∣∣f̂(ξ)
∣∣∣2 dξ <∞} .

We note that for s > 0 and σ > 0,

Ḣ−s ⊂ H−s−σ (6)

because

‖f‖2H−(s+σ) =

∫
R

∣∣∣f̂(ξ)
∣∣∣2

(1 + |ξ|2)s+σ
dξ =

∫
R

|ξ|2s

(1 + |ξ|2)s+σ

∣∣∣f̂(ξ)
∣∣∣2

|ξ|2s
dξ ≤ C ‖f‖2Ḣ−s .

In this paper, we also use two estimations in [18].

(1) Fractional product rule. For s > 0 and p, pi, and qi such that

1

p
=

1

p1
+

1

q1
=

1

p2
+

1

q2
, 1 ≤ p <∞, pi, qi 6= 1,

we have the following estimations:

‖Λs(fg)‖Lp ≤ C
[
‖Λsf‖Lp1 ‖g‖Lq1 + ‖f‖Lp2 ‖Λsg‖Lq2

]
, (7)
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and

‖(I − Λ)s(fg)‖Lp ≤ C
[
‖(I − Λ)sf‖Lp1 ‖g‖Lq1 + ‖f‖Lp2 ‖(I − Λ)sg‖Lq2

]
, (8)

where (I −∆) is defined as the Fourier multiplier whose symbol is 1 + |ξ|2.
(2) Commutator estimate.∑

|l|≤2

∥∥∂l(fg)− f∂lg
∥∥
L2 ≤ C (‖fx‖L∞ ‖gx‖L2 + ‖fxx‖L2 ‖g‖L∞) . (9)

2.3. Littlewood-Paley theory. We here briefly introduce the Littlewood-Paley
theory based on [4]. We first provide notation and definitions in the Littlewood-
Paley theory. Let C be the ring of center 0, of small radius 3

4 and great radius 8
3 .

We take smooth radial functions (χ, φ) with values in [0, 1] that are supported on
the ball B 4

3
(0) and C, respectively, and satisfy

χ(ξ) +

∞∑
j=0

φ
(
2−jξ

)
= 1 ∀ ξ ∈ Rd,

∞∑
j=−∞

φ
(
2−jξ

)
= 1 ∀ ξ ∈ Rd \ {0},∣∣∣j − j′ ∣∣∣ ≥ 2 =⇒ supp φ

(
2−j ·

)⋂
supp φ

(
2−j

′

·
)

= ∅,

j ≥ 1 =⇒ supp χ
⋂

supp φ
(
2−j ·

)
= ∅.

(10)

From now on, we use the notation

φj(ξ) = φ
(
2−jξ

)
.

We define dyadic blocks and lower frequency cut-off functions.

h = F−1φ, h̃ = F−1χ,

∆jf = φj (D) f = 2jd
∫
Rd
h
(
2jy
)
f(x− y)dy,

Sjf = χ
(
2−jD

)
f = 2jd

∫
Rd
h̃
(
2jy
)
f(x− y)dy,

∆−1f = χ (D) f =

∫
Rd
h̃ (y) f(x− y)dy.

(11)

Then, the homogeneous Littlewood-Paley decomposition is given by

f =
∑
j∈Z

∆jf in S
′

h,

where S ′h is the space of tempered distributions u ∈ S ′ such that

lim
j→−∞

Sju = 0 in S ′.

We now define the homogeneous Besov spaces:

Ḃsp,q =
{
f ∈ S

′

h : ‖f‖Ḃsp,q =
∥∥2js ‖∆jf‖Lp

∥∥
lq(Z)

<∞
}
.

We recall Bernstein’s inequality in 1D : for 1 ≤ p ≤ q ≤ ∞ and k ∈ N,

sup
|α|=k

‖∂α∆jf‖Lp ≤ C2jk ‖∆jf‖Lp , ‖∆jf‖Lq ≤ C2j(
1
p−

1
q ) ‖∆jf‖Lp . (12)
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Moreover, the Besov spaces enjoy nice scaling properties. Let fλ(x) = f(λx).
Then, there exists a constant C such that

C−1 ‖fλ‖Ḃsp,r ≤ λ
s− 3

p ‖f‖Ḃsp,r ≤ C ‖fλ‖Ḃsp,r . (13)

We also have the following commutator estimate.

Lemma 2.1 (Commutator estimate). For f, g ∈ S (Schwarz class)

‖[f,∆j ]gx‖L2 ≤ Ccj2−
3
2 j ‖fx‖

Ḃ
1
2
2,1

‖g‖
Ḃ

3
2
2,1

,

∞∑
j=−∞

cj ≤ 1.

We finally introduce Simon’s compactness.

Lemma 2.2. [26] Let X0, X1, and X2 be Banach spaces such that X0 is com-
pactly embedded in X1 and X1 is a subset of X2. Then, for 1 ≤ p < ∞, the set{
v ∈ LpTX0 : ∂v

∂t ∈ L
1
TX2

}
is compactly embedded in LpTX1.

3. The model 1. We now study 1a-1b with N = −H and ν = 0 which is nothing
but 3a-3b:

θt − (Hθ) θx = 0, (14a)

θ(0, x) = θ0(x). (14b)

3.1. Local well-posedness. The local well-posedness of 14a-14b is established in
H2 ([2]) and H

3
2−γ with the viscous term Λγθ ([14]). To improve these results,

we notice that 14a-14b has the following scaling invariant property: if θ(t, x) is a
solution of 14a-14b, then so is θλ(t, x) = θ(λt, λx). So, we take initial data in a
space whose norm is closely invariant under the scaling:

θ0(x) 7→ θλ0(x) = θ0(λx).

In this paper, we take the space Ḃ
3
2
2,1 because there is a constant C such that

C−1 ‖θλ0‖
Ḃ

3
2
2,1

≤ ‖θ0‖
Ḃ

3
2
2,1

≤ C ‖θλ0‖
Ḃ

3
2
2,1

by taking s = 3
2 , p = 2, and r = 1 in 13. The first result in this paper is the

following theorem.

Theorem 3.1. For any θ0 ∈ Ḃ
3
2
2,1, there exists T = T (‖θ0‖) such that a unique

solution of 14a-14b exists in CT Ḃ
3
2
2,1.

Proof. We only provide a priori estimates of θ in the space stated in Theorem 3.1.
The other parts, including the approximation procedure, are rather standard.

We apply ∆j to 14a, multiply by ∆jθ, and integrate the resulting equation over
R to get

1

2

d

dt
‖∆jθ‖2L2 =

∫
R

∆j ((Hθ)θx) ∆jθdx

=

∫
R

((Hθ)∆jθx) ∆jθdx+

∫
R

∆j ((Hθ)θx) ∆jθdx−
∫
R

((Hθ)∆jθx) ∆jθdx

=

∫
R

((Hθ)∆jθx) ∆jθdx+

∫
R
{[∆j ,Hθ] ∆jθx}∆jθdx

= −1

2

∫
R

(Hθ)x |∆jθ|2 dx+

∫
R
{[∆j ,Hθ] ∆jθx}∆jθdx.

(15)
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By the Bernstein inequality, we have

‖Hθx‖L∞ ≤ C‖θ‖
Ḃ

3
2
2,1

. (16)

We then apply Lemma 2.1 to the second term in the right-hand side of 15 to obtain∫
R

[∆j ,Hθ] ∆jθx∆jθdx ≤ Ccj2−
3
2 j‖θ‖2

Ḃ
3
2
2,1

‖∆jθ‖L2 . (17)

By 15, 16, and 17, we have

d

dt
‖θ‖2

Ḃ
3
2
2,1

≤ C‖θ‖3
Ḃ

3
2
2,1

,

from which we deduce

‖θ(t)‖
Ḃ

3
2
2,1

≤
‖θ0‖

Ḃ
3
2
2,1

1− Ct‖θ0‖
Ḃ

3
2
2,1

≤ 2‖θ0‖
Ḃ

3
2
2,1

for all t ≤ T =
1

2C‖θ0‖
Ḃ

3
2
2,1

.

This completes the proof.

3.2. Global weak super-solution. We next consider 14a-14b with rough initial
data. More precisely, we assume that θ0 satisfies the following conditions

θ0 ≥ 0, θ0 ∈ L1 ∩ L∞. (18)

Since θ satisfies the transport equation, we have

θ(t, x) ≥ 0, θ ∈ L∞(R) for all time. (19)

If we follow the usual weak formulation of 14a-14b, for all ψ ∈ C∞c ([0, T )× R)∫ T

0

∫
R

[−θψt + (Hθ) θψx + (Λθ) θψ] dxdt =

∫
R
θ0(x)ψ(x, 0)dx. (20)

For θ0 ≥ 0, there is gain of a half derivative from the structure of the nonlinearity,
that is

‖θ(t)‖L1 +

∫ t

0

∥∥∥Λ
1
2 θ(s)

∥∥∥2

L2
ds = ‖θ0‖L1 . (21)

So, we can rewrite the left-hand side of 20 as∫ T

0

∫
R

[
−θψt + (Hθ) θψx + Λ

1
2 θ
[
Λ

1
2 , ψ

]
θ +

∣∣∣Λ 1
2 θ
∣∣∣2 ψ] dxdt =

∫
R
θ0(x)ψ(x, 0)dx.

However, the Ḣ
1
2 regularity derived from 21 is not enough to pass to the limit in∫ T

0

∫
R

∣∣∣Λ 1
2 θε
∣∣∣2 ψdxdt

from the ε-regularized equations described below. So, we introduce a new notion of
solution. Let

AT = L∞T
(
L1 ∩ L∞

)
∩ L2

TH
1
2 .

Definition 3.2. We say θ is a weak super-solution of 14a-14b on the time interval
[0, T ] if θ(t, x) ≥ 0 for all t ∈ [0, T ], θ ∈ AT , and for each nonnegative ψ ∈
C∞c ([0, T )× R),∫ T

0

∫
R

[
−θψt + (Hθ) θψx + Λ

1
2 θ
[
Λ

1
2 , ψ

]
θ +

∣∣∣Λ 1
2 θ
∣∣∣2 ψ] dxdt ≥ ∫

R
θ0(x)ψ(x, 0)dx. (22)

To deal with the third term in 22, we use the following Lemma.
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Lemma 3.3. [3] For f ∈ L 3
2 , g ∈ L 3

2 and ψ ∈W 1,∞, we have∥∥∥[Λ 1
2 , ψ

]
f −

[
Λ

1
2 , ψ

]
g
∥∥∥
L6
≤ C‖ψ‖W 1,∞ ‖f − g‖

L
3
2
.

The second result in our paper is the following theorem.

Theorem 3.4. For any θ0 satisfying 18, there exists a weak super-solution of 14a-
14b in AT .

Proof. We first regularize initial data as θε0 = ρε ∗θ0 where ρε is a standard mollifier
that preserve the positivity of the regularized initial data. We then regularize the
equation by introducing the Laplacian term with a coefficient ε > 0, namely

θεt −Hθεθεx = εθεxx. (23)

For the proof of the existence of a global-in-time smooth solution we refer to [21].
Moreover, θε satisfies that θε ≥ 0 and

‖θε(t)‖L1 + ‖θε(t)‖L∞ +

∫ t

0

∥∥∥Λ
1
2 θε(s)

∥∥∥2

L2
ds ≤ ‖θ0‖L1 + ‖θ0‖L∞ . (24)

Therefore, (θε) is bounded in AT uniformly in ε > 0.
The first two terms on the left-hand side of 24 imply

‖θε‖LpTLq ≤ ‖θ0‖L1 + ‖θ0‖L∞

for any p, q ∈ [1,∞]. In particular,

Hθε ∈ L4
TL

2, θε ∈ L2
TL
∞.

These two bounds imply

((Hθε) θε)x ∈ L
4
3

T Ḣ
−1 ⊂ L

4
3

TH
−2

by the embedding 6. From θε ∈ L2
T Ḣ

1
2 , we also have

εθεxx ∈ L2
T Ḣ
− 3

2 ⊂ L2
TH
−2

by the embedding 6. Moreover, for any φ ∈ H2,∫
R
|θεΛθεφ| dx ≤

∥∥∥Λ
1
2 θε
∥∥∥2

L2
‖φ‖L∞ +

∥∥∥Λ
1
2 θε
∥∥∥
L2
‖θε‖L∞

∥∥∥Λ
1
2φ
∥∥∥
L∞

which implies that

θεΛθε ∈ L1
TH
−2.

Combining all together, we obtain

θεt = Hθεθεx + εθεxx = (Hθεθε)x − θ
εΛθε + εθεxx ∈ L1

TH
−2.

To pass to the limit into the weak super-solution formulation, we extract a sub-
sequence of (θε), using the same index ε for simplicity, and a function θ ∈ AT such
that

θε ⇀ θ in LpTL
q for all p, q ∈ (1,∞),

θε ⇀ θ in L2
TH

1
2 ,

θε → θ in L2
TL

p
loc for all 1 < p <∞,

(25)

where we use Lemma 2.2 for the strong convergence with

X0 = L2
TH

1
2 , X1 = L2

TL
p
loc, X2 = L1

TH
−2.
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We now multiply 23 by a nonnegative test function ψ ∈ C∞c ([0, T )× R) and
integrate over R. Then,∫ T

0

∫
R

[
− θεψt + (Hθε) θεψx︸ ︷︷ ︸

I

+εθεψxx

]
dxdt−

∫
R
θε0(x)ψ(0, x)dx

= −
∫ T

0

∫
R

Λ
1
2 θε
[
Λ

1
2 , ψ

]
θε︸ ︷︷ ︸

II

dxdt−
∫ T

0

∫
R

∣∣∣Λ 1
2 θε
∣∣∣2 ψ︸ ︷︷ ︸

III

dxdt.

(26)

We note that we are able to rearrange terms in the usual weak formulation into
26 since θε is smooth. By the strong convergence in 25, we can pass to the limit to
I. Moreover, since [

Λ
1
2 , ψ

]
θε →

[
Λ

1
2 , ψ

]
θ

strongly in L2
TL

6 by Lemma 3.3 and the weak convergence in 25, we can pass to
the limit to II. Lastly, define

gε = Λ
1
2 θε
√
ψ and g = Λ

1
2 θ
√
ψ.

We then have that gε ⇀ g in L2([0, T ] × R). Since the L2 norm is weakly lower
semicontinuous, we find that

lim inf
ε→0

‖gε‖L2([0,T ]×R) ≥ ‖g‖L2([0,T ]×R),

or, equivalently,

lim inf
ε→0

∫ T

0

∫
R

∣∣∣Λ 1
2 θε
∣∣∣2 ψdxdt ≥ ∫ T

0

∫
R

∣∣∣Λ 1
2 θ
∣∣∣2 ψdxdt.

Combining all the limits together, we obtain that∫ T

0

∫
R

[
−θψt + (Hθ) θψx + Λ

1
2 θ
[
Λ

1
2 , ψ

]
θ +

∣∣∣Λ 1
2 θ
∣∣∣2 ψ] dxdt

≥
∫
R
θ0(x)ψ(x, 0)dx.

(27)

This completes the proof.

4. The model 2. We now consider the following equation:

θt −
(
H(∂xx)−αθ

)
θx + Λγθ = 0, (28a)

θ(0, x) = θ0(x), (28b)

where α, γ > 0. In this case, we focus on the existence of weak solutions under some
conditions of (α, γ). As before, we assume that θ0 satisfies the following conditions

θ0 ≥ 0, θ0 ∈ L1 ∩ L∞. (29)

Let
BT = L∞T

(
L1 ∩ L∞

)
∩ L2

TH
γ
2 .

Definition 4.1. We say θ is a weak solution of 28a-28b on the time interval [0, T ]
if θ(t, x) ≥ 0 for all t ∈ [0, T ], θ ∈ BT , and for each ψ ∈ C∞c ([0, T )× R),∫ T

0

∫
R

[
θψt −

(
H(∂xx)−αθ

)
θψx − Λ1− γ2 (∂xx)−αθΛ

γ
2 (θψ)− θΛγψ

]
dxdt

=

∫
R
θ0(x)ψ(x, 0)dx.
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The third result in the paper is the following.

Theorem 4.2. Suppose that two positive numbers α and γ satisfy

0 < γ < 1,
1

2
− γ

2
< α <

1

2
. (30)

Then, for any θ0 satisfying 29, there exists a weak solution of 28a-28b in BT for all
T > 0.

Proof. As in the proof of Theorem 3.4, we regularize θ0 and the equation as

θε0 = ρε ∗ θ0, θεt −
(
H(∂xx)−αθε

)
θεx + Λγθε = εθεxx. (31)

Then, the corresponding θε satisfies

θε(t, x) ≥ 0, ‖θε(t)‖L∞ ≤ ‖θ0‖L∞ for all time (32)

and

‖θε(t)‖L1 +

∫ t

0

∥∥∥Λ
1
2 (∂xx)−

α
2 θε(s)

∥∥∥2

L2
ds ≤ ‖θ0‖L1 . (33)

We next multiply 31 by θε and integrate over R. Then,

1

2

d

dt
‖θε(t)‖2L2 +

∥∥∥Λ
γ
2 θε(t)

∥∥∥2

L2
+ ε ‖θεx‖

2
L2 = −1

2

∫
R

{
Λ(∂xx)−αθε(t)

}
(θε(t))2dx

= −1

2

∫
R

{
(1−∆)−

γ
4 Λ(∂xx)−αθε(t)

}
(1−∆)

γ
4

(
θε(t)

)2

dx

≤ C
∥∥∥(1−∆)−

γ
4 Λ(∂xx)−αθε(t)

∥∥∥
L2

∥∥∥(1−∆)
γ
4 θε(t)

∥∥∥
L2
‖θε(t)‖L∞ ,

where we use the fractional product rule 8 to obtain∥∥∥(1−∆)
γ
4 (θε(t))

2
∥∥∥
L2
≤ C‖θε(t)‖L∞

∥∥∥(1−∆)
γ
4 θε(t)

∥∥∥
L2
.

By this bound and 32, we have∥∥∥(1−∆)
γ
4 (θε(t))

2
∥∥∥
L2
≤ C‖θ0‖L∞

(
‖θε(t)‖L2 +

∥∥∥Λ
γ
2 θε(t)

∥∥∥
L2

)
. (34)

We now consider
∥∥(1−∆)−

γ
4 Λ(∂xx)−αθε(t)

∥∥
L2 . For |ξ| ≤ 1,

∫
|ξ|≤1

|ξ|2(1−2α)
∣∣∣θ̂ε(t, ξ)∣∣∣2

(1 + |ξ|2)
γ
2

dξ ≤ ‖θε(t)‖2L2 when α <
1

2
.

For |ξ| ≥ 1,

∫
|ξ|≥1

|ξ|2(1−2α)
∣∣∣θ̂ε(t, ξ)∣∣∣2

(1 + |ξ|2)
γ
2

dξ ≤ C
∫
|ξ|≥1

|ξ|2(
1
2−α)

∣∣∣θ̂ε(t, ξ)∣∣∣2 dξ when α >
1

2
− γ

2
.

So,∥∥∥(1−∆)−
γ
4 Λ(∂xx)−αθε(t)

∥∥∥
L2
≤ C

(
‖θε(t)‖L2 +

∥∥∥Λ
1
2 (∂xx)−

α
2 θε(t)

∥∥∥
L2

)
. (35)
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By 34 and 35, we obtain

d

dt
‖θε(t)‖2L2 +

∥∥∥Λ
γ
2 θε(t)

∥∥∥2

L2
+ ε ‖θεx‖

2
L2

≤ C‖θ0‖L∞
(
‖θε(t)‖L2 +

∥∥∥Λ
γ
2 θε(t)

∥∥∥
L2

)(
‖θε(t)‖L2 +

∥∥∥Λ
1
2 (∂xx)−

α
2 θε(t)

∥∥∥
L2

)
≤ C

(
‖θ0‖L∞ + ‖θ0‖2L∞

)
‖θε(t)‖2L2 + C(1 + ‖θ0‖2L∞)

∥∥∥Λ
1
2 (∂xx)−

α
2 θε(t)

∥∥∥2

L2

+
1

2

∥∥∥Λ
γ
2 θε(t)

∥∥∥2

L2

(36)

and so
d

dt
‖θε(t)‖2L2 +

∥∥∥Λ
γ
2 θε(t)

∥∥∥2

L2
+ ε ‖θεx‖

2
L2

≤ C
(
‖θ0‖L∞ + ‖θ0‖2L∞

)
‖θε(t)‖2L2 + C(1 + ‖θ0‖2L∞)

∥∥∥Λ
1
2 (∂xx)−

α
2 θε(t)

∥∥∥2

L2
.

By Gronwall’s inequality,

‖θε(t)‖2L2 ≤
(
‖θ0‖2L2 + C(1 + ‖θ0‖2L∞)‖θ0‖L1

)
eC(‖θ0‖L∞+‖θ0‖2L∞)t,

where we use 33 to bound the time integral of
∥∥∥Λ

1
2 (∂xx)−

α
2 θε(t)

∥∥∥2

L2
. Hence we

finally derive the following

‖θε(t)‖2L2 +

∫ t

0

∥∥∥Λ
γ
2 θε(s)

∥∥∥2

L2
ds+ ε

∫ t

0

‖θεx(s)‖2L2 ds

≤ ‖θ0‖2L2 +

(
‖θ0‖2L2 + C(1 + ‖θ0‖2L∞)‖θ0‖L1

)
eC(‖θ0‖L∞+‖θ0‖2L∞)t

C (‖θ0‖L∞ + ‖θ0‖2L∞)
.

(37)

Therefore, (θε) is bounded in BT uniformly in ε > 0.
By 32 and 33,

θε ∈ L∞T (L1 ∩ L∞). (38)

We next consider H(∂xx)−αθε. We first choose β ∈
[
0, 1

2

)
also satisfying

2α− 1

2
< β ≤ 2α+

γ

2
. (39)

Then,∫
R
|ξ|2(β−2α)

∣∣∣θ̂ε(ξ)∣∣∣2 dξ =

∫
|ξ|≤1

|ξ|2(β−2α)
∣∣∣θ̂ε(ξ)∣∣∣2 dξ +

∫
|ξ|≥1

|ξ|2(β−2α)
∣∣∣θ̂ε(ξ)∣∣∣2 dξ

≤
∥∥∥θ̂ε∥∥∥2

L∞
+
∥∥∥Λ

γ
2 θε
∥∥∥2

L2
≤ ‖θε‖2L1 +

∥∥∥Λ
γ
2 θε
∥∥∥2

L2

and so
H(∂xx)−αθε ∈ L2

T Ḣ
β .

Moreover, by Sobolev embedding,

H(∂xx)−αθε ∈ L2
TL

p,
1

p
=

1

2
− β (40)

where β is defined in 39. By 37, we also have

Λγθε + εθεxx ∈ L2
TH
−2.

Combining all together, we derive that

θεt ∈ L1
TH
−2.



TRANSPORT EQUATION WITH NONLOCAL VELOCITY 481

Finally, 7 and 38 imply that

Λ
γ
2 (θεψ) ∈ L2

TL
2. (41)

To pass the limit to this formulation, we extract a subsequence of (θε), using the
same index ε for simplicity, and a function θ ∈ BT such that

θε ⇀ θ in L2
TH

γ
2 , (42a)

θε → θ in L2
TL

p
loc for all 1 < p <

2

1− γ
, (42b)

θε → θ in L2
TH

1− γ2−2α, . (42c)

Here, we use Lemma 2.2 with

X0 = L2
TH

γ
2 , X1 = L2

TL
p
loc, X2 = L1

TH
−2

to obtain 42b. Similarly, we use Lemma 2.2 with the condition 30 and

X0 = L2
TH

γ
2 , X1 = L2

TH
1− γ2−2α, X2 = L1

TH
−2

to obtain 42c.
We now multiply 31 by a test function ψ ∈ C∞c ([0, T )× R) and integrate over R.

Then, ∫ T

0

∫ [
θεψt −

(
H(∂xx)−αθε

)
θεψx︸ ︷︷ ︸

I

+Λγθεψ + εθεψxx

]
dxdt

−
∫
θε0(x)ψ(0, x)dx

=

∫ T

0

∫
Λ1− γ2H(∂xx)−αθεΛ

γ
2 (θεψ)︸ ︷︷ ︸

II

dxdt.

(43)

By 40 and the strong convergence in 42b, we can pass to the limit to I. By 41 and
the strong convergence in 42c, we can also pass to the limit to II. Therefore, we
obtain∫ T

0

∫
R

[
θψt −

(
H(∂xx)−αθ

)
θψx − Λ1− γ2 (∂xx)−αθΛ

γ
2 (θψ)− θΛγψ

]
dxdt

=

∫
R
θ0(x)ψ(x, 0)dx.

This completes the proof of Theorem 4.2.

Remark 1. Theorem 4.2 improves Theorem 1.4 in [3], where (α, γ) is assumed to
satisfy α ≥ 1

2 −
γ
4 . The main idea of taking weaker regularization in 28a-28b is that

the Hilbert transform in front of (1 − ∂xx)−α gives 33 which makes to obtain 37.
We choose α > 1

2 −
γ
2 instead of α ≥ 1

2 −
γ
2 to apply compactness argument when

we pass to the limit to ε-regularized equations.

5. The model 3. In this section, we consider the following equation

θt −
(
H(∂xx)βθ

)
θx + Λγθ = 0, (44a)

θ(0, x) = θ0(x) (44b)

where β, γ > 0. Depending on the range of β and γ, we will have four different
results.
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5.1. Local well-posedness. We begin with the local well-posedness result.

Theorem 5.1. Let 0 < γ < 2 and 0 < β ≤ γ
4 . For θ0 ∈ H2(R) there exists

T = T (‖θ0‖H2) such that a unique solution of 44a-44b exists in CTH
2. Moreover,

we have the following blow-up criterion:

lim sup
t↗T∗

‖θ(t)‖H2 =∞ if and only if

∫ T∗

0

(
‖ux(s)‖L∞ + ‖θx(s)‖2L∞

)
ds =∞, (45)

where u = −H(∂xx)βθ.

Proof. Operating ∂l on 44a, taking its L2 inner product with ∂lθ, and summing
over l = 0, 1, 2,

1

2

d

dt
‖θ(t)‖2H2 +

∥∥∥Λ
γ
2 θ
∥∥∥2

H2
= −

2∑
l=0

∫
∂l(uθx)∂lθdx

= −
2∑
l=0

∫ (
∂l(uθx)− u∂lθx

)
∂lθdx−

2∑
l=0

∫
u∂lθx∂

lθdx = I1 + I2.

(46)

Using the commutator estimate 9, we have

I1 ≤
2∑
l=0

∥∥∂l(uθx)− u∂lθx
∥∥
L2 ‖θ‖H2

≤ C (‖ux‖L∞‖θ‖H2 + ‖u‖H2‖θx‖L∞) ‖θ‖H2

≤ Cκ
(
‖ux‖L∞ + ‖θx‖2L∞

)
‖θ‖2H2 + κ‖u‖2H2 .

(47)

And by integration by parts,

I2 = −1

2

2∑
l=0

∫
u∂x

∣∣∂lθ∣∣2 dx =
1

2

2∑
l=0

∫
ux
∣∣∂lθ∣∣2 dx ≤ C‖ux‖L∞‖θ‖2H2 . (48)

Since β ≤ γ
4 , for a sufficiently small κ > 0

κ‖u‖2H2 ≤
1

2

∥∥∥Λ
γ
2 θ
∥∥∥2

H2
.

By 47 and 48, we obtain

d

dt
‖θ‖2H2 +

∥∥∥Λ
γ
2 θ
∥∥∥2

H2
≤ C

(
‖ux‖L∞ + ‖θx‖2L∞

)
‖θ‖2H2

≤ C‖θ‖3H2 + C‖θ‖4H2 , β ≤
γ

4
(49)

from which we deduce that there is T = T (‖θ0‖H2) such that

‖θ(t)‖H2 ≤ 2‖θ0‖H2 for all t < T.

49 also implies 45.
To show the uniqueness, let θ1 and θ2 be two solutions of 44a-44b, and let θ =

θ1 − θ2 and u = u1 − u2 = −H(∂xx)βθ1 + −H(∂xx)βθ2. Then, (θ, u) satisfies the
following equations

θt + u1θx − uθ2x = −Λγθ, u = −H(∂xx)βθ, θ(0, x) = 0.
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By taking the L2 product of the equation with θ,

d

dt
‖θ‖2L2 + 2

∥∥∥Λ
γ
2 θ
∥∥∥2

L2
≤ C

(
‖u1x‖L∞ + ‖θ2x‖2L∞

)
‖θ‖2L2

≤ C
(∥∥∥Λ

γ
2 θ1

∥∥∥
H2

+ ‖θ2‖2H2

)
‖θ‖2L2 .

So, θ = 0 in L2 and thus a solution is unique. This completes the proof of Theorem
5.1.

Theorem 5.1 provides a local existence result for β ↗ 1
2 as γ ↗ 2. But, we can

increase the range of β when we deal with 44a-44b directly with γ = 2 because we
can do the integration by parts.

Theorem 5.2. Let γ = 2 and 0 < β < 1. For θ0 ∈ H2(R) there exists T =
T (‖θ0‖H2) such that a unique solution of 44a-44b exists in CTH

2.

Proof. We begin the L2 bound:

1

2

d

dt
‖θ‖2L2 + ‖θx‖2L2 ≤ ‖θ‖L∞

∥∥H(∂xx)βθ
∥∥
L2 ‖θx‖L2 ≤ C‖θ‖3H2 .

We next estimate θxx. Indeed, after several integration parts, we have

1

2

d

dt
‖θ‖2Ḣ2 + ‖θ‖2

Ḣ3 = −
∫ {
H(∂xx)βθx

}
θxθxxxdx+

1

2

∫ {
H(∂xx)βθx

}
θxxθxxdx

= I1 + I2.

When 0 < β < 1,

|I1| ≤ ‖θx‖L∞
∥∥H(∂xx)βθx

∥∥
L2 ‖θxxx‖L2 = ‖θx‖L∞

∥∥Λ2β+1θ
∥∥
L2 ‖θxxx‖L2

≤ C ‖θ‖H2 ‖θx‖1−βL2 ‖θxxx‖1+β
L2 ≤ C ‖θ‖4H2 + C ‖θ‖

4−2β
1−β
H2 +

1

4
‖θxxx‖2L2 .

And

|I2| ≤
∥∥H(∂xx)βθx

∥∥
L2 ‖θxx‖

2
L4 ≤ C

∥∥H(∂xx)βθx
∥∥
L2 ‖θxx‖

3
2

L2 ‖θxxx‖
1
2

L2

≤ C ‖θ‖4H2 +
1

4
‖θxxx‖2L2 .

Therefore, we obtain

d

dt
‖θ‖2H2 + ‖θx‖2H2 ≤ C ‖θ‖4H2 + C ‖θ‖

4−2β
1−β
H2 . (50)

This implies that there exists T = T (‖θ0‖H2) such that there exists a unique solution
of 44a-44b in CTH

2.

We may lower the regularity of the initial data to prove a local existence result
of a weak solution by considering initial data in Ḣ

1
2 . The main tools to achieve this

will be the use of the Hardy-BMO duality together with interpolation arguments.
However, in order to simplify the computation, we consider an equivalent equation
by changing the sign of the nonlinearity:

θt +
(
H(−∂xx)βθ

)
θx + Λγθ = 0, (51a)

θ(0, x) = θ0(x). (51b)

This can be obtained from 51a-51b via θ 7→ −θ. For this equation, we do Ḣ
1
2

estimates and prove that there exists a local existence of a unique solution in that
special case.
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Theorem 5.3. Let γ = 2 and 0 < β < 1
2 . For any θ0 ∈ Ḣ

1
2 (R), there exists T =

T (‖θ0‖
Ḣ

1
2

) such that there exists a unique local-in-time solution in CT Ḣ
1
2 ∩L2

T Ḣ
3
2 .

Proof. By recalling that Λ2β = (−∂xx)β we get

1

2

d

dt
‖θ‖2

Ḣ
1
2

+
∥∥∥Λ

1+γ
2 θ
∥∥∥2

L2
= −

∫
Λ

1
2 θΛ

1
2

{(
H(−∂xx)βθ

)
θx
}
dx

= −
∫
θxΛθ H(−∂xx)βθdx = −

∫
θxHθxH(−∂xx)βθdx.

We now use the H1-BMO duality to estimate the right hand side of the last equality.
By using the estimate 5 and Ḣ

1
2 ↪→ BMO, we obtain

‖θxHθx‖H1 ≤ ‖θ‖2
Ḣ1 ,

∥∥H(−∂xx)βθ
∥∥
BMO

≤ C‖θ‖
Ḣ2β+1

2

and thus we have

1

2

d

dt
‖θ‖2

Ḣ
1
2

+
∥∥∥Λ

1+γ
2 θ
∥∥∥2

L2
≤ C‖θ‖2

Ḣ1‖θ‖Ḣ2β+1
2
.

By fixing γ = 2 and by using the interpolation inequalities

‖θ‖2
Ḣ1 ≤ ‖θ‖Ḣ 3

2
‖θ‖

Ḣ
1
2
, ‖θ‖

Ḣ2β+1
2
≤ ‖θ‖2β

Ḣ
3
2
‖θ‖1−2β

Ḣ
1
2
,

where we use 1
2 ≤ 2β + 1

2 ≤
3
2 for β ∈

(
0, 1

2

)
to get the second inequality. Hence,

we obtain

1

2

d

dt
‖θ‖2

Ḣ
1
2

+
∥∥∥Λ

3
2 θ
∥∥∥2

L2
≤ ‖θ‖2

Ḣ1‖θ‖Ḣ2β+1
2

≤ ‖θ‖1+2β

Ḣ
3
2
‖θ‖2−2β

Ḣ
1
2
≤ 1

2
‖θ‖2

Ḣ
3
2

+ 2‖θ‖4
1−β
1−2β

Ḣ
1
2

,

where we use the condition β ∈
(
0, 1

2

)
again to derive the inequality. This implies

local existence of a unique solution up to some time T = T (‖θ0‖
Ḣ

1
2

).

Remark 2. In the case β = 1/2, the equation reduces to the following Hamilton-
Jacobi equation (or primitive Burgers equation)

θt − θ2
x + Λγθ = 0.

For this equation, it seems that a naive approach based in energy methods cannot
work. Indeed, if we multiply by Λθ and integrate by parts the nonlinearity takes a
commutator structure∫

θ2
xΛθdx =

∫
θ2
xHθxdx = −1

2

∫
θx[H, θx]θx dx.

However, it seems that, at this level of regularity, this commutator is comparable
to an energy estimate:∫

θ2
xΛθdx ≤ c‖θx‖3L3 ≤ c‖θ‖3

H1+ 1
6
≤ c‖θ‖2H1‖θ‖

H
3
2

which is also equivalent to the use of Hardy-BMO duality:∫
θ2
xHθxdx ≤ ‖θx‖BMO‖θxHθx‖H1 ≤ ‖θ‖2H1‖θ‖

H
3
2
.

Also, the best estimate that one has for the commutator [H, θx]θx in L2 is that it
is controlled by ‖θx‖BMO‖θ‖Ḣ1 (see e.g. [22]) which is, once again, similar to the
use of the Hardy-BMO duality. So the commutator structure is not that useful in
this special case.
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Remark 3. It is also unclear whether the local solution starting from an arbi-
trary initial data becomes smooth. However, for smooth initial data satisfying size
restriction in appropriate spaces, one can prove the desired smoothing effect.

5.2. Global well-posedness. We finally deal with 51a-51b with γ = 2.

Theorem 5.4. Let γ = 2 and β < 1
4 . For any θ0 ∈ H2(R), there exists a unique

global-in-time solution in CTH
2.

Proof. By Theorem 5.1, we only need to control the quantities in 45. Let u =
−H(∂xx)βθ. We first note that 51a-51b satisfies the maximum principle and so

‖θ(t)‖L∞ ≤ ‖θ0‖L∞ ≤ C‖θ0‖H2 .

We take the L2 inner product of 51a with θ. Then,

1

2

d

dt
‖θ‖2L2 + ‖θx‖2L2 = −

∫
uθxθdx ≤ ‖θ0‖L∞‖u‖L2‖θx‖L2 . (52)

Since

‖u‖L2 ≤ C‖θ‖1−2β
L2 ‖θx‖2βL2 for β <

1

2
,

we have

‖θ(t)‖2L2 +

∫ t

0

‖θx(s)‖2L2ds ≤ C (t, ‖θ0‖H2) . (53)

We next take ∂x to 51a, take its L2 inner product with θx, and integrate by parts
to obtain

1

2

d

dt
‖θx‖2L2 + ‖θxx‖2L2 =

∫
uθxθxxdx ≤ 2‖u‖2L∞‖θx‖2L2 +

1

2
‖θxx‖2L2 .

Since

‖u‖2L∞ ≤ C‖θ‖2L2 + C‖θx‖2L2 when β <
1

4
,

we obtain

‖θx(t)‖2L2 +

∫ t

0

‖θxx(s)‖2L2ds ≤ C (t, ‖θ0‖L1 , ‖θ0‖H2) when β <
1

4
. (54)

We also obtain

‖θx‖2L∞ ≤ C
(
‖θx‖2L2 + ‖θxx‖2L2

)
,

‖ux‖L∞ ≤ C (‖θx‖L2 + ‖θxx‖L2) when β <
1

4

(55)

By 53, 54 and 55 , we finally obtain∫ t

0

(
‖θx(s)‖2L∞ + ‖ux(s)‖L∞

)
ds

≤ C
∫ t

0

(
‖θx(s)‖2L2 + ‖θxx(s)‖2L2 + ‖θx(s)‖L2 + ‖θxx(s)‖L2

)
ds ≤ C (t, ‖θ0‖L1 , ‖θ0‖H2)

and so we complete the proof of Theorem 5.4.
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