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Abstract. We introduce a macroscopic model for a network of conveyor belts
with various speeds and capacities. In a different way from traffic flow models,

the product densities are forced to move with a constant velocity unless they

reach a maximal capacity and start to queue. This kind of dynamics is gov-
erned by scalar conservation laws consisting of a discontinuous flux function.

We define appropriate coupling conditions to get well-posed solutions at inter-

sections and provide a detailed description of the solution. Some numerical
simulations are presented to illustrate and confirm the theoretical results for

different network configurations.

1. Introduction. Conveyor belts have attained a favored position in transport-
ing bulk materials due to their economy, reliability, safety, versatility and almost
unlimited range of variations, conveying a wide variety of materials. However, theo-
retical study of these systems is non-trivial since the presence of intersections, fixed
or smart divert/merge devices, and different production speeds add complexity to
the structure and generate interesting dynamics. For a general presentation of the
models in the literature, we refer to the monograph [3] and the references therein.
As more recent contributions, we mention in particular the works [1, 8, 10, 11, 13],
where the authors introduce a production (or traffic) model with discontinuous flux
and study the properties of solutions. While in [1, 10, 13], the focus is on the math-
ematical modeling, and numerical simulation of the discontinuous flux function, the
authors in [8, 11] prove the existence of solutions using wave-front tracking.

In this work, we consider a production network consisting of multiple linked
conveyor belts. We remark that the new network model differs essentially from
[10] in the proposed coupling conditions and the concept of solutions. Each arc
in the network corresponds to a conveyor belt with a certain constant speed and
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Figure 1. A conveyor belt in a brewery. Image courtesy of Sidel
Blowing & Services SAS.

capacity along the arc. We suppose that the capacity is limited meaning that a
maximum value of the density cannot be exceeded. Since we assume no buffers at
the intersections, in the case of capacity drop the products get stuck on the belt
(but they are still transported with a certain velocity). This is a key difference to
traffic flow models [7, 9], where the velocity is dependent on the density and vehicles
have to stop once a maximal capacity is reached.

The original contribution of the present paper consists in describing a class of
entropy solution of special relevance for this model taking into account that unique-
ness in general is not guaranteed. Moreover, we show how these solutions can be
successfully approximated by appropriate Gordunov schemes.

From an application viewpoint, the network model is particularly appropriate to
study production systems for bottling, canning, and packaging. Figure 1 shows a
brewery, where beer bottles are transported through a system of conveyor belts. We
observe different lanes converging in an accumulator device and some ample space
in the middle to stock the units that cannot be absorbed by the system.

The paper is organized as follows: in Section 2 we discuss the basic model and
the notion of weak solutions which permits to derive the existence of a solution. We
extend the framework to networks in Section 3: for one-to-one junction (Sec. 3.1)
as well as diverging and merging intersection (Sect. 3.3 and 3.2) where we build an
analytic solution for the model. In Section 4, we introduce a suitable discretization
method to tackle the network model and present in Section 5 numerical results
for different network settings where we show how the numerical approximations
converge to the (previously described) analytic solution of interest.

2. Basic model. We start recalling the model originally introduced in [1] and
generalized to networks in [10]. In both articles, a production system is described
by a conservation law with discontinuous flux function and, if different from zero,
constant speed a > 0. More precisely, setting the model domain as R and calling
ρ : R× [0, T ]→ [0, ρmax] the product density, the evolution of the system is{

∂tρ(x, t) + ∂x (aH(ρmax − ρ(x, t))ρ(x, t)) = 0,

ρ(x, 0) = ρ0(x),
(1)



A NETWORK OF CONVEYOR BELTS WITH SPEED AND CAPACITY 391

where H is the Heaviside function and the initial data ρ0 is a function of bounded
variation satisfying ρ0(x) ≤ ρmax.

We point out that on a single arc (assuming ρ0(x) < ρmax for all x ∈ R) the
equation simply reduces to an advection equation and therefore the solution is simply

ρ(x, t) = ρ0(x− at). (2)

This clearly differs from traffic models where the speed typically depends on the
local density and shocks can appear on a single arc even with smooth initial data
[7, 9]. The presence of discontinuities in the flux function, anyway, poses some
problems in the case of ρ0(x) = ρmax for some x ∈ R.

A classic approach to deal with this problem is to use a standard regularization of
the flux function using some Friedrichs’ mollifiers. As it has been shown in [5], the
solutions of the regularized problem converge to a bounded entropy weak solution,
in the particular sense of the definitions below. Therefore, we denote by f̃ the
following multivalued function

f̃(ρ) = aρ if ρ 6= ρmax, f̃(ρmax) = [0, aρmax].

Definition 2.1. A function ρ ∈ L∞(R×[0, T ]) is called weak solution to the Cauchy

problem (1) if there exists a function v ∈ L∞(R × [0, T ]) such that v(x, t) ∈ f̃(ρ)
a.e. and ∫ T

0

∫
Ω

ρ
∂φ

∂t
dxdt+

∫ T

0

∫
Ω

v
∂φ

∂x
dxdt+

∫
Ω

ρ0(x)φ(x, 0)dx = 0

for each φ ∈ C1
c (R× [0, T ]) (where φ ∈ C1

c means φ ∈ C1 with compact support).

Classically, the definition above is completed by the following notion of entropy
weak solutions: denote by H̃ the following multivalued function

H̃(ρ) = H(ρ) if ρ 6= 0, H̃(0) = [0, 1].

Definition 2.2. A weak solution ρ of the Cauchy problem (1) is called an entropy
weak solution if, for each entropy η ∈ C1(R), η convex, there exists a function

w ∈ L∞(R× [0, T ]) such that w(x, t) ∈ H̃(ρ(x, t)) a.e. and

∂

∂t
η(ρ) +

∂

∂x
F (ρ)− η′(ρmax)

∂w

∂x
≤ 0,

where

F (ρ) = a

∫ ρ

0

η′(s)H(ρmax − s)ds.

Remark. We observe that that the solution (2) is a weak entropy solution in the
sense of Definitions 2.1 and 2.2. This can be shown by choosing

v(x, t) = aρ ∈ f̃(ρ), for ρ ∈ [0, ρmax]

and
η(ρ) = |ρ− k|, for ρ ∈ [0, ρmax], w(x, y) ≡ 1

for any constant k ∈ R.
At the same time, as it is possible to see adapting the example provided in [4],

in case of congested initial solution, a collection of weak solutions are acceptable as
long as a condition (derived by the jump on the flux) on the speed of the congested
area is verified. This means that in our case, for equation (1) with initial condition
equal to

ρ0(x) = ρmax χ(x<0), x ∈ R
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there are at least two distinct entropy solutions equal to

ρ̂(t, x) = ρmax χ(x/t<α), and ρ(t, x) = χ(x/t<0) ≡ ρ0(x), x ∈ R.
Since we are interested in the more meaningful solution from the point of view of the
application, it seems clear that the advection formula provides a good candidate in
the case of the presence of a congested region (differently from other applications e.g.
traffic models). This point has been discussed in detail in [11], where the authors
introduce the additional concept of congested/non congested region in order to
select such unique solution. Instead, in the present paper, we focus on building an
entropy solution in the more general case of networks and showing how a suitable
numerical scheme provides a good approximation of it.

3. Extension to networks. We now extend the model to a network represented
by a directed graph Γ = (V,E) with V 6= ∅ the set of vertices and E := {Ωi},
i ∈ {1, ...,M} the set of arcs. For a fixed node v ∈ V , the sets δ−v , δ

+
v denote the

ingoing and outgoing arcs, respectively. We consider the following network problem:
∂
∂tρ(x, t) + ∂

∂x (fi(ρ(x, t))) = 0, x ∈ Ωi, t ∈ [0, T ]

ρ(x, 0) = ρ0
i (x), x ∈ Ωi∑

i∈δ−v
fi(ρ(v, t)) =

∑
i∈δ+v

fi(ρ(v, t)), v ∈ V,
(3)

where
fi(ρ(x, t)) = aiH(ρmax

i − ρ(x, t))ρ(x, t), x ∈ Ωi, t ∈ [0, T ] (4)

is the flux function on arc i ∈ E and ai ∈ R+ the transport velocity. At intersec-
tions, we assume the conservation of flux and some transition conditions which are
discussed later in this section. Our main goal is to build an appropriate entropy
solution. We underline that, differently from [10], speed and capacity are differ-
ent for each arc leading to new discontinuities at the intersection points and some
non-local phenomena.

The model (3) is difficult to handle in its generality. In the following we discuss
separately various cases of junction networks, where only a vertex is considered and
the arcs are M half lines, where each line is isometric to [0,+∞).

3.1. One-to-one junction. The first case we consider is a one-to-one junction. It
can be seen as a special case of a one-dimensional problem, as described by (1),
with discontinuities in the velocity a and the capacity ρmax.

For simplicity in the notation, we consider the problem on Ω = Ω1 ∪ {0} ∪Ω2 =
(−∞, 0) ∪ {0} ∪ (0,∞), where the intersection is located at x = 0. The model
equations are given by (3), where the junction condition is specified as

f1(ρ(0, t)) = f2(ρ(0, t)) (5)

with flux function (4) on arc i = 1, 2. The solution can be easily computed if no
congestion occurs during the transportation, i.e.

a1ρ
0
1(x) ≤ a2ρ

max
2 ∀x ∈ Ω1. (6)

In this case, we can derive the solution as follows. For x ∈ Ω1, the characteristics
of the problem are simply the straight lines y(t) = x−a1t, which lead to the solution

ρ(x, t) = ρ0
1(x− a1t) for (x, t) : x < 0.

Analogously, we find

ρ(x, t) = ρ0
2(x− a2t) for

{
(x, t) ∈ Ω2 × (0, T ]

∣∣ x > a2t
}
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Figure 2. Characteristics in the non-congested case

which corresponds to the density initially placed on Ω2. The solution for (x, t) in the
case 0 < x < a2t is found by the junction condition (5): f1(ρ(x+, t)) = f2(ρ(x−, t))
where x± denotes limh→0 x± h. This leads to

ρ(x−, t) =
a1

a2
ρ(x+, t)

at the interface x = 0, which gives the solution of the intermediate part with adapted
transport velocity. The solution is then described by

ρ(x, t) =


ρ0

1(x− a1t), (x, t) ∈ Ω1 × (0, T ]
a1
a2
ρ0

1

(
−a1

(
t− x

a2

))
, (x, t) ∈ Ω2 × (0, T ] : 0 < x ≤ a2t

ρ0
2(x− a2t), (x, t) ∈ Ω2 × (0, T ] : x > a2t.

(7)

The characteristics of this solution are shown in Figure 2 for a1 < a2. Note that
the solution might be discontinuous at x = 0 and x = a2t. If the initial data ρ0

1 and
ρ0

2 is continuous, the solution ρ(x, t) keeps this property in all other points. Along
each characteristic c ∈ R is constant.

Remark. The interpretation of condition (6) is as follows: We know that the flux
is a1ρ(x, t) if the maximal density ρmax

2 is not reached. In this case, the capacity of
arc 1 before the intersection has no influence. This is due to the positive velocities
a1 and a2. As we have already discovered, congested areas never appear in the
interior of an arc, but only in conjunction with intersections.

If condition (6) is not satisfied, congestion arises and the problem becomes more
involved. In particular, it is non-trivial to obtain a correct weak entropy solution
using only Definitions 2.1 and 2.2.

Let t0 denote the first point, where condition (6) is violated, i.e. the first time of
congestion:

t0 = inf

{
t ≥ 0 such that ρ0

1(−a1t) >
a2

a1
ρmax

2

}
. (8)

We track the interface describing the congested area at maximal density ρmax
1 that

can appear in Ω1 and call the congested region Λ, see Figure 3. The interface
is a time-dependent function g(t). The evolution of g(t), starting at time t0, can
be derived by integrating the difference between the fluxes entering and exiting
the region Λ as well as the current density. The entering flux at time t is given by
a1ρ

0
1(−a1t), the exiting flux by a2ρ

max
2 since (6) is violated and the maximal density

on the outgoing arc is reached. The resulting density in the congested region is ρ0
1(y)
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Figure 3. Trajectories in the congested case

for g(t)− a1t ≤ y ≤ −a1t. Summarizing, this leads to

t∫
t0

(
a1ρ

0
1(−a1s)− a2ρ

max
2

)
ds =

0∫
g(t)

(ρmax
1 − ρ0

1(y − a1t))dy. (9)

Rearranging the terms, we can describe the congested region Λ as

Λ :=
{

(x, t) ∈ Ω1 × [t0, t
E
0 ], such that g(t) ≤ x ≤ 0

}
(10)

with interface g defined as g : [0,∞)→ R≤0, where t is mapped to the solution of

− x+ (t− t0)
ρmax

2

ρmax
1

a2 −
1

ρmax
1

−a1t0∫
x−a1t

ρ0
1(s)ds = 0, (11)

if this is negative, and to zero otherwise. The final time of congestion is tE =
min {t ≥ t0 such that g(t) = 0} . Notice that g′(t) is not necessarly monotone, thus
the congestion region can decrease and than grow again without disappearing.

Figure 3 shows the trajectories of the problem in the case of congestion for
a1 > a2. Outside the region Λ, they correspond to the characteristics. If the initial
data ρ0

1 and ρ0
2 are smooth, the solution may still become discontinuous in the

interface x = g(t), in x = 0 and in x = a2t. The congested region Λ is highlighted
in gray.

It is straightforward to see that the whole congested region can be constituted
by multiple non-connected sets, if the congestion disappears and condition (6) is
violated again. In that case, we set tE0 := tE and there exists a tk such that

tk = inf

{
t ≥ tEk−1 such that ρ0

1(−a1t) >
a2

a1
ρmax

2

}
, k = 1, 2, . . . .

The procedure to build this second connected subset of the whole congested region
is the same as for the first one and so on. Therefore, it is sufficient to only consider
one connected set Λ.

Inside the region Λ, the transport velocity ā is such that the coupling condition
(5) holds true, i.e. the inflow āρmax

1 equals the outflow a2ρ
max
2 at x = 0. Therefore,
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the velocity inside the region Λ is

ā = a2
ρmax

2

ρmax
1

. (12)

Remark. Since we assumed that condition (6) is violated, we find a value x̄ ∈ Ω1

such that a1ρ
0
1(x̄) > a2ρ

max
2 and ρ0

1(x̄) ≤ ρmax
1 , where the second term is due to the

choice ρ0(x) ≤ ρmax. This implies

a1ρ
max
1 ≥ a1ρ

0
1(x̄) > a2ρ

max
2 .

Dividing the first and the last term of this inequality by ρmax
1 , we obtain ā < a1,

which means that the velocity always decreases as soon as the mass enters the
maximal density area Λ. This confirms the intuitive assumption that the transport
velocity is reduced in the congested region Λ.

Next, we derive a general solution for this case (shown in Figure 3) for the
modifications in the characteristics.

We follow an approach considering the associated Riemann problem. We calcu-
late the solution for a general initial condition, approximated by piecewise constant
functions. The same approach is discussed in [11] for more general problems.

We briefly discuss the Riemann problem on [0, T )×R, consisting of equation (3)
and the initial data

ρ(x, 0) =

{
ρl, x < 0,
ρr, x ≥ 0.

(13)

If we allow waves with negative velocity, we can solve this Riemann problem by
distinguishing the following cases:

a) f1 ≤ fmax
2 : no congestion arises, (6) is verified and the solution is (7) with

piecewise constant initial data ρ0
1(x) = ρl and ρ0

2(x) = ρr.
b) f1 > fmax

2 : a congestion arises since (6) is not verified. In this case, the
solution consists of three shock waves (see Figure 4) starting at x = 0:

i) At x = 0, a shock with velocity s = 0 arises, where the solution ρ jumps
from ρmax

1 to ρmax
2 . For the special case ρmax

1 = ρmax
2 , there is no jump in

the solution at x = 0.
ii) We obtain a left-going shock wave, where the density jumps from ρl to

ρmax
1 with negative velocity sl < 0 (computed according to the Rankine-

Hugoniot condition):

sl =
āρmax

1 − f1(ρl)

ρmax
1 − ρl

=
fmax

2 − f1(ρl)

ρmax
1 − ρl

< 0.

This shock wave describes the left boundary of the congested area Λ,
meaning that it follows the function g(t). Therefore, the transport right
of this shock is with velocity ā as defined in (12). In the case ρl → ρmax

1 ,
the shock velocity tends to −∞.

iii) We obtain a right-going shock wave, where the density jumps from ρmax
2

to ρr with positive velocity sr = a2 > 0 (computed according to the
Rankine-Hugoniot condition):

sr =
f2(ρr)− f2(ρmax

2 )

ρr − ρmax
2

=
a2ρr − a2ρ

max
2

ρr − ρmax
2

= a2 > 0.

In the case t0 > 0, we are in the non-congested case for t < t0. At t = t0, congestion
starts and the shock waves appear.
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x = 0

ρ

Shock, s = 0

ρmax
2

ρr

Shock, sr > 0

ρmax
1

ρl

Shock, sl < 0

x

Figure 4. Solution in the congested case: evolution of three shock waves

In the general case with non-constant initial data, we obtain the following solu-
tion:

ρ(x, t) =



ρ0
1(x− a1t), (x, t) ∈ Ω1 \ Λ× (0, T ]

ρmax
1 , (x, t) ∈ Λ× (0, T ]

ρmax
2 , (x, t) ∈ Ω2 × (0, T ] : x ≤ a2t, g(t− x

a2
) 6= 0

a1
a2
ρ0

1

(
−a1

(
t− x

a2

))
, (x, t) ∈ Ω2 × (0, T ] : x ≤ a2t, g(t− x

a2
) = 0

ρ0
2(x− a2t), (x, t) ∈ Ω2 × (0, T ] : x > a2t.

(14)
If g(t) = 0 for all t ∈ [0, T ], we have Λ = ∅ and recover the previously described
solution (7).

Contrary to traffic flow models, rarefaction waves do not appear in the conveyor
belt problem. This is due to the linear flux function up to the discontinuity and
drops to zero.

3.2. One-to-two junction. Now, we consider the case of a splitting intersection,
where one arc is separated into two. We denote by i = 1 the incoming and by
i = 2, 3 the outgoing arcs (see Figure 5).

The choice of a distribution rule depends on the application: if the intersection
is “passive”, we impose a fixed rate between the outgoing fluxes which is kept
constant during the transportation process via a device D (see the left picture in
Figure 5). In this situation, congestion arises even if the outgoing arcs are not
both congested. A different approach is an “active” junction (see right picture
in Figure 5). In this case, the ratio between the outgoing fluxes can change at
the intersection. The aim is the maximization of the total outgoing flux and the
reduction of congestion. We underline that this behavior partially differs from the
standard coupling conditions introduced for vehicular traffic fluxes (cf. [7]), since
the choice of the vehicles (left/right at a junction) cannot be determined by the
local status of the traffic.

We consider the problem on Ω = Ω1 e1 ∪{0}∪Ω2 e1 ∪Ω3 e2 = (−∞, 0) e1 ∪{0}∪
(0,∞) e1 ∪ (0,∞) e2, where (e1, e2) is the standard base of R2, and we identify the
element x ∈ Ω1 with the vector (x, 0)T , and analogously for arcs i = 2, 3. The
equations that we consider are (3), where the junction condition is specified as

f1(ρ(0, t)) = f2(ρ(0, t)) + f3(ρ(0, t)), (15)
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f1

f2
f3

D

f1

f2
f3

Figure 5. Scheme of the two cases considered of one-to-two junc-
tion: passive (left) and active (right)

equipped with flux function (4) on arc i = 1, 2, 3.

Case 1: “passive” junction. At first, we consider the case of same flux rates
between the two exiting arcs. An intersection device D keeps the ratio of the two
outgoing fluxes constant, i.e., for a fixed distribution parameter µ ∈ [0, 1], it holds

f2 = µf1, f3 = (1− µ)f1, (16)

even if only one outgoing arc is congested. The case µ ∈ {0, 1} reduces the problem
to the one-to-one junction, so we consider µ ∈ (0, 1) now. The relation (16) states
that a fixed rate

f2 =
µ

1− µ
f3 (17)

is kept between the two outgoing fluxes during the evolution of the system, inde-
pendent of the incoming flux. If no congestion arises, i.e.,

ρ0
1(x) ≤ min

{
1

µ

a2

a1
ρmax

2 ,
1

1− µ
a3

a1
ρmax

3

}
, x ∈ Ω1 (18)

holds true, the solution is obtained in a similar way as in Section 3.1. We skip this
point and draw our attention directly to a general formula for the solution (with or
without congested areas).

Due to the constant rate (17) between the two outgoing fluxes f2 and f3, it might
happen that only one outgoing arc reaches the maximal density before congestion
on the incoming arc 1 arises. Therefore, we define the actual density on arc 2 and
3 as

ρ̄2 = min

{
µ

1− µ
a3

a2
ρmax

3 , ρmax
2

}
, ρ̄3 = min

{
1− µ
µ

a2

a3
ρmax

2 , ρmax
3

}
.

This is the minimum of the density the arc is supposed to take due to the distri-
bution parameter, and the maximal density possible on this arc. The first time of
congestion t0 can be determined as

t0 = inf

{
t ≥ 0 such that ρ0

1(−a1t) > min

{
1

µ

a2

a1
ρmax

2 ,
1

1− µ
a3

a1
ρmax

3

}}
.

We can introduce the interface g(t), in analogy to (11), with exiting flux ρ̄2a2+ρ̄3a3.
The interface is defined as g : [0,∞) → R≤0, where t is mapped to the solution of
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equation

− x+ (t− t0)
ρmax

2

ρmax
1

a2 −
1

ρmax
1

−a1t0∫
x−a1t

ρ0
1(s)ds = 0, (19)

if this is negative, and to zero otherwise. The region of congestion Λ on Ω1 is given
by

Λ :=
{

(x, t) ∈ Ω1 × [t0, t
E
0 ], such that g(t) ≤ x ≤ 0

}
, (20)

analogously to (10). The general solution ρ on Ω is given by

ρ(x, t) =



ρ0
1(x− a1t), (x, t) ∈ Ω1 \ Λ× (0, T ]

ρmax
1 , (x, t) ∈ Λ× (0, T ]

ρ̄i, (x, t) ∈ Ωi × (0, T ] : x ≤ ait,

g(t− x

ai
) 6= 0, i = 2, 3

αi
a1
ai
ρ1

0

(
−a1

(
t− x

ai

))
, (x, t) ∈ Ωi × (0, T ] : x ≤ ait,

g(t− x

ai
) = 0, i = 2, 3

ρ0
i (x− ait), (x, t) ∈ Ωi × (0, T ] : x > ait, i = 2, 3,

(21)
where α2 = µ and α3 = 1− µ for a compact notation.

Remark. Congestion occurs if the maximal density of one of the two exiting arcs
i = 2, 3 is reached. The other arc, even if the maximal density is not reached, shows
a similar congested behavior, i.e., a value less than ρmax

i is reached and kept. Since
congestion arises without using the full capacity of both outgoing arcs, the duration
of the congested phase is prolonged.

Case 2: “active” junction. We consider the possibility of a diverter interpreted
as a device that keeps a constant ratio among the two outgoing fluxes as long as
no arc is congested. If congestion arises, the device adapts the fluxes to ensure the
maximal total outgoing flux, i.e., f2 = fmax

2 and f3 = fmax
3 .

As before, we fix a parameter µ ∈ [0, 1] in order to set a constant ratio in
the non-congested case. As for the passive junction case (16), we have µf1 =
f2 and (1− µ)f1 = f3. In order to get a unique solution also in the congested case,
we define parameters βi corresponding to αi in (21) with the following properties:

a) The flux conservation f1 = f2 + f3 at the coupling is satisfied.
b) The parameters βi are equal to αi, i = 2, 3 as in the previous case if no

congestion occurs, i.e., condition (18) holds true.
c) If only one outgoing arc i is congested, i.e., ρ0

1(x− a1t) >
ai
αia1

ρmax
i at time t

the parameter βi changes to

βi =
ai
a1

ρmax
i

ρ0
1(−a1t)

which is the smallest value to avoid congestion.
d) A further change is necessary if the value

βi =
aiρ

max
i

a2ρmax
2 + a3ρmax

3

is reached. This is the optimal ratio to maximize the flux through the junction.
At this point the congestion starts.
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Having stated the conditions on βi, i = 2, 3, we can now derive the solution. No
congestion arises as long as the following inequality holds true:

ρ0
1(x) ≤ a2

a1
ρmax

2 +
a3

a1
ρmax

3 , x ∈ Ω1. (22)

If condition (22) is not fulfilled, the time t0, meaning the first time of congestion,
is independent of the distribution parameter µ. It is then given by

t0 = inf

{
t ≥ 0 such that ρ0

1(−a1t) >
a2

a1
ρmax

2 +
a3

a1
ρmax

3

}
.

In this case, the interface g is defined as g : [0,∞) → R≤0, where t is mapped to
the solution of equation

− x+ (t− t0)

(
ρmax

2

ρmax
1

a2 +
ρmax

3

ρmax
1

a3

)
− 1

ρmax
1

−a1t0∫
x−a1t

ρ0
1(s)ds = 0, (23)

if this solution is negative, and to zero otherwise. The region of congestion Λ on Ω1

is given by (20). Contrary to the passive junction case, the function g(t) considers
the maximal flux on arcs 2 and 3 but no longer the distribution parameter µ.

We define for i = 2, 3

βi(t) := min

{
max

{
αi,

ai
a1

ρmax
i

ρ0
1(x− a1t)

}
,

aiρ
max
i

a2ρmax
2 + a3ρmax

3

}
(24)

with α2 = µ and α3 = 1− µ. The general solution on Ω is then

ρ(x, t) =



ρ0
1(x− a1t), (x, t) ∈ Ω \ Λ× (0, T ]

ρmax
1 , (x, t) ∈ Λ× (0, T ]

ρmax
i , (x, t) ∈ Ωi × (0, T ] : x ≤ ait,

g(t− x

ai
) 6= 0

βi(t− x
a1

)a1ai ρ
1
0

(
−a1

(
t− x

ai

))
, (x, t) ∈ Ωi × (0, T ] : x ≤ ait,

g(t− x

ai
) = 0

ρ0
i (x− ait), (x, t) ∈ Ωi × (0, T ] : x > ait

(25)
with i = 2, 3.

Remark. Compared to the “passive” junction (21), congestion only occurs if the
maximal capacity of both exiting arcs is reached. This implies that the choice of
µ ∈ {0, 1} does no longer reduce to a one-to-one junction.

3.3. Two-to-one junction. In this part, we focus on the case of a merging junc-
tion. We know from traffic flow that in the free flow regime no additional informa-
tion is needed. Conversely, in the congested case, we need a priority rule between
the two incoming arcs, i.e., how to use released capacities of the outgoing arc. We
denote by i = 1, 2 the incoming and by i = 3 the outgoing arcs.

We consider the problem on Ω = Ω1 e1 ∪ Ω2 e2 ∪ {0} ∪ Ω3 e1 = (−∞, 0) e1 ∪
(−∞, 0) e2∪{0}∪(0,∞) e1 with the same interpretation as before, where the system
is given by (3), the coupling condition reads as

f1(ρ(0, t)) + f2(ρ(0, t)) = f3(ρ(0, t)), (26)
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and the flux function is again (4) on arcs i = 1, 2, 3. The solution can be directly
computed if it holds

a1ρ
0
1(−a1t) + a2ρ

0
2(−a2t) ≤ a3ρ

max
3 , (27)

i.e. no congestion arises. Then, the solution is given by

ρ(x, t) =


ρ0
i (x− ait), (x, t) ∈ Ωi × (0, T ], i = 1, 2
2∑
i=1

ai
a3
ρ0
i

(
−ai

(
t− x

a3

))
, (x, t) ∈ Ω3 × (0, T ] : x ≤ a3t

ρ0
3(x− a3t), (x, t) ∈ Ω3 × (0, T ] : x > a3t

(28)

and the incoming mass can be totally absorbed by the outgoing arc. This is inde-
pendent of the capacity of the incoming arcs, and no further priority rule is needed
to obtain a unique solution.

By similar considerations as in the previous subsection, we obtain a solution also
in the congested case if condition (27) is not verified. To obtain a unique solution,
we modify the priority rule described in [7] for a traffic flow. Here, the main goal is
to use the whole capacity of the outgoing arc i = 3, which implies

f3 = fmax
3 = a3ρ

max
3 . (29)

We set the merging parameter q ∈ [0, 1] such that

f1 = qfmax
3 and f2 = (1− q)fmax

3 . (30)

This leads to

f2 =
1− q
q

f1, (31)

describing a ratio of the actual fluxes on the corresponding arcs. The admissible
region for the fluxes is

Θ = {(f1, f2) : 0 ≤ f1 ≤ fmax
1 , 0 ≤ f2 ≤ fmax

2 , 0 ≤ f1 + f2 ≤ fmax
3 }

and shaded gray in Figure 6. If condition (29) is not fulfilled by only considering the
ratio (31), the parameter q is adapted to obtain a unique solution. This is shown
in Figure 6:

a) The intersection point P between the maximal outgoing flux (the line f1+f2 =
fmax

3 ) and the priority ratio (31) is inside the admissible set Θ. In this case,
we keep q ∈ (0, 1) fix and we have (30).

b) The intersection point P is outside Θ. We choose the closest point Q inside
Θ on the line f1 + f2 = fmax

3 , which guarantees maximal throughput, i.e.,
f1 = fmax

1 . The merging parameter changes to q = fmax
1 /fmax

3 . Then, the
resulting fluxes are f1 = fmax

1 and f2 = fmax
3 − fmax

1 .

We call Λi the congested region (defined as in (20)) on arc i = 1, 2, gi(t) its
interface and qi ∈ {q, 1 − q} the corresponding merging parameters. The solution
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a)

f1

f2

fmax
1

fmax
2

f1 + f2 = fmax
3

f2 = q
1−qf1

P
Θ

b)

f1

f2

fmax
1

fmax
2

f1 + f2 = fmax
3

Q
P

Θ f2 = q
1−qf1

Figure 6. Choice of the merging parameter q

is then

ρ(x, t) =



ρ0
i (x− ait), (x, t) ∈ Ωi \ Λi × (0, T ], i = 1, 2

ρmax
i , (x, t) ∈ Λi × (0, T ], i = 1, 2

ρmax
3 , (x, t) ∈ Ω3 × (0, T ] : x ≤ a3t,

max
i=1,2

{
gi
(
t− x

a3

)}
6= 0∑

i=1,2

ai
a3
ρ0
i

(
−ai

(
t− x

a3

))
, (x, t) ∈ Ω3 × (0, T ] : x ≤ a3t,

max
i=1,2

{
gi
(
t− x

a3

)}
= 0

ρ0
3(x− a3t), (x, t) ∈ Ω3 × (0, T ] : x > a3t.

(32)
If only one arc is congested, the solution holds true with Λi = ∅ for the non-
congested arc i. The shape of the congested region Λi depends on the merging
parameter qi. It is described by the interface gi : [0,∞)→ R≤0, where t is mapped
to the solution of equation

− x+ (t− t0)

(
qiρ

max
3

ρmax
i

a3

)
− 1

ρmax
i

−ait0∫
x−ait

ρ0
i (s)ds = 0 (33)

if this is negative, and to zero otherwise, analogously to the previous cases.

Remark. The time t0 is unique since congestion starts (independent on q) if the
outgoing belt 3 is not able to absorb all the incoming flux f1 + f2. This is due
to (29), which ensures that congestion arises if the maximal capacity is reached.
At the same time the evolution of the function gi(t) depends on the parameter q.
Therefore, it is possible that g1(t̂) = 0 for some t̂ > t0 if g2(t̂) > 0 (or vice-versa).
This implies that for one arc i ∈ {1, 2}, the function gi may start from zero while
the other one starts from a negative value, i.e., at least one arc is congested, and
the description of the Λi is not completely separated.

We now draw our attention the numerical treatment of the formerly stated prob-
lems.

4. Numerical approximation. In this section, we present numerical experiments
to illustrate and confirm our theoretical results for different network configurations.
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The numerical scheme we propose is an adaptation of the scheme in [12] to networks.
This scheme has also been successfully applied to pedestrian networks in [2].

We discretize each arc Ωi = (āi, b̄i) ⊂ R by Xi = (xi,0 = āi, xi,1, . . . , xi,mi
=

b̄i) with constant discretization step ∆x = |xi,j − xi,j−1|, j = 1, . . . ,mi. The
spatial grid cells are defined as Ci,j = (xi,j−1/2, xi,j+1/2) ⊂ R, where the index
i refers to the corresponding arc. We discretize the time set [0, T ] with {tn =
n∆t, n = 0, 1, . . . , T/∆t}, where ∆t ∈ [0, T ]. We define the piecewise constant
approximation of the solution ρ as ρ̃ni,j ≈ ρ(xi,j , t

n) with ρ̃n constant in each grid
cell Ci,j . The scheme to update the approximation in each time step is for all
i ∈ E, j ∈ 2, . . . ,mi − 1 given by{

ρ̃n+1
i,j = ρ̃ni,j − ∆x

∆t

(
h
(
ρ̃ni,j , ρ̃

n
i,j+1

)
− h
(
ρ̃ni,j−1, ρ̃

n
i,j

))
,

ρ̃0
i,j = ρ0(xi,j).

(34)

For j = 1 and all i ∈ E, the update rule reads as

ρ̃n+1
i,1 = ρ̃ni,1 −

∆x

∆t

(
h
(
ρ̃ni,1, ρ̃

n
i,2

)
− hn,ini

)
with hn,ini describing an inflow condition at time tn. Similarly, for j = mi and

outflow condition hn,out
i at time tn, the update rule is for all i ∈ E

ρ̃n+1
i,mi

= ρ̃ni,mi
− ∆x

∆t

(
hn,out
i − h

(
ρ̃ni,mi−1, ρ̃

n
i,mi

))
.

For the nodes v ∈ V with δ−v = ∅, we need an inflow condition which is set to zero,

i.e., hn,in
î

= 0 for î ∈ δ+
v . For the nodes v ∈ V with δ+

v = ∅, we set the outflow as

hn,out
i = fi(ρ̃

n
i,mi

) for i ∈ δ−v . For all interior nodes v ∈ V with δ−v 6= ∅ and δ+
v 6= ∅,

we need to impose a junction rule at v depending on the type of junction. The
inflow and outflow conditions are defined as follows.

a) For an one-to-one junction, i.e. |δ−v | = |δ+
v | = 1, we set

hn,out
i = hn,in

î
= h

(
ρ̃ni,mi

, ρ̃n
î,1

)
for i ∈ δ−v , î ∈ δ+

v .

b) For an one-to-two junction, i.e. 1 = |δ−v | 6= |δ+
v | = 2, we choose in the non-

congested case (18)

hn,out
i = f(ρ̃ni,mi

) for i ∈ δ−v , and hn,in
î

= αîfi(ρ̃
n
i,mi

) for i ∈ δ−v , î ∈ δ+
v

so that the flux is distributed according to the parameter αî. In the congested
case, i.e., if (18) is violated, we consider the junction properties described in
Section 3.2. If we are in the case of a “passive” junction, we set the outgoing
flux to

hn,out
i =

∑
î∈δ+v

hn,in
î

for i ∈ δ−v ,

where the incoming fluxes on the outgoing arcs î ∈ δ+
v = {2, 3} are defined by

hn,in2 = min
{
fmax

2 ,
µ

1− µ
fmax

3

}
, hn,in3 = min

{
fmax

3 ,
1− µ
µ

fmax
2

}
.

If we consider an “active” junction instead, we set

hn,out
i =

∑
î∈δ+v

fmax
î

for i ∈ δ−v , and hn,in
î

= fmax
î

for î ∈ δ+
v .
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c) For a two-to-one junction, i.e. 2 = |δ−v | 6= |δ+
v | = 1, we choose in the non-

congested case (27)

hn,out
i = fi(ρ̃

n
i,mi

) for i ∈ δ−v , and hn,in
î

=
∑
i∈δ−v

fi(ρ̃
n
i,mi

) for î ∈ δ+
v .

In the congested case, we apply the merging parameter qi described in Section
3.3 and set

hn,out
i = qif

max
î

for i ∈ δ−v , î ∈ δ+
v , and hn,in

î
= fmax

î
for î ∈ δ+

v .

To define h(ρ̃ni,j , ρ̃
n
i,j+1) in (34), we look for a function h satisfying

h(0, 0) = h(ρmax
i , ρmax

i ) = 0, (35)

m−(ũ) ≤ ∂
∂ũh(ũ, u) ≤ 0 ≤ ∂

∂uh(ũ, u) ≤ m+(u), (36)

with continuous function m : R → R and m− = min(m, 0), m+ = max(m, 0).
Conditions (35) and (36) enable to use results from [2, 12]. Since fi is discontinuous
in ρ, we need a suitable regularization. We define a Friedrichs mollifier ϕ ∈ C∞0 (R)
with compact support in [−1, 1] such that

ϕ(−y) = ϕ(y),

∫
R
ϕ(y)dy = 1.

In our case, we use the mollifier ϕ(y) := max(0, 1− |y|) and define ϕξ(y) := 2
ξϕ( 2y

ξ )

for a small parameter ξ > 0, which implies that ϕξ(y) has compact support in

[− ξ2 ,
ξ
2 ]. For each arc i ∈ E, we introduce the following smooth regularization of

the flux function (4)

fξ,i(ρ) := aiρ

(
1−

∫ ρ

ρmax
i

ϕξ

(
y − ρmax

i − ξ

2

)
dy

)
, (37)

see Figure 7. The function coincides with the original flux function (4) in x ∈
[0, ρmax

i ] but we observe that there is a continuously differentiable connection to
the value fξ,i(ρ

max
i + ξ) = 0, i.e., the regularized flux function fξ,i itself is continu-

ously differentiable. We note that (fξ,i(ρ
max
i + ξ))′ = 0 and (fξ,i(ρ̄))′ = ā, i.e. the

transport velocity inside the congested area Λ. Moreover, the derivative is bound-
ed by |(fξ,i)′(ρ)| ≤ 2

ξ for small ξ. In the limit ξ → 0+, we recover the original

discontinuous flux function (4).
Note that the second equality of condition (35) translates to

h(ρmax
i + ξ, ρmax

i + ξ) = 0 (38)

in the regularized case.
We choose the numerical flux function h as Godunov flux

h(ρ̃ni,j , ρ̃
n
i,j+1) =


min

z∈[ρ̃ni,j ,ρ̃
n
i,j+1]

fξ,i(z), if ρ̃ni,j ≤ ρ̃ni,j+1

max
z∈[ρ̃ni,j+1,ρ̃

n
i,j ]
fξ,i(z), if ρ̃ni,j ≥ ρ̃ni,j+1.

(39)

and condition (36) is then satisfied with m(ρ) =
(
fξ,i
)′

(ρ).
The scheme (34) is stable, if the following CFL condition

∆t ≤ ∆x

max
v∈V
|δ−v | · ‖m‖L∞(0,ρmax+ξ)

(40)
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0

ρ
ρmax
i + ξρmax

i

fξ,i(ρ)

āρ̄

aiρ
max
i

ρ̄

Figure 7. Regularized flux function fξ,i

is fulfilled, cf. [12]. From inequality (40), we can establish a relation between the
regularization parameter ξ and the discretization steps ∆t and ∆x. In particular,
if max |δ−v | ≤ 2 for a fixed v ∈ V , the CFL condition reduces to

∆t

∆x
≤ ξ

4
. (41)

Knowing that ξ is supposed to be small, this is a quite restrictive condition. How-
ever, in the next section we will see that the choice of very small parameters ξ does
not improve the solution significantly.

5. Tests. In this section, we present numerical results for different network settings.
Throughout this section, we compute the numerical solution based on scheme (34)
with Godunov flux (39). If not stated otherwise, the space step size is ∆x = 5·10−3,
the time step size ∆t = 10−5 and the smoothing parameter is fixed to ξ = 10−2.
For simplicity, we choose ρmax = 1 in all experiments.

5.1. One-to-one junction. First, we study the situation described in Section 3.1.
The linear network is given by Ω1 = (−∞, 0) and Ω2 = (0,+∞), i.e. the coupling
is at x = 0. We fix the initial solution ρ0 on Ω1 ∪ Ω2 as

ρ0(x) =

 exp

(
−3
(
x+ 3

5π
)2
)

x ∈ [−4, 0]

0 x /∈ [−5, 0]
(42)

Clearly, for computational purposes, we need to approximate the arcs Ω1, Ω2 with
some bounded intervals. We notice that choosing Ω1 ≈ [−5, 0], Ω2 ≈ [0, 5], the
solution has compact support in the approximated domain at every instant of its
evolution. The same principle is applied elsewhere in the rest of the section.

Test 1: free-flow case. This is the non-congested case, i.e. condition (6) is holds
true and the analytical solution is simply (7). The results are displayed in Figure 8.
It shows the evolution of the initial density at different time steps for the different
velocities a1 = 1 and a2 = 2. We see that the analytical and the numerical solution
match very well. A discontinuity appears in the solution at x = 0. There, the
doubling of the velocity has the effect of “spreading” the initial solution. Due to
the mass conservation, the local density behind the junction point is halved. This
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can be seen by comparing the maximal arising density ρ = 1 in front of the junction
and the maximal arising density behind the junction which is ρ = 0.5.

t = 0 t = 1 t = 1.4

t = 1.8 t = 2.2 t = 2.6

Figure 8. Test 1: non-congested case with a1 = 1 and a2 = 2

Test 2: congested case. For the second test, we only vary the velocity of the arcs
and we set a1 = 2 and a2 = 1. Then, the condition (6) is not true anymore and
we are in the congested case, where the analytical solution is given by (14). Figure
9 shows the comparison between the analytical and numerical solution. After the
time t = 1.7, the evolution continues on arc 2 as linear transport. Obviously, the
discontinuity backward wave, modeled by the function g(t) in (14), is correctly
tracked by the numerical solution. It should be noticed that the density located in
the congested region Λ in Ω1 moves with the velocity ā = a2, cf. (12).

Figure 10 shows the space-time diagram for the numerical and analytical solution.
Note that the highlighted congested region Λ in the middle is correctly tracked by
the numerical scheme. However, we observe the diffusive effect of the Godunov
scheme. The latter effect could be reduced by the use of other flux approximations
(as e.g. proposed in [6]) but not avoided completely.

For the same setting, the influence of the discretization step sizes is shown in
Table 1 (left). Since the analytical solution is known, we can evaluate the L2-error
to the numerical solution. According to the space step size, the time step size is
adapted to satisfy the CFL condition (40). As expected, the error tends to zero
with decreasing step sizes.

To study the influence of the smoothing parameter ξ, the fixed discretization is
chosen such that the CFL condition (41) is fulfilled for the smallest value of ξ. This
leads to a time step ∆t = 2 · 10−6 with a space step size ∆x = 5 · 10−3. The result
is shown in Table 1 (right). The error turns out to be only slightly smaller for the
smallest value of ξ.

5.2. One-to-two junction. We pass to the one-to-two junction described in Sec-
tion 3.2. We consider the domain Ω1 = (−5, 0) × {0}, {0} × Ω2 = (0,−5), Ω3 =
(0, 5) × {0}, t ∈ [0, 2] with intersection point x = (0, 0). We choose the velocities
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t = 0 t = 0.5 t = 0.8

t = 1.1 t = 1.4 t = 1.7

Figure 9. Test 2: congested case with a1 = 2 and a2 = 1

Numerical solution Analytical solution

Figure 10. Test 2: space-time diagram for the congested case

∆x ∆t error

0.1 2 · 10−4 0.0842
0.05 10−4 0.0381
0.02 5 · 10−5 0.0184
0.01 2 · 10−5 0.0073
0.005 10−5 0.0057

ξ error

5 · 10−2 0.0051
2 · 10−2 0.0042

10−2 0.0039
5 · 10−3 0.0037
2 · 10−3 0.0035

Table 1. Decreasing step sizes (left), decreasing smoothing pa-
rameter ξ (right)

a1 = 4, a2 = 1, a3 = 2 and distribution parameter µ = 0.5. The initial solution ρ0

is again (42). As already mentioned, the flux conservation (15) is not sufficient to
ensure uniqueness of the solution at the intersection and therefore “passive” and
“active” junctions are considered. Due to our choice of parameters, there exist-
s a time t ∈ [0, 2] such that the conditions (18) and (22) are violated and thus
congestion arises.
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Test 3: “passive” junction. In the passive junction case, the solution is given by
(21). The comparison of the numerical and analytical solution are displayed in
Figure 11.

t = 0 :

t = 0.5 :

t = 1.0 :

Figure 11. Test 3: “passive” junction with distribution parameter
µ = 0.5

In the first column, the density distribution on arc 1 at different time steps is
shown. In the second and the third column, the density distribution on arcs i = 2, 3
are presented. Congestion starts at about t0 = 0.3, so at time t = 0.5, we are already
in the congested phase. On arc i = 3, a density value of 0.5 is kept. This is due to
the constant ratio of the outgoing fluxes, even if the maximal capacity is not used.
As we see here, this leads to shocks in the solution also if the corresponding arc is
not congested. At time t = 1.0, all mass passed the junction and is transported by
the outgoing arcs. The final time of congestion is about tE = 0.9 in this scenario.

Test 4: “active” junction. Here, the solution is given by (25). The results in Figure
12 are again for the congested case. Note that now congestion starts at about
t0 = 0.4. At time t = 0.5, the maximal capacity of both outgoing arcs i = 2, 3
is reached and we are in the congested phase. Compared to the passive junction
case, congestion is reduced on the incoming arc i = 1. At time t = 1.0, all mass
passed the junction and is transported by the outgoing arcs. Now, the final time of
congestion is about tE = 0.7 which is less than in the previous case.

5.3. Two-to-one junction. The last test is the merging junction discussed in
Section 3.3. We consider the domain Ω1 = (−5, 0)×{0}, Ω2 = {0}× (−5, 0), Ω3 =
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t = 0.5 :

t = 1.0 :

Figure 12. Test 4: “active” junction with distribution parameter
µ = 0.5

(0, 5)× {0}, t ∈ [0, 5]. The initial data ρ0
i on each incoming arc i = 1, 2 is (42). On

the outgoing arc i = 3, we set ρ0
3 = 0.. All velocities are fixed to ai = 1 for all arcs.

This setting also allows to recover the results developed in [10], where the capacity
and the speed are assumed to be equal for all arcs. Figure 13 shows the result of
the evolution of the density at various time steps with merging parameter q = 0.3.
The latter leads to a prioritization of arc 2 and a non-symmetric transportation on
the two incoming arcs. We observe how the density initially placed on Ω1 and Ω2 is
transported till x = (0, 0) is reached and congestion forms. At time t = 2, both arcs
are congested. Due to the prioritization of arc 2, congestion is less than on arc 1. At
time t = 4, all mass is absorbed by the outgoing arc. It is worth noticing that, once
all density is absorbed by the outgoing arc, the configuration on the outgoing arc
is the same, independent of the merging parameter q. This is due to the condition
(29), which implies that the outgoing arc always absorbs as much mass as possible.

To conclude, one can say that the numerical method presented in this section
is a powerful tool to approximate the most meaningful solution of the material
flow problem in the network case given by (3) - (4). This is particularly relevant
in cases where we can no longer directly compute the analytical solution of the
problem. To validate the results, in our numerical simulation study we considered
special cases, for which we already derived the analytical solution. For those, the
numerical results obtained match very well the analytical solution and catches the
behavior of the evolution of the congested area before the junction point. Moreover,
an error analysis for the case of a one-to-one junction has shown that the numerical
solution converges against the analytical one with respect to the discretized version
of the time-averaged L2-norm.
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Figure 13. Test 5: merging junction with parameter q = 0.3
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