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Abstract. The objective of this article is to make the analysis of the muscular
force response to optimize electrical pulses train using Ding et al. force-fatigue

model. A geometric analysis of the dynamics is provided and very preliminary

results are presented in the frame of optimal control using a simplified input-
output model. In parallel, to take into account the physical constraints of the

problem, partial state observation and input restrictions, an optimized pulses
train is computed with a model predictive control, where a non-linear observer

is used to estimate the state-variables.

1. Introduction. Functional Electrical Stimulation (FES) consists of applying an
electrical stimulation to the muscle, in order to produce functional movements. It
can be used for the muscular reinforcement, reeducation of the muscle and in the
case of paralysis to activate the paralyzed muscles. Mathematically FES leads to a
sampled-data control problem which can be analyzed in this framework.

The simulations of muscular response to electrical stimulations are based on
dynamics models. The origin comes from the Hill-Langmuir equation in the context
of biochemistry and pharmacology, see [12]. More recent models in the framework
of model identification in non-linear control are due to Bobet and Stein [2], Law and
Shields [15] and a more sophisticated model was proposed by Ding et al. [6, 7, 8, 9]
where the force model is coupled to a fatigue model based on experimental results
[20]. This led to a set of five differential equations with a sampled-data control which
can be used to describe the force response to a pulses train of electrical stimulations
and we shall refer to this model as the Ding et al. force-fatigue model in the sequel.

There is a limited literature that used this model to design an optimized train
of pulses to control the force level [6, 7, 8, 9, 1]. Our aim is to produce a more
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complete study of the problem in the framework of non-linear optimal control,
using sampled-data controls.

A geometric analysis of the model is provided and preliminary results are pre-
sented in the framework of optimal control with sampled-data control [3]. It is based
on a simplified dynamics using the geometric properties of the force-fatigue model
and control reduction to simplify the physical control constraints. The complete
system is analyzed in details using a control predictive strategy (MPC), see [17, 19]
coupled with a non-linear observer based on [11] to estimate the state variables.

The article is organized as follows. In Section 2, we make a brief presentation
of Ding et al. force-fatigue model based on [20]. In Section 3, the dynamics of the
force model is investigated to describe the input-output properties. In Section 4, the
force-fatigue model is analyzed in the framework of geometric optimal sampled-data
control systems and preliminary results are presented with a simplified model using
a model reduction and an input transformation. Section 5 is devoted to the observer
description. In Section 6, MPC method is presented using a further discretization
of the dynamics to conclude with the algorithm implemented to compute in practice
the optimized pulses trains. Numerical results are presented in the final Section 7.

2. Mathematical force-fatigue model. We refer to [20] for a complete descrip-
tion and discussions of the model. The Ding et al. model studied in this article
is presented next in the framework of model dynamics construction based on the
so-called tetania phenomenon in muscular responses. The first part of the model is
the force response (output) to electrical stimulations pulses (input). The pulses are
normalized Dirac impulses at times 0 = t1 < t2 < . . . < tn :

v(t) =

n∑
i=1

δ(t− ti)

and Ii = ti − ti−1 is the interpulse and convexifying leads to apply the input:

v(t) =

n∑
i=1

ηi δ(t− ti).

with parameters ηi ∈ [0, 1], i ∈ {1, . . . , n}. Such pulses train feeds a first-order
model to produce an output according to the dynamics

u̇(t) +
u(t)

τc
=

1

τc

n∑
i=1

Riηiδ(t− ti) (1)

where Ri is a scaling factor associated to the phenomenon of tetania and corresponds
to an accumulated effect of successive pulses and is modelled as

Ri =

{
1 for i = 1

1 + (R0 − 1) exp
(
− ti−ti−1

τc

)
for i > 1

where the magnitude is characterized by R0 which is the limit case to high-frequency
pulse. The FES response to the input is denoted by Es(t) and is given by

Es(t) =
1

τc

n∑
i=1

RiηiH(t− ti) exp

(
− t− ti

τc

)
(2)

where H(t− ti) =

{
0 if t < ti
1 if t ≥ ti

is the Heaviside function.
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The force response to such a train is modelled by the two equations of the so-
called force model:

dCN
dt

(t) +
CN (t)

τc
= Es(t) (3)

which corresponds to a first order (resonant) linear dynamics which can be inte-
grated with CN (0) = 0 and the force response F (t) is described by the equation

dF

dt
(t) = A(t) a(t)− F (t) b(t) (4)

where A is a fatigue variable. Non-linear features of the model are described by the
two mappings a, b:

a(t) =
CN (t)

Km(t) + CN (t)
, b(t) =

1

τ1(t) + τ2 a(t)
(5)

where Km, τ1 are fatigue variables and τ2 an additional parameter.
The complete model is obtained by describing the evolutions of the variables

associated to fatigue and corresponds to the linear dynamics

dA

dt
(t) = −A(t)−Arest

τfat
+ αA F (t) (6)

dKm

dt
(t) = −Km(t)−Km,rest

τfat
+ αKm F (t) (7)

dτ1
dt

(t) = −τ1(t)− τ1,rest
τfat

+ ατ1 F (t). (8)

The full set of equations (3)-(4)-(6)-(7)-(8) are the force and fatigue model.
We refer to Table 1 for the definitions and details of the symbols of the force-

fatigue model.
For the purpose of our analysis the force-fatigue model is written as the single-

input control system:

dx

dt
(t) = F0(x(t)) + u(t)F1(x(t)) (9)

with x = (x1, x2, x3, x4, x5) = (CN , F,A,Km, τ1) where u denotes the control u =
Es(t) corresponding to the sampled physical control data:

(I1, I2, . . . , In, η1, . . . , ηn) (10)

with constraints

Imin ≤ Ii ≤ Imax, 0 ≤ ηi ≤ 1

corresponding to interpulses bounds and amplitude convexification. This leads to
a non-linear model with sampled control data with prescribed convex control con-
straints (η, I) ∈ C; η = (η1, . . . , ηn), I = (I1, . . . , In).

3. The force model. The force model can be briefly investigated to describe
preliminary results.
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Table 1. Margin settings

Symbol Unit Value description

CN — — Normalized amount of
Ca2+-troponin complex

F N — Force generated by muscle
ti ms — Time of the ith pulse
n — — Total number of

the pulses before time t
i — — Stimulation pulse index
τc ms 20 Time constant that commands

the rise and the decay of CN
R0 — 1.143 Term of the enhancement

in CN from successive stimuli
A N

ms — Scaling factor for the force and
the shortening velocity
of muscle

τ1 ms — Force decline time constant
when strongly bound
cross-bridges absent

τ2 ms 124.4 Force decline time constant
due to friction between actin
and myosin

Km — — Sensitivity of strongly bound
cross-bridges to CN

Arest
N
ms 3.009 Value of the variable A

when muscle is not fatigued
Km,rest — 0.103 Value of the variable Km

when muscle is not fatigued
τ1,rest ms 50.95 The value of the variable τ1

when muscle is not fatigued
αA

1
ms2 −4.0 10−7 Coefficient for the force-model

variable A in the fatigue
model

αKm

1
msN 1.9 10−8 Coefficient for the force-model

variable Km in the fatigue
model

ατ1
1
N 2.1 10−5 Coefficient for force-model

variable τ1 in the fatigue
model

τfat s 127 Time constant controlling the
recovery of (A, Km, τ1)

3.1. Parameterization. Observe that in the force model the static non-linearities
described by the mappings a and b can be absorbed by time reparameterization to
provide an explicit form for the force responses.

Proposition 1. The force model can be integrated by quadratures using a time
reparameterization.
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Proof. Integrating the linear system (3), the equation (4) can be written as

dF

ds
(s) = c(s)− F (s) (11)

with ds = b(t) dt, c(s) = A(s) a(s)/b(s). It can be integrated using Lagrange
formula.

Thus this gives an explicit force response in the time parameter s

(I, η, s)→ F (I, η, s). (12)

Clearly we have

Lemma 3.1. The above mapping is smooth with respect to I, η and piecewise smooth
with respect to s.

3.2. Smoothing process. For the sake of providing a smooth response for the
observer it is sufficient to smooth the physical sampled control date as follows: use
a bump function to smooth each Heaviside mapping H(t− ti) at the sampling time
ti.

3.3. Input-simplification. For the sake of the geometric analysis of the dynamics
and to simplify the control constraints on (I, η) the FES signal Es(t) is taken as
the input u(·) of the control system. Using (2) one can write

u(t) = Es(t) = e−t/τc v(t)

with

v(t) =
1

τc

n∑
i=1

H(t− ti)Riηi eti/τc . (13)

Whence 0 = t1 < t2 < . . . < tn are given v(t) is a piecewise constant control
depending upon the parameters η1, . . . , ηn and the dynamics of the force model can
be analyzed in the frame of geometric control.

4. Force-fatigue control model. First of all the control system (9) is analyzed
in the framework of geometric control.

4.1. The concepts of geometric control system [13, 14]. Consider a (smooth)
control single-input control system.{

dx
dt = X(x) + uY (x)
y = h(x)

(14)

where x ∈ Rn, y = h(x) ∈ R corresponds to a (smooth) single-observation mapping.
The following concepts rely on seminal results of geometric control, see [18, 13].

We denote [U, V ] the Lie bracket of two (smooth) vector fields of Rn:

[U, V ](x) =
∂U

∂x
(x)V (x)− ∂V

∂x
(x)U(x)

and a vector field U acts on (smooth) mappings f with the Lie derivative:

LUf =
∂f

∂x
U(x).

Let D1 = span{X,Y } and define recursively : Dk = span{Dk ∪ [D,Dk−1]}, k > 1.
The length of [Xi1 , . . . , [Xik−1

, Xik ] . . .] is k. Hence Dk represents Lie brackets of

X,Y with lengths smaller than k + 1 and denote DL.A. = span ∪k≥0 D
k the Lie
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algebra generated by {X,Y }. The system is called weakly controllable if for each
x ∈ Rn, DL.A.(x) = Rn.

The observation space is the set of mappings: Θ = {LG h; G ∈ DL.A.} and the
system is called observable if for each x1, x2 ∈ Rn, x1 6= x2 there exists θ ∈ Θ such
that θ(x1) 6= θ(x2).

Taking x0 ∈ Rn, a frame at x0 is a set of elements X1, . . . , Xn of DL.A. such
that: X1, . . . , Xn are linearly independent at x0 and

∑n
i=1 length(Xi) is minimal.

The system is called feedback linearizable in an open set V ⊂ Rn if ẋ = X(x) +
uY (x) is feedback equivalent to the linear system ẋ = Ax+ ub, that is there exists
a diffeomorphism ϕ on V, ϕ(0) = 0 and a feedback u = α(x) + β(x) v, β(x) 6= 0
such that g · (X,Y ) = (A, b) with g = (ϕ, α, β) acting by change of coordinates and
(affine) feedback.

Fix x(0) = x0 and T > 0 and consider the extremity mapping: Ex0,T : u(·) ∈
L∞([0, T ]) 7→ x(T, x0, u) where x(·) is the response of ẋ = X(x) + uY (x) to u
defined on [0, T ].

The control u(·) is called singular on [0, T ] if the extremity mapping Ex0,T is not
of maximal rank n when evaluated at u(·).

Geometric analysis of an observed system of the form (14) amounts to compute
DL.A., the observation space, the singular controls and the feedback equivalence
properties. Achievements of geometric optimal control amounts to synthesize the
optimal control in relation with the Lie brackets properties of a frame.

4.2. Optimal control a force-fatigue model with sampled control data.

4.2.1. Concepts. The control in the force-fatigue model (1) falls into the framework
of sampled-optimal control problem and we refer to [3] for more details. We use the
following terminology.

Consider a control system ẋ = f(x, u). When the state x(·) and the control u(·)
evolve continuously in time, we speak of a continuous-time control problem and the
control is said permanent. The sampled-data control case is when u(·) is piecewise
constant.

4.2.2. Application to the force-fatigue model. For simplicity consider the reduced
model in dimension 3 related to the force-fatigue model.

Let the minimization problem be defined by∫ T

0

(
u(s)2 + (F − Fref )2

)
ds → min

|u|≤1

subject to the dynamics in x̃ = (CN , F,A) given by

dCN
dt

= −CN
τc

+ u

dF

dt
= aA− b F

dA

dt
= −A−Arest

τfat
+ αA F

(15)

and with the initial conditions

F (0) = A(0) = CN (0) = 0.

The parameters T, τ2, τfat, αA, Arest and the variables Km, τ1 are constant and fixed
to some prescribed values.
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The system (15) can be written into the form

˙̃x = F̃0(x̃) + u F̃1(x̃).

Remark 1. The model (15) is a simplification of the force-fatigue model. In partic-
ular, without loss of generality, we don’t take into account the factor exp(−t/τc)/τc
appearing in (2). Control constraints |u| ≤ 1 are not the physical constraints, see
Section 3.3. Also the fatigue dynamics is reduced to a single equation, motivated
by the controllability properties of the system (6)-(7)-(8).

The permanent control case. The problem can be summarized as a permanent
optimal control problem as follows

min
u(·)

∫ T

0

(
u(s)2 + (F − Fref )2

)
ds

˙̃x = F̃0(x̃) + u F̃1(x̃)
u(t) ∈ [−1, 1]
(CN (0), F (0), A(0)) = (0, 0, 0).

(16)

The pseudo-Hamiltonian of the system is

H(x̃, p, p0, u) = p · (F̃0(x̃) + u F̃1(x̃)) + p0 (u2 + (F − Fref )2)

where (p, p0) : [0, T ] 7→ R4 is the adjoint vector.

We denote by Hi = p · F̃i, i = 0, 1 the Hamiltonian lifts of the vector fields
F̃i, i = 0, 1.
Normal case: p0 = −1/2. Applying the Pontryagin maximum principle (PMP), the
optimal (permanent) control is given in the normal case by

u(t) =

 1 if H1(x̃(t), p(t)) ≥ 1,
−1 if H1(x̃(t), p(t)) ≤ 1,

H1(x̃(t), p(t)) otherwise.
(17)

Abnormal case: p0 = 0. Abnormal controls are characterized by the equation p·F̃1 =
0. Differentiating twice with respect to t leads to

p · [F̃0, F̃1] = 0, p ·
(

[[F̃0, F̃1], F̃0] + u [[F̃0, F̃1], F̃1]
)

= 0.

Eliminating p we obtain D + uD′ = 0 where

D = det(F̃1, [F̃1, F̃0], [[F̃1, F̃0], F̃0])

D′ = det(F̃1, [F̃1, F̃0], [[F̃1, F̃0], F̃1]).

Computing we have

D = −αA (a′(CN )A− b′(CN )F )
2
, D′ = 0

and D = 0 is equivalent to A(CN (τ1 + τ2) + Kmτ1)2 + Fτ2(CN + Km)2 = 0. This
implies F = A = 0 and the following lemma.

Lemma 4.1. There are no physically admissible singular trajectories for the prob-
lem (15).
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The sampled-data control case. The corresponding optimal sampled-data con-
trol problem is given by

min

∫ T

0

(
u(kTs)

2 + (F − Fref )2
)

dt, with k = bt/Tsc

˙̃x = F̃0(x̃) + u F̃1(x̃)
u(k Ts) ∈ [−1, 1]
(CN (0), F (0), A(0)) = (0, 0, 0).

(18)

where Ts > 0 is a fixed sampling period such that T = j Ts for some j ∈ N.
Normal case: p0 = −1/2. Following [3], the optimal (sampled-data) control is

u(kTs) ∈ arg max
y∈[−1,1]

1

T

∫ (k+1)Ts

kTs

H(s, x̃(s), p(s), p0, y) ds (19)

for all k ∈ {0, . . . , d}.
Write

H̄1 =
1

T

∫ (k+1)Ts

kTs

p1(s) ds

then, the optimal sampled-data control is

u(kTs) =

 1 if H̄1 > 1,
−1 if H̄1 < −1,
H̄1 otherwise.

(20)

Numerical results. In Fig.1, we represent numerical results for several values of
T/Ts. The optimal permanent control is represented with thin continuous line. A
Gaussian quadrature rule is used to compute H̄1. We observe the convergence of
the optimal sampled-data control to the permanent control as Ts tends to 0.

5. Observer.

5.1. Sensibility study of the force versus Km. The force evolution is compared
for Km,rest and different values K ′m,rest (±30% of error) for I = 10ms, 50ms and
100ms (see Fig. 2 for I = 10ms). In the case of I = 10ms, the maximum force
error (see Fig. 3) is of −0.3%. Following interpulse value, the maximum force error
is obtained for I = 100ms (−1.3%) which means that a tolerance of ±30% gives
force evolution with a good accuracy.

5.2. High-gain observer synthesis for the estimation of A and τ1. In this
section, we design a modified version of the standard high-gain observer given in
[11] taking into account the specific structure of the problem. The system defined
by the force equation (4) and the fatigue model (6) and (8) can be rewritten as the
single input-output system:{

ẋ(t) = am(t, Es(t))f(x(t), Es(t))
y(t) = h(x(t)) = F (t),

(21)

with x = (F,A, τ1) ∈ R3, y ∈ R, Es ∈ R, 0 < a < 1 is given by (5) and m
is a positive integer. Note that in (21), Km is the solution of (7) thanks to the
weak sensibility of the solution with respect to this variable (see Section 5.1 for the
sensibility study of the force versus Km). We introduce the change of variables φ:{

φ : R3 → R3

x 7→ φ(x) = [h(x), Lf (h(x)), L2
f (h(x))].

(22)
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Figure 1. Time evolution of the permanent control (thin con-
tinuous line) and sampled-data control for several values of the
sampling period Ts ∈ {T/20, T/40, T/200}.

Figure 2. Evolution of Km for different initial conditions (case of
I = 10ms).

We have:

∂φ

∂x
=

 1 0 0
−1/(τ1 + τ2 a) a F/(τ1 + τ2 a)2

∂L2
fh(x)

∂x1

∂L2
fh(x)

∂x2

∂L2
fh(x)

∂x3
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Figure 3. Relative error of the force for a well known and erro-
neous Km initial condition (case of I = 10ms).

where

∂L2
fh(x)

∂x1
= aαA +

1

(x3 + τ2a)2
(1− x3 − τ1,rest

τfat
+ 2ατ1x1),

∂L2
fh(x)

∂x2
= −aτfat + x3 + τ2a

τfat(x3 + τ2a)
,

∂L2
fh(x)

∂x3
=

1

(x3 + τ2a)2
(x2a−

x1

τfat
)− 2x1

(x3 + τ2a)3
(1− x3 − τ1,rest

τfat
+ ατ1x1)

and

det(
∂φ

∂x
) =

a(x2aτfat(x3 + τ2a)− τfatx1 + 2x1(x3 − τ1,rest − ατ1τfatx1)

τfat(x3 + τ2a)3
(23)

A sensibility study in (6) and (8) concerning respectively −(A−Arest)/τfat and
−(τ1−τ1,rest)/τfat, shows that neglecting these two terms induces a maximum error
of 7% for A and τ1, and 6% for the force value. Hence we use the simplified model:

dA

dt
= αAF (24)

dτ1
dt

= ατ1F. (25)

Hence (4) gives:

det

(
∂φ

∂x

)
=
a(x2a(x3 + τ2a)− x1 − 2ατ1x

2
1)

(x3 + τ2a)3
. (26)

Since Es(t) ≥ 0, we have:

∀t ∈ [0, T ] : (CN , x1) ≥ 0, (x2, x3,Km) > 0⇒ (x3 + τ2a)3 > 0.
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The equation det
(
∂φ
∂x

)
= 0 yields

a = 0⇒ CN = 0 (CN = 0⇒ x1 = 0) (period of rest) (27)

x2a(x3 + τ2a)− x1 − 2ατ1x
2
1 = 0⇒ x1 =

1∓
√

1 + 8ατ1x2a(x3 + τ2a)

4ατ1
. (28)

Since ατ1 ∼ 10−5, 0 ≤ a ≤ 1 and (x3 + τ2a) ∼ 102, we have from (28)

8ατ1x2a(x3 + τ2a)� 1⇒
(
x1 = 0 (CN = 0), x1 =

1

2ατ1

)
.

Thus (∂φ∂x (x̂(t)) = 0, x̂ = (F̂ , Â, τ̂1) for:

• (CN , x1) = 0 which corresponds to the period of rest,
• x1 = 1/(2ατ1), x1 ∼ 105 which is greater than the maximum force value.

In the simplified model (4),(24) and (25), ∂φ∂x (x̂(t)) is invertible during stimulation
period (CN , x1 > 0), and the matrix is well-conditioned.

Based on the simplified model, the modified high-gain observer is defined as:

˙̂x(t) =amf1(x̂(t), Es(t))− am
(
∂φ

∂x
(x̂(t))−1S−1

θ CT (Cx̂(t)− y(t)

)
. (29)

The experimental choice of m depends on the pulses frequency. Sθ is a symmetric
definite positive matrix given by the following Lyapunov equation:

θSθ(t) +ATSθ(t) + Sθ(t)A = CTC (30)

where θ is a high-gain tuning parameter introduced in [11], and

A =

 0 1 0
0 0 1
0 0 0

 , C =
(

1 0 0
)
.

Hence the components of Sθ = [Sθ(l, k)]1≤l,k≤3 have the following form:

Sθ(l, k) = (−1)l+k
(
l + k − 2
k − 1

)
θ−(l+k−1),

(
n
k

)
=

n!

(n− k)!k!
. (31)

5.3. High-gain observer convergence proof. Let

ẋ(t) = am(t)f1(x(t), Es(t)) = f(x(t), Es(t))

y(t) = h(x(t))
(32)

and

z1 = h(x),

ż1 = Lfh(x) = amLf1h(x) = amz2,

ż2 = Lf (Lf1h(x)) = amLf1(Lf1h(x)) = amz3,

...

żn−1 = amzn,

żn = amLnf1h(x) = ϕn(u, z).
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Then 
ż1

ż2

...
żn

 = am


0 1 · · · 0

0
. . .

. . .
...

...
. . .

. . . 1
0 · · · · · · 0




z1

z2

...
zn

+


0
...
0

ϕn(u, z)

 . (33)

Therefore {
ż = amAz + ϕ(u, z)
y = Cz.

(34)

Take C =
(

1 0 · · · 0
)

and consider the system (33). We make the following
assumptions.

5.3.1. Assumptions.

• H1) ϕn(u, z) is globally Lipschitz with respect to z and uniformly with respect
to u,

• H2) Let U be the control domain, a compact K ⊂ Rn and two positive
constants amin and amax such that: for all u valued in U and initial conditions
z(0) ∈ K, we have amin ≤ a(t) ≤ amax,

• H3) a(·) is C1 (see Remark 2 below),
• H4) mȧ(t)/a(t) < 1.

The observer has the following expression:

˙̂z(t) = a(t)mAẑ(t)− a(t)mS−1
θ CT (Cẑ(t)− y(t)) (35)

where Sθ is the solution of the Lyapunov equation:

θSθ +ATSθ + SθA− CTC = 0. (36)

The solution of (36) can be rewritten as

Sθ =
1

θ
Dθ S1Dθ. (37)

and

Dθ = diag

(
1,

1

θ
, · · · , 1

θn

)
(38)

with S1 is the solution of (36) for θ = 1. Let ρ = am and e = ẑ − z ⇒ ė = ˙̂z − ż,
then

ė = ρAẑ + ϕ̂(u, ẑ)− S−1
θ CT (Cẑ(t)− y(t))− ρAz − ϕ(u, z)

= ρ(A− S−1
θ CTC)e+ ϕ̂− ϕ

(39)

Write ē = ρDθe, then

˙̄e = ρ̇Dθe+ ρDθ ė

= ρ̇Dθe+ ρDθ(ρ(A− S−1
θ CTC)e+ ϕ̂− ϕ)

= ρ̇Dθe+ ρDθ(ρ(A− θD−1
θ S−1

1 D−1
θ DθC

TCDθ)e+ ϕ̂− ϕ), DθC
TCDθ = CTC

=
ρ̇

ρ
ē+ ρθAē− θS−1

1 CTCē+ ρDθ(ϕ̂− ϕ), DθAD
−1
θ = θA

(40)
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Consider the Lyapunov function: V = ēTS1ē. Then

V̇ = 2ēTS1 ˙̄e

= 2ēTS1(
ρ̇

ρ
ē+ ρθAē− θS−1

1 CTCē+ ρDθ(ϕ̂− ϕ))
(41)

2ēTS1Aē = ēT (S1A+ATS1)ē and S1A+ATS1 = −S1 + CTC.
Then, we have

V̇ = −θρV + θρēTCTCē− 2ēTCTCē+ 2ēTS1
ρ̇

ρ
ē+ 2ēTS1ρDθ(ϕ̂− ϕ)

= −θρV + (θρ− 2) || Cē ||2 +2
ρ̇

ρ
V + 2ēTS1ρDθ(ϕ̂− ϕ)

= −(θρ− 2
ρ̇

ρ
)V + (θρ− 2) || Cē ||2 +2ēTS1ρDθ(ϕ̂− ϕ)

(42)

We deduce that

θρ− 2
ρ̇

ρ
> 0⇒ θ > 2

ρ̇

ρ2
,

θρ− 2 < 0⇒ θ <
2

ρ
⇒ 2

ρ̇

ρ2
< θ <

2

ρ

⇒ (
ρ̇

ρ
= m

ȧ

a
) < 1. (43)

Using (43) and assumption H1:

V̇ ≤ −γV + 2ēTS1ρDθ || ϕ̂− ϕ ||, γ > 0

≤ −γV + 2ēTS1
ρ

θn
| ϕ̂n − ϕn |

≤ −γV + 2ēTS1
ρ

θn
K1ē

≤ −(γ − 2 am

θn
K1)V.

(44)

For m and θ sufficiently large: γ > 2 am/θnK1 ⇒ V̇ ≤ −γ1 V, γ1 > 0.

Remark 2. In the force-fatigue model, a(t) is piecewise smooth, the lack of regu-
larity is numerically bypassed by the choice of the integer m. For example, for
I = 10ms, m = 3 is sufficient to estimate the whole variables. However, for
I = 25ms, m must be at least equal to 5 (see observer simulations in Section
7).

6. Model predictive control (MPC). MPC computes a sequence of predicted
controls to optimize plant behavior (see Fig. 4).

Model Predictive Heuristic Control (MPHC) was introduced by Richalet et al.
[17] using impulse response type dynamic model. Dynamic Matrix Control (DMC)
followed in 1980 (Cutler et al. [5]) using step response type dynamic model. State
space formulation of MPC was introduced by Li et al. [16].

Consider a system written as

ẋ = f(x, u), x(0) = x0 (45)

and a general cost function to be minimized

J∞(u(.), x0) =

∫ ∞
0

q(xu(τ, x0), u(τ)) dτ (46)
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with

xu(t, x0) = x0 +

∫ t

0

f(xu(τ, x0), u(τ)) dτ (47)

and
q(0, 0) = 0, q(·) ∈ C2

q(x, u) ≥ cq(||x||2 + ||u||2), cq > 0

u 7→ q(x, u) is convex for all x.

(48)

Without constraints, Bellman’s principle of optimality (1950) gives the solution. In
the case of constrained problem, instead of J∞, we minimize the following cost:

J(u(.), x0, T ) =

∫ T

0

q(xu(τ, x0), u(τ))dτ + v(xu(T, x0)) (49)

with

J∗(x0, T ) = min
u(.)

J(u(.), x0, T ) (50)

and

u∗(t, x0, T ) = arg min
u(.)

J(u(.), x0, T ). (51)

This optimization over a finite horizon follows the algorithm:

1. Solve min J(u(.), x0, T ) and find u∗(., x0, T ).
2. Apply u∗(., x0, T ) for τ ∈ [0, Ts[, 0 ≤ Ts ≤ T , (Ts: sampling period).
3. Repeat using x(Ts) instead of x0.

6.1. Discrete linear system (basic case). To explain the method, we consider
the discrete linear system:{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

(52)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are respectively the state, input and output
vectors, and t = kTs. This system (66) results from a discrete system modelling
or continuous-discrete transformation. Practical considerations of implementation
make this form more appropriate in the framework of MPC.

We suppose that the system is both controllable and observable, and we denote
by x(k+i/k), i ≥ 0, the predicted state vector x(k+i) with initial condition x(kTs).

Consider the unconstrained problem and the quadratic cost:

J(k) =

∞∑
j=k

[
(y(j + 1/k)− yref )TQ(y(j + 1/k)− yref )

+ (u(j/k)− uref )TR(u(j/k)− uref ) + ∆u(j/k)TS∆u(j/k)
] (53)

with Q = QT � 0, R = RT � 0 and S = ST � 0. The couple (yref , uref ) is solution
of (52) and ∆u(k) = u(k)−u(k−1). The solution of this problem is obtained using
the LQ controller.

In the case of constrained problem, LQR could not be used to solve control
problem. System (52) allows to calculate x(k + i/k), i = 1, ..., Nr at time kTs, (Nr
being the receding horizon length):

x(k + i/k) = Aix(k/k) +

i−1∑
j=0

Ai−j−1Bu(k + j/k). (54)
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Figure 4. General MPC strategy diagram.

The input-output relation along the receding horizon is then:


y(k + 1/k)
y(k + 2/k)

...
y(k +Nr/k)

 =


CA
CA2

...
CANr

x(k/k) +


CB 0 · · · 0

CAB CB
. . .

...
...

. . .
. . . 0

CANr−1B · · · CAB CB




u(k/k)
u(k + 1/k)

...
u(k +Nr − 1/k)

 . (55)

Write (55) as

ȳ = Ψx(k/k) + Γū (56)

where ȳk ∈ RpNr , ūk ∈ RmNr , Ψ ∈ RpNr×n, Γ ∈ RpNr×mNr .
Constraints can take the form:

• Control variable:

umin ≤ u(k) ≤ umax. (57)

• Change rate of the control variables:

∆umin ≤ ∆u(k) ≤ ∆umax (58)

with

∆u(k) = u(k)− u(k − 1). (59)

• Soft output variables constraints (relaxed output constraints using large slack
variable sv to avoid constraints conflicts when solving control problem):

ymin − sv1 ≤ y(k) ≤ ymax + sv1. (60)

• Soft state variables constraints (for the same reason as output constraints):

xmin − sv2 ≤ x(k) ≤ xmax + sv2 (61)

The cost function (53) becomes:

J(k) =

k+Nr−1∑
j=k

[
(y(j + 1/k)− yref )TQ(y(j + 1/k)− yref )

+ (u(j/k)− uref )TR(u(j/k)− uref ) + ∆u(j/k)TS∆u(j/k)
] (62)

subject to (56) and a set of constraints among (57) – (61).



94 TOUFIK BAKIR, BERNARD BONNARD AND JÉRÉMY ROUOT

This minimization problem takes the form:

min 1/2XTEX +XTF

subject to ȳ = Ψx(k/k) + Γū

MX ≤ γ

(63)

and ȳ = Cx̄ with X = [x̄, ū]T . Optimization problem (63) is a convex Quadratic
Programming (QP) problem. Denote X∗ = [x̄∗, ū∗]T the global minimizer at each
iteration. Once ū∗ is calculated, only u∗(k/k) is applied at time t = kTs and we
iterate the algorithm.

In the case of NMPC (non-linear Model Predictive Controller), the dynamics is
defined using a discretization of the equation (45). Using (62), optimization problem
becomes:

min 1/2XTEX +XTF

subject to x(k + i/k) = g(x(k + j/k), u(k + j/k)), j = 0, . . . , Nr − 1

MX ≤ γ

(64)

with X = [x̄, ū]T . Equality constraint in the optimization problem (64) is non-
linear. Now convexity condition in (64) is not guaranteed, then X∗ could be a local
minimizer. NMPC (non-linear Model Predictive controller) is used to solve this
problem.

Numerical solutions are computed using Active Set, Primal-Dual or SQP methods
(Wang [19], Fletcher [10] and Boyd and Vandenberghe [4]).

In the case of force-fatigue model, one must consider the more general case of a
varying Ts (Ts → I(i)), then u(i) = [I(i) η(i)]T , where I(i) = t(i)− t(i− 1) is the
interpulse between two successive pulses and η(i) is the pulse amplitude applied at
time ti. In this case, ū(k) = [u(k/k) . . . u((k + Nr − 1)/k)] is the discrete receding
horizon control vector (of length Nr) to be calculated by the NMPC at time t
corresponding to iteration k. Then:

ū(k) =

 I(k/k) I(k + 1/k) · · · I((t(Nr))/k)

η(tk/k) η((tk + I(k/k))/k) · · · η((tk +
∑Nr−1
j=0 I(k + j))/k)


(65)

t(Nr) being the final time of the optimization horizon which is unknown a priori.
For instance, using single move strategy, we have u(k/k) = u(k + 1/k) = . . . =
u((k +Nr − 1)/k), (see Fig. 5).

The force-fatigue model being non-linear, an NMPC is used to solve the prob-
lem with Non-linear Programming Algorithm (NPA). In this case, criterion to be
minimized is:

J(k) =

k+Nr−1∑
j=k

(F (j + 1/k)− Fref )
2

(66)

subject to: 0 ≤ η(i) ≤ 1 and 0.01ms≤ I(i) ≤ 0.1ms.
The estimation of the state variables vector (by the high-gain observer) is used

as an initial variables vector to perform the NMPC over the horizon Nr.
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Figure 5. (left half plane) Es and force profile for applied am-
plitude and interpulse stimulation, (right half plane) Predicted Es
and force using single move strategy to be optimized.

ALGORITHM

1. Give Finalt, k = 1
2. Compute CN (tk), F (tk), Â(tk), τ̂1(tk), Km(tk)

3. DataF = Nr × uk(1)
stepint

with: ui(1) = uk(1) for i = k, k + 1, . . . , k + (Nr − 1),
and stepint is a submultiple of ui(1) = Ii.

4. Fmean = 1/DataF
∑DataF

j=1 F (tk + j Stepint, Es)
with:

Es =
1

τc

k+(Nr−1)∑
i=1

(
ui(2)H(tNr

− ti)Ri exp(− tNr − ti
τc

)

)
(ui(1) = uk(1), ui(2) = uk(2) for i = k, k + 1, . . . , k + (Nr − 1),

and ti = ti−1 + ui−1(1), i ≥ 2, tNr
=
∑k+(Nr−1)
i=1 Ii).

5. u∗(k/k) = (I∗k , η
∗
k) = arg minJ(Ik, ηk), Ik ∈ [Imin, Imax], ηk ∈ [ηmin, ηmax].

6. if tk+1 ≥ Finalt ⇒ stop, else, k = k + 1, back to 2.

7. Numerical results.

7.1. High-gain observer. To exhibit the interest of the use of the power m in
the non-linear observer, consider a MPC based on a non-linear observer with only
amplitude as control variable. We consider also the worst case of +30% of error of
Km.

The following simulation results follow the protocol used in practice (a set of
periods with stimulation and rest time slots in each period). During the stimulation
time slot, the control is calculated to bring the force to Fref and in the rest time
slot, the stimulation amplitude is set to 0. In this section, only two stimulation
periods are considered.
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For I = 10ms (100Hz) and I = 25ms (40Hz), we take m = 3 and m = 5 respec-

tively. Fig.6 and Fig.7 represent the Â for I = 10ms and I = 25ms, respectively.
Fig.8 and Fig.9 are the τ̂1 for I = 10ms and I = 25ms. Â converges after 50ms
when I = 10ms and 100ms when I = 25ms. Concerning τ̂1, it converges after
75ms when I = 10ms and 200ms when I = 25ms. Large I seems to delay the
convergence of the observer.
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Figure 6. Evolution of A and Â for I = 10, 30% error of Km.
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Figure 7. Evolution of A and Â for I = 25, 30% error of Km.

Fig.10 represents the force response for amplitude control strategy (for a receding
horizon Nr = 10) based on the proposed observer for I = 25ms and a force reference
of 250N . Force mean value converges to the force reference after 200ms.

7.2. MPC with interpulse and amplitude as control variables. In this sec-
tion, five stimulations periods are presented (due to the experimental protocol).
Figures 11, 12 and 13 are the force response in the case of Fref = 425N and
(Nr = 3, 5, 10), the interpulse and the amplitude controls for Nr = 10, respectively.
As expected, Nr = 10 gives the best regulation performances (response time and
overshoot).

Before t = 6000ms with Nr = 10, the force is correctly maintained at Fref =
425N . For t ≥ 6000ms (starting from the forth period), the fatigue level A is very
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Figure 8. Evolution of τ1 and τ̂1 for I = 10, 30% error of Km.
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Figure 9. Evolution of τ1 and τ̂1 for I = 25, 30% error of Km.
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Figure 10. Evolution of F , F̂ and F mean value over I for I = 25,
30% error of Km, Fref = 250N .

high so that the maximum value of the amplitude control (see Fig. 13) and the
interpulse control (see Fig. 12) cannot maintain F at Fref . Maximum interpulse
frequency is not used at the beginning of the forth and the fifth periods. Higher
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value of Nr could correct this problem (supposing that global minimizer of MPC
algorithm is reached at each iteration). However, increasing Nr will render MPC
algorithm time consuming and cause a problem for real time implementation.
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Figure 11. Evolution of the force for a reference force of 425N
and different receding horizons (3, 5 and 10)
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Figure 12. Evolution of the interpulse (control) for a reference
force of 425N and a preditive horizon of 10.

8. Conclusion. This work deals with the control and estimation of the state vari-
ables of the Ding et al. force-fatigue model where the control is the interpulse
and/or amplitude of the electrical stimulation. Preliminary geometric analysis of
the force control controlling force level is presented with the aim of a future PMP
control strategy. In the case of a fixed interpulse, the proposed high-gain observer
using the force measurements exhibits the relation between the interpulse and the
parameter m to perform accurate variables estimation. Model Predictive Control
(MPC) strategy is presented in the case of both stimulation interpulse and ampli-
tude as control variables. Simulation results are presented concerning the high-gain
observer and the MPC force control. These simulations show the effect of the re-
ceding horizon on the control efficiency. Reasonable value of Nr is however suitable
to guarantee a short computation time for real time implementation.
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Figure 13. Evolution of the amplitude (control) for a reference
force of 425N and a preditive horizon of 10.

Figure 14. Evolution of the interpulse (control) for a reference
force of 425N and a preditive horizon of 10.

Figure 15. Evolution of the amplitude (control) for a reference
force of 425N and a preditive horizon of 3.
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