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Abstract. In response-guided dosing (RGD), the goal is to make optimal dos-

ing decisions based on the stochastic evolution of a patient’s disease condition.
Typically, RGD is formulated as a finite-horizon problem with decision-making

occurring over a predetermined time frame. In this paper we relax the latter

assumption to allow for the possibility of ending treatment early. This could
occur due to remission of the disease or a finding of futility in treatment of

the disease. Our framework is formulated as a stochastic dynamic program
(DP) where a stop/do-not-stop decision is made in discrete sessions, and if

stopping is not chosen, an optimal dose is determined for that session. Nu-

merical simulations for rheumatoid arthritis are presented, and monotonicity
of the stop/do-not-stop threshold with respect to time is proven.

1. Introduction. Optimal stopping of stochastic dynamic programs (DPs) (also
known as Markov decision processes) has been an area of interest in operations
research for decades [14, 5, 16]. This paper attempts to apply the theory of optimal
stopping to the problem of response-guided dosing, where patients receive dosing
specific to their individual disease progression over time.

Treatment paradigms for various diseases allow for stopping due to adverse
events, and in some cases guidelines have been constructed for when to stop treat-
ment. For some diseases, a recommendation to stop treatment is made typically
at the end of a gradual tapering-down of dose for patients who respond well to
treatment and are considered to be in remission. For others, patients are given a
standard dose and the treatment decision at each time step is of the stop/do-not-
stop type. In addition, stopping treatment may occur for patients in poor disease
states due to a finding of futility or a desire to switch to a different drug or type of
treatment.

2. Literature review. Discontinuation of pharmacological therapy has been stud-
ied in a number of diseases. For rheumatoid arthritis (RA), a protocol for discon-
tinuing the biologic agent infliximab has been developed by Maas et al.: patients
whose 28-joint disease activity score (DAS28) is below 3.2, and have received stable
dose for at least 6 months, have their doses tapered down by 25% of the original
dose every 8-12 weeks until discontinuation of treatment is achieved or the patient
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experiences a flare-up [23]. Another study on adapting dose of the biologic agent
infliximab based on patient response ended up stopping treatment for 7 of 76 pa-
tients due to adverse events [4]. One meta-analysis compared gradual lowering
of dose (also called “down-titration”) and discontinuation versus continuation of
the drugs adalimumab and etanercept in RA patients with low DAS28 scores with
mixed results, finding that stopping treatment produces benefits in some, but not
all patients [24].

Infliximab is also used to treat other inflammatory bowel diseases (IBD) includ-
ing Crohn’s disease and ulcerative colitis (UC). Other studies have focused mainly
on patient outcomes after the decision to stop infliximab treatment. Several studies
have been conducted on the risk of IBD disease relapse after a decision to interrupt
treatment of infliximab [11, 12, 19]. A prevalence study found that an “important
proportion” of RA patients in remission were directed to down-titrate or discon-
tinue treatment the drug, indicating that the stopping decision is not uncommon
in practice, though a patient-specific numerical framework does not exist [10]. One
study found that 62% of patients who stopped a second-line drug in combination
therapy for RA did not experience a flare within one year; yet patients who contin-
ued the second-line drug had a lower chance of flare [22]. A meta-analysis of flare
rates for RA patients with low DAS28 scores or in remission found that “more than
one-third of patients” may down-titrate or stop disease-modifying anti-rheumatic
drugs (DMARD) without risk of a flare for one year [9].

Some clinical trials for hepatitis have included the possibility of stopping treat-
ment within a response-guided framework. A response-guided clinical trial using
telaprevir for hepatitis C directed patients with an HCV RNA level greater than
1000 IU per mL at week 4, or who had virologic failure at week 12 or between weeks
24 and 36 of the study, to stop treatment [15]. Jacobson et al. developed stopping
rules for patients destined to fail boceprevir-based combination therapy for hepati-
tis C based on phase 3 trial databases; the rules were then applied retroactively
to determine how many patients could have stopped treatment early to minimize
drug toxicity, resistance, and costs [6]. Along the same vein, Davis, et al. per-
formed a retrospective analysis of patients taking pegylated interferon alfa-2b and
ribavirin for hepatitis C to identify a rule that would have stopped treatment early
for some patients; they found that patients who did not achieve an early virologic
response of at least 2 logs in the first 12 weeks compared with baseline was predic-
tive of ultimate futility of the therapy, and thus could have been stopped early [3].
Response-guided dosing of peginterferon in hepatitis B studies have established a
rule to stop treatment if there is no decline of serum HBsAg levels from baseline to
weeks 12 or 24 [20, 21].

While these studies have considered the decision of when to stop treatment, the
rules developed are ad hoc, specific to individual drugs and diseases. Stopping treat-
ment is typically considered only at one of a few pre-specified time-points during
treatment, and is not considered as an alternative to dosing in each individual ses-
sion. In addition, stopping is generally considered only for cases of drug futility and
not disease remission. Furthermore, the stopping criteria that have been developed
for specific drugs and diseases have not been built using a mathematically rigorous
optimal stopping approach.

In the operations research literature, several authors have considered optimal
stopping rules for clinical trials by creating a stochastic dynamic programming
approach. Papers by Berry and Müller et al. considered Bayesian approaches



OPTIMAL STOPPING FOR RGD 45

to phase II clinical trials [1, 13]. Their work, like ours, considers a sequential
decision problem where patients in the trial are dosed over discrete sessions. At each
time point, three arms are considered: continuation of pharmaceutical treatment;
stopping for futility; or stopping for efficacy, with direction to enroll in a phase
III clinical trial. Along the way, dose-response parameters are learned. Our work
differs from theirs in that we do not consider dosing in the context of a clinical
trial; rather, we look at drugs that have already been brought to market and thus
information about the dose-response parameter is assumed to be known.

In this paper, we extend the previous stochastic DP model of Kotas and Ghate
[7] to allow for stopping treatment as an alternative to administering dose in any
session. That paper modeled the disease progression of an individual patient as a
finite-horizon, fixed-length Markov decision process. The optimal solution balances
improving the patient’s disease state as much as possible at the end of treatment
with the costs incurred due to adverse effects in each treatment session. This paper’s
additional contribution is to allow stopping, which in essence adds an additional
option to the decision-space, so that in any session a dose may still be administered,
or a decision to stop may be made. If the decision-maker stops treatment, then no
dose may be administered in future sessions, and as a result no future per-session
costs are incurred.

3. Model without stopping. Our model with stopping is an extension of the
stochastic DP model for RGD by Kotas and Ghate [7]. For completeness, we give
an overview of that model here.

Let T denote the number of treatment sessions, indexed by t = 1, 2, . . . , T , in
a treatment course. The time-interval between two consecutive treatment sessions
may be hours, days, weeks, or months depending on the disease. For simplicity
of notation, we assume that these intervals are equal. At the beginning of each
treatment session, the physician observes a numerical score of the patient’s disease
condition, and chooses a dose for that session. These numerical scores belong to a
convex set X ⊆ R. Smaller real numbers in this set represent less severe disease.
The disease condition at the beginning of treatment session t is denoted by xt ∈ X.
The dose level chosen by the physician for this session after observing xt is denoted
by dt. Possible dose levels dt belong to the interval D , [0, d̄] ⊂ R, where d̄ is a
finite upper bound on permissible dose levels.

For t = 1, 2, . . . , T , disease conditions evolve according to dynamics

xt+1 = xt + f(dt; θ), for xt, xt+1 ∈ X, and dt ∈ D, (1)

where θ are independent and identically distributed (iid) random variables that take

values from a finite set Ω , {v1, v2, · · · , vk} with probabilities p1, p2, · · · , pk respec-
tively (therefore, θ are Categorically distributed). We assume f(·; θ) is continuous
and non-increasing over D for each θ ∈ Ω, indicating an improvement in disease
state with increasing dose. Note that the assumption that θ is Categorically dis-
tributed is not restrictive as any continuous distribution with finite support can be
arbitrarily well approximated by a Categorical distribution with sufficient number
of bins k. The distribution is assumed to be known, perhaps as a result of complet-
ing a trial on a cohort of patients, as described by [8]. The assumption that the
state transition function is additive in state is made for algebraic simplicity and is
appropriate for a wide range of dose-response functions used in practice, including
exponential, exponential linear-quadratic, logistic, Michaelis-Menten, Hill’s, Emax,
power law, Gompertz, and beta-Poisson (in some cases after taking logarithms to



46 JAKOB KOTAS

turn functions that are multiplicative in state to additive, and working in log-units)
[17].

Aversion to dose is modeled using a continuous cost function c : D → R+.
Since D is compact, continuity of c(·) implies that it is bounded. Examples include
linear, quadratic, and exponential functions. Aversion to disease conditions xT+1

at the end of the treatment course is modeled using a continuous and bounded cost
function h : X → R+. Examples include linear, quadratic, exponential, and ramp.
The cost in the ramp function is zero up to a threshold and then increases with
disease score; this can be used to model the treat-to-target approach.

Let Jt(xt) denote the minimum total expected cost not yet incurred, given that
the disease condition at the beginning of the tth session is xt. These optimal cost-
to-go functions Jt(·) are unique solutions of Bellman’s equations

Jt(xt) = min
dt∈D

(
c(dt) +

k∑
j=1

Jt+1

(
xt + f(dt; vj)

)
pj

)
,

with JT+1(xT+1) = h(xT+1). (2)

Problem (2) involves optimizing a continuous function over the nonempty compact
set D and hence it has an optimal solution. The set of doses that attain the
minimum in (2) define an optimal policy: for state xt ∈ X in session t, it is denoted
by A∗t (xt) ⊆ D.

Bellman’s equations (2) can be solved approximately easily using backward in-
duction through discretization of X (along with truncation if needed) and of D [2].
Because we do not assume particular properties for the underlying cost functions
such as convexity, the problem does not have a specific structure that can be taken
advantage of for numerical calculation. Nevertheless, for practical problems of in-
terest and even on a relatively fine grid spacing for a single patient, the problem
is computationally tractable through enumeration of the cost-to-go function for all
possible doses dt and then selecting the smallest value in the array.

4. Model with stopping. The aforementioned model took the number of equally-
spaced treatment sessions T to be known a priori, with sessions indexed by t =
1, 2, ..., T . Now, we also take T to be known, but allow for the possibility of ending
treatment early. Thus, T can be thought of as a loose upper bound on the number
of treatment sessions. In session t, we can choose to give a dose, which is denoted
dt, where dt ∈ D , [0, d̄] ∀ t where d̄ < ∞ is the maximum permissible dose in
one session; alternatively a decision to stop treatment can be made (for all t < T ).
Note that a dose of zero is not equivalent to a decision to stop; a dose of zero still
implies that a patient will return for treatment in the following session, although
they receive no dose now. Stopping, on the other hand, implies that the patient will
not return for treatment after the current session. For the purposes of graphical
illustration, we denote the decision to stop treatment by dt = −1. This value is not
physically meaningful, but as it lies outside the permitted dose range D , [0, d̄], it
allows for simple visualization.

If treatment is terminated when the state is xt ∈ X, where higher values corre-
spond to more severe disease states, the patient derives a terminal cost h : X → R+.
If treatment is continued, then a dose level dt ∈ D for that session must be chosen
with associated cost c : D → R+. The state then stochastically evolves according
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to the state transition function

xt+1 = xt + f(dt; θ), (3)

as in the model without stopping described in section 3. The Bellman’s equations
then become:

Jt(xt) = min
{

min
dt∈D

(
c(dt) +

k∑
j=1

Jt+1

(
xt + f(dt; vj)

)
pj

)
, h(xt)

}
,

with JT+1(xT+1) = h(xT+1). (4)

where the outer minimization problem chooses the more optimal of continuing treat-
ment or stopping now. The Bellman’s equations can be solved numerically using
backward induction with discretization of the state-action space.

5. Stopping for rheumatoid arthritis. We reconsider the rheumatoid arthritis
problem based on OPTION trial data which was discussed in the Kotas and Ghate
model [7, 18]. We begin by reviewing that model.

We seek to determine an optimal dose of the drug tocilizumab in combination
therapy with a fixed dose of methotrexate for rheumatoid arthritis. The patient
state xt in session t is taken to be the natural logarithm of the DAS28t score,
a widely-used measure of disease progression in RA, which takes positive values.
Doses are administered over a maximum of T = 7 sessions, equally spaced at 4
weeks. The dose to be administered in session t is designated as dt, measured in
units of mg tocilizumab per kg body weight, take on values in [0, 10]. The dose-
response function is taken to be a modified log-Michaelis Menten with additive
noise:

xt+1 = xt + lnκ2 − ln(κ1 + κ2 + dt) + θ (5)

where κ1, κ2 > 0 are parameters indicating the effectiveness of methotrexate
and inverse effectiveness of tocilizumab, respectively, and θ are iid Categorically
distributed random variables, specifically a discretization of the Normal(0, 0.052)
distribution truncated to within ±3σ, renormalized and discretized to bins of width
0.01σ. Based on data from the OPTION clinical trial, we estimated values for the
parameters: κ1 = 4.5295 mg/kg and κ2 = 124.1593 mg/kg [18]. The initial state is
taken to be x1 = ln(6.8).

The terminal state cost function is taken to be exponential: h(xT+1) = exp(xT+1)
= DAS28T+1. The per-session cost function was taken to be linear: c(dt) = γdt,
with γ constant, and a value of γ was estimated to be γ = 0.028557 (mg/kg)−1 using
data from the OPTION trial [18]. The determination of these parameter values is
described fully in [7]; we omit that here for brevity.

For our stopping variation, all parameters were set to the same values as [7],
except we consider a slightly different cost function c(·). We generalize our cost
function to the two-parameter linear-affine form c(d) = γd + b. Here, γ is still
the cost per unit of dose, but we also allow for a fixed cost per session b, which
can model administrative overhead, or the cost associated with storing drugs even
if they are not administered to a patient, or the cost associated with the patient
traveling to a clinic only to receive no dose. With b = 0 we recover the linear cost
function of [7].

Bellman’s equations (2) were solved approximately using backward induction
with a discretization of 0.01 for the state xt for all t, and a discretization of 0.01
for the dose dt for all t.
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Results of numerical simulation are given in Figure 1. Three subfigures are shown
corresponding to the values b = 0, b = 0.05, and b = 0.1 which represent increasing
levels of fixed cost using the cost function c(d) = γd+ b. On each plot, the optimal
policy is plotted. On week 0, the patient’s state is known to be x1; thus just one
point of the optimal dose is given. In subsequent sessions, due to the uncertainty of
patient response, a range of state values are possible. These are plotted as curves
of different colors for each session.

The value of the parameter b represents a fixed per-session cost that is penalized
the same amount as the cost associated with a dose of b/γ in one session. For
b = 0.05, this works out to a dose of approximately 1.75 mg/kg, and for b =
0.1, approximately 3.5 mg/kg. These values are significantly below the maximum
allowable dose in one session of 10 mg/kg and thus both model the reasonable
situation where our primary cost of concern is still the cost associated with dose
and not the fixed costs. At the same time, the values of the fixed costs are not so
low as to be negligible.

In Figure 1, we make the following observations. With b > 0 we see that stopping
indeed becomes optimal for some of the lowest disease states. This is intuitive, as
for a very low disease state, the certain fixed per-session cost in upcoming sessions
outweighs the possibility that the disease state will rise to a point where dose would
be given, so a decision to stop is optimal. For intermediate state values, we see a
wait-and-see policy, where no dose is given but neither is treatment stopped, as the
possibility of a flare-up to the point that positive dose is optimal is higher. For still
higher disease states, we observe that a positive dose is given. Finally, we note that
as b increases, the threshold state below which stopping is optimal increases. Again
this is reasonable, as the decision to stop becomes more appealing the higher the
per-session cost becomes.

We also note that when b = 0, stopping is never optimal for the state values we
consider. In essence the only options become either giving a positive dose, or being
in the wait-and-see region. This is also intuitive, since if there is no cost associated
with storing the drug, or administrative overhead, or having the patient travel for
the appointment, etc., then it is always most beneficial for the patient to return, on
the off-chance (no matter how small) that their state has deteriorated to the point
where a positive dose would be prescribed. In reality, we would expect a value of
b that is always positive, even if small, because these fixed costs do exist; thus the
situation where b is strictly zero is unlikely to occur in practice.

6. Monotonicity of stopping threshold state with respect to time. In our
numerical experiments, we have observed that if stopping is ever optimal, it is
optimal below a threshold state. Let us define this threshold state in session t as
x∗t . One question that naturally arises in the multi-period problem is whether x∗t is
a function of t, and if so, if x∗t is monotone in one direction or the other.

A zoom-in of Subfigure 1c is given in Figure 2, centered on x∗t , and with a finer
discretization. Figure 2 suggests that x∗t appears to monotonically increase with
respect to session number. That is, the less treatment time remaining, the higher
the threshold state between stopping and not stopping.

This result is not only numerically observed, but provable. In fact a proof for
a general DP problem with stopping is found in section 4.4, volume 1 of [2]. For
convenience we provide a counterpart of this proof using our notation.

By the Bellman’s equations (4), it is optimal to stop at time t for all states xt in
the set
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Figure 1. Optimal policy of tocilizumab dosing for rheumatoid
arthritis. The cost functions are c(d) = 0.028557d + b, with fixed
cost parameter b varying among subfigures. A dose of −1 indicates
a decision to stop treatment.
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Figure 2. Optimal policy with the cost function c(d) =
0.028557d+0.1. The plot is a zoomed-in version of Figure 1c around
the threshold area between stopping and not stopping, with refined
discretization. A dose of -1 indicates a decision to stop.

Tt =
{
xt

∣∣∣h(xt) ≤ min
dt∈D

c(dt) +

k∑
j=1

Jt+1

(
xt + f(dt; vj)

)
pj

}
(6)

Equation (4) along with the boundary condition of the DP, JT (xT ) = h(xT ),
implies that

JT−1(x) ≤ JT (x) ∀ x (7)

Using equation 4 along with the stationarity property of our problem and the
monotonicity property of DP, we obtain via induction

Jt(x) ≤ Jt+1(x) ∀ x, t. (8)

Using this fact, we see

T1 ⊂ T2 ⊂ . . . ⊂ TN−1. (9)

In our numerical simulations we have observed that Tt = (−∞, x∗t ) for all t.
This combined with equation (9) gives that the upper limit of the stopping set, x∗t ,
increases monotonically with t.

7. Conclusions. We have presented an extension of the stochastic DP model of
[7] where the decision-maker can decide to stop treatment at any treatment session.
If a decision to stop is made in the current period, all future per-session costs
are avoided, and the patient’s final disease state is taken to be the current state.
Intuitively, we expect the decision to stop will be optimal, if ever, at low disease
states. At these states, the future per-session cost outweighs the benefit of lowering
the disease state through treatment. In some cases, we may also find the existence
of a wait-and-see region, where zero dose is given in a particular session, but the
decision to stop is not made– this can incur a per-session cost, but the possibility
of giving a dose later to lower the disease state outweighs that per-session cost, so
we continue. At the highest disease states, positive doses are given as the benefit
of reducing disease state wins out over the per-session costs.

We reconsidered the rheumatoid arthritis example of [7] again, but this time
allowing for stopping. For the original problem, stopping was never optimal over
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the states considered. However, by adding a fixed per-session cost b > 0 to the
cost function c(d) = γd + b, we found that stopping is optimal for some of the
lowest disease states. This indicates that stopping is optimal when the future fixed
per-session costs outweigh the potential benefit of giving dose later.

In the literature, stopping is mentioned not only for patients in very low disease
states (remission,) but also sometimes for very high disease states, as this indicates
a failure of the drug to have an effect on the patient. In practice, this would often
indicate the need to switch to a different drug or treatment scheme. As we were
only considering the dose of a single drug in our framework, this situation did not
arise for us, but could be another interesting direction for future work.
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