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Abstract. The parabolic-elliptic Keller-Segel equation with sensitivity satu-

ration, because of its pattern formation ability, is a challenge for numerical sim-

ulations. We provide two finite-volume schemes that are shown to preserve, at
the discrete level, the fundamental properties of the solutions, namely energy

dissipation, steady states, positivity and conservation of total mass. These

requirements happen to be critical when it comes to distinguishing between
discrete steady states, Turing unstable transient states, numerical artifacts or

approximate steady states as obtained by a simple upwind approach.

These schemes are obtained either by following closely the gradient flow
structure or by a proper exponential rewriting inspired by the Scharfetter-

Gummel discretization. An interesting fact is that upwind is also necessary for
all the expected properties to be preserved at the semi-discrete level. These

schemes are extended to the fully discrete level and this leads us to tune pre-

cisely the terms according to explicit or implicit discretizations. Using some
appropriate monotonicity properties (reminiscent of the maximum principle),

we prove well-posedness for the scheme as well as all the other requirements.

Numerical implementations and simulations illustrate the respective advan-
tages of the three methods we compare.

1. Introduction. Taxis-diffusion and aggregation equations are widely studied in
the context of biological populations (see [10, 15, 16, 21] for instance). They describe
cell communities which react to external stimuli and form aggregates of organisms
(pattern formation), such as bacterial colonies, slime mold or cancer cells. The
Patlak-Keller-Segel model [18] is the most famous system and we are interested in
the following generalization

∂u
∂t −

∂
∂x

[
∂u
∂x − ϕ(u) ∂v∂x

]
= 0, x ∈ (0, 1), t > 0,

∂u
∂x − ϕ(u) ∂v∂x = 0, for x = 0 or 1,

u(x, 0) = u0(x) ≥ 0, x ∈ [0, 1].

(1)

Here, u(x, t) ≥ 0 represents the density of a given quantity (e.g. cells or bacteria
population) and the initial data u0(x) is a given nonnegative smooth function. As
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for the function v, which models a molecular concentration, we choose either the
case of the Fokker-Planck (FP in short) equation, where v(x) is known

v := v(x) ≥ 0,
∂v

∂x
∈ L∞(0, 1), (2)

or the case of the generalized Keller-Segel (GKS in short) equation, where

v(x, t) =

∫
K(x, y)u(y, t)dy, K(x, y) a smooth, symmetric kernel. (3)

Depending on the modeling choice for ϕ(u), solutions to 1 can blow up in finite
time depending upon a critical mass (see [6, 22]) or reach stationary profiles in
the form of peaks or plateaus [24] (pattern formation by Turing instability). The
high nonlinearities due to the advection term make problem 1 mainly untractable
through analytical methods. Thus, it is important to provide reliable numerical
methods avoiding non-physical oscillations and numerical instabilities even when
dealing with non-smooth solutions. The main properties that one wishes to preserve
in a numerical method are

(P1) positivity property, since we are dealing with densities or concentrations,

u(x, t) ≥ 0, (4)

(P2) mass conservation, because no-flux boundary conditions are imposed,∫ 1

0

u(x, t) =

∫ 1

0

u0(x)dx, (5)

(P3) preservation of discretized steady states of the form

g(u) = µ+ v, g′(u) =
1

ϕ(u)
, (6)

where µ is a parameter related to the mass of u, and
(P4) energy dissipation

d

dt
E(t) ≤ 0, E(t) =

∫ 1

0

[G(u)− κuv] dx, (7)

where G(u) is a primitive of g(u) and the value of κ differs for the two cases we
study here, namely

κ = 1 (FP case), κ =
1

2
(GKS case). (8)

The aims of our work are first to recall two points of view for the derivation of
the above energy inequality, second to use them for the construction of conservative,
finite volume numerical schemes preserving energy dissipation to solve equation 1,
third to make numerical comparisons in the case of complex patterns in order to
distinguish physical instabilities from numerical artifacts. The two different deriva-
tions of the energy dissipation use two symmetrization strategies: the gradient flow
or the Scharfetter-Gummel approach. It turns out that they lead to two strategies
for discretization of problem 1. We prove that the proposed schemes statisfy prop-
erties 4–7 and because we build implicit schemes, there is no limitation on the time
step in the fully discrete case.

There exist other works which propose schemes for the resolution of problems in
the form 1. For instance, finite elements methods are used, see [25] and references
therein. Optimal transportation schemes for Keller-Segel systems are introduced
in [5]. The papers [8] and [9] propose a finite-volume method able to preserve the
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above properties, including energy dissipation, at the semi-discrete level or with
an explicit in time discretization, using the gradient flow approach, see also [4].
The symmetrization using the Scharfetter-Gummel approach is used in [20] where
properties similar to ours are proved. However, the results do not include sensitivity
saturation. To the best of our knowledge, our work is the first to propose implicit
in time methods, without time step limitation (CFL condition), for which we are
able to prove that, under generic conditions, the energy decreases at both semi-
discrete and discrete level. Moreover, we build an alternative to the gradient flow
approach applying the Scharfetter-Gummel strategy [26] for the discretization of
drift-diffusion equations 1 with a general saturation function ϕ.

The paper is organized as follows. In Section 2, we present in more details our
assumptions for the equation 1. We also explain some modeling choices in particular
for the nonlinearity ϕ(u) and on the choice of the kernel K. Section 3 is devoted to
the introduction of the two approaches, gradient flow or Scharfetter-Gummel, and
to how we use the continuous version of energy dissipation to derive the schemes.
In Section 4 and Section 5, we show how the aforementioned two approaches lead
to two different numerical methods, developed from the semi-discrete (only in space
discretization) level to the fully discretized scheme. In particular, using a general
result recalled in Appendix A about monotone schemes, we prove that the pro-
posed schemes are well-posed and satisfy the fundamental properties 4–7. These
theoretical results are illustrated in Section 6 by numerical simulations: we compare
the gradient flow and the Scharfetter-Gummel schemes with the upwind approach,
typically used to solve this kind of models.

2. Modeling assumptions. The standard biological interpretation of 1 ([14, 21,
23]) provides us with some further properties of the nonlinearities which we describe
now.

Chemotactic sensitivity. The function ϕ(u) is called chemotactic sensitivity. It
determines how the random movement of particles of density u is biased in the
direction of the gradient of v. In order to include the different choices of ϕ, as
ϕ(u) = u as in the Keller-Segel or drift-diffusion model, or the logistic case ϕ(u) =
u(1− u), or the generalized case ϕ(u) = ue−u, we use the formalism

ϕ(u) = uψ(u), with ψ(u) ≥ 0, ψ′(u) ≤ 0. (9)

More precisely, we consider two cases for the smooth function ψ,

ψ(u) > 0, ∀u > 0, (10)

or
ψ(u) > 0 for 0 < u < M, ψ(M) = 0. (11)

In the case 11 we only consider solutions which satisfy u ∈ [0,M ].
It is convenient to introduce the notations

g(u) =

∫ u

a

1

ϕ(v)
dv, G(u) =

∫ u

0

g(s) ds, (12)

where a is a constant chosen so that g is well-defined (depending on ϕ). For instance,
for the standard case ϕ(u) = u, a = 1 and one obtains g(u) = ln(u) and G(u) =
u ln(u)− u. For functions ϕ satisfying 10, a natural hypothesis which is related to
blow-up is the following

1

ϕ
/∈ L1(a,+∞), g(u) −→

u→∞
+∞, (13)
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an assumption which, as we see it later, appears naturally when it comes to the
well-posedness of numerical schemes.

Note that under assumption 10 and if ψ is bounded, solutions exist globally and
are uniformly bounded [11]. Under assumption 11, if 0 ≤ u0 ≤ M , the solution is
also globally defined and satisfies 0 ≤ u(t, ·) ≤M for all times [16].

Expression of the drift v. The convolution expression for v as a function of u
has been widely used in recent studies [1, 2, 3]. It also comes from the Keller-Segel
model [15, 18, 23], where the equation for the cells density in 1 is complemented with
a parabolic equation for the chemoattractant concentration v. Since the chemoat-
tractant is supposed to diffuse much quicker than the cells density, we can consider
a simplified form of the Keller-Segel system and couple 1 with the elliptic equation
for v {

− ∂2v
∂x2 = u− v, x ∈ (0, 1),

∂v
∂x = 0, x = 0 or 1.

This equation leads to 3 using the Green function given by the positive and sym-
metric kernel K(x, y) defined as

K(x, y) = λ
(
ex + e−x

) (
ey + e2−y) , x ≤ y, λ =

1

2 (e2 − 1)
. (14)

3. Energy dissipation. Energy dissipation is the most difficult property to pre-
serve in a discretization and methods might require corrections [17]. Therefore, it is
useful to recall how it can be derived simply for the continuous equation. We focus
on two different strategies, that lead to two different discretization approaches, the
gradient flow approach and the Scharfetter-Gummel approach.

3.1. The gradient flow approach to energy. Using the notations 12, the equa-
tion for u can be rewritten as

∂u

∂t
− ∂

∂x

[
ϕ(u)

∂ (g(u)− v)

∂x

]
= 0, (15)

so that

(g(u)− v)
∂u

∂t
= (g(u)− v)

∂

∂x

[
ϕ(u)

∂ (g(u)− v)

∂x

]
=

1

2

∂

∂x

[
ϕ(u)

∂(g(u)− v)2

∂x

]
− ϕ(u)

[
∂(g(u)− v)

∂x

]2

.

Consequently, we find, in the Fokker-Planck case

d

dt

∫ 1

0

[G(u)− uv(x)]dx = −
∫ 1

0

ϕ(u)

[
∂(g(u)− v)

∂x

]2

dx ≤ 0,

and in the generalized Keller-Segel case

d

dt

∫ 1

0

[G(u)− 1

2
uv(x, t)]dx = −

∫ 1

0

ϕ(u)

[
∂(g(u)− v)

∂x

]2

dx ≤ 0,
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because, thanks to the symmetry assumption on K and by using the definition 3 of
v, we have∫ 1

0

∫ 1

0

K(x, y)u(y, t)
∂u(x, t)

∂t
=

∫ 1

0

∫ 1

0

K(x, y)
∂u(y, t)

∂t
u(x, t)

=
1

2

d

dt

∫ 1

0

∫ 1

0

K(x, y)u(y, t)u(x, t).

3.2. The Scharfetter-Gummel approach to energy. Inspired from the case of
electric forces in semi-conductors, the equation for u can be rewritten as

∂u

∂t
− ∂

∂x

[
ev−g(u)ϕ(u)

∂eg(u)−v

∂x

]
= 0, (16)

so that

(g(u)− v)
∂u

∂t
=(g(u)− v)

∂

∂x

[
ev−g(u)ϕ(u)

∂eg(u)−v

∂x

]
=
∂

∂x

[
(g(u)− v)ev−g(u)ϕ(u)

∂eg(u)−v

∂x

]
− ev−g(u)ϕ(u)

∂eg(u)−v

∂x

∂ (g(u)− v)

∂x
.

It is immediate to see that the last term has the negative sign while the time
derivative term is exactly the same as in the gradient flow approach.

At the continuous level, these two calculations are very close to each other.
However, they lead to the construction of different discretizations. The gradient
flow point of view is used for numerical schemes by [10], the Scharfetter-Gummel
approach is used in [20].

4. Semi-discretization. We give here our notations for the semi-discretization.
We consider a (small) space discretization ∆x = 1

I , I ∈ N. The mesh is centered
at xi = i∆x for i = 1, . . . , I, with endpoints xi+1/2 = (i+ 1/2)∆x for i = 1, . . . , I.

Therefore, our computational domain is always shifted and takes the form
(

∆x
2 , (I+

1
2 )∆x

)
. Finally, the mesh is formed by the intervals

Ii =
(
xi− 1

2
, xi+ 1

2

)
, i = 1, . . . , I.

The semi-discrete approximation of u(x, t) at a given time t, interpreted in the finite
volume sense ([7, 13, 19]), is denoted by

ui(t) ≈
1

∆x

∫
Ii

u(x, t)dx, i = 1, . . . , I.

As for the discretization of v for i = 1, . . . , I, vi(t) stands for v(xi) in the FP case,

while it is defined by
∑I
j=1Kijuj(t) in the GKS case, where

Kij := K(xi, xj), i = 1, . . . , I, j = 1 . . . , I.

Integration on the interval Ii yields fluxes Fi+ 1
2
(t) which will approximate the

quantity
(
∂u
∂x − ϕ(u) ∂v∂x

)
at xi+ 1

2
for i = 0, . . . , I through the interval interfaces.

The boundary conditions require F 1
2
(t) = FI+ 1

2
(t) = 0, and the whole problem will

be to properly define Fi+ 1
2
(t) for i = 1, . . . , I − 1. This will be chosen depending on

the strategy, either through a gradient flow or a Scharfetter-Gummel approach, as
well as the equation considered (FP or GKS).
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The mass conservative form of 1 leads to a finite volume semi-discrete scheme{
dui(t)
dt + 1

∆x [Fi+1/2(t)− Fi−1/2(t)] = 0, i = 1, . . . , I, t > 0,

F1/2(t) = FI+1/2(t) = 0.
(17)

We use the definition 8 for κ and set for i = 1, . . . , I

Ei(t) = G(ui(t))− κui(t)vi(t).

The semi-discrete energy is then

Esd(t) := ∆x

I∑
i=1

Ei(t).

4.1. The gradient flow approach. Using the form 15 of equation 1, we define
the semi-discrete flux as

Fi+1/2(t) = −
ϕi+1/2

∆x

[
g(ui+1)− vi+1 −

(
g(ui)− vi

)]
, i = 1, . . . , I − 1. (18)

The precise expression of ϕi+1/2 is not relevant for our present purpose which is
to preserve the energy dissipation property. However, for stability considerations
it is useful to upwind, an issue which we shall tackle when we consider the full
discretization.

Then, the semi-discrete energy form is obtained after multiplication by (g(ui)−vi)
and yields

d

dt
∆x

I∑
i=1

Ei(t) =−
I∑
i=1

(g(ui)− vi)[Fi+1/2 − Fi−1/2]

=

I−1∑
i=1

Fi+1/2 [(g(ui+1)− vi+1)− (g(ui)− vi)] .

Therefore, we find the semi-discrete form of energy dissipation

dEsd
dt

= −∆x

I−1∑
i=1

ϕi+1/2

[(
g(ui+1)− vi+1

)
−
(
g(ui)− vi

)
∆x

]2

≤ 0.

4.2. The Scharfetter-Gummel approach. We choose to discretize the form 16,
defining the semi-discrete flux as

Fi+1/2(t) = −

(
ev−g(u)ϕ(u)

)
i+1/2

∆x

[
eg(ui+1)−vi+1−eg(ui)−vi

]
, i = 1, . . . , I−1, (19)

where, again, the specific form of the interpolant
(
ev−g(u)ϕ(u)

)
i+1/2

is not relevant

here.
As above, the semi-discrete energy form follows upon multiplication by g(ui)−vi

and reads

d

dt
∆x

I∑
i=1

Ei(t) =−
I∑
i=1

(g(ui)− vi)
[
Fi+1/2 − Fi−1/2

]
=

I−1∑
i=1

Fi+1/2 [(g(ui+1)− vi+1)− (g(ui)− vi)] .
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Summing up, the semi-discrete form of energy dissipation here writes

dEsd
dt

=−∆x

I−1∑
i=1

{(
ev−g(u)ϕ(u)

)
i+1/2

· e
g(ui+1)−vi+1 − eg(ui)−vi

∆x
·

(g(ui+1)− vi+1)− (g(ui)− vi)
∆x

}
≤ 0.

4.3. Discrete steady states. Steady states make the energy derivative vanish
which imposes both in the gradient flow and the Scharfetter-Gummel approaches
that

(
g(ui+1)−vi+1

)
=
(
g(ui)−vi

)
. In other words they are given, up to a constant

µ, as the discrete version of 6,

g(ui) = vi + µ, i = 1, . . . , I. (20)

We recall from [24] that in the GKS case, there are several steady states and the
constant ones can be unstable.

5. Fully discrete schemes. For the time discretization, we consider (small) time
steps ∆t > 0, and set tn = n∆t for n ∈ N. The discrete approximation of u(x, t) is
now

uni ≈
1

∆x

∫
Ii

u(x, tn)dx, i = 1, . . . , I, n ∈ N.

Integration on the interval Ii yields fluxes Fn
i+ 1

2

which will approximate the quantity(
∂u
∂x − ϕ(u) ∂v∂x

)
at xi+ 1

2
for i = 1, . . . , I − 1 through the interval interfaces, and at

time tn for n ∈ N. The boundary conditions require Fn1
2

= Fn
I+ 1

2

= 0 for all n ∈ N.

To achieve the time discretization, and restricting our analysis to the Euler

scheme, we write the time discretization dui(t)
dt as

un+1
i −un

i

∆t . Therefore, the full
discretization of 17 reads for n ∈ N as{

un+1
i − uni + ∆t

∆x

[
Fn+1
i+1/2 − F

n+1
i−1/2

]
= 0, i = 1, . . . , I,

Fn+1
1/2 = Fn+1

I+1/2 = 0.
(21)

The issue here is to decide which terms (in u and v) should be discretized with
implicit or explicit schemes based on fully discrete energy dissipation. We claim
that, apart from the interpolant, we need to make the terms in ui implicit and, for
the GKS case, the terms in vi explicit, a fact on which we now elaborate.

We define the energy at the discrete level through

Eni = G(uni )− κuni vni , i = 1, . . . , I, n ∈ N,

and

En := ∆x

I∑
i=1

Eni , n ∈ N.

The computation made in the semi-discrete case, dEi(t)
dt = dui(t)

dt (g(ui(t))−vi(t)),
extends to the fully discrete setting and leads to the following constraint on the
energy

I∑
i=1

(
En+1
i − Eni

)
≤

I∑
i=1

(un+1
i − uni )(g(uαn

i )− vβn

i ).
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Here, uαn
i := αuni + (1 − α)un+1

i and vβn

i := βvni + (1 − β)vn+1
i . The convexity of

G(·) motivates the choice of an implicit discretization for u, i.e. α = 0, because for
i = 1, . . . , I, there holds

G(un+1
i )−G(uni ) ≤ g(un+1

i )(un+1
i − uni ).

Regarding the term in uv, only the case of GKS needs to be fixed and we thus
require

−
I∑
i=1

[
un+1
i vn+1

i − uni vni
]
≤ −2

I∑
i=1

vβn

i (un+1
i − uni ).

It is natural to try and balance the terms by choosing a semi-explicit discretization
with β = 1

2 , which yields

I∑
i=1

2vβn

i (un+1
i − uni )−

(
un+1
i vn+1

i − uni vni
)

=

I∑
i=1

(
un+1
i vni − uni vn+1

i

)
=
∑
i,j

Kij

(
un+1
i unj − uni un+1

j

)
,

with the last term vanishing due to the symmetry of K.
However, implicit and explicit time discretizations for v can also be considered at

the expense of adding hypotheses on the kernel K. Indeed, for a given 0 ≤ β ≤ 1,
we find
I∑
i=1

2vβn

i (un+1
i −uni )−

(
un+1
i vn+1

i − uni vni
)

= (1−2β)
∑
i,j

Kij(u
n+1
i −uni )(un+1

j −unj ).

As a consequence, an explicit (resp. implicit) scheme is suitable for the time
discretization of v provided that K is a non-negative (resp. non-positive) symmetric
kernel. Since K is a non-negative symmetric kernel for the Generalized Keller-Segel
equation 3, for simplicity we choose an explicit discretization for v.

Finally, we note that the interpolant does not play any role for energy discretiza-
tion and we can use the simplest explicit or implicit discretization (both in u and
v), so as to make the analysis of the scheme as simple as possible.

5.1. The gradient flow approach. We consider the full discretization of 18 and
define the fully discrete flux in 21 as

Fn+1
i+1/2 = −

ϕ(u)n+1
i+1/2

∆x

[(
g(un+1

i+1 )− vni+1

)
−
(
g(un+1

i )− vni
)]
, i = 1, . . . , I−1. (22)

At this level, we need to define the form of the interpolant ϕ(u)n+1
i+1/2. From

the theorem in Appendix A, we use an upwind technique in order to ensure well-
posedness and monotonicity properties of the scheme. Thus, for i = 1, . . . , I − 1,
we define

ϕ(u)n+1
i+1/2 :=

{
un+1
i ψ(un+1

i+1 ) when g(un+1
i )− g(un+1

i+1 ) + vni+1 − vni ≥ 0,

un+1
i+1 ψ(un+1

i ) when g(un+1
i )− g(un+1

i+1 ) + vni+1 − vni < 0.
(23)

Proposition 1 (Fully discrete gradient flow scheme). We assume either 10 and 13,
or 11 and give the u0

i ≥ 0. Then, the scheme 21–22–23 has the following properties:

(i) the solution uni exists and is unique, for all i = 1, . . . , I, and n ≥ 1;

(ii) it satisfies uni ≥ 0, and uni ≤M for the case 11, if it is initially true;
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(iii) the steady states g(ui)− vi = µ are preserved;

(iv) the discrete energy dissipation inequality is satisfied

En+1 − En ≤ −∆t

∆x

I−1∑
i=1

ϕ(u)ni+1/2

[(
g(un+1

i+1 )− vni+1

)
−
(
g(un+1

i )− vni
)]2

.

Notice that this theorem does not state a uniform bound in the case 10 and 13.

Proof. (i) We prove that the scheme satisfies the hypotheses of the theorem in Ap-
pendix A. We set

Ai+1/2(un+1
i , un+1

i+1 ) =
∆t

∆x
Fn+1
i+1/2.

Then, the simplest case is when ϕ satisfies 11, since clearly un+1
i ≡ 0 and un+1

i ≡M
are respectively a sub- and supersolution. When ϕ satisfies 10 and 13, un+1

i ≡ 0

is again a subsolution, while for the supersolution we choose Ūn+1
i = g−1(C + vni ).

Such a choice indeed makes the flux terms vanish:

Fn+1
i+1/2 =−

ϕ(u)n+1
i+1/2

∆x

[(
g(Ūn+1

i+1 )− vni+1

)
−
(
g(Ūn+1

i )− vni
)]

=−
ϕ(u)n+1

i+1/2

∆x
[C − C] = 0.

Thus Ūn+1
i is a supersolution as soon as g−1(C + vni ) ≥ uni , which holds when C

is taken to be large enough because we recall that assumption 13 ensures that g(u)
tends to +∞ as u tends to +∞.

Moreover, the scheme is monotone since

∂1Ai+ 1
2
(un+1
i , un+1

i+1 ) =− ∆t

(∆x)2
un+1
i+1 ψ

′(un+1
i )

[
g(un+1

i+1 )− vni+1 −
(
g(un+1

i )− vni
)]

+

− ∆t

(∆x)2
ψ(un+1

i+1 )
[
g(un+1

i+1 )− vni+1 −
(
g(un+1

i )− vni
)]
−

− ∆t

(∆x)2
ϕ(u)n+1

i+ 1
2

[
−g′(un+1

i )
]
≥ 0,

where

[x]+ =

{
x for x ≥ 0,

0 for x < 0
and [x]− =

{
0 for x ≥ 0,

x for x < 0,

so that [x]+ ≥ 0, [x]− ≤ 0 for all x.
(ii) Positivity of discrete solutions and the upper bound in the logistic case follow
from the subsolution and supersolution built in step (i).
(iii) Preservation of steady states at the discrete level follows immediately from the
form we have chosen for the fully discrete fluxes.
(iv) For the energy inequality, we remark that the contribution regarding time
discretization is treated in the introduction of the present section. The space term
is exactly treated as in the corresponding subsection of Section 4.

5.2. The Scharfetter-Gummel approach. In 21, the fully discrete Scharfetter-
Gummel flux reads

Fn+1
i+1/2 = −

(
ev

n−g(un)ϕ
(
un+1

))
i+1/2

[
eg(u

n+1
i+1 )−vni+1 − eg(u

n+1
i )−vni

]
, i = 1, . . . , I − 1.
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As for the gradient flow approach, we need the upwind technique to get a scheme
which satisfies the hypotheses in Appendix A. So, we set for i = 1, . . . , I − 1

(
ev

n−g(un)ϕ
(
un+1

))
i+1/2

:=


un+1
i+1 ψ(un+1

i )ev
n
i+1−g(u

n
i+1),

if e(g(u
n+1
i+1 )−vni+1) − e(g(u

n+1
i )−vni ) ≥ 0,

un+1
i ψ(un+1

i+1 )ev
n
i −g(u

n
i ),

if e(g(u
n+1
i+1 )−vni+1) − e(g(u

n+1
i )−vni ) < 0.

Proposition 2 (Fully discrete Scharfetter-Gummel scheme). We assume either 10
and 13, or 11 and give the u0

i ≥ 0. Then, the scheme 21–22–23 has the following
properties:

(i) the solution uni exists and is unique, for all i = 1, . . . , I, and n ≥ 1;

(ii) it satisfies uni ≥ 0, and uni ≤M for the case 11, if it is initially true;

(iii) the steady states g(ui)− vi = µ are preserved;

(iv) the discrete energy dissipation inequality is satisfied

En+1 − En ≤− ∆t

∆x

I−1∑
i=1

{(
ev

n−g(un)ϕ (un)
)
i+1/2

·
[
eg(u

n+1
i+1 )−vni+1 − eg(u

n+1
i )−vni

]
·

[(
g
(
un+1
i+1

)
− vni+1

)
−
(
g
(
un+1
i

)
− vni

)] }
≤ 0.

Proof. We argue exactly as for the gradient flow approach.

5.3. The upwinding approach. The upwind scheme is driven by simplicity and,
in 21, the fluxes are defined by

Fn+1
i+1/2 = − 1

∆x

[
un+1
i+1 − u

n+1
i − ϕ(u)ni+1/2

(
vni+1 − vni

)]
, i = 1, . . . , I − 1,

with

ϕ(u)n+1
i+1/2 :=

{
un+1
i ψ(un+1

i+1 ) when vni+1 − vni ≥ 0,

un+1
i+1 ψ(un+1

i ) when vni+1 − vni < 0,
(24)

as in 23, but this time depending on the sign of vni+1 − vni .

Proposition 3 (Fully discrete upwind scheme). We assume either 10 and 13, or 11
and give the u0

i ≥ 0. Then, the scheme 21–22–23 has the following properties:

(i) the solution uni exists and is unique, for all i = 1, . . . , I, and n ≥ 1;

(ii) it satisfies uni ≥ 0, and uni ≤M for the case 11, if it is initially true.

Proof. As for the gradient flow approach, the above choice makes the scheme mono-
tone, because

∆t

∆x
∂1Fi+ 1

2
(un+1
i , un+1

i+1 ) =− ∆t

∆x2

(
− 1− un+1

i+1 ψ
′(un+1

i )
[
vni+1 − vni

]
−

− ψ(un+1
i+1 )

[
vni+1 − vni

]
+

)
≥ 0.

Thus, arguing as for the gradient flow approach and relying on the results in Ap-
pendix A, existence and uniqueness of the discrete solution as well as preservation
of the initial bounds follow immediately.

Thus, choice 24 enables to prove that the scheme is well-defined, satisfies uni ≥
0 and preserves the bound uni ≤ M for the case 11, but the energy dissipation
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inequality is lost. Also the steady states, in this case, are defined by the nonlinear
relation ui+1 − ui = ϕ(u)i+1/2(vi+1 − vi) which are usually not in the form 20.

6. Numerical simulations.

6.1. The Fokker-Planck equation, ϕ(u) = u. We first present the numerical
implementation of the Fokker-Planck equation with ϕ(u) = u. We here compare
the Scharfetter-Gummel and upwind approaches (the gradient flow gives the same
solution as the Scharfetter-Gummel and is thus not presented here). Both these
schemes have error convergence of order 1 in space, as it can be easily checked.

We consider a first case with χ/D = 24, with I = 100 and an initial density
u0 = 1. We take the velocity field as

v = x(1− x)|x− 0.5|.

In Figure 1, we compare the approximate stationary solutions obtained with the
upwind scheme (blue, dashed line) and the Scharfetter-Gummel scheme (red line)
with the exact stationary solution (black line), which in this case has the form

u(x) = Ceχv(x)/D, with C =
(∫ 1

0
eχv(x)/Ddx

)−1

so that the mass of the stationary

solution is normalized. In this first case, the two schemes have no significant dif-
ferences; this is a major difference with the Keller-Segel equation, as we show it in
the next subsection.
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Figure 1. Left: Comparison of solutions of the Scharfetter-
Gummel (red line) and upwind (blue, dashed line) schemes at time
t = 100 with the exact stationary solution (black line) for the lin-
ear Fokker-Planck equation with ϕ(u) = u. We used I = 100 and
∆t = 0.01. Right: normalized L∞ variation for the two schemes.

6.2. The nonlinear Keller-Segel equation. We turn to the equation 1 coupled
with 3 for two nonlinear forms of the chemotactic sensitivity function: the logistic
form ϕ(u) = u(1− u) and the exponential form ϕ(u) = ue−u. The goal is to com-
pare the discrete solutions obtained with the three numerical approaches presented
above when patterns arise, namely when Turing instabilities drive the formation
of spatially inhomogeneous solutions (we refer to [21] for an introduction to this
topic). To this end, we slightly modify the original equation 1 to
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
∂u
∂t −

∂
∂x

[
D ∂u
∂x − χϕ(u) ∂v∂x

]
= 0, x ∈ (0, 1), t > 0,

D ∂u
∂x − χϕ(u) ∂v∂x = 0, for x = 0 or 1,

u(x, 0) = u0(x) ≥ 0, x ∈ [0, 1],

(25)

in order to emphasize the coefficients driving the instabilities: D > 0, the constant
diffusion coefficient and χ > 0, the chemosensitivity. The concentration of the
chemoattractant v remains driven by (3).
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Figure 2. Evolution in time of solutions to (25) in the logistic
case ϕ(u) = u(1−u) with χ/D = 40. We solved the equation with
the Scharfetter-Gummel (red line) and the gradient flow scheme
(black dashed line) with I = 100 and ∆t = 1. There is no major
difference between the solutions given by the two schemes.

We first consider the logistic case with χ/D = 40. We take as initial condition
a random spatial perturbation of the constant steady state u0 = 0.5 and solve the
equation with 100 equidistant points in [0, 1].

Figure 2 shows the evolution in time of the density uni obtained with the
Scharfetter-Gummel (red line) and the gradient flow schemes (black, dashed line).
After a rather short time, the initial spatial perturbation evolves, as expected, in
spatially inhomogeneous patterns: a series of “steps” arise in the regions where the
concentration of the chemoattractant is greater. After some time, a structure with
a smaller number of steps forms when the two central plateaus merge. It is worth
noticing that, even if the transitions from one structure to another happen very
quickly, the time period during which these structures remain unchanged grows
with the number of transitions that occurred. In [24], these intermediate patterns
are called metastable, and this peculiar phenomenon is explained in details.

As for the schemes, Figure 2 shows that the Scharfetter-Gummel and the gra-
dient flow approaches give the same solution; no difference can be spotted. This
is not true for the upwind approach. In Figure 3, we compare the solutions to the
Scharfetter-Gummel (red line) and the upwind (blue, dashed line) schemes. The
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Figure 3. Evolution in time of solutions to 25 in the logistic
case ϕ(u) = u(1−u) with χ/D = 40. We solved the equation with
the Scharfetter-Gummel (red line) and the upwind scheme (blue,
dashed line) with I = 100 and ∆t = 1.

upwind solution transitions faster from one metastable structure to the following
than the Scharfetter-Gummel one. In fact, as proved above, the latter preserves
discrete stationary profiles which, using the no-flux boundary conditions, solve the
equation

∂u

∂x
=
χ

D
ϕ(u)

∂v

∂x
. (26)

From 26, it is clear that, in the logistic case, the expected stationary solutions
are 0-1 plateaus (or “steps”) connected by a sigmoid curve which is increasing or
decreasing when v is. We refer again to [24] and also to [12] for a detailed study of
the stationary solutions and their properties for the logistic Keller-Segel system. In
Figures 4a and 4b, we compare two stationary solutions to the Scharfetter-Gummel
and upwind schemes, at time t = 50 and t = 9000 respectively. The Scharfetter-
Gummel scheme approximates the 0-1 plateaus of metastable solutions better than
the upwind scheme, whose solutions have smoother edges. We hypothesize that,
since the Scharfetter-Gummel scheme preserves the metastable profiles better, it
will also better preserve the time during which the solution will remain very close
to a metastable state, up until the next transition. Consequently, this would mean
that the upwind scheme accelerates the real dynamics.

Moreover, in Figure 4c we compare the L∞ dynamics of the three schemes,
computing the quantity ||un − un−1||∞/||un−1||∞ for each n. The peaks shown by
this figure correspond to the transitions from one profile to another. Observe that,
for both solutions of the Scharfetter-Gummel and the gradient flow scheme, the two
peaks are further away in time than the ones from the upwind scheme: this confirms
that the upwind solution is in advance when it comes to transitioning. Nevertheless,
from t ≈ 6000, the relative errors of the upwind solution are consistently greater that
the ones from the two other approaches, thus confirming that only the Scharfetter-
Gummel and the gradient flow schemes better preserve the exact discrete stationary



36 L. ALMEIDA, F. BUBBA, B. PERTHAME AND C. POUCHOL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

Cell density at t = 50 

Scharfetter-Gummel

Upwind

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

Cell density at t = 9000 

Scharfetter-Gummel

Upwind

(b)

t

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

||
u

k
+

1
-u

k
||
∞/|

|u
k
||
∞

10-6

10-5

10-4

10-3

10-2

10-1

100
L∞ dynamics

Scharfetter-Gummel

Gradient Flow

Upwind

(c)

Figure 4. Stationary profiles and dynamics. (A), (B) Com-
parison of the stationary profiles of solutions to the Scharfetter-
Gummel (red line) and the upwind (blue, dashed line) schemes at
t = 50 and t = 9000. (C) Normalized L∞ variation for the three
schemes.

profiles as well as the metastable ones. Also notice that none of the schemes produce
overshoot, due to our upwinding of the term in ψ(u).

Next, we consider an exponentially decreasing form of the chemotactic sensitiv-
ity function with χ/D = 24. Again, we take as initial condition a random spatial
perturbation of the constant steady state u0 = 0.7 and solve the equation on 100
equidistant points. The evolution in time of discrete solutions obtained with the
three numerical approaches are compared in Figures 5 and 7. In this model, no
initial upper bound for the solution is imposed, so that the cells aggregate “natu-
rally” where the chemoattractant has the greatest concentration, resulting in profiles
without the plateaus observed in the logistic model. However, solutions face the
same kind of transitions observed before, evolving from one stationary profile to an-
other. As before, the Scharfetter-Gummel and the gradient flow approaches give the
same solutions (Figure 5), while the solution of the upwind scheme evolves faster.
In Figures 6a and 6b, we compare stationary profiles obtained with the different
approaches while in Figure 6c we compare dynamics of the solutions. This last
figure shows that, as for the logistic model, smaller errors can be expected for the
Scharfetter-Gummel and gradient flow approaches when steady states are reached.
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Figure 5. Evolution in time of solutions to 25 in the exponen-
tial case ϕ(u) = ue−u with χ/D = 24. We solved the equation with
the Scharfetter-Gummel (red line) and the gradient flow schemes
(black, dashed line) with I = 100 and ∆t = 1. As for the logistic
model, the two schemes give the same solution.

7. Conclusion. In the context of the Generalized Keller-Segel system, we have
presented constructions of numerical schemes which extend previous works [10, 20],
built on two different views of energy dissipation. Our construction unifies these two
views, the gradient flow and Scharfetter-Gummel symmetrizations. Our schemes
preserve desirable continuous properties: positivity, mass conservation, exact energy
dissipation, discrete steady states. Being correctly tuned between implicit and
explicit discretization, they can handle large time steps without CFL condition.

The present work is motivated by experiments of breast cancer cells put in a 3D
structure mimicking the conditions they meet in vivo, namely in the extracellular
matrix. After a few days, images of 2D sections show that cells have organized
as spheroids, a phenomenon believed to be driven by chemotaxis. The spheroids
can then be interpreted as Turing patterns for Keller-Segel type models and it is
crucial to use appropriate schemes for them to be distinguishable from actual steady
states or numerical artifacts. Comparing 2D simulations of such models with these
experimental images will be the subject of future work.

In fact, it is important to remark that the schemes we presented here in 1D could
be easily extended to rectangular domains, without loss of properties 4–7. However,
it remains a perspective to treat more general geometries in a multi-dimensional
setting with our approach.
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Figure 6. Stationary profiles and dynamics. (A), (B) Com-
parison of the stationary profiles obtained with the Scharfetter-
Gummel (red line) and the upwind scheme (blue, dashed line) at
t = 50 (left) and t = 200. (C) Normalized L∞ variation for the
three schemes.

Appendix A. Existence and uniqueness for monotone schemes. We recall
sufficient conditions for which an implicit Euler discretization in time can be solved,
independently of the step-size. This is the case for a monotone scheme. The proof
relies on the existence of sub- and supersolutions, and thus also yields the preser-
vation of positivity and other pertinent bounds as we have used in Section 5.

We consider the problem of finding a unique solution
(
un+1
i

)
to the nonlinear

equation arising in Section 5 which reads

un+1
i − uni

∆t
+

1

∆x

[
F (uni , u

n
i+1, v

n
i , v

n
i+1, u

n+1
i , un+1

i+1 )︸ ︷︷ ︸
Fn+1

i+1
2

−Fn+1
i− 1

2

]
= 0, i = 1, . . . , I. (27)

We write a general proof for a scheme of the form

ui +Ai+ 1
2
(ui, ui+1)−Ai− 1

2
(ui−1, ui) = fi, i = 1, . . . , I, (28)

where we consider the problem of finding a solution (ui) (which stands for un+1
i ).



ENERGY AND IMPLICIT DISCRETIZATION OF FP AND KS EQUATIONS 39

x

0 0.5 1
u

0

1

2

3

t = 1 

Scharfetter-Gummel

Upwind

x

0 0.5 1

u

0

1

2

3

t = 10 

x

0 0.5 1

u

0

1

2

3

t = 50 

x

0 0.5 1

u

0

1

2

3

t = 150 

x

0 0.5 1

u

0

1

2

3

t = 200 

x

0 0.5 1

u

0

1

2

3

t = 3500 

Figure 7. Evolution in time of solutions to 25 in the exponen-
tial case ϕ(u) = ue−u with χ/D = 24. We compare the solutions of
the Scharfetter-Gummel (red line) and the upwind schemes (blue,
dashed line) obtained with I = 100 and ∆t = 1 for different times.

Here we assume that the fi are given (it stands for uni ) and that the Ai+ 1
2

are

Lipschitz continuous and, a.e.,

∂1Ai+ 1
2
(·, ·) ≥ 0, ∂2Ai+ 1

2
(·, ·) ≤ 0, i = 1, . . . , I, (29)

and there are a supersolution (Ūi)i=1 ...,I and a subsolution (U i)i=1 ...,I such that
for all i = 1, . . . , I,

Ūi +Ai+ 1
2
(Ūi, Ūi+1)−Ai− 1

2
(Ūi−1, Ūi) ≥fi, (30)

U i +Ai+ 1
2
(U i, U i+1)−Ai− 1

2
(U i−1, U i) ≤fi. (31)

We build a solution of 28 using an evolution equation

dui(t)

dt
+ui(t)+Ai+ 1

2
(ui(t), ui+1(t))−Ai− 1

2
(ui−1(t), ui(t)) = fi, i = 1, . . . , I. (32)

Theorem A.1. Assume 29 and the existence of a subsolution and of a supersolu-
tion. Then,

(i) For a supersolution (resp. subsolution) initial data, the dynamics 32 satisfies
dūi(t)
dt ≤ 0 (resp.

dui(t)
dt ≥ 0) for all times t ≥ 0, and thus ūi(t) is a supersolution

(resp. subsolution) for all times.

(ii) A subsolution is smaller than a supersolution.

(iii) ūi(t) and ui(t) converge to the same solution of 28.

Proof. (i) We prove the statement with the supersolution. We set

zi(t) =
dūi(t)

dt
, zi(0) ≤ 0, i = 1, . . . , I.

Since the Ai+ 1
2

are Lipschitz continuous, from equation 32 we deduce that the

quantities dūi(t)
dt are also Lipschitz continuous. From Rademacher’s Theorem, the
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zi are differentiable a.e. and their a.e. derivatives are also their distributional
derivatives.

Differentiating equation 32, we obtain for i = 1, . . . I, and for a.e. t > 0

dzi(t)

dt
+ zi(t) + [∂1Ai+ 1

2
− ∂2Ai− 1

2
] zi(t) = −∂2Ai+ 1

2
zi+1(t) + ∂1Ai− 1

2
zi−1(t).

The solution cannot change sign and thus for i = 1, . . . , I, zi(t) ≤ 0 for all times.
(ii) Consider u, ū sub (super) solutions. Set w = u− ū and we want to prove that
w ≤ 0.

We write for i = 1, . . . , I

wi + [Ai+ 1
2
(ui, ui+1)−Ai+ 1

2
(ūi, ui+1)] + [Ai+ 1

2
(ūi, ui+1)−Ai+ 1

2
(ūi, ūi+1)]

− [Ai− 1
2
(ui−1, ui)−Ai− 1

2
(ūi−1, ui)]− [Ai− 1

2
(ūi−1, ui)−Ai− 1

2
(ūi−1, ūi)] ≤ 0.

For i = 1, . . . , I, we multiply by sgn+(wi) := 1wi>0 and add the relations to conclude
that

I∑
i=1

(wi)+ +

I−1∑
i=1

Ji+ 1
2

+

I−1∑
i=1

Ki+ 1
2

= 0,

with

Ji+ 1
2

= [Ai+ 1
2
(ui, ui+1)−Ai+ 1

2
(ūi, ui+1)] [sgn+(wi)− sgn+(wi+1)],

Ki+ 1
2

= [Ai+ 1
2
(ūi, ui+1)−Ai+ 1

2
(ūi, ūi+1)] [sgn+(wi)− sgn+(wi+1)].

For each of the these terms, we show that Ji+ 1
2
≥ 0, Ki+ 1

2
≥ 0, as follows. Only

the case when the + signs in the right brackets are different has to be considered.
Assume for instance that

ui ≥ ūi, and ui+1 ≤ ūi+1.

Then, we have by assumption 29,

[Ai+ 1
2
(ui, ui+1)−Ai+ 1

2
(ūi, ui+1)] ≥ 0 ⇒ Ji+ 1

2
≥ 0,

[Ai+ 1
2
(ūi, ui+1)−Ai+ 1

2
(ūi, ūi+1)] ≥ 0 ⇒ Ki+ 1

2
≥ 0.

Therefore
∑I
i=1(wi)+ ≤ 0 and this implies wi ≤ 0 for all i. From (i) and (ii) we infer

that the subsolution increases and is bounded from above by the supersolution, so
that it exists for all times. Similarly, the supersolution exists for all times and thus,
so does the solution ui(t) to 32, so that we can speak of its convergence.
(iii) This is clear since the limits are solutions.
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