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Abstract. We review results about the influence tumor heterogeneity has on

optimal chemotherapy protocols (relative to timing, dosing and sequencing of

the agents) that can be inferred from mathematical models. If a tumor con-
sists of a homogeneous population of chemotherapeutically sensitive cells, then

optimal protocols consist of upfront dosing of cytotoxic agents at maximum
tolerated doses (MTD) followed by rest periods. This structure agrees with

the MTD paradigm in medical practice where drug holidays limit the over-

all toxicity. As tumor heterogeneity becomes prevalent and sub-populations
with resistant traits emerge, this structure no longer needs to be optimal. De-

pending on conditions relating to the growth rates of the sub-populations and

whether drug resistance is intrinsic or acquired, various mathematical models
point to administrations at lower than maximum dose rates as being supe-

rior. Such results are mirrored in the medical literature in the emergence of

adaptive chemotherapy strategies. If conditions are unfavorable, however, it
becomes difficult, if not impossible, to limit a resistant population from eventu-

ally becoming dominant. On the other hand, increased heterogeneity of tumor

cell populations increases a tumor’s immunogenicity and immunotherapies may
provide a viable and novel alternative for such cases.

1. Introduction. We review and discuss some results that can be obtained about
the structure of optimal chemotherapy protocols from mathematical models. This
question has been addressed at least since the 1970s and 1980s starting with some
of the fundamental work by Eisen [13], Swierniak and Kimmel [23, 51] and Swan
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[49, 50]. In most of this early work, it is implicitly assumed that the tumor popu-
lation is homogeneous and consists of chemotherapeutically sensitive cells. Under
this assumption it is natural—and this is generally borne out by all these early
models as well—to give chemotherapy as early as possible and with as much force
as possible. Medically this corresponds to the so-called maximum tolerated dose
(MTD) paradigm [47] which still is at the heart of many chemotherapy schedules
for the initial induction phase of chemotherapy. MTD is simply “the highest dose
of a drug or treatment that does not cause unacceptable side effects” [1]. Gen-
erally, the higher the dose, the more harm is caused to the tumor (although this
relation, and especially for high doses, is not linear). Since what matters is the
marginal benefit, this reasoning, however, critically relies on the assumption of a
homogeneous chemosensitive tumor cell population. Heterogeneity blurs this simple
understanding.

Genetic instability of cancer cells [16, 17] coupled with faster mutation rates and
epigenetic abnormalities foster the creation of diverse sub-populations of tumor cells
which have widely varying phenotypes and chemotherapeutic sensitivities. In ad-
dition, growing tumors often exhibit considerable evolutionary ability to enhance
cell survival in an environment that is becoming hostile. According to the Norton-
Simon hypothesis [36, 37], generally faster replicating cell lines are more susceptible
to a chemotherapeutic attack while slower growing ones are more resistant. One
widely accepted explanation for this feature is that resistance is achieved through
pathways that use up more energy which thus cannot be used for proliferation [14].
Under traditional MTD type chemotherapy, the more sensitive populations will be
eradicated allowing the resistant populations to become dominant possibly leading
to full resistance and failure of the therapy. Naturally, this world view is a bit
oversimplified as the specifics depend on such features as the relative growth rates
of the sub-populations. For example, if the resistant population grows exceedingly
slow, for all practical and also mathematical purposes, it can be ignored. But it also
matters whether drug resistance is intrinsic (i.e., inherent in the sense that there
simply is no treatment for it yet) or whether it is acquired. In the later case, inter-
ruptions of treatment, so-called drug holidays, may allow for resensitizations to take
place which then enable repeated treatments with high doses (rechallenge therapy
[57]). Such considerations, combined with ideas about evolution and competition
between cell populations [15] have led to the consideration of various alternative
chemotherapy dosing schemes in medical practice, most prominently metronomic
[2, 22], chemo-switch [39] and adaptive chemotherapy [14, 15].

Metronomic chemotherapy is “the chronic administration of chemotherapy at rel-
atively low, minimally toxic doses on a frequent schedule of administration, at close
regular intervals, with no prolonged drug-free breaks” [2]. It is hoped that by avoid-
ing the limiting toxic side effects of high dose therapy the overall effect of therapy
can be improved because of the greatly extended time horizon over which drugs can
be given when compared with repeated MTD doses: “concentration× time” matters
[60]. Another possible benefit of low-dose schedules is the potential of so-to-speak
“crowding” the more dangerous resistant cell populations through the relatively
more harmless (since chemosensitive) faster growing population. This, and similar
evolutionary aspects [8] based on the view of the tumor as an adaptive ecosystem
[14] form the basis for adaptive chemotherapy calling for dosing stratagems that
“evolve in response to the temporal and spatial variability of [the] tumor microen-
vironment and cellular phenotype” [15]. In these strategies, the objective—rather
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than eradicating the tumor—then becomes to make cancer chronic: keep the resis-
tant cell population in check by managing the sensitive population the right way.
Obviously, in reality this is a risky and difficult endeavor-primum non nocere.

Mathematical models, on the other hand, can be freely used to explore such
ideas. There exist an abundance of mathematical models for chemotherapy under
tumor heterogeneity ranging from rudimentary models that just distinguish a small
number of sub-populations (e.g., Hahnfeldt et al. [21], Ledzewicz and Schättler
[27, 29, 31]) to models with increasing degrees of resistance (e.g., Swierniak et al.
[55, 56] or Wang and Schättler [58]) and even a continuum of traits (e.g., Lorz et al.
[34, 35], Billy and Clairambault [3], Delitalia and Lorenzi [8, 10], Lavi, Green et al.
[19, 24]). Recurrent conclusions that can be drawn from a variety of these models
are that, indeed, if conditions are right (i.e., under assumptions on the relative
growth rates of the sub-populations and about the effectiveness of the drugs) it is
possible to limit cancer growth through a judicious choice of drug administration
schedules. If, however, there exists an intrinsically resistant subpopulation which
has a significant growth rate, then it is rather difficult, and plainly impossible in
some cases to prevent the drug resistant strain from becoming dominant. In such
a situation, the only mathematically feasible control problem becomes to delay the
onset, respectively, the emerging dominance of the resistant populations.

While it appears rather difficult to develop drugs that will be effective for tumor
populations with ever increasing degrees of heterogeneity, for such a case hope may
lie with different therapies. One of the hallmarks of cancer therapies is that the
body’s immune system does not recognize tumor cells as ‘foreign’ and thus only
elicits no or at best a weak and ineffective immune response. With increasing
mutations and a greater variety of genetic changes present in tumor cells, however,
it becomes more likely that such a response will be provoked in the first place,
i.e., that the tumor becomes immunogenic, or that such a response is stronger.
Simply put, the chances that cells will be recognized as hostile increases (also, see
[9]). The hope then is that, even if the innate immune system response is initiated
by specific mutations, its reaction may be a broader attack on the full tumor. In
fact, immunotherapies have proven themselves to be quite effective for cancers like
melanoma whose cells exhibit a great variety of mutations.

In this paper, we discuss various conclusions that can be drawn about the struc-
ture of optimal chemotherapy protocols from an analysis of mathematical models
done in our work and we relate the results to some current efforts in medical prac-
tice. We review existing models and summarize their findings, but also include some
new results in the context of mutations.

2. MTD therapies: Homogeneous chemosensitive tumor populations. We
briefly describe a mathematical model for chemotherapy based on Swierniak’s mod-
els [52] that can be used as a common framework for both homogeneous and
heterogeneous cell populations. In this section, however, we only discuss it as a
framework for cell-cycle specific models for cancer chemotherapy of homogeneous
chemosensitive tumors. The mathematical model divides the state into compart-
ments which cluster cells in phases of the cell cycle (and, more generally, could
represent cells of certain phenotypes in specific cell-cycle compartments). The
state space is the first orthant P of vectors with positive entries in Rn and N =
(N1, . . . , Nn)T denotes the state withNi the average number of cancer cells in the ith
compartment, i = 1, . . . , n. The control is a vector u = (u1, . . . , um)T with ui
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denoting the concentrations of various drugs in the blood stream. For the sake of
simplicity of exposition, in this paper we do not consider pharmacokinetic aspects
of drug delivery and identify the drug dose rates with these concentrations. The
control set U thus is a compact m-dimensional interval of the form U = [0, umax

1 ]×
· · · × [0, umax

m ] with each umax
j representing the maximum dose rate/concentration

and the lower limit 0 representing that no drugs are administered. Admissible con-
trols are Lebesgue-measurable (respectively, piecewise continuous) functions u that
take values in the control set, u : [0, T ] → U . The dynamics consists of balance
equations (which take the form of a bilinear system) that describe the inflows and
outflows between the various compartments and have the general form

Ṅ(t) =

A+

m∑
j=1

ujBj

N(t), N(0) = N0, (1)

with A and the Bj constant matrices of appropriate dimensions that describe the
transitions between the various compartments. Under appropriate conditions on
these matrices (which will be satisfied if the modeling is done properly), it is easy
to see that the state space P is positively invariant under the dynamics, i.e., for any
admissible control, the solution to (1) exists for all times t ≥ 0 and remains in P.

The problem of cancer chemotherapy can then be formulated as an optimal
control problem once an appropriate criterion to be minimized is imposed on this
dynamics. While there exist many alternatives to do this, we would like to stress
that for a meaningful interpretation of side effects and total drug dose, it seems to
be imperative to include the controls as linear terms in this formulation. Thus, with
r = (r1, . . . , rn) and q = (q1, . . . , qn) n-dimensional row-vectors of positive numbers
and s = (s1, . . . , sm) a nonzero m-dimensional row-vector of non-negative numbers,
we define the objective in the following form:

J = J(u) = rN(T ) +

∫ T

0

{qN(t) + su(t)} dt (2)

=

n∑
i=1

riNi(T ) +

∫ T

0


n∑
i=1

qiNi(t) +

m∑
j=1

sjuj(t)

 dt→ min

The term su =
∑m
i=j sjuj in the integral is a weighted average of the amounts of

the various drugs given and the coefficients sj represent the degrees of toxicity of
the drugs. Side effects generally depend on the specific agent and these differences
would be reflected in the choice of these weights. Similarly, the second integral
term qN =

∑n
i=1 qiNi represents a weighted average of the number of cancer cells

in the respective compartments during treatment and the penalty term rN(T ) =∑n
i=1 riNi(T ) represents a weighted average of the number of cancer cells in the

respective compartments at the end of treatment.
The formulation of the objective (2) attempts to make a reasonable compromise

between minimizing the tumor kill and limiting the side effects of treatment. These
are measured indirectly through a weighted average of the total amount of drugs
administered. Obviously, these weights are important for the optimal solutions and
a biological calibration of these weights always needs to be undertaken to obtain
meaningful results. If the weights on the drugs are too small, optimal solutions will
simply give drugs all the time at full dose; if the weights are too high, no drugs
will be given. Generally, the weight for a strong cytotoxic (killing) agent should
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be significantly higher than the weight for a cytostatic (blocking) or recruiting
agent. Also, if the model differentiates between compartments of drug sensitive and
resistant agents (as they will be considered in Section 3), it may be advisable to use
higher weights for the resistant compartments. Similarly, if one takes q too small
relative to r, then the emphasis is put on the terminal condition and this may lead
to unacceptable behavior during the therapy interval. Thus one needs to stay aware
of the fact that the weights in the objective are variables of choice.

Keeping such restrictions in mind, it can be stated that for cell-cycle specific mod-
els of homogeneous tumor cell populations, optimal controls apply cytotoxic agents
in one full dose segment at the beginning of the therapy interval. Mathematically
more precisely, numerous models for cancer chemotherapy with cytotoxic agents
have been considered and analyzed in the work of Swierniak et al. [52, 53, 54]
and Ledzewicz and Schättler [25, 26, 44] and for each of them it has been verified
theoretically that optimal controls are bang-bang, i.e., alternate between full dose
treatments and rest periods. Generally such statements depend on properties of
the matrices A and Bj , j = 1, . . . ,m, in the dynamics (1) and their commutators
(i.e., Lie-brackets). Then, and often for almost any reasonable choice of weights in
the objective, the cytotoxic (killing) agent has exactly one switch from full dose to
no dose. If other drugs are used as well in combination treatments to modulate the
killing effects, e.g., cytostatic (blocking) agents, such drugs also are administered in
the form of bang-bang controls, but their timing enhances the actions of the killing
agent.
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Figure 1. Example of locally optimal controls for a 3-
compartment model with cytotoxic (u) and cytostatic (v) agents.
The initial condition is the normalized (in terms of percentages [44])
steady-state solution of the uncontrolled system and an objective
of the type (2) has been minimized.

Figure 1 shows a typical example of optimal controls for a 3-compartment model
with cytotoxic agent u and cytostatic agent v [32]. The objective was chosen of
the form (2) and consisted of a weighted average of all components, i.e., the tumor
volumes at the end of therapy, during the therapy interval and the total doses of both
agents. The optimal control u starts with a full dose segment. As it would make no
sense to block the flow of cells while a cytotoxic agent is active, the cytostatic agent
is inactive at the beginning. It only becomes activated just prior to the termination
of the cytotoxic agent and then remains active for most of the time. This simply is a
second, less toxic mechanism to slow down the growth of the tumor. The cytostatic
agent then is turned off before the therapy interval ends simply since, because of the
delays inherent in the cell-cycle dynamics, late administration of the cytotoxic agent
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would not show up as improvement in reducing the tumor cell count while it would
still add to the value of the objective. While the quantitative results (actual values
of the switching times etc.) for a given system of course depend on the specific
weights chosen in the objective, the qualitative structure of the results shown here
is quite robust with respect to changes in these values.

3. Metronomic and adaptive therapies: Heterogeneous tumor popula-
tions with a small number of traits. A bilinear dynamics of the type (1) can
also be used to investigate the structure of optimal chemotherapy protocols for a
heterogeneous tumor population. In the paper [21], Hahnfeldt, Folkman and Hlatky
compare the effects of MTD and metronomic chemotherapy dosings (for bolus type
injections) for a 2-compartment model consisting of sensitive and resistant popula-
tions. They analyze the maximum asymptotic factor reduction in tumor size in an
infinite cycle of periodic therapy periods and come to the conclusion that a metro-
nomic, regular scheduling of the drugs has better long term effects when compared
with MTD bolus injections. Alternatively, minimizing an objective of the type (2),
one can explore the structure of optimal protocols that minimize the tumor burden
as measured by the average over one large therapy interval (e.g., see [27, 28]).

For example, the dynamics for a 3-compartmental model that distinguishes be-
tween “sensitive” cells, S, “partially sensitive” cells, P , and “resistant” cells, R, can
be formulated as follows:

Ṡ = (α1 − σP − σR − ϕ1u)S + πSP + ρSR, (3)

Ṗ = σPS + (α2 − πS − πR − ϕ2u)P + ρPR, (4)

Ṙ = σRS + πRP + (α3 − ρS − ρP − ϕ3u)R. (5)

The labels S, P and R are simply used to indicate that these three populations have
different chemotherapeutic sensitivities towards a specific cytotoxic agent with S the
highest and R the lowest. We assume that these sub-populations grow at net growth
rates α1 > α2 > α3 consistent with the “Norton-Simon hypothesis”. In the model,
transitions between the three compartments are allowed and these are described by
the coefficients σX , ρY and πZ with X,Y, Z ∈ {S, P,R}. Thus sensitive cells may
become more resistant, but also resensitizations are allowed [20] which make cells
less resistant to the chemotherapeutic agent. By setting some of these parameters to
zero, this can be prohibited. The effectiveness of the drug on killing the respective
sub-populations are denoted by ϕ1 > ϕ2 > ϕ3 ≥ 0 with ϕ3 = 0 corresponding to
the situation of a fully resistant subpopulation R.

If we denote the proportions of the respective populations by

x =
S

S + P +R
, y =

P

S + P +R
, and z =

R

S + P +R
,

a direct computation verifies that x, y and z (as quotients of solutions to linear dif-
ferential equations) obey Riccati differential equations and it can be shown that this
dynamics has exactly one globally (within the open unit simplex) asymptotically
stable equilibrium point (x∗, y∗, z∗) ∈ Σ which defines the steady-state proportions
[44, Appendix B]. Thus, given an estimate on the tumor size at the beginning of
therapy, there exists a well-defined initial condition (S0, P0, R0) = (x∗, y∗, z∗)C0 for
the dynamics. As above, we then consider the optimal control problem to mini-
mize an objective of the type (2) with all terms present. Given the problem setting
where the sensitive population will be contributing much more to the cell kill count,
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we assigned higher weights to the more resistant populations in order to counter
balance these effects.

Contrary to the models for homogeneous populations, here optimal controls that
take values in the interior of the control set are viable alternatives. It follows from
the necessary conditions for optimality of the Pontryagin maximum principle [40]
(for some more recent texts, see [6, 7, 43]) that optimal controls u∗ minimize the
Hamiltonian function H,

H = qN + su+ λ (A+Bu)N, (6)

pointwise over the control set along the optimal trajectory N∗ and a solution λ
(which we write as a row vector) to the adjoint equation

λ̇ = −q − λ (A+Bu) , (7)

with terminal condition λ(T ) = r. In this case, the Hamiltonian H is linear in the
control and the control set is a compact interval. If we define the switching function
as

Φ(t) = s+ λ(t)BN∗(t), (8)

then optimal controls satisfy

u∗(t) =

{
0 if Φ(t) > 0,

umax if Φ(t) < 0,
(9)

while the minimization condition a priori gives no information about the optimal
control u∗(t) if the switching function vanishes, Φ(t) = 0. However, if Φ vanishes
over an open interval, then also all its derivatives on this interval vanish and this
often allows to derive formulas for the optimal controls of such intervals. Such
controls are called singular.

It follows from general Lie algebraic identities that the control can appear for the
first time only in an even derivative when the switching function is differentiated. If
this happens in the second derivative, a singular control is said to be of order one.
In this case, it is a second-order necessary condition for optimality, the Legendre
Clebsch condition that

∂

∂u

d2

dt2
∂H

∂u
=

∂

∂u
Φ̈(t) ≥ 0. (10)

If this quantity is positive, we say the strengthened Legendre-Clebsch condition
holds.

Proposition 1. [29] For the compartmental model defined by equations (3)-(5),
singular controls exist, are of order 1 and the strengthened Legendre-Clebsch condi-
tion for minimality is satisfied. Furthermore,the following formula for the singular
control is valid:

using(t) =
{λ(t) [A, [A,B]]− q [A,B]− qBA}N∗(t)
{−λ(t) [B, [A,B]] + qB2}N∗(t)

. (11)

where the commutator of the matrices X and Y is defined as [X,Y ] = Y X −XY
(according to conventions for the Lie bracket of the associated linear vector fields).

Dividing both numerator and denominator by the total number of cancer cells,
we note that the singular control actually does not depend on the values S, P and
R, but only on the proportions x, y and z. In order to be admissible, the control
needs to lie in the control set [0, umax].
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Figure 2 shows an example of an extremal controlled trajectory starting from
proportions given by the steady-state of the uncontrolled dynamics. Initially the
control is given by the maximum dose rate, but then, as a certain equilibrium
between the proportions of the three populations is reached, administration of the
agent switches to a singular control with reduced dose rates adapting to the changed
composition of the tumor. In the medical literature, such protocols have been called
chemo-switch protocols [39]. But note that this lower dose rate no longer is able to
shrink the total tumor size: all three subpopulations grow during the period when
the singular control is administered, but at reduced rates. This example illustrates
that, as differing chemotherapeutic sensitivities come into play, with time lower dose
rates become the better alternative to MTD protocols.
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Figure 2. Example of an extremal control and associated states
for a bang-singular controlled trajectory.

We note that the analysis of the multi-input scenario corresponding to combina-
tion treatments with different drugs would be an interesting and relevant extension
of this work as in such cases drug holidays indeed have shown to be effective in
resensitizing sub-populations that have acquired drug resistance [57]. However,
incorporating such effects would also require to make the transition rates in the
dynamics to be drug dependent. From the mathematical perspective, additional
difficulties will arise as now controls might be simultaneously singular. Necessary
conditions for optimality such as the Goh condition also exist for such cases.

4. Heterogeneous tumor populations with a large number of traits. Some
cancers, like melanoma, are characterized by a large number of mutations that can
easily go into the hundreds, even thousands. Aside from progressive mutations, a
second key reason for the emergence of cellular heterogeneity and drug resistance
in cancers of all types are epigenetic abnormalities, i.e., mistakes in the control
mechanisms that govern gene expression patterns [12]. This is important from a
therapy perspective since reversing such abnormalities appears to be more promising
than correcting for mutations. Given such a diversity, it therefore makes sense to
also consider distributed mathematical models for phenotypic heterogeneity and
drug resistance in tumors that allow for a continuum of possible traits. Such models
have been formulated by Lorz, Lorenzi, Clairambault et al. [34, 35] and are also
considered in the work of Billy and Clairambault [3] and Delitalia and Lorenzi
[8, 10]. Lavi, Greene et al. [19, 24] consider such models as a means to explain the
roles played by increasing cell densities and mutations in the emergence of specific
traits that become dominant. We briefly recall their formulation.
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In the model, a continuum of possible traits/resistance levels x, x ∈ [0, 1], is
considered. Let n(t, x) denote the population density of cells with trait x at time t

and let N̄(t) =
∫ 1

0
n(t, x)dx denote the total number of cancer cells at time t. The

time evolution of traits is modelled as

∂n

∂τ
(τ, x) =

{
r(x) (1− θ)−G(N̄(τ))µ(x)

}
n(τ, x) + θ

∫ 1

0

p(x|y)r(y)n(τ, y)dy (12)

with trait specific replication rates r and natural death rates µ. With increasing
cell densities, i.e., with increasing N̄(t), the replication rates actually decrease and
the apoptosis rates will increase [18]. These effects are incorporated into the model
through a strictly monotonically increasing function G which arises from a normal-
ization of such effects and subsequent reparameterization of the original time scale
t in the form τ = τ(t) used in (12). The model also includes mutations from one
trait to another with p(x|y) denoting the transition density from trait y into trait
x. For simplicity, it is assumed that a fixed fraction θ, θ ∈ (0, 1), of cells mutate
regardless of the originating trait y. This then reduces the reproduction rate r by θ

and the total inflow of all mutating cells into x is given by θ
∫ 1

0
p(x|y)r(y)n(τ, y)dy.

The net effect of the mutations on the growth of the total population is zero and
growth of the total population is described by the following differential equation

dN̄

dτ
(τ) =

∫ 1

0

{
r(x)−G(N̄(τ))µ(x)

}
n(τ, x)dx. (13)

The incorporation of cell densities, i.e., the addition of the G-term in the dy-
namics, induces a logistic structure that keeps the total tumor volume bounded.
Specifically, we have the following result for the uncontrolled system (c.f., [44, Prop.
3.1.2]):

Proposition 2. Let

G∗ = max
0≤x≤1

{
r(x)

µ(x)

}
and suppose the function G : (0,∞) → (0,∞), N 7→ G(N), is strictly increasing
and satisfies limt→∞Gt > G∗. Then there exists a unique population level N∗ such
that G(N∗) = G∗ and the total tumor population N stabilizes at this level in the
sense that lim supτ→∞N(τ) = N∗.

Drug treatment can be incorporated into equations (12) and (13) by subtracting
trait dependent killing terms. If one considers constant controls, one may model
the effects of such terms by still subtracting c(x)n(τ, x) in equation (12) or one
could take the point of view that such a term is already taken into account in the
trait dependent replication rate r(x). In these models, and both with or without
treatment, as τ → ∞, certain traits x become dominant. In the absence of muta-
tions (θ = 0), it is not difficult to see that phenotypes will concentrate in the long
run on specific levels (converge to Dirac distributions) [38] while in the presence
of mutations generally some distributions around such Dirac masses appear [19],
although for specific simple forms of the function G Dirac masses may still arise [5].

Here, rather than using a linear log-kill term, we consider a Michealis-Menten
type pharmacodynamic model of the form

c(x)
u(τ)

UC50 + u(τ)
n(τ, x) (14)
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where UC50 denotes the concentration at which the drug has 50% effect. For sim-
plicity, we also assume UC50 is the same for all traits. (It could easily be made trait
dependent in the model, especially if only numerical computations are made, but it
would be quite difficult to measure such quantities in reality. Any data would give
an average of these values.) An important observation regarding treatment is that
although the killing coefficient c is trait-dependent, the concentration of the agent—
and this is the meaning of the control variable—is not, i.e., we have u = u(τ), not
u = u(τ, x).

Optimal control problems of this type are inherently difficult as the aim is to
control a large number of distinct cell populations by means of a what in reality
are a very small number of controls (the concentrations of just a few drugs, maybe
1 to 4) giving rise to the notion of multi-targeted optimal control problems: a
large number of variables needs to be controlled with a small number of inputs.
Mathematically, allowing for a continuum of traits in the model gives the problem
a distributed aspect and the resulting optimization problem becomes non-standard
and of great complexity. This is also attested to by the theoretical analysis given
by Pouchol et al. [41] who considered optimal control problems for such systems
determined by phenotype-structured equations.

In our work [58], we have taken the approach to approximate this structure by a
finite-dimensional model, but with a potentially large dimension. If we discretize the
traits and again denote the state by the vector N = (N1, . . . , Nn)T , the dynamics
(12) takes the form

Ṅ(t) =

(
R− C u(t)

UC50 + u(t)
−G(N̄(t))M

)
N(t). (15)

with C and M diagonal matrices,

C = diag(ϕ1, . . . , ϕn), M = diag(µ1, . . . , µn),

and

R =


r1(1− θ) θr2p(r1|r2) · θrnp(r1|rn)
θr1p(r2|r1) r2(1− θ) · θrnp(r2|rn)

...
...

. . .
...

θr1p(rn|r1) θr2p(rn|r2) · rn(1− θ)

 .
Using the same type of objective as before, for a fixed terminal time T we then
want to minimize the objective

J(u) = αN(T ) +

∫ T

0

(βN(t) + γu(t)) dt (16)

over all Lebesgue measurable functions u : [0, T ]→ [0, umax] subject to the dynamics
(15).

Figure 3 below gives, for various mutation rates θ, examples of numerically com-
puted optimal controls. We used n = 21 states corresponding to the levels xi = i−1

20 ,
i = 1, . . . , 21, and the replication rates r and cytotoxic killing parameter ϕ are the
values of the functions

r(x) =
2

1.1 + 2x5
and ϕ(x) =

2

1 + x2
(17)
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evaluated at these nodes; we kept the death rate constant, µ ≡ 0.50. For the
transition probabilities p(x|y) a modified Gaussian kernel of the form

p(x|y) = k(y) exp

(
−1

2

(
x− y
σ

)2
)

(18)

with variance σ2 = 3 and normalizing constant k(y) was used. Also, the control is
normalized in terms of its UC50 concentration, i.e., UC50 = 1, and the control limit
is umax = 3, i.e., up to three times the UC50 value. The weights in the objective J
were α = (1, . . . , 1), β = 500α and γ = 5000. In all the calculations we chose the
initial distribution of cells over the traits to be uniform with value n(0, x) ≡ 200

21 .
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Figure 3. Extremal controls (top), evolution of the total tumor
N̄ (middle) and profiles n(20, x) at the terminal time T = 20 for
different mutation rates θ.

The top row of Fig. 3 shows the optimal controls coded with different colors for
different mutation rates θ, the middle row shows the corresponding evolution of
the total tumor volume N̄ and the bottom row shows the profiles n(20, x) at the
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terminal time T = 20. Because of the change in the pharmacodynamic model to
(14), in this problem formulation optimal controls are continuous [59] more in line
with an interpretation of the controls as concentrations while optimal controls for
a linear log-kill model are discontinuous more in line with an interpretation of the
controls as dose rates. Note that each solution again is of the chemo-switch type:
after an initial period of full dose therapy, the dose rates drop and eventually reach
zero; all controls end with a brief period of no dose treatment.

This particular simulation provides only a snapshot of one specific scenario to il-
lustrate some of the comments made above. The bottom figure shows the emergence
of a dominant trait. There is only a small group of traits located around x = 0.5
that is resistant while other traits are sensitive. The replication rate is highest for
x = 0 and then monotonically decreases over the traits, but the killing coefficient
follows a similar characteristic. In the net effect, traits for low or large x values
can be eradicated, but for x = 0.5 this is not possible. A high rate of transitions
between the traits, possibly due to epigenetic interventions, is actually beneficial.
The reason simply is that these change the more resistant trait into sensitive traits
and overall this turns out to be beneficial. Indeed, in this scenario, the least amount
of drug is given with the highest mutation rate considered and the best overall re-
sult in terms of the total tumor volume is achieved in this case. The reason is that
so-to-speak ‘bad’ traits are constantly changed into ‘good’ traits which then can be
more effectively killed by the agent. Clearly, if mutations are not reversible (as it
is implicitly assumed by using a Gaussian kernel to model p(x|y)) this will change.
We emphasize that this is just a simulation of one possible scenario to show effects
that mutations can have in the mathematical model, both positive and negative.
Clearly, if the mutations are not symmetric and have the tendency to move from
‘good’ to ‘bad’, the results will look very different. Indeed, as the graphs for θ = 0
(no mutations) show, given the relative growth rates and assumed effectiveness of
the drug in this case, the resistant population persists and eventually becomes the
dominant one, no matter what the control does.

5. Immunogenic tumors and immunotherapies. Once heterogeneity in tu-
mor cells increases and cells become resistant, the attempt to develop drugs that
could deal with each and every possibility becomes futile (e.g., because of exorbitant
costs connected with drug development) and it appears that the answer to treating
strongly heterogeneous tumors must lie elsewhere. This may be immunotherapies.
As abnormalities accumulate, it simply becomes more likely that either the in-
nate immune system recognizes the tumor cells as foreign or that it becomes easier
to teach the immune system through outside intervention that these cells are for-
eign and thus elicit a strong reaction of the immune system. In principle, as with
chemotherapies, it may happen that the immune system only reacts to specific mu-
tations which will selectively be killed (immuno-editing [11, 45]), but the hope is
that the immune reaction will be more systemic and attack the full tumor.

There have been a number of mathematical models that analyze tumor immune
interactions starting with the largely influential model by Stepanova [48]. In that
model, the main features of tumor immune system interactions are aggregated into
just two variables, the tumor volume, x, and the immunocompetent cell densities, y,
a non-dimensional, order of magnitude quantity related to various types of immune
cells (T -cells) activated during the immune reaction. The basic structure of the
model is as follows
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ẋ = µCxF (x)− γxy, (19)

ẏ = µI (1− βx)xy − δy + α, (20)

with F a generic growth function and all Greek letters constant coefficients which
model the most essential aspects of tumor immune interactions. Most importantly,
for small tumors the immune system is stimulated by the anti-tumor antigen which
is assumed to be proportional to the tumor volume x while large tumors suppress
the activity of the immune system. These features are expressed through the in-
clusion of the term −βx2 so that 1/β corresponds to a threshold beyond which the
immunological system becomes depressed by the growing tumor. The coefficients µI
and β are used to calibrate these interactions and in the product with y collectively
describe a state-dependent influence of the cancer cells on the stimulation of the
immune system.

Precisely because of its simplicity—a few parameters incorporate many medically
important features—the underlying equations have been widely accepted as a basic
model which, despite its simplicity, accurately describes essential aspects of tumor
immune system interactions. Depending on the parameter values, there exist three
possibilities. The dynamics can have a unique globally asymptotically equilibrium
point with small tumor volumes, the benign situation, in which the immune system
simply is able to control the disease. On the other side of the spectrum lies the sce-
nario when there still exists a unique globally asymptotically equilibrium point, but
now with large tumor volumes, the malignant case, when even outside intervention
can only move this equilibrium point to lower values that may still be lethal. The
third scenario is the medically relevant one and it lies in between these extremes:
the dynamics is multi-stable and the system has both a locally asymptotically stable
microscopic and macroscopic equilibrium point as well as an unstable saddle point.
The tumor volumes are small and the immuno-competent cell densities are upreg-
ulated for the microscopic equilibrium point while they are large, almost at their
carrying capacity, with depressed immuno-competent cell densities at the macro-
scopic equilibrium point. Both equilibria are locally asymptotically stable and their
regions of attraction are separated by the stable manifold of the saddle which forms
the common boundary of these regions. Figure 4 gives a characteristic illustrative
example of this structure.

Given the bi-stable character of the underlying dynamics, now the control prob-
lem becomes to move the system—through therapy—back into the region of attrac-
tion of the microscopic equilibrium point. Note that there is no need to steer the
system into the benign equilibrium point itself as this point is locally asymptotically
stable. Once the state of the system lies within its region of attraction, possibly
with some safe distance from its stability boundary, the system will self-regulate to
this point, i.e., the immune system takes over the rest of the treatment. Such a
geometric situation naturally leaves a tremendous freedom in the formulation of the
objective. We found it especially useful to take relative weights for the variables x
and y in the penalty term that are determined by the unstable eigenvector of the
saddle point, oriented from the benign into the malignant region (as we minimize
the objective). In our paper [30] we consider this optimal control problem under
chemotherapy and a generic immune boost designed to upregulate the immuno-
competent cell densities. For such a formulation, the typical optimal chemotherapy
protocol also starts with a brief period of full dose treatment and then lowers the
doses following a singular control. It is also quite common that optimal controls
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still give a short chemotherapy boost at maximum dose after this initial chemo-
switch protocol followed by a prolonged rest period [30, 33, 42]. Interestingly, this
is a practice not uncommon in medical treatments. Figure 5 shows a typical such
administration schedule. From the mathematical side, we especially point out the
paper [42] in which a full synthesis for these optimal control problems is developed.
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Figure 5. Example of numerically computed optimal controls for
the system (19)-(20) with a Gompertzian growth function.

6. Conclusion. Progressive mutations and epigenetic abnormalities can lead to
great heterogeneity in tumor cell populations which may prevent successful treat-
ment. In this paper, at the hand of some minimally parameterised mathematical
models, we discussed effects that tumor heterogeneity has on the structure of opti-
mal chemotherapy protocols. From a practical perspective, these solutions suggest
that lower, properly calibrated doses may be more advantageous as drug resistance
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builds up as they may also be able to control the growth of a more malignant, but
slower growing drug resistant strain of cells.
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