
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2018029
c©American Institute of Mathematical Sciences
Volume 13, Number 4, December 2018 pp. 641–661

OPTIMAL MODEL SWITCHING FOR

GAS FLOW IN PIPE NETWORKS

Fabian Rüffler∗
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Abstract. We consider model adaptivity for gas flow in pipeline networks.

For each instant in time and for each pipe in the network a model for the
gas flow is to be selected from a hierarchy of models in order to maximize

a performance index that balances model accuracy and computational cost

for a simulation of the entire network. This combinatorial problem involving
partial differential equations is posed as an optimal switching control problem

for abstract semilinear evolutions. We provide a theoretical and numerical

framework for solving this problem using a two stage gradient descent approach
based on switching time and mode insertion gradients. A numerical study

demonstrates the practicability of the approach.

1. Introduction. Modeling, simulation and optimization of critical infrastructure
systems such as traffic, electricity, water or natural gas networks play an increasingly
important role in our society. Many of these problems involve aspects of dynamic
energy transportation and distribution in networks. The optimization with respect
to efficiency, robustness, or environmental performance requires the use of high-
resolution dynamical models in form of time-dependent differential equations. As
a particular case, we consider transportation and distribution of natural gas in a
network of pipelines, where the high-resolution models refer to the one-dimensional
Euler gas equations coupled with further dynamics representing active or passive
network elements such as compressors, resistors and control valves.

Detailed models for gas flow in pipeline networks are well established, see e.g.,
[4, 9, 17]. Similar maturity has been achieved for time-simulation methods, see e.g.,
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[1, 16, 29], the analysis of stationary states [22], the time-continuous optimal control
of compressors using adjoint techniques [26, 37], and feedback stabilization based
on classical solutions [15]. If the discrete nature of control valves being open or
closed is to be taken into account, then the optimization needs to deal with mixed
integer and continuous type variables simultaneously. Similar decisions are often to
be taken into account also in other critical infrastructure systems.

In industrial practice the treatment of switched systems is often carried out by
first applying a full space-time discretization of the systems and then using a mixed-
integer nonlinear programming tool that incorporates the switches as extra variables
to be optimized, see e.g., [7, 5, 47]. Another approach is to restrict the optimization
to the stationary case where special purpose techniques can be successfully applied
[44]. A temporal expansion of these techniques on a full network currently seems
to be out of reach, see, e.g., [23, 36]. We proceed in yet another way via a model
switching approach, see [24]. Since networks already provide a natural spatial par-
tition by the edges representing pipes, it seems natural to minimize a global model
error by selecting either one of several models in a dynamic model hierarchy [16, 18]
or a stationary model hierarchy [37] for each pipe as a function of time. To do this,
it is important to identify regions in the time expanded network problem where sta-
tionary models still provide a reasonable approximation in the sense that the global
error remains small. A particular difficulty that the model switching problem for
gas networks has in common with most of the other mentioned applications is the
high-resolution model being a partial differential equation (typically a system of
balance laws). While the computation of optimal switching for ordinary differential
equations and differential-algebraic equations is theoretically and numerically well
studied, see [11, 19, 27, 28, 33, 38, 51, 52, 53, 54], the corresponding theory involving
certain types of partial differential equations is still under development [45, 46].

Our main contribution in this paper is to provide a theoretical and numerical
framework for solving the model switching problem using the example of gas net-
works. We show that the problem can be casted in the sense of switching among
a family of abstract evolution equations on an appropriate Banach space. This al-
lows us to use adjoint based gradient representations for switching time and mode
sequence variations recently developed in [45] to characterize locally optimal so-
lutions for the model switching problem by introducing the notion of first order
stationarity. This, in turn, motivates a two stage gradient descent approach con-
ceptually introduced and analyzed in [2] for the optimization of switching sequences
in the context of ordinary differential equations for numerical solutions of the model
switching problem. We provide results for a proof-of-concept implementation for a
gas network comprising 340 km of pipes on a 30 min time horizon.

Our approach relies on a semigroup property for networked transport systems.
For related results without nodal control, see [6, 30, 41], and boundary conditions
of a delay-differential-type are considered in [48, 49]. In [20, 21], classical solutions
for a system separating a semigroup equation from a linear nodal control condition
are derived. The recent work [31] considers mild solutions if the nodal control is
semilinear. In contrast, we derive a semigroup formulation for the entire system,
allowing for semilinear dynamics both on the edges and the boundary control, based
on a characteristic decomposition of the system.

The paper is organized a follows. In Section 2 we provide a more detailed de-
scription of the common gas network models. In particular, we briefly discuss a
semilinear simplification of the Euler gas equations as the most detailed model on
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a pipe and consider the corresponding stationary solutions. Moreover, we intro-
duce the model switching problem. In Section 3, we show that the equations on
a network coupling these models for the pipes, along with appropriate coupling
conditions on the nodes allowing further network elements such as valves and com-
pressors, is well-posed in the sense of being equivalently represented by a nonlinear
perturbation of a strongly continuous semigroup in a suitable Sobolev space. In Sec-
tion 4 we apply the well-posedness result to define an appropriate system of adjoint
equations and to derive a stationarity concept based on switching-time gradients
and mode-insertion gradients as a first order optimality condition for model opti-
mality. Further, we present details of a conceptual algorithm alternating between
switching-time optimization and mode-insertion in order to compute a solution of
the model switching problem in the sense of our stationarity concept. In Section 5
we present a numerical study. In Section 6 we discuss applications and directions
of future work.

2. Gas network modeling.

2.1. A model hierarchy for single pipes. The motion of a compressible non-
viscous gas in long high-pressure pipelines is described by the one-dimensional
isothermal Euler equations. They are given by a system of nonlinear hyperbolic
partial differential equations (PDEs) and consist of the continuity equation and the
balance of moments (see, e.g., [9, 34, 35, 50])

∂t%+ ∂x(%v) = 0,

∂t(%v) + ∂x(P + %v2) = −θ%v|v| − g%h′,
(1)

where % denotes the density in kg

m3 , v the velocity in m
s , P the pressure of the gas in

kg

m s2
, g the gravitational constant and h′ the slope of the pipe. Furthermore θ = λ

2D ,
where λ is the friction coefficient of the pipe, and D is the diameter of the pipe. The
conserved, respectively balanced, quantities of the system are the density % and the
flux q = %v. Pressure and density are related by the constitutive law for a real gas

P = Rs%T0Z(P, T0),

where Z(P, T0) is the gas compressibility factor at constant temperature T0 and Rs

is the specific gas constant. For an ideal gas one has Z(P ) ≡ 1. This system of
equations yields a hierarchy of simplified models for pipe dynamics [9, 17, 25, 42].

For instationary situations, we consider the semilinear PDE model

∂t%+ ∂xq = 0,

∂tq + c2∂x% = −θ q|q|
%
− gh′%,

(2)

with a constant speed of sound c =
√
P/% obtained under the assumption of a

constant gas compressibility factor Z(P, T0) ≡ Z̄. This model neglects inertia effects
and assumes small velocities |v| � c. For natural gas, indeed one typically has |v| ≤
10 m

s and c ≈ 340 m
s , see e.g., [17]. This PDE exhibits two simple characteristics

with speeds λ1 = −c and λ2 = c.
For stationary situations, we consider the model

∂xq = 0,

c2∂x% = −θ q|q|
%
− gh′%,

(3)
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obtained from (2) with ∂t% = ∂tq = 0. Here, the flux q is constant in space and time
q(t, x) = q̄ and %(t, x) = %̄(x) with %̄ being a solution of the momentum equation
in (3), which is a Bernoulli-equation. A solution of the momentum equation can
therefore be obtained algebraically

%̄(x) =


√
%̄(0)2 − 2θq̄|q̄|

c2 x, if h′ = 0√
%̄(0)2 exp(2gh′x)− 2θq̄|q̄|

c2
exp(2gh′x)−1

2gh′ , if h′ 6= 0.
(4)

Analogous considerations apply also for the case of non-isothermal flow, see e.g.
[9, 17]. More generally, similar model hierarchies also exist for other infrastructure
systems such as water distribution networks [24].

2.2. Networks with pipes, valves, and compressors. For m,n ∈ N we con-
sider a network of pipes that we model by a metric graph G = (V,E) with nodes
V = (v1, . . . , vm) and edges E = (e1, . . . , en) ⊆ V × V . For each edge e ∈ E, call
e(1) the left node and e(2) the right node of e. We demand the incident nodes of
every edge to be different, so e(1) 6= e(2) for any e ∈ E and thus self-loops are not
allowed. On the other hand, if v ∈ V is any node, then we define

the set of ingoing edges by δ+v = {e ∈ E | e(2) = v},
the set of outgoing edges by δ−v = {e ∈ E | e(1) = v},
the set of incident edges by δv = δ−v ∪ δ+v.

The number |δv| then is called the degree of node v ∈ V .
With each edge ej ∈ E of such a network, we associate a pipe model from the

hierarchy in Section 2.1 and a given pipe length Lj > 0. Furthermore, depending
on the role of each node in the network, we impose appropriate coupling conditions
for the gas density and flow at the boundary of pipes corresponding to edges being
incident to that , see [13]. To this end, we define for v ∈ V and ej ∈ δv

x(v, ej) =

{
0, if ej ∈ δ−v,
1, if ej ∈ δ+v.

For each node v ∈ V , we then impose a transmission condition for the density and
a balance equation for the fluxes at the node. The transmission condition states
that the density variables %j weighted by given factors α ∈ (0,∞)m×2 coincide for
all incident edges e ∈ δv and can be expressed as

αkx(v,ek)%
k(t, Lkx(v, ek)) = αlx(v,el)

%l(t, Llx(v, el)), ∀ ek, el ∈ δv, t ∈ [0, T ].

The nodal balance equation for a given outflow function qv : [0, T ] → R is similar
to a classical Kirchhoff condition for the fluxes qj and can be written as∑

ej∈δ+v

qj(t, Lj)−
∑

ej∈δ−v

qj(t, 0) = qv(t), t ∈ [0, T ].

The choice of α corresponds to the nodal types in the network. Prototypically, we
will consider the following cases:

Junctions: nodes v such that qv ≡ 0 and αkx(v,ek) = 1 for all ek ∈ δv.

Boundary nodes: nodes v such that αkx(v,ek) = 1 for all ek ∈ δv, but qv 6≡ 0.

We also refer to v as an entry node, if qv < 0, or an exit node, if qv > 0.
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Compressors: nodes v with qv ≡ 0 and |δ+v| = |δ−v| = 1. A description
established via the characteristic diagram based on measured specific changes
in adiabatic enthalpy Had of the compression process yields the model

Had = Z̄T0Rs
κ

κ− 1

( %l(0, t)

%k(Lk, t)

)κ−1
κ

− 1

 , ek ∈ δ+v, el ∈ δ−v, t ∈ [0, T ],

where κ is a compressor specific constant, Z̄ is the gas compressibility factor
that is assumed to be constant and Had is within flow dependent and compres-
sor specific bounds obtained from the characteristic diagram. In consistency
with the pipe models, we assume that Had is given by a known reference H̄ad.
Then we get

%l(0, t) = ᾱ%k(Lk, t), ek ∈ δ+v, el ∈ δ−v, t ∈ [0, T ]

with a compressor specific factor

ᾱ =

(
1 +

(κ− 1)H̄ad

κZ̄T0Rs

) κ
κ−1

. (5)

This yields αk1 = 1 and αl0 = ᾱ. The compression ratio of centrifugal and
turbo compressors mostly lies within the range ᾱ ∈ [1, 2], with ᾱ ≈ 1.3 being
a typical value, see [13], [39, Chapter 4] and [12, Chapter 5.1]. For realistic
long distance gas networks, compressors are set along the pipes in a distance
of around 100–300 km, see [12, Chapter 5.3].

We note that there are other conceivable ways to model gas pipe junctions, including
geometry conditions, leading to possibly nonlinear coupling conditions, see e.g., [3,
9, 40]. Furthermore, gas networks typically involve additional network components
such as valves, resistors, gas coolers, etc. For appropriate coupling conditions we
refer to [44].

2.3. The model switching problem. We now discuss switching between the two
models (2) and (3) in order to efficiently resolve the dynamics of the gas flow in a
network. The idea is that, with the exception of locally high fluctuation, in realistic
scenarios, the solution to (2) is on big parts of the network close to the stationary
model (3). In these regions we thus can freeze the solution with an acceptable loss
in accuracy to save computational effort. By comparison with the solution fully
simulated with (2) we then can set up a cost functional measuring the deviation
of the partially frozen solution in some appropriate norm. Adding a performance
function measuring the time steps where the costly model (2) is calculated, we can
set up the optimization problem of weighting the accuracy against the computa-
tional effort. Solving this problem enables us to identify a time-dependent model
selection for the simulation of gas dynamics on networks that can be used in further
examinations to get a cheaply solvable system.

In order to apply adjoint-based gradient methods to solve this problem efficiently,
we consider (3) as a limit of appropriately perturbed instationary semilinear dy-
namics. To this end, we note that, after a linear transformation, system (2) can be
written for t ∈ [0, T ] and x ∈ [0, L], L, T > 0, as partially diagonalized system

wt(t, x) +Dwx(t, x) = g(w(t, x)), D =

[
−c 0
0 c

]
, (t, x) ∈ (0, T )× (0, L),
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with the characteristic variable w, see Section 3 for details. Let us assume for the
moment that g : R2 → R

2 is globally Lipschitz-continuous. The same transforma-
tion applied to (3), together with given boundary values w1 ∈ C([0, T ],R2) yields
the ODE-system

Dwx(t, x) = g(w(t, x)), (t, x) ∈ (0, T )× (0, L),

w1(t, 1) = w1
1(t), t ∈ [0, T ],

w2(t, 0) = w1
2(t), t ∈ [0, T ].

(6)

To define an appropriate hyperbolic system to approximate (6), for ε > 0 and any
initial values w0 ∈ L1([0, L],R2) we set up the auxiliary system

εwt(t, x) +Dwx(t, x) = εD−1g(w(t, x)), (t, x) ∈ (0, T )× (0, L),

w(0, x) = w0(x), x ∈ (0, L),

w1(t, 1) = w1
1(t), t ∈ [0, T ],

w2(t, 0) = w1
2(t), t ∈ [0, T ].

(7)

Referring to [8, Chapter 3.4] for the definition of a broad solution to system (7), we
get the following result:

Lemma 2.1. For any ε > 0 there is a unique solution w̄ ∈ C([0, T ]× [0, L],R2) to
(6) and a unique broad solution w : [0, T ]× [0, L]→ R

2 to (7). The restriction of w
to the set

Ω = {(t, x) ∈ [0, T ]× [0, L] |L− c
ε t < x < c

ε t}
is a continuous function. Furthermore, for any t0 ∈ (0, T ) the function w converges
uniformly on [t0, T ]× [0, L] for ε↘ 0 to w̄, i.e.

lim
ε↘0

sup
(t,x)∈[t0,T ]×[0,L]

|w(t, x)− w̄(t, x)| = 0.

Proof. The global existence and uniqueness of w̄ follows from standard ODE-theory.
For (t, x) ∈ Ω, the broad solution w can be written as

w1(t, x) = w1
1(t− ε

c (L− x)) +

∫ t

t− εc (L−x)

− 1
cg1(w(s, x+ c

ε (t− s))) ds,

w2(t, x) = w1
2(t− ε

cx) +

∫ t

t− εc x

1
cg2(w(s, cε (t− s))) dy.

Its existence and the continuity on Ω is shown in [8, Theorem 3.1, Theorem 3.4].
Given a fixed t0 ∈ (0, T ), we obviously can choose ε small enough such that [t0, T ]×
[0, L] ⊆ Ω. We then have

w2(t, x) = w1
2(t− ε

cx) +

∫ t

t− εc x

1
cg2(w(s, cε (t− s))) dy

→ w1
2(t) +

∫ x

0

1
cg2(w(s, y)) dy

= w̄2(t, x)

for ε↘ 0 and all (t, x) ∈ [t0, T ]× [0, L]. The convergence is uniform, since both w1
2

and g2(w) are continuous and defined on a compact set, thus uniformly continuous.
The same argumentation holds for w1.
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Retransforming (7) back to the original variables % and q, we get

%t + 1
εqx = − θ

c2
q|q|
% −

gh′

c2 %,

qt + c2

ε %x = 0.
(8)

By Lemma 2.1, this system yields an approximation to model (3).
Now let G = (V,E) be a network, where the type of each node v ∈ V is given by

the parameters α and qv as in Section 2.2. On each edge ej of length Lj we have

an initial gas density %j0 and gas flow qj0. For an increasing sequence of switching
times τ = (τk)k=0,...,N+1 ⊆ [0,∞) and a finite sequence µ = (µk)k=1,...,N , where
µk ∈ {0, 1}n denotes for each edge ej ∈ E, whether model (2) (µk(j) = 1) or (8)
(µk(j) = 0) is used on the time interval (τk−1, τk), consider the PDE-system[

∂t%
j(t, x)

∂tq
j(t, x)

]
+

1

εµk(j)

[
0 1
c2 0

] [
∂x%

j(t, x)
∂xq

j(t, x)

]
= fµk(j)

([
%j(t, x)
qj(t, x)

])
(9)

where x ∈ [0, Lj ] for j = 1, . . . , n and t ∈ (τk−1, τk) for k = 1, . . . , N + 1. Here,

εµk(j) =

{
ε̄, if µk(j) = 0,

1, if µk(j) = 1

for a fixed ε̄ > 0 with ε̄� 1 and

f0(%, q) =

[
− θ
c2
q|q|
% −

gh′

c2 %

0

]
and f1(%, q) =

[
0

−θ q|q|% − gh
′%

]
(10)

denote the right-hand sides in (8) and (2), respectively. Let %j(0, x) = %j0(x),

qj(0, x) = qj0(x) for x ∈ [0, Lj ] be given initial states. Moreover, at any time point
t ∈ [τ0, τN+1], density and flux additionally satisfy the node coupling conditions

αix(v,ei)
%i(t, Lix(v, ei)) = αjx(v,ej)%

j(t, Ljx(v, ej)), ∀ ei, ej ∈ δv,∑
ej∈δ+v

qj(t, Lj)−
∑

ej∈δ−v

qj(t, 0) = qv(t) (11)

for each v ∈ V , explained in Section 2.2.
Denote by zd = (%1

d, q
1
d, . . . , %

n
d , q

n
d )> the reference solution to (9), (11) for the

choice N = 1, µ = 1 and τ = (0, T ), which corresponds to the fine model (2) being
fully solved on the complete network and the existence of which will be proven in
Section 3. For any other z = (%1, q1, . . . , %n, qn)> then define the cost functional

J(µ, τ, z) =

n∑
j=1

∫ T

0

∫ Lj

0

γ1(%j(t, x)− %jd(t, x))2 + γ2(qj(t, x)− qjd(t, x))2 dx dt

+ γ3

N∑
k=1

n∑
j=1

1

Lj

∫ τk+1

τk

(εµk(j) − ε̄)2dt,

+ γ4N

(12)

with γ1, . . . , γ4 ≥ 0, where the first term measures the deviation of z from zd,
the second term penalizes using the fine model (2) and the third term penalizes
the number of switching time points. Note that, since longer pipes mean more
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computational effort when using the fine model, the lengths Lj of the pipes enter
into the cost as well. For later reference, we set

l(t, z) =

n∑
j=1

∫ Lj

0

γ1(%j(t, x)− %jd(t, x))2 + γ2(qj(t, x)− qjd(t, x))2 dx,

J1 =
1

2

∫ T

0

l(t, z) dt,

J2 = γ3

N∑
k=1

n∑
j=1

1

Lj

∫ τk+1

τk

(εµk(j) − ε̄)2dt+ γ4N,

(13)

then J = J1 + J2.
The challenge now is to choose the sequences µ and τ such that, with z being

the corresponding solution to (9),(11), the cost functional J is minimized. Hence
our objective is to solve the minimization problem

min
(µ,τ)

J(µ, τ, z)

s.t. z solves (9), (11) for the switching sequence (µ, τ).
(14)

3. Semigroup formulation on networks. In this section, we will set up an
abstract formulation of the PDE-system in (9) for τ = (0, T ) and any fixed choice
of modes per edge and prove that the linear part generates a C0-semigroup. By
nonlinear perturbation theory and induction, this yields a well-posedness result of
(9) for any finite switching sequence.

For each j ∈ {1, . . . , n}, we now consider the initial boundary value problem for
zj = (%j , qj)> on pipe ej ∈ E given by

zjt (t, x) +Ajzjx(t, x) = f j(zj(t, x)), t ∈ [0, T ], x ∈ [0, Lj ],

zj(0, x) = zj0(x), x ∈ [0, Lj ],
(15)

and the coupling conditions

αkx(v,ek)z
k
1 (t, Lkx(v, ek)) = αlx(v,el)

zl1(t, Llx(v, el)) ∀ ek, el ∈ δv, (16)∑
ej∈δ+v

zj2(t, Lj)−
∑

ej∈δ−v

zj2(t, 0) = qv0(t) (17)

for each node v ∈ V . Here, Lj > 0, zj0 : [0, Lj ] → R
2, f j ∈ C1(R2,R2) is globally

Lipschitz-continuous and

Aj =
1

εj

[
0 1
c2j 0

]
for some εj , cj > 0

for each j ∈ {1, . . . , n}. Moreover, α ∈ (0,∞)m×2 and qv0 : [0,∞) → R is a given
outflow for each v ∈ V . Introduce the space

Z =

 n⊗
j=1

L2([0, Lj ],R
2)

⊗ L2([0,∞),Rm),

the vectors

z = ((z1)>, . . . , (zn)>, qv1 , . . . , qvm)>,

z0 = ((z1
0)>, . . . , (zn0 )>, qv10 , . . . , qvm0 )>
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the operators

A =

A
1

. . .

An

 ∂

∂x
, B = −1m

∂

∂x
and

f(z) = (f1(z1)>, . . . , fn(zn)>, 0, . . . , 0)>.

(18)

Moreover, define the operator

diag(A,B) =

[
A 0
0 B

]
on the domain

D

([
A 0
0 B

])
=

{
z = ((z1)>, . . . , (zn)>, qv1 , . . . , qvm)> ∈ Z

∣∣∣∣ z is absolutely continuous,

αkx(v,ek)z
k
1 (Lkx(v, ek)) = αlx(v,el)

zl1(Llx(v, el)) ∀ v ∈ V, ek, el ∈ δv,∑
ej∈δ+v

zj2(Lj)−
∑

ej∈δ−v

zj2(0) = qv(0) ∀ v ∈ V
}

(19)

of all vectors of absolutely continuous functions that satisfy the boundary conditions
(16) and (17). Note that, though the inflow functions qv is only evaluated at the
origin, it also is shifted in time due to the transport-type evolution represented by
operator B – this together enforces the originally time-dependent coupling condition
(17). We then can reformulate system (15)-(17) as the abstract initial-value problem

ż(t) +

[
A 0
0 B

]
z(t) = f(z), t ∈ [0, T ],

z(0) = z0.

(20)

Now we can state the following result:

Theorem 3.1. The operator(
D

([
A 0
0 B

])
,

[
A 0
0 B

])
is the infinitesimal generator of a strongly continuous semigroup on Z.

Proof. Note that diag(A,B) is a densely defined, closed operator on Z with a
nonempty resolvent set (for instance 0 ∈ ρ(diag(A,B))). Following [43, Chapter
4, Theorem 1.3], to prove the claimed semigroup property, it thus suffices to show
that the homogeneous system

ż(t) +

[
A 0
0 B

]
z(t) = 0, t ∈ [0, T ],

z(0) = z0.

(21)

has a unique solution z ∈ C1([0, T ], Z) for any T > 0 and every choice z0 ∈
D(diag(A,B)). So let

z0 = (%1
0, q

1
0 , . . . , %

n
0 , q

n
0 , q

v1
0 , . . . , qvm0 )> ∈ D(diag(A,B))
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be given and first assume T ≤ T̄ := min
{
εjLj

2cj
| j = 1, . . . , n

}
> 0. We recognise in

the operator B a transport equation with velocity −1 for the variables qv1 , . . . , qvm

with the well-known unique solution

qvk(t, s) = qvk0 (s+ t).

Next, for each note v ∈ V we can set

αv =

 ∑
ej∈δ+v

αj1cj +
∑

ej∈δ−v

αj0cj

 > 0

and

%v(t) = α−1
v

[ ∑
ej∈δ+v

(
cj%

j
0

(
Lj −

cj
εj
t

)
+ qj0

(
Lj −

cj
εj
t

))

+
∑

ej∈δ−v

(
cj%

j
0

(
cj
εj
t

)
− qj0

(
cj
εj
t

))
+ qv(t, 0)

]
.

Since %1, q1, . . . , %n, qn, qv1 , . . . , qvm are absolutely continuous, so is %v for each v ∈
V . For each edge ej ∈ E, j = 1, . . . , n, construct the functions %j , qj : [0, T ]×[0, 1]→
R as follows: for t ∈ (0, T ] set

%j(t, 0) = αj0%
ej(1)(t), qj(t, 0) = −αj0cj%ej(1)(t) + cj%

j
0

(
cj
εj
t
)

+ qj0

(
cj
εj
t
)
,

%j(t, Lj) = αj1%
ej(2)(t), qj(t, Lj) = αj1cj%

ej(2)(t)− cj%j0
(
Lj − cj

εj
t
)

+ qj0

(
Lj − cj

εj
t
)
.

Substituting the coupling conditions stated in (19), one can indeed show that, with
these definitions,

lim
t↘0

%j(t, x) = %j0(x) and lim
t↘0

qj(t, x) = qj0(x) for x ∈ {0, Lj}.

We skip these calculations here for brevity. Next, set[
%j

qj

]
(t, x) =

1

2

[
1

εj
cj

cj
εj

1

] [
%j∗
qj∗

](
cj
εj
t, x

)
+

1

2

[
1 − εjcj
− cjεj 1

] [
%j∗
qj∗

](
− cj
εj
t, x

)
for (t, x) ∈ (0, T ]× (0, Lj), where

[
%j∗
qj∗

]
(t, x) =



[
%j0
qj0

]
(x− t), if x− t ∈ [0, Lj ],[

%j

qj

](
εj(t−x)
cj

, 0
)
, if x− t < 0,[

%j

qj

](
εj(−t−(Lj−x))

cj
, Lj

)
, if x− t > Lj .

The above considerations show that (%j∗, q
j
∗) is continuous and piecewise absolutely

continuous, thus absolutely continuous everywhere. To see that these functions in
fact solve system (21), first note that the initial condition and the coupling condition
(16) are satisfied by construction. Moreover, for each v ∈ V we have∑
ej∈δ+v

qj(t, Lj)−
∑

ej∈δ−v

qj(t, 0)
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=
∑

ej∈δ+v

[
αj1cj%ej(2)(t)− cj%j0

(
Lj − cj

εj
t
)

+ qj0

(
Lj − cj

εj
t
)]

−
∑

ej∈δ−v

[
−αj0cj%ej(1)(t) + cj%

j
0

(
cj
εj
t
)

+ qj0

(
cj
εj
t
)]

=

 ∑
ej∈δ+v

αj1cj +
∑

ej∈δ−v

αj0cj

 %v(t)

−
∑

ej∈δ+v

[
cj%

j
0

(
Lj − cj

εj
t
)
− qj0

(
Lj − cj

εj
t
)]
−

∑
ej∈δ−v

[
cj%

j
0

(
cj
εj
t
)

+ qj0

(
cj
εj
t
)]

= αv%
v(t)− (αv%

v(t)− qv(t))
= qv(t)

Observe that %j and qj are continuous at the boundaries x = 0 and x = Lj and
that

Aj ∂∂x

[
%j

qj

]
(t, x)

= 1
2A

j

[
1

εj
cj

cj
εj

1

]
∂
∂x

[
%j∗
qj∗

](
cj
εj
t, x

)
+ 1

2A
j

[
1 − εjcj
− cjεj 1

]
∂
∂x

[
%j∗
qj∗

](
− cjεj t, x

)
= − εj

2cj

[ cj
εj

1
cj

2

ε2j

cj
εj

]
∂
∂t

[
%j∗
qj∗

](
cj
εj
t, x
)

+
εj
2cj

[
− cjεj 1
cj

2

ε2j
− cjεj

]
∂
∂t

[
%j∗
qj∗

](
− cjεj t, x

)
= − ∂

∂t

[
%j

qj

]
(t, x)

for a.e. (t, x) ∈ (0, T ]× (0, Lj), thus the above construction indeed yields a solution
to (21) for T ≤ T̄ with z(t) ∈ D for t ∈ [0, T ]. For the case T > T̄ note that
the same steps can be repeated successively to expand the solution for the times
[T̄ , 2T̄ ], [2T̄ , 3T̄ ] and so on. To prove uniqueness of the solution, consider the case
z0 = 0 of initial data and introduce the energy

E(t) =
1

2

∑
ej∈E

∫ Lj

0

(%j(t, x))2 +
1

c2j
(qj(t, x))2dx.

Obviously, we have E(t) = 0 if and only if %j(t, .) = qj(t, .) = 0 for all j = 1, . . . , n,
E(t) ≥ 0 for all t ≥ 0 and E(0) = 0. Furthermore,

d

dt
E(t) =

∑
ej∈E

∫ Lj

0

%j(t, x)
∂

∂t
%j(t, x) +

1

c2j
qj(t, x)

∂

∂t
qj(t, x)dx

=
∑
ej∈E

1

εj

∫ Lj

0

−%j(t, x)
∂

∂x
qj(t, x) + qj(t, x)

∂

∂x
%j(t, x)dx

P.I.
=
∑
ej∈E

1

εj

[
qj(t, Lj)%

j(t, Lj)− qj(t, 0)%j(t, 0)
]

=
∑
v∈V

 ∑
ej∈δ+v

1

εj
qj(t, Lj)%

j(t, Lj)−
∑

ej∈δ−v

1

εj
qj(t, 0)%j(t, 0)
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=
∑
v∈V

%v(t)

 ∑
ej∈δ+v

αj1
εj
qj(t, Lj)−

∑
ej∈δ−v

αj0
εj
qj(t, 0)


= 0,

since %v ≡ 0 for all v ∈ V . But then E ≡ 0, hence z ≡ 0. This concludes the proof
for the semigroup property.

We now can apply standard arguments from semigroup theory for further dis-
cussion of (20): by [43, Chapter 6, Theorem 1.2 and 1.5], if the inhomogeneity f
is continuously differentiable and globally Lipschitz-continuous, (20) has a unique
classical solution z. Though these assumptions do not apply to the friction term f
stated in (2), we can use the following technical consideration to still get a unique
solution: choose any %̄, q̄ > 0 and define the modified right-hand side

f̃(z) =

[
0

−θmin{z2|z2|,q̄}
max{z1,%̄} − gh

′z1

]
.

The function f̃ is continuously differentiable and globally Lipschitz-continuous as
a function mapping L2([0, L],R) onto itself for any L > 0. If we replace f by the

f̃ in (9), we then have a system fitting the assumptions made above for each fixed
k = 1, . . . , N and thus we have a unique solution. If we choose %̄ sufficiently small
and q̄ sufficiently large, then the numerical simulation with realistic data shows that
both the boundaries %̄ and q̄ will in fact never be reached by % and q, respectively.
In this case, however, the solution coincides with the unique solution to the original
problem (9). The same argumentation holds for the right-hand side in (8). In
summary, this proves the necessary results on well-posedness of the system (20)
that we need to examine the optimization problem (14).

4. Optimality conditions and a solution method. By the results developed
in Section 3, we find that the optimization problem (14) is of the form

min
µ,τ

J(µ, τ, z)

s.t. ż(t) = Aµkz(t) + fµk(t, z(t)), k ∈ {1, . . . , N}, t ∈ (τk−1, τk),

z(τk) = gµk,µk+1(z−(τk)), k ∈ {1, . . . , N},
z(τ0) = z0,

τ ∈ T (0, T ).

(22)

where Aµk is a strongly continuous semigroup, fµk is a semilinear perturbation
and gµk,µk+1 = id is a transition map that can be chosen trivially here for each
k = 1, . . . , N . The ordering cone T (0, T ) is for fixed T > 0 defined by

T (0, T ) = {τ = (τ1, . . . , τN ) ∈ RN | 0 = τ0 ≤ τ1 ≤ . . . ≤ τN ≤ τN+1 = T}.
In general, problem (22) does not have a unique global minimum. Instead, we will
define a concept of stationarity fitted to the hybrid nature of the problem and set
up an algorithm capable of finding such stationary points.

First, however, we apply on system (22) some results from the preliminary work
in [45]: by Theorem 3.1 and the subsequent remarks, [45, Lemma 2] can be applied,
yielding a control-to-state-map (µ, τ) 7→ z(µ, τ) that can be substituted into J to
define the reduced cost functional Φ(µ, τ) = J(µ, τ, z(µ, τ)). We can now apply
[45, Theorem 8] to show that Φ is continuously differentiable with respect to the
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switching time τk. Recalling the shortened notation introduced in (13), we find that,
while J2 can be differentiated directly with respect to (µ, τ), the term J1 depends on
the solution z = z(µ, τ). Again by [45, Theorem 8], we can state gradient formulae
for the derivatives of J1 based on the adjoint equation[

pt(t)
γt(t)

]
+

[
Aµk 0
0 B

]∗ [
p(t)
γ(t)

]
=

[
−[fµk

z (z(t))]∗p(t) + lz(z(t))
0

]
, t ∈ (τk−1, τk),[

p(T )
γ(T )

]
= 0,

k = 1, . . . , N + 1.

(23)

Here, fµz : Z → L(Z) and lz : Z → Z∗ denote the derivatives of the friction term
fµ and l as in (13) with respect to z. Substituting the definitions made in (18)
yields that in fact γ ≡ 0 and p = (pj)j=1,...,n again can be partitioned into edgewise

defined functions pj = (pj1, p
j
2)> for j = 1, . . . , n satisfying[

pj1
pj2

]
t

+
1

εµk(j)

[
0 c2j
1 0

] [
pj1
pj2

]
x

= (fµk(j)
z (zj))>

[
pj1
pj2

]
+ γ1

[
%j − %jd
qj − qjd

]
[
pj1
pj2

]
(T, x) = 0,

(24)

where

f0
z (%, q) =

[
− θ
c2
qj |qj |
%j |%j | − gh

′ 2 θ
c2
|qj |
%j

0 0

]
and f1

z (%, q) =

[
0 0

−θ q
j |qj |
%j |%j | − gh

′ 2θ |q
j |
%j

]
are the derivatives of f0 and f1 in (10), as well as the coupling conditions

αjx(v,ek)p
j
1(t, Lkx(v, ek)) = αkx(v,el)

pk1(t, Llx(v, el)), ek, el ∈ δv, (25)∑
ej∈δ+v

pj2(t, Lj)−
∑

ej∈δ−v

pj2(t, 0) = 0. (26)

By [45, Lemma 6], system (23) (and thus (24),(25),(26) as well) have a unique mild
solution and, applying [45, Theorem 8], the switching time gradient is given by

∂Φ

∂τk
=
∑
ej∈E

[ ∫ Lj

0

pj(τk, x)
[
(Aµk)j − (Aµk−1)j

]
zj(τk, x) dx

+ γ3

[
(εµk(j) − ε̄)2 − (εµk−1(j) − ε̄)2

] ]
.

(27)

If the mode sequence µ is fixed, then we can conclude that a switching sequence
τ = (τk)k=0,...,N+1 is a KKT-point of the minimization problem (14), if the following
holds: For n ∈ {1, . . . , N} set a(τ, n) = min{m ∈ {0, . . . , n} | τm = τn} and b(τ, n) =
max{m ∈ {n, . . . , N + 1} | τm = τn}, then

n∑
j=a(τ,n)

∂Φ

∂τj
(τ) ≤ 0 and

b(τ,n)∑
j=n

∂Φ

∂τj
(τ) ≥ 0. (28)

Similarly, by [45, Theorem 10], the sensitivity of the cost function with respect to
introducing a new mode µ′ on an infinitesimal time interval at the point τ ′ can be
represented by the mode insertion gradient given by
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∂Φ

∂µ′
(τ ′) =

∑
ej∈E

[ ∫ Lj

0

pj(τ ′, x)
[
(Aµk)j − (Aµ

′
)j
]
zj(τ ′, x) dx

+ γ3

[
(εµk(j) − ε̄)2 − (εµ′ − ε̄)2

] ]
,

(29)

where µk is the original mode at time τ ′. In summary, a switching sequence (µ, τ)
is called stationary, if τ is a KKT-point for µ fixed and if ∂Φ

∂µ′ (τ
′) ≥ 0 for all modes

µ′ and all times τ ′ ∈ [0, T ]. Any global minimum of the problem (14) then is
stationary.

In order to compute such stationary switching signals, we consider a concep-
tual algorithm originally proposed for optimal mode scheduling in hybrid ODE-
dynamical systems [2]. The main idea is a two phase approach as follows: the
algorithm is initialized with a switching sequence (µ0, τ0), for instance µ0 = 1 and
τ0 = (0, T ) where no switching occurs and the system is solved by keeping the mode
constant at 1.

In a first phase, the positions of available switching time points are optimized,
while conserving their order, by using a projected-gradient method with Armijo
step size. To this end a projection P onto the ordering cone T (0, T ) is used. In a
second phase, a new mode µ′ is inserted at a time point τ ′ where ∂Φ

∂µ′ (τ
′) < 0. If no

such point exists, the switching sequence is stationary in the above sense, otherwise
the algorithm continues with the first phase again.

A more precise description of the procedure is given in Algorithm 1. Note that

Algorithm 1 Two-phase gradient descent for stationary switching sequences

Require: Initial switching sequence (µ0, τ0) with N modes, Armijo-parameters
β ∈ (0, 1) and γ ∈ (0, 1)

1: Set k = 0, solve (20) for z and (24) for p.

2: Calculate the switching time gradient ∂Φ
∂τk =

(
∂Φ
∂τk

n

)
n=1,...,N−1

in (27).

3: while τk does not satisfy (28) do
4: Find a step size sk = max{βl | l = 0, 1, 2, . . .} such that

Φ

(
P

(
τk − sk ∂Φ

∂τk

))
≤ Φ(τk)− γ ∂Φ

∂τk

> [
τk − P

(
τk − sk ∂Φ

∂τk

)]
5: Set τk ← P

(
τk − sk ∂Φ

∂τk

)
.

6: Solve (9) for z and (24) for p.

7: Calculate the switching time gradient ∂Φ
∂τk =

(
∂Φ
∂τk

n

)
n=1,...,N−1

in (27).

8: end while
9: if the mode insertion gradient ∂Φ

∂µ′ (τ
′) ≥ 0 in (29) ∀µ′ ∈ {0, 1}, τ ′ ∈ [0, T ] then

10: return (µ, τ) = (µk, τk)
11: end if
12: Find mode µ′ and τ ′ ∈ [0, T ] with ∂Φ

∂µ′ (τ
′) < 0 in (29).

13: Find n ∈ {0, . . . , N} such that τ ′ ∈ [τ̃kn , τ̃
k
n+1).

14: Set µk+1 ← (µk1 , . . . , µ
k
n, µ
′, µkn+1, . . . , µ

k
N )

15: Set τk+1 ← (τk1 , . . . , τ
k
n , τ

′, τ ′, τkn+1, . . . , τ
k
N )

16: Set k ← k + 1, N ← N + 1 and go to 2.
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%1
0, . . . , %

5
0 60 kg

m3

%6
0, . . . , %

10
0 ᾱ · 60 kg

m3

q1
0 , . . . , q

10
0 0 kg

m2 s

L1, . . . , L4 50 000 m

L5, L6 10 000 m

L7, . . . , L10 30 000 m

h′ 0

c 340 m
s

T 1800 s

λ 0.05

D 1 m

ᾱ 1.3

(a) Data

N2

N1

N3

1

23

4

5

6 7

89

10

(b) Network topology

500 1000 1800

−800

−500
−300

300
500
700

1000

t

(c) Outflow at nodes N1 (solid) and N2 (dashed) in
kg

m2 s
, negative values mean inflow.

Figure 1. A gas network with a supply node N1 and two costumer
nodes N2 and N3.

Algorithm 1 does not necessarily terminate with the global solution to the minimiza-
tion problem (22), but with a stationary point in the above sense. A convergence
analysis for this algorithm can be found in [2]. A possible implementation of the
projection P can be found in [19].

5. Numerical study. As a proof of concept we consider a gas network outlined
in Figure 1b. At the boundary node N1 gas is supplied to the network whereas
nodes N2 and N3 are customer nodes where gas can possibly be taken out of the
network. This can be seen as a simplified example of a big regional gas pipeline
network with a local distribution subnetwork. In the particular scenario we are
looking at, there is gas transported from the supply N1 to node N2 to satisfy a given
demand while N3 is inactive. All pipes are assumed to be horizontal (h′ = 0), the
compressor is assumed to be running at a constant compression factor ᾱ, compare
(5), and at initial time the network is assumed to be stationary with constant
densities %0 on the outer circle (thus α%0 on the inner circle) and flux q0 everywhere,
moreover the outflows at the nodes N1 and N2 are outlined in Figure 1c. See the
table in Figure 1a for specific values for those and other constants.

Due to the almost decoupled inner and outer circle, it can be expected that the
numerical solution highly varies on the outer circle connecting N1 and N2 but is
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Figure 2. Snapshot of the fully simulated solution showing den-
sity (solid, blue) and flux (dashed, red, scaled by 0.05). On the
outer pipes 1 to 5 we see a lot of fluctuation due to the oscilla-
tory boundary flows. The pipes 6 to 9 of the inner circle, however,
remain nearly constant.

near to constant on the inner circle. This is confirmed by the simulation of the
full model, see Figure 2 for a snapshot of the simulation at the time t = 900 s. We
therefore can suspect that the simulation on the inner circle can be widely frozen
with only some small losses in the accuracy of the solution. Indeed, letting z̄ be the
distinguished solution to (9), (11) resulting from freezing the solution completely
on the inner edges 6 to 10, our simulations show that the L2-errors of the density
and the flux relative to the respective maximum values in zd is less than 1% for %
and less than 6.5% for q; see Figure 3d. Moreover, compared to a full simulation zd
about half of the computation time in the sense of J2 defined in (13) is saved.

In our implementation the system (9), (11) is solved via splitting of the hyperbolic
part and the friction term. For the simulation of the hyperbolic part we use the
2-step-Richtmyer-method with artificial viscosity, see [32, Chapter 18.1]. Given a
system matrix A and a discretization zk = (zk1 , . . . , z

k
n)> with spatial step size ∆x

of the solution at time point tk, it computes the discretized values zk+1 at time
tk+1 = tk + ∆t by the explicit finite-volume-scheme

z
k+ 1

2

j+ 1
2

=
1

2

(
zkj+1 + zkj

)
− ∆t

2∆x
A
(
zkj+1 − zkj

)
,

zk+1
j = zkj −

∆t

∆x
A
(
z
k+ 1

2

j+ 1
2

− zk+ 1
2

j− 1
2

)
+ ε

(
zkj+1 − 2zkj + zkj−1

)
for j = 1, . . . , n, where ε ∼ 0.05 introduces an additional, minor but stabilizing
smoothing to the solution. The discretization is chosen in a way such that the cells
zk1 and zkn are centered at the boundary points x = 0 and x = 1, respectively. In
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order to handle the boundary values and the inner cells simultaneously with the
same scheme, we add appropriate ghost cells on each end of the spatial domain.
The appropriate ghost cell values (ze)k0 , (z

e)kn+1 for each e ∈ E are derived from the
coupling conditions. We mention without further proof that these can be solved
explicitly for each node v ∈ V by first setting the weighted mean value

zv∗ =
2

|δv|

( ∑
e∈δ+v

(ze)kn−1 +

[
1 0
0 −1

] ∑
e∈δ−v

(ze)k2

)
and then using the ghost cell values

(ze)kn+1 =

[
1 0
0 −1

] (
zv∗ − (ze)kn−1

)
for all e ∈ δ+v,

(ze)k0 = zv∗ −
[
1 0
0 −1

]
(ze)k2 for all e ∈ δ−v.

Here, in each time step, we incorporate only those edges where the solution is
actively calculated. In the special case if v ∈ V is a compressor, we only have one
ingoing edge e+ ∈ δ+v and one outgoing edge e− ∈ δ−v and instead have to set

zv∗ =
2

1 + ᾱ

(
(ze+)kn−1 +

[
1 0
0 −1

]
(ze−)k2

)
,

(ze+)kn+1 =

[
1 0
0 −1

] (
zv∗ − (ze+)kn−1

)
,

(ze−)k0 =

[
ᾱ 0
0 1

]
zv∗ −

[
1 0
0 −1

]
(ze−)k2 .

For the friction term, we add an explicit Runge-Kutta-step using the classical Runge-
Kutta-scheme of order 2 or midpoint rule, see [10, Chapter 23]. The same methods
are used on the same discretization grid backwards in time to solve the adjoint
system stated in (24), (25), (26).

To evaluate the gradient formulae (27) and (29), we use the trapezoidal rule over
the spatial grid, see [14, Chapter 2.1]. The expression [(Aµk)j − (Aµk−1)j ]zj(τk, x)
occurring in both (27) and (29) represents the difference of the time derivatives of
the solution depending on which mode µk is switched to. In the numerical scheme,
this is realized by calculating a time step of the solution for each choice of µk and
then substracting the forward difference quotients.

The fixed temporal discretization grid for the actual solution is supplemented by
a grid of switching time points that may vary due to the superordinated optimization
where the data needed for the gradient formulae is calculated. For our study we
start the optimization with the fully frozen solution, where in no time step the model
(2) is actually calculated, and iteratively insert regions of active numerical solving
wherever the gradients indicate a major loss of accuracy. Applying the projected-
gradient method with sequential mode insertion described in Algorithm 1 yields
the results shown in Figure 3a. We observe that it is in fact almost unnecessary
to calculate the fine model on the edges 6 to 10 of the inner circle and that the
algorithm indeed approximates the distinguished solution z̄ as expected. Note that
Algorithm 1 does not remove switching points during its process, because doing so
might lead to the iteration being caught in an infinite loop, where the same switching
points are added and removed repeatedly. This way, however, there remain scattered
short intervals where the mode is switched twice almost instantly, which can be
interpreted as the algorithm eliminating the respective intermediate modes. We
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Figure 3. (A): resulting optimized switching sequence showing,
for each time step from t0 = 0 s to T = 1800 s and each edge
e1, . . . , e10, if the solution is calculated with the fine model (white)
or frozen (black). (B), (C): filtered results with two different fil-
ters. (D): L2-error relative to maximum values of the solution z̄
corresponding to freezing edges 6 to 10 completely

suggest a post-processing step to remove this scattering, for instance by applying
the following filtering rule with d ∈ N a fixed parameter: if within d time steps
after a switching point in the numerical solution the mode is switched again, then
both switching time points are removed. Relative to the initial cost, we get for the
optimized solution a cost reduction of 96.4% with 65 switching points, for d = 5
shown in Figure 3b a cost reduction of 96.3% with 19 switching points and for
d = 10 shown in Figure 3c a cost reduction of 95.1% with 7 switching points.

6. Conclusion. We have presented an application of the theory of switching sys-
tems to a model hierarchy for the dynamics of gas in a pipeline network. A
semigroup formulation was given for the model on gas networks including time-
dependent outflow at each node as well as a linearized model for compressors that
allowed us to prove the existence of unique solutions. Using adjoint-based gradi-
ent representations for switching abstract evolution systems, we implemented a two
stage projected-gradient descent method for the optimization of switching between
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different levels of accuracy in the hierarchy. As an example, we optimized the sim-
ulation of a small supply network by freezing the calculation on edges whenever the
numerical error made is small compared to the computational costs.

Our prototypical approach can be applied in a similar fashion to realistic indus-
trial networks. The technique can also be extended to identify a model switching
strategy for a reduced model using a range of different parameter configurations
such as representing different boundary flow scenarios, compressor settings and
valve positions. The resulting reduced simulation model can then be used for a
time expanded mixed-integer optimization technique based on full discretization
with a minimum of variables or within a bilevel optimisation method which opti-
mises a cost functional on the outer level with optimal efficiency on the lower level
as proposed, for example, in [24]. Further directions include a combination of this
method in a network of submodel hierarchies such as those used in [37] for the opti-
misation of stationary models. Moreover, it remains an open question, whether the
chosen numerical method lead to a consistent discretization of the optimality sys-
tem. Well-balanced finite-volume schemes also seem to be an promising alternative
approach in this context.
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