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Abstract. We present a Godunov type numerical scheme for a class of scalar

conservation laws with non-local flux arising for example in traffic flow models.
The proposed scheme delivers more accurate solutions than the widely used

Lax-Friedrichs type scheme. In contrast to other approaches, we consider a

non-local mean velocity instead of a mean density and provide L∞ and bounded
variation estimates for the sequence of approximate solutions. Together with a

discrete entropy inequality, we also show the well-posedness of the considered
class of scalar conservation laws. The better accuracy of the Godunov type

scheme in comparison to Lax-Friedrichs is proved by a variety of numerical

examples.

1. Introduction. Over recent years, non-local conservation laws gained growing
interest for a wide field of applications such as supply chains [3], sedimentation [4],
conveyor belts [12], crowd motion [8] or traffic flow [5, 10]. In the latter case, the
well-known Lighthill-Whitham-Richards (LWR) model [15, 16] has been extended
by considering non-local velocity terms depending on the downstream traffic so that
drivers adapt their velocity to the mean traffic in front, see [5, 10].

The well-posedness of special non-local flux problems has been investigated in
for example [1, 2, 7, 9]. However, only a few numerical schemes have been applied
so far to solve these type of equations. The most common approach are first order
Lax-Friedrichs (LxF) type schemes [2, 4, 5, 7, 10], while recently second- and higher-
order schemes have been introduced [6, 11]. We remark that also these higher-
order methods rely on LxF type numerical flux functions, which imply the same
drawbacks known from local conservation laws. Certainly, the LxF type scheme
offers a powerful tool to numerically analyze non-local flux problems but typically
leads to approximate solutions with strong diffusive behavior. As we are interested
in a more accurate approach, we present a Godunov type scheme for a class of scalar
conservation laws with non-local flux. In addition, by deriving several properties
of the scheme, we prove the well-posedness for these special non-local conservation
laws, which in contrast to other models [5, 7, 10] focus on a non-local mean velocity
of the downstream traffic. Furthermore, the Godunov type scheme approach allows
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531

http://dx.doi.org/10.3934/nhm.2018024


532 JAN FRIEDRICH, OLIVER KOLB AND SIMONE GÖTTLICH

for physically reasonable solutions meaning that a maximum principle is satisfied
and negative velocities as well as negative fluxes are avoided.

This work is organized as follows: In Section 2, we present the considered class
of non-local conservation laws for traffic flow. Afterwards, we introduce the Go-
dunov type scheme and derive important properties of the scheme such as L∞ and
bounded variation (BV) estimates in Section 3. Those are also used to show the
well-posedness of the proposed traffic model. In Section 4, we present numerical
examples, which demonstrate the better accuracy of the Godunov type scheme in
comparison to the widely used LxF type scheme and also provide a comparison to
the model in [7].

2. Modeling. We briefly present an already existing traffic flow model with non-
local flux originally introduced in [5, 7, 10]. Based on the modeling ideas therein,
we propose an adapted model and show its well-posedness. The key difference
appears in the flux function, where instead of a mean downstream density a mean
downstream velocity is considered.

2.1. An existing model with mean downstream density. The model consid-
ered in [7] is given by a scalar conservation law of the form

∂tρ(t, x) + ∂x (g(ρ)v(wη ∗ ρ)) = 0, x ∈ R, t > 0, (1)

where

wη ∗ ρ(t, x) :=

∫ x+η

x

ρ(t, y)wη(y − x)dy, η > 0. (2)

For initial conditions

ρ(0, x) = ρ0(x) ∈ BV(R, I), I = [a, b] ⊆ R+, (3)

the existence and uniqueness of weak entropy solutions is stated in [7, Theorem 1]
if the following hypotheses are satisfied:

g ∈ C1(I;R+),

v ∈ C2(I;R+) with v′ ≤ 0, (H1)

wη ∈ C1([0, η];R+) with w′η ≤ 0,

∫ η

0

wη(x)dx = W0 ∀η > 0, lim
η→∞

wη(0) = 0.

Note that a whole family of kernel functions wη is considered to also analyze the
limit behaviour of the model (η → 0 and η →∞).

2.2. Model considering a mean downstream velocity. The non-local model
(1) to (3) can be applied in the context of traffic flow and chooses the velocity
based on a mean downstream traffic density. In contrast to this approach, it is also
reasonable to assume that drivers adapt their speed based on a mean downstream
velocity, anticipating the future space in front of them, see Figure 1.

Therefore, we consider a slightly different model compared to (1) to (3), namely

∂tρ(t, x) + ∂x (g(ρ) (wη ∗ v(ρ))) = 0, x ∈ R, t > 0, (4)

where

wη ∗ v(ρ)(t, x) :=

∫ x+η

x

v(ρ(t, y))wη(y − x)dy, η > 0, (5)
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Figure 1. Illustration of a non-local traffic flow model either given
by (1)-(3) or (4)-(6).

and we have given initial conditions

ρ(0, x) = ρ0(x) ∈ BV(R; [0, ρmax]). (6)

For simplicity, let us also define

V (t, x) := wη ∗ v(ρ)(t, x). (7)

In (4) and (5), we assume the same hypotheses as for (1) and (2) and one additional
restriction:

(H1) with I = [0, ρmax], g′ ≥ 0. (H2)

As we will see in Section 3, the reformulation of the original model (1) to (3)
keeps the main properties and allows for a straightforward application of a Godunov
type scheme.

Remark 1. We note that in the case of a linear velocity function v(ρ), e.g. v(ρ) =
1− ρ, the model given by (4) and (5) coincides with (1) and (2).

The weak entropy solutions of problem (4) to (6) are intended in the following
sense:

Definition 2.1. [13, Definition 1] A function ρ ∈ (L1 ∩ L∞ ∩BV)(R+ ×R;R) is a
weak entropy solution if∫ ∞

0

∫ ∞
−∞

(|ρ− κ|φt + sgn(ρ− κ)(g(ρ)− g(κ))V φx − sgn(ρ− κ)g(κ)Vxφ)(t, x)dxdt

+

∫ ∞
−∞
|ρ0(x)− κ|φ(x, 0)dx ≥ 0

for all φ ∈ C1
c (R2;R+) and κ ∈ I = [0, ρmax].

Our main result concerning the new model is given by the following theorem,
which states the well-posedness of problem (4) to (6).

Theorem 2.2. Let ρ0 ∈ BV(R; [0, ρmax]) and hypotheses (H2) hold. Then, the
Cauchy problem{

∂tρ(t, x) + ∂x (g(ρ(t, x))(v(ρ) ∗ wη)) = 0, x ∈ R, t > 0,

ρ(0, x) = ρ0(x), x ∈ R,

admits a unique weak entropy solution in the sense of Definition 2.1 and

inf
R
{ρ0} ≤ ρ(t, x) ≤ sup

R
{ρ0} for a.e. x ∈ R, t > 0.
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The proof consists of two parts: existence and uniqueness of entropy solutions.
While the uniqueness proof follows from the Lipschitz continuous dependence of
weak entropy solutions on the initial data, the existence proof is based on a con-
struction of a converging sequence of approximate solutions defined by a Godunov
type scheme.

2.3. Uniqueness of entropy solutions. One part of the proof to Theorem 2.2
is to show uniqueness of entropy solutions for the model (4) to (6). Therefore, we
prove the Lipschitz continuous dependence of weak entropy solutions with respect
to the initial data. Here, we follow [5, 7, 10] and use Kruzkov’s doubling of variables
technique [13]. Note that in the following ‖ · ‖ denotes ‖ · ‖L∞ .

Theorem 2.3. Under hypotheses (H2), let ρ and σ be two entropy solutions of (4)
to (6) with initial data ρ0 and σ0, respectively. Then, for any T > 0, there holds

‖ρ(t, ·)− σ(t, ·)‖L1 ≤ exp(KT )‖ρ0 − σ0‖L1 ∀t ∈ [0, T ] (8)

with K given by (12).

Proof. The functions ρ and σ are weak entropy solutions of

∂tρ(t, x) + ∂x (g(ρ(t, x))V (t, x)) = 0, V := v(ρ) ∗ wη, ρ(0, x) = ρ0(x),

∂tσ(t, x) + ∂x (g(σ(t, x))U(t, x)) = 0, U := v(σ) ∗ wη, σ(0, x) = σ0(x),

respectively, and V , U are bounded measurable functions and Lipschitz continuous
w.r.t. x since ρ, σ ∈ (L1 ∩ L∞ ∩ BV )(R+ × R;R). Using the classical doubling of
variables technique, we get the following inequality:

‖ρ(t, ·)− σ(t, ·)‖L1 ≤ ‖ρ0 − σ0‖L1 + ‖g′‖
∫ T

0

∫
R
|ρx(t, x)| |U(t, x)− V (t, x)|dxdt

+

∫ T

0

∫
R
|g(ρ(t, x))| |Ux(t, x)− Vx(t, x)|dxdt, (9)

where ρx must be understood in the sense of measures. Applying the mean value
theorem and using the properties of the kernel function, we deduce

|U(t, x)− V (t, x)| ≤ ‖v′‖wη(0) ‖ρ(t, ·)− σ(t, ·)‖L1 . (10)

Using the Leibniz integral rule and again the mean value theorem, we can also
obtain for a.e. x ∈ R

|Ux(t, x)− Vx(t, x)| =|
∫ x+η

x

(v(ρ(t, y))− v(σ(t, y)))w′η(y − x)dy

+ (v(σ(t, x+ η))− v(ρ(t, x+ η)))wη(η)

− (v(σ(t, x))− v(ρ(t, x)))wη(0)|
≤‖w′η‖‖v′‖‖ρ(t, ·)− σ(t, ·)‖L1

+ wη(0)‖v′‖(|ρ− σ|(t, x+ η) + |ρ− σ|(t, x)). (11)

If we plug (10) and (11) into (9), we obtain

‖ρ(t, ·)− σ(t, ·)‖L1 ≤‖ρ0 − σ0‖L1 + ‖v′‖
((

wη(0)‖g′‖ sup
t∈[0,T ]

‖ρ(t, ·)‖BV (R)
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+ ‖w′η‖ sup
t∈[0,T ]

‖g(ρ(t, ·))‖L1

)∫ T

0

‖ρ(t, ·)− σ(t, ·)‖L1dt

+ wη(0) sup
t∈[0,T ]

‖g(ρ(t, ·))‖
∫ T

0

∫
R

(|ρ− σ|(t, x+ η)

+ |ρ− σ|(t, x))dxdt

)
≤‖ρ0 − σ0‖L1 +K

∫ T

0

‖ρ(t, ·)− σ(t, ·)‖L1dt

with

K := ‖v′‖
(
wη(0)

(
‖g′‖ sup

t∈[0,T ]

‖ρ(t, ·)‖BV (R) + 2 sup
t∈[0,T ]

‖g(ρ(t, ·))‖
)

+ ‖w′η‖ sup
t∈[0,T ]

‖g(ρ(t, ·))‖L1

)
. (12)

By Gronwall’s lemma we get (8) and for σ0 = ρ0 the uniqueness of entropy
solutions.

The existence of weak entropy solutions is now proved in Section 3. We therefore
introduce a Godunov type scheme used to construct approximate solutions.

3. A Godunov type scheme. The main new contribution of this work is to
develop a suitable Godunov type numerical scheme for the non-local model (4)
to (6). We derive L∞ and BV bounds for the approximate solutions and further
provide, due to a discrete entropy inequality, all ingredients to finally prove the
well-posedness result Theorem 2.2.

3.1. Numerical scheme. We take a space step h such that for the size of the
(downstream) kernel η = Nh with N ∈ N holds. The time step is denoted by τ
and we set λ = τ/h. We define the space grid by xj+ 1

2
= (j + 1

2 )h being the cell

interfaces and xj = jh the cell centers for j ∈ Z, see Figure 2. The finite volume
approximate solution ρ̄(t, x) is denoted by ρnj for (t, x) ∈ [tn, tn+1[×]xj− 1

2
, xj+ 1

2
].

ρj−1 ρj ρj+1 ρj+2 ρj+3

xj−1 = (j − 1)h xj = (j)h xj+1 = (j + 1)h xj+2 = (j + 2)h xj+3 = (j + 3)h

xj+ 1
2
= (j + 1

2 )h

Figure 2. Space discretization and downstream kernel η = Nh
for N = 2 in gray.

Within the proposed scheme, we intend to mimic the numerical flux function of
the Godunov scheme for local conservation laws, i.e., minimizing or maximizing the
flux within [ρnj , ρ

n
j+1] or [ρnj+1, ρ

n
j ] depending on whether ρnj ≤ ρnj+1 or ρnj+1 ≤ ρnj ,

respectively. As the convolution term V (t, x) is a non-local velocity function (see
(7)), there is no straightforward way of adapting this result to the non-local case.
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Therefore, we first examine the flux at the interface xj+ 1
2
, where the convolution

term for t ∈ [tn, tn+1[ is then approximated by

V nj+ 1
2

=

N−1∑
k=0

γkv(ρnj+k+1) (13)

with

γk =

∫ (k+1)h

kh

wη(y)dy ∀k ∈ {0, . . . , N − 1}, (14)

which is motivated by

V (tn, xj+ 1
2
) =

∫ x
j+1

2
+η

x
j+1

2

wη(y − xj+ 1
2
)v(ρ(t, y))dy

=

N−1∑
k=0

∫ x
j+k+3

2

x
j+k+1

2

wη(y − xj+ 1
2
)v(ρ(t, y))dy

≈
N−1∑
k=0

v(ρnj+k+1)

∫ (k+1)h

kh

wη(y)dy

=

N−1∑
k=0

γkv(ρnj+k+1). (15)

Remark 2. For (14) we follow [4, Equation (3.2)] to satisfy

0 ≤ V nj ≤ vmax = v(0) ∀j, n
if W0 = 1 and γk is computed exactly or by an appropriate quadrature formula

(such that all γk are non-negative and
∑N−1
k=0 γk = W0 = 1 holds).

An example for the computation of V n
j+ 1

2

can be seen in Figure 2. The corre-

sponding values of ρ, which are used in the computation of V n
j+ 1

2

for the case N = 2,

are gray-shaded. Based on the approximate convolution term V n
j+ 1

2

, we adapt the

numerical flux function of the Godunov scheme as follows:

F (ρnj , . . . , ρ
n
j+N ) =


min

ρ∈[ρnj ,ρnj+1]
V n
j+ 1

2

g(ρ), if ρnj ≤ ρnj+1

max
ρ∈[ρnj+1,ρ

n
j ]
V n
j+ 1

2

g(ρ), if ρnj ≥ ρnj+1

 = V nj+ 1
2
g(ρnj ). (16)

Summarizing, the entire Godunov type scheme is initialized by the initial data
ρ0 as

ρ0j =
1

h

∫ x
j+1

2

x
j− 1

2

ρ0(x)dx (17)

and can be computed using (13) and (16) by the finite volume scheme

ρn+1
j = ρnj − λ

(
V nj+ 1

2
g(ρnj )− V nj− 1

2
g(ρnj−1)

)
. (18)

Remark 3. Analogously to the scheme (17) and (18) with (13), a Godunov type
scheme for the model (1) to (3) considered in [7] can be derived. For this, similar
properties can be shown analogously to the following sections. One major advantage
of our Godunov type scheme unlike the LxF type scheme used in [5, 7, 10] is that
the numerical fluxes Fn

j+ 1
2

= V n
j+ 1

2

g(ρnj ) are always non-negative.
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3.2. Maximum principle. The approximate solutions constructed by the Go-
dunov type scheme (18) satisfy a strict maximum principle:

Theorem 3.1. Let hypotheses (H2) hold. For a given initial datum ρ0j , j ∈ Z with

ρM = supj∈Z ρ
0
j and ρm = infj∈Z ρ

0
j , the approximate solutions constructed by the

scheme (18) satisfy the bounds

ρm ≤ ρnj ≤ ρM ∀j ∈ Z, n ∈ N,

if the following Courant-Friedrichs-Levy (CFL) condition holds:

λ ≤ 1

γ0‖v′‖‖g‖+ ‖v‖‖g′‖
. (19)

Proof. We prove the claim per induction. For n = 0 the claim is obvious, so we
suppose

ρm ≤ ρnj ≤ ρM , ∀j ∈ Z
holds for a fixed n ∈ N.

Before considering ρn+1
j we show some general inequalities:

V nj− 1
2
− V nj+ 1

2
=

N−1∑
k=0

γkv(ρnj+k)−
N−1∑
k=0

γkv(ρnj+1+k)

= γ0v(ρnj ) +

N−1∑
k=1

(γk − γk−1)v(ρnj+k)− γN−1v(ρj+N ) (20)

≤ γ0v(ρnj ) +

N−1∑
k=1

(γk − γk−1)v(ρM )− γN−1v(ρM )

= γ0(v(ρnj )− v(ρM ))

≤ γ0‖v′‖(ρM − ρnj ), (21)

where we used the monotonicity of wη and v, and the mean value theorem.
Analogously, we obtain from (20)

V nj− 1
2
− V nj+ 1

2
≥ γ0‖v′‖(ρm − ρnj ). (22)

By multiplying inequality (21) by g(ρM ), subtracting V n
j+ 1

2

g(ρnj ) and applying

the mean value theorem, we obtain

V nj− 1
2
g(ρM )− V nj+ 1

2
g(ρnj ) ≤ γ0‖v′‖‖g‖(ρM − ρnj ) + V nj+ 1

2
(g(ρM )− g(ρnj ))

≤ (γ0‖v′‖‖g‖+ ‖v‖‖g′‖)(ρM − ρnj ).

Therefore, under the CFL condition (19), we have

ρn+1
j ≤ ρnj + λ

(
V nj− 1

2
g(ρM )− V nj+ 1

2
g(ρnj )

)
≤ ρM .

Analogously, we obtain

V nj− 1
2
g(ρm)− V nj+ 1

2
g(ρnj ) ≥ (γ0‖v′‖‖g‖+ ‖v‖‖g′‖)(ρm − ρnj )

to show

ρn+1
j ≥ ρm,

which gives us the claim.
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The maximum principle ensures that the numerical solution to (4) to (6) is
bounded from above by ρM = supj∈Z ρ

0
j ∈ [0, ρmax] and hence does not exceed

the maximal density ρmax. In addition, the scheme is positivity preserving as the
solution stays non-negative, since ρm = infj∈Z ρ

0
j ≥ 0.

3.3. BV estimates. Next, we derive a BV estimate for the approximate solutions
constructed by the Godunov type scheme (18). Similar to the LxF type scheme
analyzed in [5, 7, 10], BV estimates cannot be derived using the standard general
approaches. In particular, the Godunov type scheme also does not fit into the classi-
cal assumptions of total variation diminishing (TVD) schemes, as the total variation
may slightly increase (as it is the same for the analytical solution). Nevertheless,
the numerical scheme has a bounded total variation. Further, to finally also prove
the existence of solutions to the model (4) to (6), we also need to provide a bound
on the (discrete) variation in space and time. We begin with the BV estimate in
space:

Theorem 3.2. Let hypotheses (H2) hold, ρ0 ∈ BV (R; [0, ρmax]) and let ρ̄ be given
by (18). If the CFL condition (19) holds, then for every T > 0 the following discrete
space BV estimate is satisfied:

TV (ρ̄(T, ·)) ≤ exp(C(wη, v, g)T )TV (ρ0)

with C(wη, v, g, ρmax) = wη(0)(‖v′‖‖g‖ρmax + ‖v‖‖g′‖).

Proof. Let us define

∆n
j+k− 1

2
:= ρnj+k − ρnj+k−1.

Then, we obtain

∆n+1
j+ 1

2

=∆n
j+ 1

2
− λ
(
V nj+ 3

2
g(ρnj+1)− 2V nj+ 1

2
g(ρnj ) + V nj− 1

2
g(ρnj−1)

)
=∆n

j+ 1
2
− λ
(
V nj+ 3

2
(g(ρnj+1)− g(ρnj ))− V nj− 1

2
(g(ρnj )− g(ρnj−1))

+ g(ρnj )(V nj+ 3
2
− 2V nj+ 1

2
+ V nj− 1

2
)
)

=∆n
j+ 1

2
− λ
(
V nj+ 3

2
g′(ξnj+ 1

2
)∆n

j+ 1
2
− V nj− 1

2
g′(ξnj− 1

2
)∆n

j− 1
2

+ g(ρnj ) (V nj+ 3
2
− 2V nj+ 1

2
+ V nj− 1

2
)︸ ︷︷ ︸

=:(∗)

)
,

where ξj+ 1
2

is between ρnj and ρnj+1. With (20) we derive

(∗) =− γ0v(ρnj+1)−
N−1∑
k=1

(γk − γk−1)v(ρnj+1+k) + γN−1v(ρj+1+N )

+ γ0v(ρnj ) +

N−1∑
k=1

(γk − γk−1)v(ρnj+k)− γN−1v(ρj+N )

=− γ0v′(ζj+ 1
2
)∆n

j+ 1
2
−
N−1∑
k=1

(γk − γk−1)v′(ζj+k+ 1
2
)∆n

j+k+ 1
2

+ γN−1v
′(ζj+N+ 1

2
)∆n

j+N+ 1
2
,
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where ζj+ 1
2

is again between ρnj and ρnj+1. Thus, we have

∆n+1
j+ 1

2

=
(

1− λ
(
V nj+ 3

2
g′(ξnj+ 1

2
)− γ0v′(ζnj+ 1

2
)g(ρnj )

))
∆n
j+ 1

2

+ λV nj− 1
2
g′(ξnj− 1

2
)∆n

j− 1
2

+ g(ρnj )λ

N−1∑
k=1

(γk − γk−1)v′(ζnj+k+ 1
2
)∆n

j+k+ 1
2

− g(ρnj )λv′(ζnj+ 1
2
)γN−1∆n

j+N+ 1
2
.

Due to the CFL condition (19) and hypotheses (H2), all terms before the differ-
ences are positive and we get∑

j

|∆n+1
j+ 1

2

| ≤
∑
j

(
1− λ

(
V nj+ 3

2
g′(ξnj+ 1

2
)− γ0v′(ζnj+ 1

2
)g(ρnj )

))
|∆n

j+ 1
2
|

+ λ
∑
j

V nj− 1
2
g′(ξnj− 1

2
)|∆n

j− 1
2
|

+ λ
∑
j

g(ρnj )

N−1∑
k=1

(γk − γk−1)v′(ζnj+k+ 1
2
)|∆n

j+k+ 1
2
|

− λ
∑
j

g(ρnj )v′(ζnj+ 1
2
)γN−1|∆n

j+N+ 1
2
|.

Rearranging the indices we obtain∑
j

|∆n+1
j+ 1

2

| ≤
∑
j

(
1− λ(V nj+ 3

2
− V nj+ 1

2
)g′(ξnj+ 1

2
)

− v′(ζnj+ 1
2
)λ
(
− γ0g(ρnj ) +

N−1∑
k=1

(γk−1 − γk)g(ρnj−k) + γN−1g(ρnj−N )
))
|∆n

j+ 1
2
|

≤
∑
j

(
1− λ(V nj+ 3

2
− V nj+ 1

2
)g′(ξnj+ 1

2
) + γ0‖v′‖‖g‖

)
|∆n

j+ 1
2
|.

Using inequality (21), for which

(21) ≤ γ0‖v‖ρmax

holds, and with γ0 ≤ hwη(0), we obtain∑
j

|∆n+1
j+ 1

2

| ≤
(
1 + λγ0(‖v‖‖g′‖ρmax + ‖v′‖‖g‖)

)∑
j

|∆n
j+ 1

2
|

≤
(
1 + τwη(0)(‖v‖‖g′‖ρmax + ‖v′‖‖g‖)

)∑
j

|∆n
j+ 1

2
|.

Therefore, we recover the following estimate for the total variation

TV (ρ̄(T, ·)) ≤
(
1 + τwη(0)(‖v‖‖g′‖ρmax + ‖v′‖‖g‖)

)T/τ
TV (ρ̄(0, ·))

≤ exp
(
wη(0)(‖v‖‖g′‖ρmax + ‖v′‖‖g‖)T

)
TV (ρ0). (23)

We are now able to also provide an estimate for the discrete total variation in
space and time:
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Theorem 3.3. Let hypotheses (H2) hold, ρ0 ∈ BV (R; [0, ρmax]) and let ρ̄ be given
by (18). If the CFL condition (19) holds, then for every T > 0 the following discrete
space and time total variation estimate is satisfied:

TV (ρ̄;R× [0, T ]) ≤ T exp
(
C(wη, v, g, ρmax)T

)(
1 +W0‖v′‖‖g‖+ ‖v‖‖g′‖

)
TV (ρ0)

with C(wη, v, g, ρmax) = wη(0)(‖v′‖‖g‖ρmax + ‖v‖‖g′‖).

Proof. We fix T ∈ R+. If T ≤ τ , then TV (ρ̄;R × [0, T ]) ≤ T · TV (ρ0). For T > τ
let M ∈ N \ {0} such that Mτ < T ≤ (M + 1)τ . Then

TV (ρ̄;R× [0, T ]) =

M−1∑
n=0

∑
j

τ |ρnj+1 − ρnj |+ (T −Mτ)
∑
j

|ρMj+1 − ρMj |︸ ︷︷ ︸
≤T exp(C(wη,v,g,ρmax)T )TV (ρ0)

+

M−1∑
n=0

∑
j

h|ρn+1
j − ρnj |.

If we consider the scheme (18), we obtain

ρn+1
j − ρnj =λ

(
V nj− 1

2
g(ρnj−1)− V nj+ 1

2
g(ρnj )

)
=λ
(

(V nj− 1
2
− V nj+ 1

2
)g(ρnj−1)− V nj+ 1

2
(g(ρnj )− g(ρnj−1))

)
=λ
(
− g(ρnj−1)

N−1∑
k=0

γkv
′(ζnj+k+ 1

2
)(ρnj+k+1 − ρnj+k)

− V nj+ 1
2
g′(ξnj+ 1

2
)(ρnj − ρnj−1)

)
.

Taking absolute values yields

|ρn+1
j − ρnj | ≤ λ

(
‖v′‖‖g‖

N−1∑
k=0

γk|ρnj+k+1 − ρnj+k|+ ‖v‖‖g′‖|ρnj − ρnj−1|
)
.

Summing over j and rearranging the indices gives us∑
j

h|ρn+1
j − ρnj | ≤ τ

∑
j

|ρnj − ρnj−1|
(
‖v′‖‖g‖W0 + ‖v‖‖g′‖

)
so that we have
M−1∑
n=0

∑
j

h|ρn+1
j − ρnj | ≤ T exp

(
C(wη, v, g, ρmax)T

)(
‖v′‖‖g‖W0 + ‖v‖‖g′‖

)
TV (ρ0).

Therefore, we recover

TV (ρ̄;R× [0, T ]) ≤ T exp
(
C(wη, v, g, ρmax)T

)(
1 +W0‖v′‖‖g‖+ ‖v‖‖g′‖

)
TV (ρ0)

as desired.

3.4. Discrete entropy inequality. As another desirable property and final in-
gredient regarding the proof of Theorem 2.2, we next show that the approximate
solutions obtained by the Godunov type scheme (18) fulfill a discrete entropy in-
equality. Therefore, we follow [2, 5, 7, 10] and define

Gj+ 1
2
(u) := V nj+ 1

2
g(u), Fκj+ 1

2
(u) := Gj+ 1

2
(u ∧ κ)−Gj+ 1

2
(u ∨ κ)

with a ∧ b = max(a, b) and a ∨ b = min(a, b).



TRAFFIC FLOW MODELS WITH NON-LOCAL FLUX 541

Theorem 3.4. Let ρnj , j ∈ Z, n ∈ N be given by (18), and let the CFL condition
(19) and hypotheses (H2) hold. Then we have

|ρn+1
j − κ| − |ρnj − κ|+ λ(Fκj+ 1

2
(ρnj )− Fκj− 1

2
(ρnj−1)) (24)

+ λ sgn(ρn+1
j − κ)g(κ)(V nj+ 1

2
− V nj− 1

2
) ≤ 0

for all j ∈ Z, n ∈ N and κ ∈ I = [0, ρmax].

Proof. The proof closely follows [2, 5, 7]. We set

H̃j(u,w) = w − λ(Gj+ 1
2
(w)−Gj− 1

2
(u))

= w − λ(V nj+ 1
2
g(w)− V nj− 1

2
g(u)),

which is a monotone non-decreasing function with respect to each variable under
the CFL condition (19) since we have

∂H̃j

∂w
= 1− λV nj+ 1

2
g′(w) ≥ 0,

∂H̃j

∂u
= λV nj− 1

2
g′(u) ≥ 0.

Moreover, we have the identity

H̃j(ρ
n
j−1 ∧ κ, ρnj ∧ κ)− H̃j(ρ

n
j−1 ∨ κ, ρnj ∨ κ)

= |ρnj − κ| − λ(Fκj+ 1
2
(ρnj )− Fκj− 1

2
(ρnj−1)).

Then, by monotonicity, the definition of the scheme (18) and by using (for the
last inequality) the non-negativity of (a, b) 7→ (sgn(a + b) − sgn(a))(a + b), we get
(24):

H̃j(ρ
n
j−1 ∧ κ, ρnj ∧ κ)− H̃j(ρ

n
j−1 ∨ κ, ρnj ∨ κ)

≥ H̃j(ρ
n
j−1, ρ

n
j ) ∧ H̃j(κ, κ)− H̃j(ρ

n
j−1, ρ

n
j ) ∨ H̃j(κ, κ)

= |H̃j(ρ
n
j−1, ρ

n
j )− H̃j(κ, κ)|

= sgn(H̃j(ρ
n
j−1, ρ

n
j )− H̃j(κ, κ)) · (H̃j(ρ

n
j−1, ρ

n
j )− H̃j(κ, κ))

= sgn(H̃j(ρ
n
j−1, ρ

n
j )− κ+ λg(κ)(V nj+ 1

2
− V nj− 1

2
)) · (H̃j(ρ

n
j−1, ρ

n
j )− κ

+ λg(κ)(V nj+ 1
2
− V nj− 1

2
))

≥ sgn(H̃j(ρ
n
j−1, ρ

n
j )− κ) · (H̃j(ρ

n
j−1, ρ

n
j )− κ+ λg(κ)(V nj+ 1

2
− V nj− 1

2
))

= |H̃j(ρ
n
j−1, ρ

n
j )− κ|+ λ sgn(H̃j(ρ

n
j−1, ρ

n
j )− κ)g(κ)(V nj+ 1

2
− V nj− 1

2
)

= |ρn+1
j − κ|+ λ sgn(ρn+1

j − κ)g(κ)(V nj+ 1
2
− V nj− 1

2
).

3.5. Proof of Theorem 2.2. Since we have already shown uniqueness of weak
entropy solutions to the model (4) to (6), it remains to finalize the existence proof.
Similar to [5, Section 4] and [7, Proof of Theorem 1], the convergence of the approx-
imate solutions constructed by the Godunov type scheme (18) towards the unique
weak entropy solution can be proven by applying Helly’s theorem. The latter can be
applied due to Theorems 3.1 and 3.3 and states that there exists a sub-sequence of
the constructed ρ̄ that converges to some ρ ∈ (L1∩L∞∩BV )(R+×R; I). Following
a Lax-Wendroff type argument, see [14, Theorem 12.1], one can show that the limit
function ρ is a weak entropy solution of (4) to (6) in the sense of Definition 2.1.
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Together with the uniqueness result in Theorem 2.3, this concludes the proof of
Theorem 2.2.

4. Numerical examples. In this section, we present some numerical examples
demonstrating the advantages of the Godunov type scheme in comparison to the
widely used LxF type scheme. The latter will be briefly introduced in the follow-
ing section. In addition, we also comment on the differences between the model
considered in this work (4) to (6) and the earlier one (1) to (3).

4.1. A LxF type scheme. The common scheme used so far for the problem (1)
to (3) is a LxF type scheme, where the downstream velocity of the convolution term
is computed by

V nj = v

(
h

N−1∑
k=0

wkηρ
n
j+k

)
(25)

with wkη = wη(kh). This discretization of wη implies (for W0 = 1)

h

N−1∑
k=0

wkη ≤ 1 + wη(0)h.

Thus, the approximation (25) of the convolution term slightly overestimates the
traffic density and therewith underestimates the velocity. Further, unphysical den-
sities beyond ρmax or negative velocities are possible. This can be both avoided by
discretizing the kernel function as proposed in (14). In the following subsections we
will use this discretization to avoid that the accuracy studies are biased by different
quadrature rule errors.

The numerical flux function of the LxF scheme is given by

Fnj+ 1
2

:=
V nj g(ρnj ) + V nj+1g(ρnj+1)

2
+
α

2
(ρnj − ρnj+1)

with α ≥ 0 being the viscosity coefficient. This leads to the scheme

ρn+1
j = ρnj +

λα

2
(ρnj−1 − 2ρnj + ρnj+1) +

λ

2
(V nj−1g(ρnj−1)− V nj+1g(ρj+1)). (26)

For the corresponding CFL condition and restrictions on α, we refer to [7, Propo-
sition 2].

Remark 4. Note that the LxF type scheme can be adapted to the model (4) and
vice versa the Godunov type scheme to model (1), where in comparison the LxF
type scheme adds more diffusion to the numerical solution (see also Section 4.2).

4.2. Accuracy of the Godunov type scheme. In the following sections, we
consider the solution of model (4) to (6) and model (1) to (3) in the case of traffic
flow. So we have g(ρ) = ρ, a velocity function v(ρ) specified below, and a road of
length L = 1. We are interested in the solution at a certain final time T for the
initial conditions

ρ0(x) =

{
1, if 1

3 ≤ x ≤
2
3 ,

1
3 , else.

(27)

For simplicity, we use periodic boundary conditions in all our examples. To compute
the L1 error of an approximate solution ρh with step size h compared to a reference
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solution ρh̃ with step size h̃ at time T , we apply

L1 error := h
∑
j

|ρh(T, xj)− ρh̃(T, xj)|.

Now, in order to compare the accuracy of the Godunov scheme and the LxF
scheme, we first use the linear velocity function

v(ρ) = 1− ρ,

as for this choice both models coincide (see Remark 1) and the different discretiza-
tion schemes both have been well analyzed. We consider the final time T = 0.1
and the kernel function wη(x) = 3(η2 − x2)/(2η3) with η = 0.1. We compare the
L1 distances of the LxF and the Godunov type scheme to a reference solution com-
puted with the LxF type scheme and h̃ = 0.02 · 2−9. The spatial step size is given
by h = 0.02 · 2−n with n ∈ {0, . . . , 6}. The time step parameter τ is given by the
minimum of the CFL condition (19) and the CFL condition of the LxF type scheme.

The results for this first test case are given in Table 1. Obviously, the L1 errors of
the Godunov type scheme are significantly smaller than the ones of the LxF scheme.

Table 1. L1 errors for v(ρ) = 1− ρ at T = 0.1.

n Godunov LxF

0 9.38e-03 1.99e-02
1 6.97e-03 1.30e-02
2 4.29e-03 9.31e-03
3 3.00e-03 6.41e-03
4 1.96e-03 4.27e-03
5 1.33e-03 2.71e-03
6 9.05e-04 1.64e-03

The better accuracy of the Godunov type scheme can also be seen directly in
Figure 3. We notice that in the presence of the two discontinuities, the Godunov
type scheme in particular shows a better resolution of the solution structure than
the LxF scheme at the left-hand side, while the resolution for the rarefaction wave
close to the jump on the right-hand side is quite similar for the short time period
T = 0.1.

If we consider a longer time period, i.e. T = 1, the good performance of the
Godunov type scheme can be observed in Figure 4. Here, the reference solution is
computed with the LxF type scheme with a spatial step size of h̃ = 0.02 · 2−7.

In addition, we consider the accuracy for a non-linear velocity function,

v(ρ) = 1− ρ5.

We choose the constant kernel wη(x) = 1
η with η = 0.1 and consider again the

solution of the initial conditions (27) but at time T = 0.05 on a road of length
L = 1. The spatial step size is given as above by h = 0.02 · 2−n with n ∈ {0, . . . , 6}.
The reference solution is computed by the LxF scheme adapted to the model (4)

and with h̃ = 0.02 · 2−9.
The results for the non-linear test case can be seen in Table 2. Similar to the

linear test case, the L1 errors of the Godunov type scheme are significantly smaller
than the ones of the LxF scheme. In addition, the better resolution of the Godunov



544 JAN FRIEDRICH, OLIVER KOLB AND SIMONE GÖTTLICH
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Figure 3. Comparison of the Godunov and LxF scheme for v(ρ) =
1− ρ, h = 0.01 at T = 0.1.
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Figure 4. Comparison of the Godunov and LxF scheme for v(ρ) =
1− ρ, h = 0.01 at T = 1.

type scheme can be seen in Figure 5. Again, similar to the linear case, the Godunov
type scheme in particular shows a better resolution of the solution structure than
the LxF scheme at the left-hand side, while the resolution for the rarefaction wave
close to the jump on the right-hand side is quite similar.

4.3. Comparison of the models. Next, we aim to discuss the differences between
the models (4) to (6) and (1) to (3). To see the different dynamics within the two
models, we have to choose a non-linear velocity function and we choose the same
non-linear velocity v(ρ) = 1− ρ5 as before with the same parameter η = 0.1 for the
constant kernel function and final time T = 0.05.
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Table 2. L1 errors for v(ρ) = 1− ρ5 at T = 0.05.

n Godunov LxF

0 1.77e-02 3.13e-02
1 1.24e-02 2.20e-02
2 8.49e-03 1.41e-02
3 5.18e-03 8.67e-03
4 3.29e-03 5.45e-03
5 2.02e-03 3.47e-03
6 1.21e-03 2.06e-03
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0.4

0.6

0.8
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ρ

Lax-Friedrichs
Godunov
reference sol.

Figure 5. Comparison of the Godunov and LxF scheme for v(ρ) =
1− ρ5, h = 0.01 at T = 0.05.

For a fair comparison of the evolution of densities, we apply the Godunov type
scheme to both models. Figure 6 shows the results for a spatial step size h = 0.01
and a time step size τ determined by the CFL condition. It can be observed that the
approximate solution of the earlier model (1) to (3) contains rather large oscillations
while resolving the traffic jam. In contrast to that, the model (4) to (6) resolves
the traffic jam in a more monotone way.

4.4. Limit η → 0. Finally, we take a look at the limit case η → 0 and investigate
numerically whether the approximate solutions constructed by the proposed Go-
dunov type scheme converge towards the solution of the (local) LWR traffic model.
Note that this property is far from obvious since the constants in Theorems 2.3
and 3.3 blow up (see also [7]). For a numerical investigation, we consider the same
(non-linear) scenario as above with a fixed space step size h = 0.5 · 10−4 and vary
η ∈ {10−1, 10−2, 10−3, 10−4}. As final time we take T = 0.05.

To evaluate the convergence, we compute the L1 distances between the approxi-
mate solutions obtained for the proposed Godunov type scheme applied to (4) to (6)
and the result of a classical Godunov scheme for the corresponding local LWR prob-
lem. Obviously, the corresponding L1 distances shown in Table 3 demonstrate the
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Figure 6. Approximate solutions at T = 0.05 for the two models
with non-linear velocity function v(ρ) = 1− ρ5.

convergence towards the solution of the local traffic model. The results are further
illustrated in Figure 7.

Table 3. L1 distances between the approximate solutions to the
local LWR model and the non-local model for different η at T =
0.05.

η 10−1 10−2 10−3 10−4

L1 distance 4.46e-02 6.85e-03 9.90e-04 1.60e-04
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local

η = 10−1

η = 10−2

η = 10−3

η = 10−4

Figure 7. Approximate solutions to the LWR and non-local
model (4) to (6) for different η at T = 0.05.
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5. Conclusion. In this work, we have presented a Godunov type scheme for a
class of non-local conservation laws. For this novel scheme we provide L∞ and BV
bounds as well as a discrete entropy inequality. Based on these results, we also
proved the well-posedness, i.e., existence and uniqueness of weak entropy solutions.
The proposed Godunov type scheme can be adapted to other classes of non-local
conservation laws and is very promising as it adds less numerical diffusion to the
solution compared to the LxF type scheme. Certainly, this advantage can also
be exploited by using the underlying numerical flux function within higher-order
methods.

In future work we aim at constructing several higher order methods based on
the presented Godunov type scheme. In addition, the considered model with mean
downstream velocity may be advantageous in the context of networks. Here we aim
at investigating appropriate coupling conditions and suitable discretization schemes.
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[15] M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long
crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317–345.

[16] P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42–51.

Received February 2018; revised April 2018.

E-mail address: janfriea@mail.uni-mannheim.de

E-mail address: kolb@uni-mannheim.de

E-mail address: goettlich@uni-mannheim.de

http://www.ams.org/mathscinet-getitem?mr=MR3332915&return=pdf
http://dx.doi.org/10.1137/140975255
http://dx.doi.org/10.1137/140975255
http://www.ams.org/mathscinet-getitem?mr=MR3342191&return=pdf
http://dx.doi.org/10.1051/m2an/2014023
http://dx.doi.org/10.1051/m2an/2014023
http://dx.doi.org/10.1287/opre.1060.0321
http://dx.doi.org/10.1287/opre.1060.0321
http://www.ams.org/mathscinet-getitem?mr=MR2772627&return=pdf
http://dx.doi.org/10.1088/0951-7715/24/3/008
http://dx.doi.org/10.1088/0951-7715/24/3/008
http://www.ams.org/mathscinet-getitem?mr=MR3447130&return=pdf
http://dx.doi.org/10.1007/s00211-015-0717-6
http://dx.doi.org/10.1007/s00211-015-0717-6
http://www.ams.org/mathscinet-getitem?mr=MR3759879&return=pdf
http://dx.doi.org/10.1137/16M110825X
http://dx.doi.org/10.1137/16M110825X
http://www.ams.org/mathscinet-getitem?mr=MR3808157&return=pdf
http://dx.doi.org/10.1051/m2an/2017066
http://dx.doi.org/10.1051/m2an/2017066
http://www.ams.org/mathscinet-getitem?mr=MR2902155&return=pdf
http://dx.doi.org/10.1142/S0218202511500230
http://dx.doi.org/10.1142/S0218202511500230
http://www.ams.org/mathscinet-getitem?mr=MR2801323&return=pdf
http://dx.doi.org/10.1051/cocv/2010007
http://dx.doi.org/10.1051/cocv/2010007
http://www.ams.org/mathscinet-getitem?mr=MR3461737&return=pdf
http://dx.doi.org/10.3934/nhm.2016.11.107
http://dx.doi.org/10.3934/nhm.2016.11.107
http://dx.doi.org/10.1016/j.apm.2013.11.039
http://dx.doi.org/10.1016/j.apm.2013.11.039
http://www.ams.org/mathscinet-getitem?mr=MR0267257&return=pdf
http://dx.doi.org/10.1070/SM1970v010n02ABEH002156
http://www.ams.org/mathscinet-getitem?mr=MR1077828&return=pdf
http://dx.doi.org/10.1007/978-3-0348-5116-9
http://www.ams.org/mathscinet-getitem?mr=MR0072606&return=pdf
http://dx.doi.org/10.1098/rspa.1955.0089
http://dx.doi.org/10.1098/rspa.1955.0089
http://www.ams.org/mathscinet-getitem?mr=MR0075522&return=pdf
http://dx.doi.org/10.1287/opre.4.1.42
mailto:janfriea@mail.uni-mannheim.de
mailto:kolb@uni-mannheim.de
mailto:goettlich@uni-mannheim.de

	1. Introduction
	2. Modeling
	2.1. An existing model with mean downstream density
	2.2. Model considering a mean downstream velocity
	2.3. Uniqueness of entropy solutions

	3. A Godunov type scheme
	3.1. Numerical scheme
	3.2. Maximum principle
	3.3. BV estimates
	3.4. Discrete entropy inequality
	3.5. Proof of Theorem 2.2

	4. Numerical examples
	4.1. A LxF type scheme
	4.2. Accuracy of the Godunov type scheme
	4.3. Comparison of the models
	4.4. Limit 0

	5. Conclusion
	REFERENCES

