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Abstract. We consider weak solutions to the equations of stationary motion

of a class of non-Newtonian fluids which includes the power law model. The
power depends on the spatial variable, which is motivated by electrorheological

fluids. We prove the existence of second order derivatives of weak solutions in

the shear thinning cases.

1. Introduction. Traditionally, the Navier-Stokes equations have received quite a
bit of attention. Recently, attention to the behavior of fluids with various viscosities
has been increasing dramatically. It is because we can find such fluids everywhere.
For example, water, yogurt, lubricants, sand in water, ink, gum solutions, nail
polish, ketchup, molasses, ice, paint, custard, paper pulp, even blood in our body.
The behavior of many of them can be described in the power law model. In that
sense, we are interested in the power law model, which is a generalized Navier-Stokes
system.

As mentioned in [16], electrorheological fluids are viscous liquids, that are charac-
terized by their ability to undergo significant changes in their mechanical properties
when an electric field is applied. The motion is governed by a system of partial dif-
ferential equations consisting of electric field E, polarization, density ρ, velocity u,
pressure π, and deviatoric stress tensor S. Refer to [11] for the detail description.
In [11] the viscosity is the form of power law model, and the power p depends on
the electric field p(|E|2).

In this article we consider the following stationary system related with non-
Newtonian fluids:{

−div {S(x,D(u))}+ u · ∇u+∇π = g,

div u = 0
in Ω, (1)
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where g ∈ L∞(Ω) is a given exterior force, and Ω is a bounded domain in Rn with
n = 2, 3. Here, D denotes the symmetric part of ∇, given by

Dij(u)(x) =
1

2

(
∂iu

j + ∂ju
i
)

(x) ∈ Rn×nsym .

In addition, S(x,D(u)) denotes the deviatoric stress. Then T := S − πI is called
the full shear stress, such that −div T represents the sum of the internal forces due
to friction, which depends mostly on the material of the fluid.

The continuous deviatoric stress tensor S : Ω × Rn×n → Rn×n is assumed to
be C1-regular in the gradient variable z for every z ∈ Rn \ {0}, with Sz(·) being
Carathéodory regular and satisfying the following nonstandard growth, monotonic-
ity and continuity assumptions:

|S(x, z)|+ |Sz(x, z)|(|z|2 + µ2)
1
2 ≤ L(|z|2 + µ2)

p(x)−1
2 ,

ν(|z1|2 + |z2|2 + µ2)
p(x)−2

2 |z1 − z2|2 ≤ 〈S(x, z1)− S(x, z2), z1 − z2〉,
|S(x1, ξ)− S(x2, ξ)| ≤ Lω(|x1 − x2|)

[
1 + | log(|ξ|2 + µ2)|

]
×
[
(|ξ|2 + µ2)

p(x1)−1
2 + (|ξ|2 + µ2)

p(x2)−1
2

] (2)

for every z ∈ Rn \ {0}, z1, z2, ξ ∈ Rn and x, x1, x2 ∈ Ω, where 0 < ν ≤ L and µ ≥ 0
are fixed numbers. The variable exponent function p(·) : Ω→ [0,+∞) is continuous
with modulus of continuity ω : [0,∞)→ [0,∞) satisfying

γ1 ≤ p(x) ≤ γ2 ≤ 2 and |p(x)− p(y)| ≤ ω(|x− y|) for x, y ∈ Ω, (3)

where γ1 > 3/2 if n = 2 and γ1 > 9/5 if n = 3. We assume that the variable
exponent p(·) is Lipschitz continuous, i.e.

ω(r) ≤ cpr,
for some constant cp > 0. For simplicity, we set

p0 = p(x0), p1 := inf
B4R(x0)

p(x) and p2 := sup
B4R(x0)

p(x)

for some fixed B4R(x0) ⊂⊂ Ω.
Here, we denote the variable exponent Lebesgue space Lp(·)(Ω), by the set of all

measurable functions f : Ω→ Rn satisfying

‖f‖Lp(·)(Ω) := inf

{
λ > 0 :

∫
Ω

(
|f |(x)

λ

)p(x)

dx ≤ 1

}
<∞,

and the spaceW
1,p(·)
0,σ (Ω) is the set of all divergence free f ∈W 1,1

0 (Ω) with ‖f‖Lp(·)(Ω)

+ ‖∇f‖Lp(·)(Ω) < ∞. For more details, we refer to [6, 9]. We say that u ∈
W

1,p(·)
loc (Ω)n is a weak solution of (1), if u satisfies∫

Ω

S(x,D(u)) : D(ϕ)dx−
∫

Ω

u⊗ u : D(ϕ)dx =

∫
Ω

g · ϕdx, ∀ϕ ∈W 1,p(·)
0,σ (Ω)n,

where u⊗ v := {uivj}i,j is a tensor product of u and v in Rn.
In [13], the existence of weak solutions was provided for constant p > 2n

n+2 . In

[14, 15], the existence of strong solution of (1) was proved when p is constant. In
[14], the solution belongs to C1,α for p > 3

2 when n = 2 (up to boundary), and for

p > 6
5 when n = 3 (interior regularity). In [15], for 3n

n+2 < p < 2, it is shown that

(1 + |D(u)|)
p−2
2 ∇D(u) ∈ L2

loc(Ω)n×n, and u ∈ W 2,t
loc (Ω)n for all 1 ≤ t < 2 when
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n = 2, and u ∈W 2, 3p
1+p

loc (Ω)n when n = 3. In [4], for S(z) = (1 + |z|p−2)z under slip
or no-slip boundary conditions a regularity is provided for shear thickening fluid
p > 2.

In case of anisotropic dissipative potential f , where S = ∇f and

λ(1 + |z|2)
p1−2

2 |A|2 ≤ ∇2f(z)(A,A) ≤ Λ(1 + |z|2)
p2−2

2 |A|2

with exponents 1 < p1 ≤ p2 < ∞ and 2 ≤ p2 < p1
n+2
n , the existence of weak

solutions is given in [3]. For the anisotropic fluid, it is shown in [5] that u ∈
W 1,p1

0 (Ω)n ∩W 2,s
loc (Ω)n for some s > 1 for p1 > 6/5 when n = 2, and p1 > 9/5 when

n = 3, and p2 < p1
n+1
n . Also in that article, there is a good introduction about

isotropic and anisotropic cases, and the power depending on x, p(x).
For a variable p(x) depending on E, in [16] it is proved that a weak solution of (1)

exists and it has the second weak derivative for γ1 >
3n

n+ 2
and µ > 0. Nonetheless,

it is not shown there that the second weak derivative of a weak solution belongs
to Lebesgue space with variable exponent. It is just shown that a weak solution
belongs to W 2,γ1(Ω)n.

The lower bound of p(·), γ1, that a weak solution of (1) exists is decreased to
2n
n+2 in [10]. But if γ1 > 2n

n+2 , we cannot say that u ⊗ u : D(ϕ) ∈ L1 for all

u, ϕ ∈ W 1,p(·)
0 (Ω)n. In this case, u is not able to be taken as a test function, hence

we just consider γ1 >
3n
n+2 .

On the other hand, in [7] it was proved that a solution of p(x)-Laplace equa-
tion has weak second derivative in L2. In that paper, µ = 0 is allowed, but the
model is not related with fluid directly. The existence of strong solution of (1) for
S(x,D(u)) = (µ+ |D(u)|)p(x)−2D(u) with µ > 0 was proved in [8] for γ1 > 2. And
the same result was proved in [11] for γ1 >

9
5 .

In this paper, we handle non-Newtonian problem (1) where µ is allowed to be 0
and p(·) is Lipschitz continuous. The result of this paper is the following theorem.

Theorem 1.1. Let µ ∈ [0,∞). We assume that (2) are satisfied and p(·) is Lips-
chitz continuous function with (3). Let u be a weak solution of (1) with (2). Then
u has the following properties:

(1 + |D(u)|2)
p(x)−2

4 ∇D(u) ∈ L2
loc(Ω)n

3

(4)

and for all 1 ≤ t < 2,u ∈W 2,t
loc (Ω)n when n = 2,

u ∈W
2,min{ 3p(·)

1+p(·) ,t}
loc (Ω)n when n = 3.

(5)

2. Proof of main theorem. To simplify the notation, the letter c will always
denote any positive constant, which may vary throughout the paper. Moreover,

we denote p′ = p
p−1 as the Hölder conjugate exponent of p and p∗ =

np

n− p
as the

Sobolev exponent of p for every p ∈ (1, n).
We recall a useful lemma about higher integrability from [1].

Lemma 2.1. Let u ∈ W
1,p(·)
loc (Ω)n be a weak solution of (1) and assume that S

fulfills conditions (2) with Lipschitz continuous variable exponent, p(·). Then there
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exist constants c, σ > 0, both depending on n, γ1, γ2, cp such that if B2R ⊂⊂ Ω, then(∫
BR

(|D(u)|+ µ)(1+σ)p(x)dx

) 1
1+σ

≤ c
∫
B2R

(|D(u)|+ µ)p(x)dx+ c

∫
B2R

(|∇u|γ1 + |u|γ
∗
1 + 1)dx.

Here,
∫
BR

f dx means the average of f ∈ L1(BR) over BR. We take a constant

R0 ≤ 1 such that

16ω(4R0) ≤ σ (6)

and assume 0 < R ≤ R0, throughout this paper. This assumption will be frequently
used in the proof, for instance (11) and (12).

Remark 1. Although the authors only considered the case µ > 0 in [1], the state-
ment is still valid for µ = 0, since the proof is also available for µ = 0. In this paper,
we can remove the dependence of c on γ2 since γ2 ≤ 2.

Since limt→0+ tε log t = 0 and limt→+∞
log t
tε = 0 for any ε > 0, we have the

following useful estimate.

Lemma 2.2. There exists a constant c(ε) > 0 depending only on ε such that

log t ≤ c(ε) + tε + t−ε

for all t > 0.

Our proof is mainly based on that of [15]. We divide our proof of main theorem
in three steps. At first, we derive estimation related to finite difference of D(u).
After then, applying fractional Sobolev embedding theorem, we can show that u is
locally bounded. Finally, we prove that u has second derivatives using difference
quotient method.

Step 1. Estimation of (|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)
p(x)−2

2 |∆λD(u)|2.
From the modulus of continuity, there exists a radius R0 > 0 such that ω(8R0) ≤

σ
16 . We use the following weak formulation∫

Ω

S(x,D(u)) : D(ϕ)dx = −
∫

Ω

ui
∂uj
∂xi

ϕjdx+

∫
Ω

π divϕdx+

∫
Ω

g · ϕdx (7)

for all ϕ ∈ W
1,p(x)
0 (Ω)n, where π ∈ Lp(·)

′
(Ω). Let η ∈ C∞c (B2R(x0)), where

B2R(x0) ⊂ Ω such that η ≡ 1 in BR(x0), |∇η| ≤ 2

R
and |∇2η| ≤ 4

R2
for some 0 <

R ≤ R0. Now we choose a test function ϕ = ∆−λ,k(η2∆λ,ku), where ∆λ,kf(x) =
f(x + λek) − f(x). For simplicity, we will denote ∆λ := ∆λ,k for λ ∈ [−R/4, R/4]
and B2R := B2R(x0). By simple computation, we see∫

B2R

S(x,D(u)) : D(∆−λ(η2∆λu))dx

=

∫
B2R

∆λS(x,D(u)) : D(η2∆λu)dx

=

∫
B2R

η2∆λS(x,D(u)) : D(∆λu)dx

+

∫
B2R

2η∆λS(x,D(u)) : D(η)⊗∆λu dx.

(8)
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The ellipticity condition in (2)2 implies that∫
B2R

η2∆λS(x,D(u)) : D(∆λu)dx

=

∫
B2R

η2 [S(x+ λek, D(u)(x+ λek))− S(x,D(u)(x+ λek))] ∆λD(u)dx

+

∫
B2R

η2 [S(x,D(u)(x+ λek))− S(x,D(u)(x))] ∆λD(u)dx

≥
∫
B2R

η2 [S(x+ λek, D(u)(x+ λek))− S(x,D(u)(x+ λek))] ∆λD(u)dx

+ ν

∫
O+

1

η2(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)
p(x)−2

2 |∆λD(u)|2dx,

(9)

where O+
1 := {x ∈ B2R : |Du|(x+ λek) + |Du|(x) + µ > 0}.

Note that the set O+
1 = B2R whenever µ > 0. Indeed, we here introduced the

set O+
1 to prove Theorem 1.1 for µ = 0, in a simple and unified way with respect

to µ ∈ [0,∞).
Combining (7)-(9), we obtain

I0 := ν

∫
O+

1

η2(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)
p(x)−2

2 |∆λD(u)|2dx

≤
∫
B2R

η2 [S(x,D(u)(x+ λek))− S(x+ λek, D(u)(x+ λek))]D(∆λu)dx

−
∫
B2R

2η∆λS(x,D(u)) : D(η)⊗∆λu dx

−
∫
B2R

ui
∂uj
∂xi

(∆−λ(η2∆λuj))dx

+

∫
B2R

πdiv(∆−λ(η2∆λu))dx+

∫
B2R

g ·∆−λ(η2∆λu)dx

=: I1 + I2 + I3 + I4 + I5.

(10)

For simplicity, we set ν = 1 since it does not make any trouble for the proof.
Estimation of I1. To estimate I1, we introduce a measurable set O+

2 :

O+
2 = {x ∈ B2R : |Du|(x+ λek) > 0} ⊂ O+

1 .

We use the continuity assumption in (2)3 to see

|I1| ≤ c ω(λ)

∫
O+

2

η2|D(∆λu)|
[
1 + | log(|D(u)(x+ λek)|2 + µ2)|

]
×
[
(|D(u)(x+ λek)|2 + µ2)

p(x+λek)−1

2

+ (|D(u)(x+ λek)|2 + µ2)
p(x)−1

2

]
dx

≤ c |λ|
∫
O+

2

η2|D(∆λu)|(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)
p(x)−2

4

×
[
1 + | log(|D(u)(x+ λek)|2 + µ2)|

]
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×
[
(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)

2p(x+λek)−p(x)
4

+(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)
p(x)
4

]
dx

≤ ε
∫
O+

1

η2(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)
p(x)−2

2 |D(∆λu)|2dx

+ c(ε)|λ|2
∫
O+

2

η2
[
1 + | log(|D(u)(x+ λek)|2 + µ2)|

]2
×
[
(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)

2p(x+λek)−p(x)
2

+(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)
p(x)
2

]
dx.

Therefore, Lemma 2.2 and (6) reveals

|I1| ≤ εI0

+ c(ε)|λ|2
∫
B2R

η2
[
(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)

2p(x+λek)−p(x)
2

+ (|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)
p(x)
2

]
×
[
1 + (|D(u)(x+ λek)|2 + µ2)

σγ1
16

+ (|D(u)(x+ λek)|2 + µ2)−
σγ1
16

]2
dx

≤ εI0 + c(ε)|λ|2
∫
B2R

η2(1 + |D(u)(x)|)(1+σ)p(x) dx.

(11)

Estimation of I2. Noting that (6) implies

p2 ≤ p1 + ω(4R0) ≤ p1(1 + σ)

and
p1(p2 − 1)

p1 − 1
≤ p1 +

ω(4R0)p1

p1 − 1
≤ p1 +

ω(4R0)γ1

γ1 − 1
≤ p1 + 8ω(4R0), (12)

we discover

|I2| ≤ 2

(∫
B2R

|S(x,D(u))|p
′
1dx

) 1
p′1
(∫

B2R

|∆−λ (ηD(η)⊗∆λu)|p1 dx
) 1
p1

≤ c |λ|
(∫

B2R

(1 + |∇u|)p
′
1(p(x)−1)dx

) 1
p′1

×
(∫

B2R

|∇(ηD(η)⊗∆λu)|p1 dx
) 1
p1

≤ c |λ|
(∫

B2R

(1 + |∇u|)(1+σ)p(x)dx

) 1
p′1

×
(
|λ|p1
R2p1

∫
B2R

(1 + |∇u|p1)dx+
1

Rp1

∫
B2R

|η∇(∆λu)|p1 dx
) 1
p1

.

(13)

Note that

η∇(∆λu) = ∇(η∆λu)− (∇η) ·∆λu. (14)
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Applying (14) and Korn’s inequality, we have∫
B2R

|η∇(∆λu)|p1dx

≤ c
∫
B2R

|D(η∆λu)|p1dx+
c

Rp1

∫
B2R

|∆λu|p1dx

≤ c
∫
O+

1

|ηD(∆λu)|p1dx+
c

Rp1
|λ|p1

∫
B3R

|∇u|p1dx.

(15)

And the first integral term in the last line is estimated as follows:

(∫
O+

1

|η|p1 |D(∆λu)|p1dx

) 1
p1

≤ c

(∫
O+

1

|η|2(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)
(p(x)−2)

2 |D(∆λu)|2 dx

) 1
2

×
(∫

B2R

(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)
p1(2−p(x))
2(2−p1) dx

) 2−p1
2p1

≤ c
[
I0
] 1

2

(∫
B3R

(1 + |∇u|)(1+σ)p(x)dx

) 2−p1
2p1

.

(16)

Combining (13), (15) and (16), we obtain

|I2|
2
≤ c |λ|

2

R2

∫
B3R

(1 + |∇u|)(1+σ)p(x)dx

+
|λ|
R

(∫
B3R

(1 + |∇u|)(1+σ)p(x)dx

) 1
p′1
(∫

B2R

|η|p1 |D(∆λu)|p1 dx
) 1
p1

≤ c(ε) |λ|
2

R2

∫
B3R

(1 + |∇u|)(1+σ)p(x)dx+ εI0.

Estimation of I3 will be postponed to Step 2.
Estimation of I4. Recalling Lemma 2.1 and the De Rham theory in [10], we

see π ∈ Lq(·)(Ω) for q(x) = (1 + σ)p′(x). Observe that

min
B2R

q(x) =
p2(1 + σ)

p2 − 1
>

p1

p1 − 1

by the assumption ω(4R0) <
σ

16
. Via a similar estimating procedure of I2, we

compute

|I4| =
∣∣∣∣∫
B2R

π

(
∆−λ,k

(
η
∂η

∂xi
∆λui

))
dx

∣∣∣∣
≤ c |λ|

R
‖π‖

Lp
′
1

(∫
B2R

|∇(η∆λu)|p1 dx
) 1
p1

.

(17)
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In light of Korn’s inequality, it holds that(∫
B2R

|∇(η∆λu)|p1 dx
) 1
p1

≤ c |λ|
2

R2

(∫
B2R

(1 + |∇u|)(1+σ)p(x)
dx

) 1
p1

+ c

(∫
O+

1

|η|p1 |D(∆λu)|p1dx

) 1
p1

.

(18)

Combining (16), (17) and (18), we obtain

|I4| ≤ c
|λ|2

R2
‖π‖

Lp
′
1 (B2R)

(∫
B2R

(1 + |∇u|)(1+σ)p(x)
dx

) 1
p1

+ c(ε)
|λ|2

R2
‖π‖2

Lp
′
1 (B2R)

(∫
B3R

(1 + |∇u|)(1+σ)p(x)
dx

) 2−p1
p1

+ εI0.

Estimation of I5. Korn’s inequality yields

|I5| ≤ c ‖g‖L∞(B2R)

∫
B2R

|∆−λ(η2(∆λu))|dx

≤ c |λ|
∫
O+

1

|D(η2∆λu)|dx

≤ c |λ|
2

R

∫
B3R

|D(u)|dx+ c|λ|
∫
O+

1

|η|2|∆λD(u)|dx

≤ c(ε) |λ|
2

R2

∫
B2R

(1 + |D(u)|)(1+σ)p(x)dx+ εI0.

Consequently, it follows from combining the estimates of I1, I2, I4 and I5, and
(10) that

I0 ≤ I3 + c
|λ|2

R2

∫
B2R

(1 + |∇u|)(1+σ)p(x)dx

+ c
|λ|2

R2

(∫
B3R

(1 + |∇u|)(1+σ)p(x)dx

) 2−p1
p1

.

(19)

Step 2. Boundedness of u.
In this step, we shall prove that u is locally bounded. Note that Lemma 2.1

implies that u is locally Hölder continuous by Morrey embedding in case of n = 2
and γ1 = 2. So it is not necessary to consider this case. We recall I3 and apply
integration by parts formula for finite difference to see

I3 =

∫
B2R

∆λui
∂uj
∂xi

(x+ λek)η2∆λujdx+

∫
B2R

ui∆λ
∂uj
∂xi

η2∆λujdx

= : I3,1 + I3,2.

We now assume that

u ∈W 1,s
loc (Ω)n for some s ∈ [γ1, n).

Next we estimate I3,1

|I3,1| ≤
∫
B2R

|∆λu|2|∇u(x+ λek)|dx ≤ ‖∆λu‖2L2s′ (B2R)n
‖u‖W 1,s(B2R)n .
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Defining θ := s(n+2)−3n
2n , we see 0 < θ < 1 and

1− θ
s∗

+
θ

s
=

1

2s′
,

where s′ is the Hölder conjugate exponent of s and s∗ is the Sobolev exponent of s.
It then follows from interpolation that

‖∆λu‖2L2s′ (B2R)n
≤ ‖∆λu‖2(1−θ)

Ls∗ (B2R)n
‖∆λu‖2θLs(B2R)n ≤ c|λ|

2θ‖u‖2W 1,s(B3R)n

and

|I3,1| ≤ c|λ|2θ‖u‖3W 1,s(B3R)n . (20)

On the other hand, integration by parts formula for finite difference reveals

|I3,2| ≤
1

2

∣∣∣∣∫
B2R

|ui|(∆λuj)
2 ∂η

2

∂xi
dx

∣∣∣∣
≤ c

R
‖∆λu‖2L2s′ (B2R)n

‖u‖W 1,s(B2R)n

≤ c

R
|λ|2θ‖u‖3W 1,s(B3R)n .

(21)

Merging up (20) and (21), we obtain

|I3| ≤ c(1 +
1

R
)|λ|2θ‖u‖2W 1,s(B3R)n . (22)

Finally, since p(·) is Lipschitz continuous, (19) and (22) give the boundedness of
I0:

I0 ≤ c
|λ|2θ

R2
, (23)

where the constant c depends on ‖u‖W 1,s(B3R)n and ‖π‖
Lp
′
1 (B2R)

. Set

ŝ :=
2s

s− γ1 + 2
.

Then γ1 ≤ ŝ < 2 and s(ŝ−2)
ŝ = γ1 − 2. Thus, Hölder’s inequality and (23) reveal∫

BR

|∆λD(u)|ŝdx

=

∫
O+

1

(
|D(u)(s+ λek)|2 + |D(u)(x)|2 + µ2

) p(x)−2
2

ŝ
2 |∆λD(u)(x)|ŝηŝ

×
(
|D(u)(s+ λek)|2 + |D(u)(x)|2 + µ2

) 2−p(x)
2

ŝ
2 dx

≤
[
I0
] ŝ

2

[∫
B2R

(
|D(u)(s+ λek)|2 + |D(u)(x)|2 + µ2

) 2−p(x)
2−ŝ

ŝ
2 dx

] 2−ŝ
2

≤ c |λ|
θŝ

R2

[∫
B2R

(1 + |D(u)(x)|)s dx
] 2−ŝ

2

.

(24)

This implies

D(u) ∈W t,ŝ(BR/2)n×n for any t ∈ [0, θ)

and then we obtain by Nikolskii’s embedding theorem in [2] that

D(u) ∈ L
nŝ
n−tŝ (BR/2)n×n for any t ∈ [0, θ). (25)
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We set

σ(s) :=
nŝ

n− θŝ
=

2ns

(5− γ1)n− 2s
,

then it follows that

σ(s)− s ≥ τ0 :=
γ1((n+ 2)γ1 − 3n)

(5− γ1)n− 2γ1
> 0.

Hence (25) can be written as

∇u ∈ Lτ (BR/2)n×n for any τ ∈ [1, σ(s)).

Here, we have used Korn’s inequality. According to Sobolev embedding theorem
and the fact that σ(s) ≤ s∗, we see

u ∈W 1,τ (BR/2)n for any τ ∈ [1, σ(s))

and so, by covering, we also have

u ∈W 1,τ
loc (Ω)n for any τ ∈ [1, σ(s)).

By bootstrap argument, we can conclude that

u ∈W 1,τ
loc (Ω)n for any τ ∈ [1, σ(n)),

where n < σ(n) = 2n
3−γ1 . By Morrey embedding theorem, u is locally Hölder

continuous, and so u is locally bounded.

Step 3. Completing the proof of Theorem 1.1.
For 1 < s < 2n

3−γ1 , we estimate I3 again

|I3| ≤
∣∣∣∣∫
B2R

ui
∂uj
∂xi

(∆−λ,k(η2∆λuj))dx

∣∣∣∣
≤ |λ|‖u‖L∞(B2R)n ‖∇u‖Ls(B2R)n×n

∥∥D (η2∆λu
)∥∥
Ls′ (B2R)n×n

≤ |λ|‖u‖L∞(B2R)n ‖∇u‖Ls(B2R)n×n

×
(∥∥η2D(∆λu)

∥∥
Ls′ (B2R)n×n

+
|λ|
R
‖∇u‖Ls′ (B2R)n×n

)
.

(26)

We select s = 4− γ1. Then 2 ≤ s < 2n
3−γ1 and

(2− p(x))s′

2− s′
=

2− p(x)

2− γ1
(4− γ1) ≤ (4− γ1) = s.

By following the calculations in (24), we also have

‖η2D(∆λu)‖Ls′ (B2R)n×n

≤
[
I0
] 1

2

(∫
B2R

(
|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2

) (2−p(x))s′

2(2−s′) dx

) 2−s′
2s′

≤
[
I0
] 1

2

(∫
B2R

(1 + |∇u|)s dx
) 2−s′

2s′

.

(27)

Applying (27) and Young’s inequality to (26), we find

|I3| ≤ c(ε)
|λ|2

R
+ εI0. (28)
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Combining (19), (28) and the assumption p(x) ≤ 2, we obtain∫
BR

(1 + |D(u)(x+ λek)|2 + |D(u)(x)|2)
p(x)−2

2

∣∣∣∣∆λD(u)

λ

∣∣∣∣2 dx
=

∫
O+

(1 + |D(u)(x+ λek)|2 + |D(u)(x)|2)
p(x)−2

2

∣∣∣∣∆λD(u)

λ

∣∣∣∣2 dx
≤
∫
O+

1

(|D(u)(x+ λek)|2 + |D(u)(x)|2 + µ2)
p(x)−2

2

∣∣∣∣∆λD(u)

λ

∣∣∣∣2 dx ≤ c,
(29)

where

O+ := BR ∩ {x ∈ Ω : |Du|(x+ λek) + |Du|(x) + µ > 0} ⊂ O+
2 .

We now divide (27) by |λ| to deduce

1

|λ|
‖∆λ∇u‖Ls′ (BR)n×n ≤

1

|λ|
‖η2D(∆λu)‖Ls′ (B2R)n×n ≤ c

for all λ ∈
(
−R4 ,

R
4

)
, where we have used Korn’s inequality and (19).

By difference quotient method (See [12, Section 5.8.2]), there exists the weak
derivative of ∇u such that

1

λ
∆λ∇u ⇀

∂

∂xk
∇u in Ls

′
(BR)n×n. (30)

For the time being, we suppose that

(
1 + |D(u)(x+ λek)|2 + |D(u)(x)|2

) p(x)−2
4

→
(
1 + 2|D(u)(x)|2

) p(x)−2
4

in Lq(BR) (31)

for all q ∈ [1,∞). Then we see that (30) deduce

(1 + |D(u)(x+ λek)|2 + |D(u)(x)|2)
p(x)−2

4

(
∆λD(u)

λ

)
⇀
(
1 + 2|D(u)(x)|2

) p(x)−2
4

(
∂

∂xk
D(u)

) in L1(BR)n×n.

Since there exists a function wk ∈ L2(BR) by (29) such that

(1 + |D(u)(x+ λek)|2 + |D(u)(x)|2)
p(x)−2

4

(
∆λD(u)

λ

)
⇀ wk in L2(BR)n×n,

we find
(
1 + 2|D(u)(x)|2

) p(x)−2
4

∣∣∣ ∂
∂xk
∇u
∣∣∣ = wk.

Verification of (31). To do this, we write h(x) = 1
2 + |D(u)(x)|2 and hλ(x) =

1
2 + |D(u)(x+ λek)|2, and compute
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BR

∣∣∣∣∣ 1

(h(x) + hλ(x))
2−p(x)

4

− 1

(2h(x))
2−p(x)

4

∣∣∣∣∣
q

dx

=

∫
BR

∣∣∣∣∣ (2h(x))
2−p(x)

4 − (h(x) + hλ(x))
2−p(x)

4

(h(x) + hλ(x))
2−p(x)

4 (2h(x))
2−p(x)

4

∣∣∣∣∣
q

dx

≤ c
∫
BR

(
(2h(x))

2−p(x)
4 + (h(x) + hλ(x))

2−p(x)
4

)q−1

(
(h(x) + hλ(x))

2−p(x)
4 (2h(x))

2−p(x)
4

)q
×
(

2h(x))
2−p(x)

4 − (h(x) + hλ(x))
2−p(x)

4

)
dx

≤ c
∫
BR

(2h(x))
2−p(x)

4 − (h(x) + hλ(x))
2−p(x)

4 dx.

And we estimate

(2h(x))
2−p(x)

4 − (h(x) + hλ(x))
2−p(x)

4

=

∫ 1

0

d

dt

(
h(x) + hλ(x) + t(h(x)− hλ(x))

) 2−p(x)
4 dt

≤ 2− p(x)

4
|h(x)− hλ(x)|

∫ 1

0

(
h(x) + hλ(x) + t(h(x)− hλ(x))

−2−p(x)
4 dt

≤ 2− p(x)

2
|h(x)− hλ(x)|

=
2− p(x)

2

∣∣|D(u)(x)|2 − |D(u)(x+ λek)|2
∣∣ .

Hence we have∫
BR

∣∣∣(1 + |D(u)(x+ λek)|2 + |D(u)(x)|2)
p(x)−2

4 − (1 + 2|D(u)(x)|2)
p(x)−2

4

∣∣∣q dx
≤ c
∫
BR

∣∣|D(u)(x)|2 − |D(u)(x+ λek)|2
∣∣ dx.

Since the integral on the right-hand side above inequality converges to 0 as λ→ 0,
(31) is valid, and (4) is proved.

To verify (5), we put V =
(
1 + |D(u)|2

) p(x)
4 . Then∣∣∣∣ ∂V∂xk

∣∣∣∣ ≤ c((1 + |D(u)|2)
p(x)
4 log(1 + |D(u)|2) + (1 + |D(u)|2)

p(x)−2
4

∣∣∣∣ ∂∂xkD(u)

∣∣∣∣) .
Using (4), the higher integrability of D(u) and Lemma 2.2, we know V ∈W 1,2

loc (Ω).
Therefore,

V ∈ Lsloc(Ω) for all s ∈ [1,∞) if n = 2, V ∈ L6
loc(Ω) if n = 3. (32)

Note that following inequality holds by Young’s inequality:

|a|t = |b|
t(p−2)

2 |a|t|b|
t(2−p)

2 < |b|p−2|a|2 + |b|
t(2−p)
2−t

for any p ∈ [1, 2], t ∈ [1, 2) and |b| > 0. For the case n = 2 with t ∈ [1, 2), we
estimate
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BR

∣∣∣∣∂D(u)

∂xk

∣∣∣∣t dx ≤∫
BR

(
1 + |D(u)|2

) p(x)−2
2

∣∣∣∣∂D(u)

∂xk

∣∣∣∣2 dx
+

∫
BR

(
1 + |D(u)|2

) t(2−p(x))
2(2−t) dx.

Then, we immediately deduce (5)1 from (32) and Korn’s inequality. One can prove
(5)2 in a similar way. This completes our proof.
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