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Abstract. We study a Follow-the-Leader (FtL) ODE model for traffic flow

with rough road condition, and analyze stationary traveling wave profiles where
the solutions of the FtL model trace along, near the jump in the road condi-

tion. We derive a discontinuous delay differential equation (DDDE) for these

profiles. For various cases, we obtain results on existence, uniqueness and local
stability of the profiles. The results here offer an alternative approximation,

possibly more realistic than the classical vanishing viscosity approach, to the
conservation law with discontinuous flux for traffic flow.

1. Introduction. We consider an ODE model for traffic flow with rough road
condition. Given an index i ∈ Z and a time t ≥ 0, let zi(t) be the position of car
number i at time t. Let ` be the length of all cars, so that

zi(t) + ` ≤ zi+1(t), ∀t, i,
one defines a discrete local density ρi(t) for each car with index i:

ρi(t) =̇
`

zi+1(t)− zi(t)
. (1.1)

By this normalized definition, the maximum car density is ρ = 1 where cars are
bumper-to-bumper.

The road condition includes many factors, for example the number of lanes, qual-
ity of the road surface, surrounding situation, among other things. For simplicity
of the discussion, we let k(x) be the speed limit which reflects the various road
conditions. We are particularly interested in the case where k(x) is discontinuous.

At time t, given a distribution of car positions {zi(t)}, the speed of each car is
determined by its discrete local density and the road condition:

żi(t) = k(zi(t)) · φ(ρi(t)). (1.2)

Here φ(ρ) is a decreasing function, with

φ′(ρ) ≤ −ĉ0 < 0, φ(1) = 0, φ(0) = 1. (1.3)
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For example, the popular Lighthill-Whitham model [18] uses,

φ(ρ) = 1− ρ. (1.4)

The system of ODEs (1.2) describes the Follow-the-Leader behavior, and is re-
ferred to as the FtL model. By simple computation we obtain an equivalent system
of ODEs for the local densities ρi:

ρ̇i =
`

(zi+1 − zi)2
[
żi − żi+1

]
=
ρ2i
`

[
k(zi)φ(ρi)− k(zi+1)φ(ρi+1)

]
. (1.5)

Note that given the set {ρi}, one can recover the set for the car positions {zi} by
zi+1 = zi + `/ρi. The car position distribution {zi} is unique if we fix any car, say
z0 = 0.

Let {zi(t), ρi(t)} denote the solution of the FtL model. We seek stationary profiles
Q(x) such that the points {zi(t), ρi(t)} trace along the graph of Q(x). To be specific,
we require

Q(zi(t)) = ρi(t) ∀i, t. (1.6)

Differentiating (1.6) in t, and using (1.2) and (1.5), we obtain

Q′(zi) =
ρ̇i
żi

=
ρ2i

` · k(zi)φ(ρi)

[
k(zi)φ(ρi)− k(zi+1)φ(ρi+1)

]
.

Using

zi+1 = zi +
`

ρi
, ρi = Q(zi),

and writing x for zi (since it is arbitrary), we get

Q′(x) =
Q(x)2

` k(x)φ(Q(x))
·
[
k(x)φ(Q(x))− k(x])φ(Q(x]))

]
, x] = x+

`

Q(x)
. (1.7)

Here x] is the location of the “leader” for the car located at x. In the literature, (1.7)
belongs to a type of equations which is called a delay differential equation (DDE),
or a differential equation with retarded argument. We refer to [11, 12] for general
treatments of DDEs.

When the road condition is uniform so that k(x) ≡ V is constant, it is known
that the solutions of the FtL model (1.5) converge to the scalar conservation law
(cf. [10, 7, 16, 17] and references there in)

ρt + f(ρ)x = 0, f(ρ) =̇ V ρ · φ(ρ), (1.8)

as ` → 0+, under suitable assumptions on the initial data. In the literature it is
customary to consider the flux f a concave function with

f ′′ ≤ −c0 < 0. (1.9)

This leads to the following reasonable assumption on φ:

− φ′′(ρ) >
1

ρ
[2φ′(ρ) + c0/V ] . (1.10)

In this simpler case where k(x) = V , equation (1.7) takes a simpler form. Let
W (x) denote this stationary profile. We have

W ′(x) =
W (x)2

` · φ(W (x))
·
[
φ(W (x))− φ(W (x]))

]
, x] = x+

`

W (x)
. (1.11)
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Equation (1.11) is studied by the author and collaborator in [22], where we establish
the existence and uniqueness (up to horizontal shifte) of the profileW (x), connecting
two “boundary” conditions at the infinities

lim
x→±∞

W (x) = ρ±,

where
0 ≤ ρ− ≤ ρ∗ ≤ ρ+ ≤ 1, f(ρ−) = f(ρ+), f ′(ρ∗) = 0.

We show that the profile W (x) is monotone and approaches ρ± at an exponential
rate. Furthermore, we prove that the profile W (x) is a local attractor for nearby
solutions of the FtL model.

In this paper we consider rough road condition, and analyze the behavior of
solutions in the neighborhood of a discontinuity in k(x). To fix the idea, we consider
the case where k(x) is piecewise constant and has a jump at x = 0, i.e.,

k(x) =

{
V+, (x ≥ 0),

V−, (x < 0).
(1.12)

The ODEs for ρi in (1.5) take the following form

ρ̇i =


`−1V−ρ

2
i

[
φ(ρi)− φ(ρi+1)

]
, (zi < zi+1 < 0),

`−1ρ2i

[
V−φ(ρi)− V+φ(ρi+1)

]
, (zi < 0 ≤ zi+1),

`−1V+ρ
2
i

[
φ(ρi)− φ(ρi+1)

]
, (0 ≤ zi < zi+1).

(1.13)

The system of ODEs in (1.13) has discontinuous right hand side. The discontinuity
occurs twice for each ρi, as the car position zi crosses x = 0, and as its leader zi+1

crosses x = 0.
The corresponding profile Q(x) satisfies the following discontinuous delay differ-

ential equation (DDDE):

Q′(x) =


Q(x)2

`φ(Q(x))

[
φ(Q(x))− φ(Q(x]))

]
, (x] < 0 or x > 0),

Q(x)2

`V−φ(Q(x))

[
V−φ(Q(x))− V+φ(Q(x]))

]
, (x < 0 < x]),

(1.14)
where

x] = x+ `/Q(x)

is the position for the leader of the car at x. Note that for the first case in (1.14)
the equation is the same as (1.11). For the second case, where the car is behind
the jump in k(x) but the leader is ahead of the jump, the equation is different
from (1.14).

Formally, as `→ 0, the car density function ρ satisfies the following conservation
law:

ρt + f(k(x), ρ)x = 0, where f(k, ρ) =̇ kρφ(ρ). (1.15)

Here k(x) is discontinuous at x = 0. Two types of jumps occur in the solution,
namely the k-jump at x = 0 and the ρ-shock where k is constant. The ρ-shock and
its corresponding traveling wave profiles of the FtL model is studied in [22], where
existence, uniqueness and local stability are proved. In this paper we consider the
k-jump at x = 0, and analyze the stationary profile Q(x) that connects the two
constant states ρ± as x→ ±∞.
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There are various cases, with different relations between (V−, V+) and (ρ−, ρ+).
For each of these cases, we study the initial value problem for (1.14), with initial
data given on x ≥ 0. Due to the discontinuity in the coefficient k(x), the analysis is
non-trivial. The initial value problem of the DDDE (1.14) can be solved by method
of steps, solving backwards in x over a suitable interval in each step. At some steps,
as x or x] cross 0, one needs to solve a discontinuous ODE. The existence and well
posedness of the solutions can be established under the transversality condition, i.e.,
at every point where the right hand side of the ODE has a jump, the vector field for
ODE crosses the curve of jump transversally. For literature on discontinuous ODEs
and transversality condition, we refer to [4, 5, 6, 13] and the references therein.

We also show that the solution of the initial value problem with suitable initial
data gives the desired stationary profile Q(x) with the given boundary conditions
at the infinities. For different cases we prove that: (i) there exist infinitely many
profiles, (ii) there exists exactly one profile, or (iii) no profile exists. Depending
on the case, some of the profiles attract nearby solutions for the FtL model, while
others are unstable.

We compare our result to the classical vanishing viscosity approach. The conser-
vation law (1.15) can be approximated by a viscous equation

ρt + f(k(x), ρ)x = ερxx, (1.16)

where ε > 0 is a small parameter representing the viscosity. When k(x) has a jump
as in (1.12), the k-jump at x = 0 has a corresponding stationary viscous profile
ρε(x), satisfying the ODE

d

dx
ρε(x) =

1

ε

[
f(k(x), ρε(x))− f̄

]
, (1.17)

where

f̄ = f(V−, ρ−) = f(V+, ρ+).

Monotone viscous profiles exist if one of the followings holds:

• We have ρ− < ρ+ and there exists a ρ̂ ∈ [ρ−, ρ+] such that

f(V−, ρ) > f̄ for ρ ∈ [ρ−, ρ̂], and f(V+, ρ) > f̄ for ρ ∈ [ρ̂, ρ+].

• We have ρ− > ρ+ and there exists a ρ̂ ∈ [ρ+, ρ−] such that

f(V−, ρ) < f̄ for ρ ∈ [ρ+, ρ̂], and f(V+, ρ) < f̄ for ρ ∈ [ρ̂, ρ−].

See [14, 20, 15] for more details. For other general references on scalar conservation
law with discontinuous coefficient, we refer to a survey paper [1] and the references
therein. Other related references on micro-macro models for traffic flow and their
analysis include [2, 3, 9, 19]. We would like to mention a recent work [8] (and
the references therein), which considers the traveling waves for degenerate diffu-
sive equations on network, where a necessary and sufficient algebraic condition is
established for the existence of traveling waves.

The rest of the paper is organized as follows. In section 2 we present various
technical Lemmas, on specific properties for the solutions of (1.14) and (1.11).
Section 3 is dedicated to the case with V− > V+, where 4 sub-cases are analyzed
in detail. The analytical result is also confirmed by numerical simulations. For one
sub-case, we also show that the profiles Q(x) are attractor for the solutions of the
FtL model. The case with V− < V+ is studied in section 4, following a similar
line of approach as in section 3. The analysis for the main sub case here is much
more involving due to the lack of monotonicity. In section 5 we present a numerical
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simulation with “Riemann initial data”. Finally, concluding remarks are given in
section 6.

2. Technique lemmas. For the rest of the paper, we denote the flux functions

f−(ρ) =̇ V− ρ φ(ρ), f+(ρ) =̇ V+ ρ φ(ρ). (2.1)

Since the jump is stationary, the Rankine-Hugoniot condition requires

f−(ρ−) = f+(ρ+) =̇ f̄ ≥ 0. (2.2)

We note that the cases with f̄ = 0 are trivial, since they represent the cases where
the road is either empty or completely bumper-to-bumper. Indeed, we have:

• If ρ− = ρ+ = 0 then there is no car on the road;
• If ρ− = ρ+ = 1 then the road is completely bumper-to-bumper with cars and

no one moves;
• If ρ− = 0, ρ+ = 1, then there is no car on x < 0 but completely bumper-to-

bumper on x > 0, therefore no one moves.

For the rest of the discussion, we assume

f(ρ) > 0, i.e. 0 < ρ < 1.

We start with some definitions.

Definition 2.1. Let Q(x) be a continuous function defined on x ∈ R with 0 <
Q(x) < 1. We call a sequence of car positions {zi} a distribution of car positions
generated by Q(x), if

zi+1 − zi =
`

Q(zi)
, ∀i ∈ Z. (2.3)

Note that if one imposes z0 = 0, then the distribution {zi} is unique.

Definition 2.2. Given a profile Q(x) and a distribution of car positions {zi(t)}.
Let {ρi(t)} be the corresponding discrete densities for the cars, computed as (1.1).
We say that {zi(t), ρi(t)} traces along Q(x), if

Q(zi(t)) = ρi(t), ∀i ∈ Z, t ≥ 0.

The following Lemma is immediate.

Lemma 2.3. Let Q(x) be a given profile and {zi(0)} be a distribution generated by
Q(x). Let {zi(t)} be the solution of (1.2) with initial data {zi(0)}, and let {ρi(t)}
be the corresponding discrete density. Then, Q(x) satisfies (1.7) if and only if
{zi(t), ρi(t)} traces along Q(x).

Solutions of (1.7) exhibit a periodical behavior.

Lemma 2.4. (Periodicity) Let a continuous function Q(x) be given on x ∈ R
with 0 < Q(x) < 1. Let {zi(0)} be a distribution of car positions generated by Q(x),
and let {zi(t)} be the solution of the FtL model (1.2) with this initial data. Then
the followings are equivalent.

(a) Q(x) satisfies the equation (1.7);
(b) There exist a constant period tp such that

zi(t+ tp) = zi+1(t), ∀i ∈ Z, t ≥ 0. (2.4)
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Proof. We first prove that (b) implies (a). Writing

zi(0) = x, zi+1(0) = x] = x+ `/Q(x),

and using
dz

dt
= k(z) · φ(Q(z)) → dz

k(z) · φ(Q(z))
= dt,

the time it takes for car no i to reach the position of its leader is

tp =

∫ x+`/Q(x)

x

1

k(z)φ(Q(z))
dz = constant.

Differentiating the above equation in x on both sides, one gets

(1− `Q′(x)/Q2(x))
1

k(x])φ(Q(x]))
− 1

k(x)φ(Q(x))
= 0,

which easily leads to (1.7). The proof for (a) implies (b) can be obtained by reversing
the order of the above arguments.

The next lemma connects the period tp with the flux f̄ at the infinities.

Lemma 2.5. (i) In the setting of Lemma 2.4, if we have

lim
x→∞

Q(x) = ρ+, lim
x→−∞

Q(x) = ρ−, f−(ρ−) = f+(ρ+) = f̄ , (2.5)

then the period is determined as

tp =
`

f̄
. (2.6)

(ii) On the other hand, if the period tp is given and the solution approach some
asymptotic limits such that

lim
x→∞

Q(x) = ρ+, lim
x→−∞

Q(x) = ρ−,

then the limits must satisfy

f−(ρ−) = f+(ρ+) =
`

tp
.

The proof is for Lemma 2.5 is the same as the proof of Lemma 2.7 in [22]. We
skip the details.

Next Lemma shows that the solution Q(x) is monotone in some sense of “aver-
age”.

Lemma 2.6. Let Q(x) be a profile that satisfies (1.7). Given x, we let

x] = x+ `/Q(x)

be the position of the leader for the car at x. Then, for any x, we have

`

f̄
− `

f(k(x), Q(x))
=

∫ x]

x

[
1

k(z)φ(Q(z))
− 1

k(x)φ(Q(x))

]
dz. (2.7)

When k(x) ≡ V is constant on [x, x]], (2.7) is simplified to

`

f̄
− `

f(V,Q(x))
=

1

V

∫ x]

x

[
1

φ(Q(z))
− 1

φ(Q(x))

]
dz. (2.8)
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Proof. The Lemma follows immediately from the periodicity property in Lemma 2.4

`

f̄
=

∫ x]

x

1

k(z)φ(Q(z))
dz,

and subtracting from it the identity

`

f(V,Q(x))
=

1

V

∫ x]

x

1

φ(Q(x))
dz.

Remark 2.1. Since φ′ < 0, the mapping ρ 7→ (1/φ(ρ)) is monotone increasing.
Then, (2.8) roughly says that if f(V,Q(x)) > f̄ at some x, then some “averaged-
value” of Q on [x, x]] is larger than Q(x), so in “average” Q(x) is increasing. Simi-
larly, if f(V,Q(x)) < f̄ at some x, then in “average” Q(x) is decreasing.

Lemma 2.7. Let Q(x) be a profile that satisfies (1.7). Let {zi} be a distribution of
car positions generated by Q(x). Then, for any y with

zi < y < zi+1

we have
zi+1 < y] < zi+2, where y] = y + `/Q(y). (2.9)

Proof. We prove by contradiction. We first assume that

y] ≤ zi+1, therefore [y, y]] ⊂ [zi, zi+1].

By the periodic property in Lemma 2.4, we have

tp =

∫ zi+1

zi

1

k(z)φ(Q(z))
dz >

∫ y]

y

1

k(z)φ(Q(z))
dz = tp,

a contradiction. We now assume

y] ≥ zi+2 therefore [zi+1, zi+2] ⊂ [y, y]].

But again, the periodic property in Lemma 2.4 implies

tp =

∫ zi+2

zi+1

1

k(z)φ(Q(z))
dz <

∫ y]

y

1

k(z)φ(Q(z))
dz = tp,

again a contradiction. Thus, we conclude (2.9), completing the proof.

We now establish the invariant regions Q(x) > ρ− and Q(x) < ρ−, on x < 0.

Lemma 2.8. Let k(x) be the step function in (1.12), and let Q(x) be a profile that
satisfies (1.14) with

lim
x→∞

Q(x) = ρ+, where f̄ = f+(ρ+).

Let ρ∗ be the unique stagnation point where f ′−(ρ∗) = 0, and ρ− < ρ∗ be the value

that satisfies f−(ρ−) = f̄ . Denote the interval

I = [y, y]] where y] = y + `/Q(y) ≤ 0.

Then, the followings hold.

(a) If f−(Q(x)) > f̄ and Q(x) > ρ− for x ∈ I, then the same holds for all x ≤ y.
(b) If f−(Q(x)) < f̄ and Q(x) < ρ− for x ∈ I, then the same holds for all x ≤ y.

In both cases, we have
lim

x→−∞
Q(x) = ρ−.
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Proof. We only prove (a), while the proof for (b) is similar. The proof is achieved
by contradiction. Suppose that f−(Q(x)) > f̄ and Q(x) > ρ− on x ∈ I. First, we
assume that Q(x) can be less than ρ− for x ≤ y. Let ȳ be the right most point
where Q(x) crosses ρ−, such that

Q(ȳ) = ρ−, Q(x) > ρ− for x > ȳ. (2.10)

Now (2.8) implies that the “average” value of Q(x) on the interval [ȳ, ȳ+ `/Q(ȳ)] is
ρ−. Clearly, this contradicts (2.10). On the other hand, we assume that Q(x) can
be bigger than ρ̂ where f−(ρ̂) = f̄ and ρ̂ > ρ∗. Let ŷ be the right most point where
Q(x) crosses ρ̂, such that

Q(ŷ) = ρ̂, Q(x) < ρ̂ for x > ŷ.

Again, this contradicts (2.8), proving (a).
To prove the asymptotic limit as x → −∞, let {zi} be a distribution of car

position generated by Q(x) with z0 = y], and denote the interval Ik = [zk, zk+1].
Let

Mk =̇ max
x∈Ik

1

φ(Q(x))
, k ≤ −2,

and let {yk} be the points where these maxima are attained:

1

φ(Q(yk))
= Mk, k ≤ −2.

We claim that

Mk+1 −Mk ≥ O(1) · (Q(yk)− ρ−), for k < −2, (2.11)

which implies that

lim
k→−∞

Mk =
1

φ(ρ−)
and lim

x→−∞
Q(x) = ρ−.

Indeed, if Q(x) is monotone on Ik for some k ≤ −2, then Q(x) must be monotone
increasing on Ik due to (2.8). An induction argument shows that Q(x) is monotone
on x ≤ zk. Then

yk = zk+1, Mk = 1/φ(Q(zk+1)).

Now, (2.8) gives

`

f̄
− `

f−(Q(zk))
≤ zk+1 − zk

V −
·
[

1

φ(Q(zk+1))
− 1

φ(Q(zk))

]
=
`(Mk −Mk−1)

V−Q(zk)
,

which implies

Mk −Mk−1 ≥ V−Q(zk)

(
1

f−(ρ−)
− 1

f−(Q(zk))

)
= O(1) · (Q(yk−1)− ρ−).

Now consider the case where Q(x) is not monotone on any interval Ik, such that
x 7→ 1/φ(Q(x)) is oscillatory with at least one local minimum or local maximum on
any Ik for k ≤ −2 . Then, generically for some index k < −2, Mk is attained at a
local maximum of 1/φ(Q(x)), say yk ∈ Ik. Then yk is the local maximum of Q(x)

on Ik, with Q′(yk) = 0. Denoting its leader as y]k, we have y]k ∈ Ik+1 by Lemma 2.7.

Also, Q′(yk) = 0 implies that Q(yk) = Q(y]k). Then (2.8) implies that there exists

a local maximum y′k+1 ∈ (zk+1, y
]
k) with Q(y′k+1) > Q(yk). See Figure 1 for an

illustration.
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zk zk+1 zk+2

yk y′k+1

y]k

Figure 1. Graph of Q(x) on the interval [zk, zk+2]. Illustration of

the locations for yk, y
]
k and y′k+1, used in the proof of Lemma 2.8.

Furthermore, applying (2.8) on [yk, y
]
k] we get

`

f−(ρ−)
− `

f−(Q(yk))
=

1

V−

∫ y]k

yk

[
1

φ(Q(z))
− 1

φ(Q(yk))

]
dz

<
1

V−
· `

Q(yk)
·
[

1

φ(Q(y′k+1))
−Mk

]
.

Since Mk+1 ≥ 1
φ(Q(y′k+1))

, this gives

Mk+1 −Mk > V−Q(yk)

[
1

f−(ρ−)
− 1

f−(Q(yk))

]
= O(1) · [Q(yk)− ρ−] ,

completing the proof.

Lemma 2.9. (Ordering of the profiles) Assume that there exist multiple profiles
that solve the equation (1.14) with asymptotes ρ± that satisfies (2.2). Then the
graphs of these profiles never intersect.

Proof. We prove by contradiction. Assume that there exist two profilesQ1(x), Q2(x)
which intersect at a point y, such that

Q1(y) = Q2(y), Q1(x) > Q2(x) for x > y.

Let

y] =̇ y +
`

Q1(y)
= y +

`

Q2(y)

be the position of the leader for the car at y for both profiles, and let tp,1 and tp,2
be the times for the car at y to reach its leader’s position at y], tracing along Q1(x)
and Q2(x), respectively. Then

tp,1 =

∫ y]

y

1

k(x)φ(Q1(x))
dx >

∫ y]

y

1

k(x)φ(Q2(x))
dx = tp,2.

Since both profiles Q1, Q2 approach the same asymptotic limits, by Lemma 2.5 one
must have tp,1 = tp,2, a contradiction.

3. Case 1: V− > V+. In this section we consider the case where the speed limit
has a downward jump at x = 0. Recall the Rankine-Hugoniot jump condition (2.2).
Fix a f̄ , with

0 < f̄ ≤ f+(ρ∗), where f ′−(ρ∗) = f ′+(ρ∗) = 0,
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and let ρ−1 , ρ
−
2 , ρ

+
1 , ρ

+
2 be the unique values that satisfy

f−(ρ−1 ) = f−(ρ−2 ) = f+(ρ+1 ) = f+(ρ+2 ) = f̄ , and ρ−1 < ρ+1 ≤ ρ∗ ≤ ρ
+
2 < ρ−2 . (3.1)

See Figure 2 for an illustration. Note that we may have ρ+1 = ρ∗ = ρ+2 when
f̄ = f+(ρ∗).

-ρ

6

f̄

ρ−1 ρ+1 ρ∗ ρ+2 ρ−2

f+

f−

Figure 2. Flux functions f−, f+, and the locations of ρ−1 , ρ+1 , ρ−2 ,
ρ+2 , and ρ∗.

There are 4 possible combinations of (ρ−, ρ+) which satisfy (3.1):

1A. (ρ−, ρ+) = (ρ−1 , ρ
+
2 ), i.e., 0 < ρ− < ρ∗ < ρ+ < 1;

1B. (ρ−, ρ+) = (ρ−1 , ρ
+
1 ), i.e., 0 < ρ− < ρ+ ≤ ρ∗;

1C. (ρ−, ρ+) = (ρ−2 , ρ
+
2 ), i.e., ρ∗ < ρ+ < ρ− < 1;

1D. (ρ−, ρ+) = (ρ−2 , ρ
+
1 ), i.e., 0 < ρ+ ≤ ρ∗ < ρ− < 1.

We denote by W (x) the unique stationary profile that satisfies (1.11), with

W (0) = ρ∗, lim
x→−∞

W (x) = ρ+1 , lim
x→+∞

W (x) = ρ+2 . (3.2)

Note that any horizontal shifts of W (x) is again a solution of (1.11). The existence
and uniqueness of such a profile is proved in [22].

We also recall Lemma 2.5 in [22], where the following is proved:

• As x→∞, Q(x) can approach ρ+ asymptotically with exponential rate only
if ρ+ > ρ∗. This means, if ρ+ ≤ ρ∗, the asymptote is unstable.

• As x → −∞, Q(x) can approach ρ− asymptotically with exponential rate
only if ρ− < ρ∗. This means, if ρ− ≥ ρ∗, the asymptote is unstable.

We discuss each sub-case in detail in the rest of this section.

3.1. Case 1A: 0 < ρ− < ρ∗ < ρ+ < 1. Since here ρ+ > ρ∗ is a stable asymptote,
on x > 0 the solution for Q(x) must be either some horizontal shift of W (x) or
the trivial solution Q(x) ≡ ρ+. For different horizontal shifts, these profiles take
different values of Q(0). In all cases, we have

ρ+1 < Q(0) ≤ ρ+.

3.1.1. The initial value problems. Once Q(x) is given for x ≥ 0, one can solve (1.14)
backward in x as an “initial value problem”. It is understood that the derivative
in (1.14) is the left derivative, as one solves the equations backward in x. The profile
Q(x), if exists, can have kinks, but remains continuous. Next Theorem provides
well posedness of this initial value problem.
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Theorem 3.1. (Well posedness of the initial value problems) Let V− > V+.
Given ρ+ such that ρ∗ < ρ+ < 1. Consider the initial value problem for (1.14),
where an initial data is given on x ≥ 0, as either a horizontal shift of W (x) or
the constant function ρ+. Then, the initial value problem has a unique monotone
solution Q(x) on x < 0.

Proof. The proof takes a couple of steps.
Step 1. In the (x,Q) plane, let C0 be the vertical line where x = 0, and let C1
be the graph of the function h(x) = −`/x, for x < −`. The curve C1 indicates
the position and local density of the cars whose leader is at x = 0. Since the car
length is `, the position of these car must be less than −`, so h(x) is only defined
on x < −`. The discontinuities in (1.14) occur along C0 and C1. To ensure the
existence and uniqueness of solutions, we must verify that the vector field of the
DDDE (1.14) must cross the curves of discontinuity transversally, see [4].

Along C0, the discontinuity line is vertical, with infinite tangent. Thus, we need
that

Q′(0±) is bounded. (3.3)

This is easily verified from (1.14), since Q(0) ≤ ρ+ < 1 so φ(Q(0)) > 0.
Along the curve C1, the tangent at a point (x, h(x)) is

h′(x) = `/x2 = h(x)2/`.

Let Q(x) be a profile that solves (1.14), and let y < 0 be its intersection point with
C1 such that Q(y) = h(y). It suffices to show that

Q′(y±) < h′(y). (3.4)

Indeed, from (1.14) we have

Q′(y−) =
h(y)2

` · φ(h(y))
[φ(h(y))− φ(Q(0))] = h′(y)

[
1− φ(Q(0))

φ(h(y))

]
,

Q′(y+) =
h(y)2

`V−φ(h(y))
[V−φ(h(y))− V+φ(Q(0))] = h′(y)

[
1− V−φ(Q(0))

V+φ(h(y))

]
.

Thus (3.4) holds since Q(0) < 1 and φ(Q(0)) > 0.
Step 2. Once the transversality properties (3.3)-(3.4) are established, the existence
and uniqueness of the solution for Q(x) is achieved by method of steps. Denote

Ik = [−k`,−(k − 1)`], for k = 1, 2, 3, · · · .
Consider I1. If x ∈ I1, then its leader x] is located at

x] = x+ `/Q(x) > 0.

We have an ODE with discontinuous right hand side, with

Q′(x) =
Q(x)2

` · V−φ(Q(x))

[
V−φ(Q(x))− V+φ(Q(x]))

]
(3.5)

where Q(x]) is given by the initial data on x ≥ 0. Standard theory for discontinuous
ODEs (see [4]) gives a uniqueness solution on I1, provided that Q(x) satisfies 0 <
Q(x) < 1 on I1. Indeed, the lower bound Q(x) > 0 is a consequence of the fact that
0 is a critical point. Assuming that Q(x) becomes negative on some subset of I1,
then there exists a point x̂ ∈ I1 such that Q(x̂) = 0 and Q′(x̂) > 0. But this is not
possible because by (1.14) we have

Q′(x̂) =
Q2(x̂)

`φ(Q(x̂))
[φ(Q(x̂))− φ(ρ+)] = 0, where ρ+ = lim

x→∞
Q(x).
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To prove the upper bound, we claim that Q′(x) > 0 on I1. We argue with con-
tradiction. Assuming that Q(x) is not monotone on I1, then there exists a point
y ∈ I1 such that

Q′(y) = 0, Q′(x) ≥ 0 for x > y.

Since Q′(0−) > 0, then y < 0, and we have

Q(y) < Q(y]), y] = y + `/Q(y) > 0. (3.6)

Now (3.5) and Q′(y) = 0 imply

V−φ(Q(y))− V+φ(Q(y])) = 0.

Since V− > V+ and φ′ < 0, we get

Q(y) > Q(y]),

a contradiction to (3.6).

Step 3. We iterate the argument in Step 2 for k = 2, 3, · · · , until Ik crosses the
curve C1. After that, (3.5) is replaced by

Q′(x) =
Q(x)2

` · φ(Q(x))

[
φ(Q(x))− φ(Q(x]))

]
, x] = x+ `/Q(x) < 0. (3.7)

The same argument follows. This proves the existence and uniqueness of a monotone
solution Q(x) on x < 0, for the initial value problem.

3.1.2. The boundary value problems. Next Corollary establishes the existence of
infinitely many monotone profiles Q(x) for the boundary value problem, with given
boundary conditions ρ− and ρ+ at ±∞.

Corollary 3.2. Let

V− > V+, 0 < ρ− ≤ ρ∗ ≤ ρ+ < 1, f−(ρ−) = f+(ρ+).

There exist infinitely many monotone profiles Q(x) which satisfy the DDDE (1.14),
and the boundary conditions

lim
x→−∞

Q(x) = ρ−, lim
x→+∞

Q(x) = ρ+. (3.8)

Moreover, these profiles never intersect with each other, and

ρ+1 < Q(0) ≤ ρ+. (3.9)

Proof. In Theorem 3.1 we show that there exist many profiles Q(x) that sat-
isfy (1.14), (3.9), and the second boundary condition in (3.8). Let Q(x) be such a
profile. It remains to show that the first boundary condition in (3.8) holds. Since
Q(x) is monotone and bounded below by 0, then there exists an asymptotic limit
as x → −∞. Since limx→∞Q(x) = ρ+, by part (i) of Lemma 2.5 the period must
be

tp =
`

f̄
, where f̄ = f+(ρ+).

By part (ii) of Lemma 2.5 the limit at x→ −∞must be ρ− which satisfies f−(ρ−) =
f̄ . Since ρ− must a stable asymptote, we have ρ− ≤ ρ∗.

The non-intersecting property of the profiles follows from Lemma 2.9.
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Sample profiles of Q(x) with various Q(0) values are illustrated in Figure 3 plot
(2), using

V− = 2, V+ = 1, ` = 0.2, φ(ρ) = 1− ρ, f̄ = 3/16.

As comparison, we also illustrate the stationary viscous profiles. For this sub-
case there exist infinitely many stationary monotone viscous profiles that satisfy
the ODE (1.17). For each value of ρε(0) ∈ (ρ+1 , ρ+], there exists a unique viscous
profile. Sample viscous profiles ρε(x) with ε = 0.2 and with various ρε(0) values are
given in Figure 3 plot (3).

3.1.3. Local stability of the profiles. We have shown that for each given Q(0) ∈
(ρ+1 , ρ+], there exists a unique stationary profile Q(x). Let Q](x) be the profile

with Q](0) = ρ+, and let Q[(x) be the limit profile as Q(0) → ρ+1 . We define the
domain

D =̇
{

(x, y) : Q[(x) < y ≤ Q](x), x ∈ R
}
. (3.10)

Clearly all profiles of Q(x) lie in D. We now show that D is a basin of attraction
of the solution of the FtL, in the sense described below.

Since all the profiles in D never cross each other, we can parametrize the family
of profiles, say by the value Q(0). By continuity, any point (x, y) ∈ D belong to a
unique profile, call it Q(x,y) such that

Q(x,y)(x) = y.

For any point (x, y) ∈ D, we define the function

Ψ(x, y) =̇ Q(x,y)(0), (x, y) ∈ D. (3.11)

Theorem 3.3. Consider the setting of Corollary 3.2 and let D be defined as
in (3.10). Let {zi(0)} be a set of initial car positions and {ρi(0)} be the corre-
sponding discrete density defined as (1.1), and assume that

(zi(0), ρi(0)) ∈ D, ∀i ∈ Z. (3.12)

Let {zi(t)} be the solution of the FtL model with this initial data, and let {ρi(t)} be
the corresponding discrete density. Then

(zi(t), ρi(t)) ∈ D, ∀t > 0, ∀i ∈ Z. (3.13)

Denote

Ψi(t) = Ψ(zi(t), ρi(t)), i ∈ Z,
and define the total variation

TV{Ψi(t)} =̇
∑
i

∣∣∣Ψi(t)−Ψi+1(t)
∣∣∣.

Then, we have

lim
t→∞

TV{Ψi(t)} = 0, i.e., lim
t→∞

Ψi(t) = Ψ̃, ∀i ∈ Z. (3.14)

Thus, asymptotically the points {zi(t), ρi(t)} trace along the profile Q(x) with Q(0) =

Ψ̃ as t→∞.

Proof. We first assume (3.13) and prove (3.14). Fix a time τ ≥ 0. It suffices to
show the followings:

(i) If Ψm(τ) > Ψm+1(τ) at time τ for some m, then d
dtΨm(τ) < 0; and

(ii) If Ψn(τ) < Ψn+1(τ) at time τ for some n, then d
dtΨn(τ) > 0.
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Figure 3. Case 1A: (1) Plot of the flux functions f−, f+ and the
locations of ρ−, ρ+; (2) Plots of various profiles of Q(x), with dif-
ferent values of Q(0); (3) Plots of various viscous traveling waves
ρε(x), with different values of ρε(0); (4) Plots of various solutions of
the FtL model {zi(t), ρi(t)}, with 3 different initial Riemann data.
Here the thick dots denote the locations of cars at t = 2.
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We prove (i) while (ii) can be proved in an entirely similar way. Let Q̂(x) be the
profile that passes through the point {zm(τ), ρm(τ)}. By the assumption Ψm(τ) >

Ψm+1(τ), and the point {zm+1(τ), ρm+1(τ)} lies below the profile Q̂(x), i.e.,

ρm+1(τ) < Q̂(zm+1(τ)). (3.15)

It suffices to show that
ρ̇m(τ)

żm(τ)
< Q̂′(zm(τ)), (3.16)

indicating that the point (zm(τ), ρm(τ)) moves below the profile Q̂(x) as t increases
from τ . Indeed, equation (1.7) gives

Q̂′(zm) =
Q̂2(zm)

`k(zm)φ(Q̂(zm))

[
k(zm)φ(Q̂(zm))− k(zm+1)φ(Q̂(zm+1))

]
. (3.17)

On the other hand, (1.2) and (1.5) give

ρ̇m(τ)

żm(τ)
=

ρ2m
`k(zm)φ(ρm)

[k(zm)φ(ρm)− k(zm+1)φ(ρm+1)] . (3.18)

Since ρm = Q̂(zm), together with (3.15), we conclude (3.16).
We now prove (3.13). We consider the upper bound Q], while the lower bound

is entirely similar. Given a time τ ≥ 0, we assume that (zi(τ), ρi(τ)) ∈ D for all i,
such that

ρi(τ) = Q](zi(τ)), ∀i.
It suffices to show that, if there exist an index m such that,

ρm(τ) = Q](zm(τ)), ρm+1(τ) ≤ Q](zm+1(τ)),

then
ρ̇m(τ)

żm(τ)
≤ (Q])′(zm(τ)), (3.19)

The proof for (3.19) is entirely similar to that of (3.16), replacing Q] with Q̂.

Numerical approximations are computed for the solutions of the FtL model with
the following “Riemann initial data”,

zi(0) =

{
i`/ρ+, i ≥ x0,
i`/ρ−, i < x0,

ρi(0) =

{
ρ+, i ≥ x0,
ρ−, i < x0.

(3.20)

The simulations are carried out for 0 ≤ t ≤ 2. In Figure 3 plot (4), we plot the
trajectory of zi(t) (in green) for the last period

2− `

f̄
≤ t ≤ 2,

together with the car positions at t = 2 as thick dots (in red). The 3 profiles in the
plot are for

x0 = 0, x0 = 0.3`/ρ−, and x0 = 0.6`/ρ−.

Even though the initial data points {zi(0), ρi(0)} are not entirely in D, nevertheless
we observe that the solutions of FtL model converge quickly to certain profiles of
Q(x), suggesting that Theorem 3.3 probably applies to a larger domain.

All numerical simulations in this paper are carried out using SciLab. The source
codes are available from the author’s web-site, see [21].
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3.2. Case 1B: 0 < ρ− < ρ+ ≤ ρ∗. Since ρ+ ≤ ρ∗ is an unstable asymptote for
x → +∞, the only solution on x ≥ 0 is the constant solution Q(x) ≡ ρ+. Once
Q(x) is given on x > 0, the rest can be solved backward in x using (1.14), as an
initial value problem. The existence and uniqueness of the profile follows from the
same arguments as those for Theorem 3.1 and Corollary 3.2. We summarize the
result in next Theorem.

Theorem 3.4. Let V− > V+ and 0 < ρ− < ρ+ ≤ ρ∗ with f−(ρ−) = f+(ρ+). There
exists a unique monotone profile Q(x) which satisfies the equation (1.14) with

Q(x) = ρ+ for x ≥ 0, lim
x→−∞

Q(x) = ρ−.

A typical plot of Q(x) is given in Figure 4 plot (2). As comparison, we also plot
the viscous profile ρε(x) in Figure 4 plot (3), with ρε(x) = ρ+ on x ≥ 0. This is the
only viscous profile that connects the two limit values ρ± at x→ ±∞.

Instability. Since ρ+ is an unstable asymptote, the profile is unstable with
respect to perturbations on x > 0, and the solution of the FtL model can not con-
verge to the profile in the sense of Theorem 3.3. Even if one starts with “Riemann”
initial data with ρi(0) = ρ+ for all zi(0) ≥ 0, the perturbation, initially on x < 0,
will propagate into the region x > 0. Numerical simulation verifies this fact, see
Figure 4 plot (4), where a perturbation is formed and moves into x > 0. Although
on x < 0 the FtL solution gets very close to the profile Q, the stability can not be
achieved on x > 0. This forward propagating wave is caused by the fact that the
characteristic speed satisfies

f ′−(ρ−) > 0, f ′+(ρ−) > 0,

therefore information travels to the right.

3.3. Case 1C: ρ∗ < ρ+ < ρ− < 1. Since ρ− > ρ∗ is an unstable asymptote as
x→ −∞, one must have

Q(x) ≡ ρ− for x < 0.

Now consider the value Q(0+). Since Q′(−`/ρ−) = 0, equation (1.14) implies

V−φ(Q(−`/ρ−)) = V+φ(Q(0+)) → Q(0+) < Q(−`/ρ−) = Q(0−).

This implies that Q(x) is discontinuous at x = 0, which is not possible for the
solution of (1.14). We have the following Theorem.

Theorem 3.5. Let V− > V+ and ρ∗ < ρ+ < ρ− < 1 with f−(ρ−) = f+(ρ+). There
exists no profile Q(x) that satisfies (1.14) and the boundary conditions (3.8).

We remark that for this sub-case there exists a unique viscous profile for this case,
see Figure 5 plot (2). We also plot the solution of the FtL model with this “Riemann
data”, see Figure 5 plot (3). Observe that the solution is highly oscillatory on x < 0,
and it never settles, indicating no convergence as t grows.

3.4. Case 1D: 0 < ρ+ ≤ ρ∗ < ρ− < 1. Since both ρ− > ρ∗ and ρ+ ≤ ρ∗ are
unstable asymptotes, one must have Q(x) = ρ− on x < 0 and Q(x) = ρ+ on x > 0,
which is not possible.

Theorem 3.6. Let V− > V+ and 0 < ρ+ < ρ∗ < ρ− < 1 with f−(ρ−) = f+(ρ+).
There exists no profile Q(x) that satisfies (1.14) and the boundary conditions (3.8).
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Figure 4. Case 1B. (1) Plots of the flux functions and the lo-
cations of ρ−, ρ+; (2) Plot of the unique stationary profile Q(x)
with Q(0) = ρ+; (3) Plot of the unique viscous profile ρε(x) with
ρε(0) = ρ+; (4) Plot of the solution of the FtL model {zi(t), ρi(t)}
with a Riemann initial data. Here the thick dots are the locations
of cars at t = 2.
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Figure 5. Case 1C. (1) Plots of the flux functions and the loca-
tions of ρ−, ρ+; (2) Plot of the unique viscous profile ρε(x) with
ρε(0) = ρ−; (3) Plot of the solution of the FtL model {zi(t), ρi(t)}
with a Riemann initial data. Here the thick dots are the locations
of cars at t = 2.

For this sub-case there are no monotone viscous profiles either. In Figure 6 we
plot numerical simulation result for the FtL model, with “Riemann initial data”.
We observe oscillatory behavior on x < 0, and a rarefaction wave behavior on x > 0.
The solution does not settle into any profile as t grows.

4. Case 2: V− < V+. In this section we study the case where the speed limit has
an upward jump at x = 0. The discussion for this case follows a similar path as for
Case 1, but with rather different details. Given f̄ , which is in the range of both f±,
the candidates for ρ± are illustrated in Figure 7, with

0 < ρ+1 < ρ−1 ≤ ρ∗ ≤ ρ
−
2 < ρ+2 .
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Figure 6. Case 1D. (1): Plots of the flux functions and the lo-
cations of ρ−, ρ+; (2): Plot of the solution of the FtL model
{zi(t), ρi(t)} with a Riemann initial data. Here the thick dots are
the locations of cars at t = 2.

-ρ

6

f̄

ρ+1 ρ−1 ρ−2 ρ+2

f−

f+

Figure 7. Flux functions f−, f+, and the locations of ρ−1 , ρ
+
1 , ρ

−
2 , ρ

+
2 .

We have the following 4 sub-cases:

• Case 2A: ρ− = ρ−1 and ρ+ = ρ+2 , such that 0 < ρ− < ρ∗ < ρ+ < 1;
• Case 2B: ρ− = ρ−1 and ρ+ = ρ+1 , such that 0 < ρ+ < ρ− < ρ∗;
• Case 2C: ρ− = ρ−2 and ρ+ = ρ+2 , such that ρ∗ ≤ ρ− < ρ+ < 1;
• Case 2D: ρ− = ρ−2 and ρ+ = ρ+1 , such that 0 < ρ+ < ρ∗ ≤ ρ− < 1.

4.1. Case 2A: 0 < ρ− ≤ ρ∗ < ρ+ < 1. Here both ρ− < ρ∗ and ρ+ > ρ∗ are stable
asymptotic limits as x → −∞ and x → +∞, respectively. Then, on x > 0, the
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profile Q(x) must be some horizontal shift of W (x). Using some horizontal shift of
W (x) as “initial condition”, one can solve (1.7) backward in x on x < 0. In next
Theorem we establish unique solution of the initial value problem for (1.14), which
in turn gives us the infinitely many profiles Q(x) that satisfy the proper boundary
conditions at the limit x→ ±∞.

Theorem 4.1. Let V− < V+. Given ρ+ such that ρ∗ < ρ+ < 1. Consider the
initial value problem of (1.14) with initial data given on x ≥ 0 as some horizontal
shift of W (x), with

lim
x→∞

W (x) = ρ+, ρ+1 ≤W (0) ≤ ρ−2 . (4.1)

Then the initial value problem has a unique solution Q(x) on x < 0.
Furthermore, such a solution satisfies also

lim
x→−∞

Q(x) = ρ−, where ρ− < ρ∗, f−(ρ−) = f+(ρ+). (4.2)

Piecing together Q(x) on x < 0 and Q(x) = W (x) on x ≥ 0, we obtain a solution
to (1.14) with boundary conditions

lim
x→∞

Q(x) = ρ+, lim
x→−∞

Q(x) = ρ−. (4.3)

Varying the Q(0) value, always satisfying ρ+1 ≤ Q(0) ≤ ρ−2 , one obtains infinitely
many stationary wave profiles with the boundary conditions (4.3).

Proof. This Theorem is the counter part of Theorem 3.1 and Corollary 3.2 for Case
1A, but the proof here is much more involving due to the lack of monotonicity. See
Figure 8.

Let the initial data be given on x ≥ 0 as some horizontal shift of W (x) such
that (4.1) holds. Denote by Q(x) the solution for this initial value problem, solved
backward in x for x < 0. Then Q(x) is monotone on x ≥ 0 with Q′(x) > 0. Let
{zi} be a car position distribution generated by Q(x) with z0 = 0 and

zk +
`

Q(zk)
= zk+1, ∀k ∈ Z.

We also denote the intervals

Ik =̇ (zk, zk+1), for k ∈ Z.

Throughout the rest of the proof, we use the simplified notations, for any index k,

Qk = Q(zk), φk = φ(Q(zk)). (4.4)

The proof takes several steps.

Step 1. Assume that Q(x) is a solution of the initial value problem, with the
additional condition

ρ− ≤ Q0 ≤ ρ−2 . (4.5)

We claim that

Q′(0−) > 0. (4.6)

Indeed, since Q′(x) > 0 for x > 0, by (2.8) we have

1

φ1
− 1

φ0
> Q0V+

[
1

f̄
− 1

f+(Q0)

]
. (4.7)
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By using f̄ ≤ V−Q0φ0 and (4.7), we get

1

V+φ1
− 1

V−φ0
=

1

V+

[
1

φ1
− 1

φ0

]
+

1

V+φ0
− 1

V−φ0

> Q0

[
1

f̄
− 1

f+(Q0)

]
+

1

V+φ0
− 1

V−φ0
≥ 0. (4.8)

Equation (1.14) leads to

Q′(0−) =
Q2

0V+φ1
`

[
1

V+φ1
− 1

V−φ0

]
> 0,

proving (4.6).

Step 2. We claim that on the interval I−1 there doesn’t exist any local maximum.
Indeed, assume local maxima exist on I−1, and let y1 be the right most local max-

imum, with Q′(y1) = 0. Let y]1 > 0 be its leader. By (1.14) and Q′(y1) = 0, we
get

V−φ(Q(y1)) = V+φ
(
Q(y]1)

)
. (4.9)

Moreover, there exists a point y2, such that

y1 < y2 < 0, Q(y2) < Q(y1), Q′(y2) < 0.

Let y]2 > 0 be its leader, where y]2 > y]1 > 0. Since Q′(x) > 0 on x > 0, we must
have

Q(y]2) > Q(y]1) ⇒ φ
(
Q(y]2)

)
< φ

(
Q(y]1)

)
. (4.10)

On the other hand, by (1.14) and Q′(y2) < 0, we get

V+φ
(
Q(y]2)

)
> V−φ(Q(y2)) > V−φ(Q(y1)) = V+φ

(
Q(y]1)

)
,

a contradiction to (4.10).

Step 3. We now show that, if (4.5) holds, then

Q−1 < Q0. (4.11)

Indeed, we know that there are no local maxima on I−1 and Q′(0−) > 0. If Q(x)
is monotone increasing on I−1, then (4.11) trivially holds. Now consider the case
where Q(x) has a local minimum. We prove by contradiction. Assume that there
exist a point y ∈ (z−1, 0) where

Q(y) = Q(0) = Q0, Q(x) < Q0 for x ∈ (y, 0).

Let y] be its leader, where 0 < y] < z1. Recall (2.7), we have∫ y]

y

[
1

k(z)φ(Q(z))
− 1

V−φ(Q(y))

]
dz =

∫ y]

y

[
1

k(z)φ(Q(z))
− 1

V−φ0

]
dz

=
`

f̄
− `

f−(Q(y))
=

`

f̄
− `

f−(Q0)
=̇ γ ≥ 0,

which gives

γ =

∫ 0

y

[
1

V−φ(Q(z))
− 1

V−φ0

]
dz +

∫ y]

0

[
1

V+φ(Q(z))
− 1

V−φ0

]
dz.

Since the first integrand on the right hand side is strictly negative, we get∫ y]

0

[
1

V+φ(Q(z))
− 1

V−φ0

]
dz > γ. (4.12)
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But (4.12) is not possible. Indeed, since Q′(x) > 0 on x > 0, the mapping x 7→
(1/φ(Q(x))) is increasing. Using that

1

V+φ(Q0)
− 1

V−φ(Q0)
< 0,

∫ z1

0

[
1

V+φ(Q(z))
− 1

V−φ(Q0)

]
dz = γ,

one reaches∫ x

0

[
1

V+φ(Q(z))
− 1

V−φ(Q0)

]
dz < γ, for any x ∈ (0, z1),

a contradiction to (4.12).

Step 4. We now have that, for the initial value problem with initial data W (x) on
x ≥ 0 satisfying (4.5), the solution Q(x), defined on x < 0, satisfies

0 < Q(z−1) < ρ−2 . (4.13)

We now claim that there exists a unique solution Q(x) for the initial value problem,
which satisfies

lim
x→−∞

Q(x) = ρ−. (4.14)

Indeed, if Q(x) stays on one side of ρ− on an interval Ik for some index k ≤ −2,
then Lemma 2.8 provides the results. Now consider the case the Q(x) is oscillatory
and crosses ρ− at least once on each interval Ik, for k ≤ −2. We apply a similar
argument as the proof for Lemma 2.8. Let

Mk = max

{
max
x∈Ik

1

φ(Q(x))
,

1

φ(ρ−)

}
.

Then, we have, for some index k ≤ 2,

Mk =
1

φ(Q(yk))
>

1

φ(ρ−)
, where yk ∈ Ik and Q′(yk) = 0.

Let y]k = yk + `/Q(yk) denote the position of the leader for the car at yk. By

Lemma 2.7 we have y]k ∈ Ik+1. Then Q′(yk) = 0 implies that Q(yk) = Q(y]k),
and (2.8) implies

Mk+1 −Mk ≥ V−Q(yk)

[
1

f−(ρ−)
− 1

f−(Q(yk))

]
= O(1) · (Q(yk)− ρ−).

Thus, we conclude that

lim
k→−∞

Q(yk) = ρ−, and lim
k→−∞

Mk =
1

φ(ρ−)
.

Therefore on x ≤ 0 there exists an upper envelope E](x) for Q(x), such that

Q(x) ≤ E](x), lim
x→−∞

E](x) = ρ−. (4.15)

A symmetrical argument for the local minima below ρ− leads to a lower envelope
E[(x) on x < 0 for Q(x), with

E[(x) < ρ−, lim
x→−∞

E[(x) = ρ−. (4.16)

The result (4.14) follows from a squeezing argument. Finally, the uniqueness of the
solution follows from the transversality properties (3.3)-(3.4), see [4].

Piecing together the solution Q(x) on x < 0 with the initial data Q(x) = W (x)
on x ≥ 0, we obtain a stationary profile, calling it again by Q(x) for x ∈ R, that
satisfies the DDDE (1.14) and the boundary conditions (4.3). Thus, we obtain
infinitely many profiles for Q(x), one for each Q(0) value satisfying (4.5).
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Step 5. Denote by Q](x) the unique profile with Q](0) = ρ−2 . By Step 3, we have

0 < Q](z−1) < Q](0) = ρ−2 .

We now relax the condition (4.5) on Q(0) to (4.1), i.e, ρ+1 < Q(0) < ρ−2 . Indeed,
any profile Q(x) with ρ+1 < Q(0) < ρ−2 will lie below Q](x), with

0 < Q(z−1) < ρ−2 .

By Step 4, such a profile satisfies the boundary condition (4.14), completing the
proof.

Remark 4.1. We remark on the bound (4.1), in particular the upper bound Q0 ≤
ρ−2 , which is different from Case 1A in section 3.1. First, we show that the constant
solution Q(x) ≡ ρ+ on x ≥ 0 is not valid. Indeed, with Q0 = Q1 = ρ+, we have

Q′(0−) =
ρ2+

`V−φ(ρ+)
(V− − V+)φ(ρ+) < 0.

Then, on the interval I−1 = [z−1, z0], V−φ(Q(x)) < V+φ(ρ+), so Q′(x) < 0. By
induction argument one concludes that Q′(x) < 0 for x < 0. In fact, numerical
simulation shows that Q(x) blows up to ∞ at finite x̄ < 0 as x goes backwards.

With the upper bound Q0 ≤ ρ−2 we have (4.6), and we ensure that Q(x) < ρ−2
on x < 0, and consequently the asymptotic limit of ρ− as x → −∞. It is possible
that this upper bound could be somewhat relaxed, but a sharp bound is difficult to
find.

Sample profiles of Q(x) are plotted in Figure 8 plot (2), where we observe that the
profiles are not monotone. We also plot multiple viscous profiles ρε(x) in Figure 8
plot (3), as a comparison. Note that if ρε(0) ∈ (ρ−, ρ+), the viscous profiles are
monotone, a property not preserved by Q(x).

Local Stability of the Profiles. Let Q](x) be the profile with Q](0) = ρ−2 ,

and let Q[(x) be the limit profile as Q(0) → ρ+1 . Similar to Case 1A, we define a
basin of attraction D as (3.10). All profiles lie in D, and they do not intersect with
each other. Parametrizing the region with these profiles, as in Theorem 3.3, we get
the same local stability property. We skip the details.

Again, numerical simulations are performed for the FtL model for Case 2A, and
we plot the solutions with “Riemann initial data” (3.20). See Figure 8 plot (4). We
see the clear convergence to a certain profile for each choice of initial data.

4.2. Case 2B: 0 < ρ+ < ρ− < ρ∗. This is similar to Case 1B. Since ρ+ is an
unstable asymptote for x → ∞, we must have Q(x) ≡ ρ+ on x ≥ 0. Using this as
the initial data, one can solve Q(x) backward in x. Since ρ− is a stable asymptote,
we have Q(x) → ρ− as x → −∞. Thus there exists a unique monotone profile
Q(x). For the same reason as for case 1B, this profile is not a local attractor for
the solutions of the FtL model.

In Figure 9 we plot the profile Q(x) in plot (2), the viscous profile ρε(x) in plot
(3), and the solution of the FtL model with “Riemann initial data” in plot (4).
Note that a perturbation enters the region x > 0, even with initial Riemann data,
indicating the instability of the profile Q(x).
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(1)

-

6

r r
ρ+ρ− ρ−2ρ+1

f−

f+

(2)

(3)

(4)

Figure 8. Case 2A. (1) Flux functions and the locations of ρ−, ρ+;
(2) Plots of various profiles of Q(x), with different values of Q(0);
(3) Plots of various viscous traveling waves ρε(x), with different
values of ρε(0); (4) Plots of various solutions of the FtL model
{zi(t), ρi(t)}, with 3 different initial Riemann data. Here the thick
dots denote the locations of cars at t = 2.
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(1)

-ρ

6

ρ+ ρ−

f−

f+

r r

(2)

(3)

(4)

Figure 9. Case 2B. (1) Flux functions and the locations of ρ−, ρ+;
(2) Plots of the unique profile of Q(x), with Q(0) = ρ+; (3) Plots of
various viscous traveling waves ρε(x), with ρε(0) = ρ+; (4) Plots of
the solution of the FtL model {zi(t), ρi(t)} with a Riemann initial
data. Here the thick dots denote the locations of cars at t = 2.
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4.3. Case 2C: ρ∗ ≤ ρ− < ρ+ < 1. This is the corresponding sub-case as for Case
1C. With the same argument, one concludes that there doesn’t exist any profile
Q(x), although a viscous profile ρε(x) does exist. See Figure 10 plot (2). The
solution of the FtL model in Figure 10 plot (3) demonstrates severe oscillation on
x < 0 which never settles as t grows.

(1)

-ρ

6

ρ+ρ−

f−

f+

rr

(2)

(3)

Figure 10. Case 2C. (1) Plot of the flux functions f−, f+ and the
locations of ρ−, ρ+; (2) Plot of the unique viscous profile ρε with
ρε(0) = ρ−; (3) Plot of the solution of the FtL model {zi(t), ρi(t)}
with a Riemann initial data. Here the thick dots are the locations
of cars at t = 2.

4.4. Case 2D: 0 < ρ+ < ρ∗ ≤ ρ− < 1. For this case, we have neither the profile
Q(x) nor the viscous profile ρε(x). We plot a solution of the FtL model in Figure 11,
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with “Riemann initial data”. We see that the solution of the FtL model doesn’t
converge to any limit as time grows.

(1)

-ρ

6

ρ+ ρ−

f−

f+

r r

(2)

Figure 11. Case 2D. (1): Plots of the flux functions and the
locations of ρ−, ρ+; (2): Plot of the solution of the FtL model
{zi(t), ρi(t)} with a Riemann initial data. Here the thick dots are
the locations of cars at t = 2.

5. A numerical simulation. We perform numerical simulation to obtain approx-
imate solution for the FtL model, with “Riemann” initial data (ρL, ρR) such that

ρi(0) =

{
ρR, i ≥ 0,

ρL, i < 0,
zi(0) =

{
i`/ρR, i ≥ 0,

i`/ρL, i < 0,
z0(0) = 0.

We choose values of (ρL, ρR) such that

f−(ρL) 6= f+(ρR).

We use

φ(ρ) = 1− ρ, (V−, V+) = (2, 1), ρL = 0.6, ρR = 0.7, ` = 0.01.

The flux functions f−, f+ and the locations of ρL,R are illustrated in Figure 12
plot (1), while the solution {zi(T ), ρi(T ), } of the FtL model is shown in plot (2).
As a comparison, we also simulate the viscous conservation law

ρt + f(k(x), ρ)x = ερxx,
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(1)

L

R
M

(2)

(3)

Figure 12. (1). Plots of the flux functions and the location of
the left (L), right (R) and middle (M) states in the solution of the
Riemann problem; (2). Numerical simulation results {zi(t), ρi(t)}
with FtL model with Riemann initial data, at t = 1; (3) Numerical
simulation results ρε(t) for the viscous conservation law at t = 1,
with the same Riemann initial data.

using the same Riemann data, with ε = 0.02 and k(x) the jump function (1.12).
The result is shown in plot (3).

The vanishing viscosity limit solution for the conservation law (1.15) consists of
a shock with negative speed from L to M, and a stationary jump from M to R. The
solution of the FtL model captures this main feature. However, due to the instability
of the path M-R (where the left state is unstable), we observe oscillations behind the
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stationary jump at x = 0. We remark that the solution of the viscous conservation
law with the same initial data does not contain oscillation behind x = 0.

6. Concluding remarks. In this paper we derive a discontinuous delay differential
equation for the stationary traveling wave profile for an ODE model of traffic flow,
where the road condition is discontinuous. For various cases, we obtain results on
the existence, uniqueness and local stability of the profiles.

These results offer alternative approximate solutions to the scalar conservation
law with discontinuous flux, as a counter part to the classical vanishing viscosity
approach. The stabilizing effect of the viscosity is not entirely present in the FtL
model, where oscillations are observed behind the discontinuity in the road con-
dition. This is caused by the “directional” influence in real life traffic, where the
drivers adjust their behavior only according to situations ahead of them, not what
is behind. Heuristically, this fact contributes to the “lack of viscosity” behind the
jump at x = 0, and thus the oscillations.

The natural followup work is to investigate the convergence of solutions of the
FtL model, under suitable assumptions, to some entropy admissible solution of the
scalar conservation law with discontinuous flux. We expect this to be a challenging
task, due to the non-monotone profiles and oscillations behind the jump in the road
condition.

One may criticize the FtL model used here of being too simple, especially around
the jump in the road condition, where the drivers change their speeds suddenly as
they cross x = 0. The model is a first order approximation where one assumes
instant acceleration. A high order model, where the acceleration is finite, might
smooth out the behavior near x = 0 and remove the oscillations. However, such
model would take the velocities of the cars as unknowns, and thus become much
more complex.

Acknowledgments. The author is grateful to an anonymous referee for careful
reading of the first manuscript and detailed comments, which led to the improve-
ment of the manuscript.
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