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ABSTRACT. We study dynamical behaviors of the ensemble of thermomechan-
ical Cucker-Smale (in short TCS) particles with singular power-law communi-
cation weights in velocity and temperatures. For the particle TCS model, we
present several sufficient frameworks for the global regularity of solution and
a finite-time breakdown depending on the blow-up exponents in the power-
law communication weights at the origin where the relative spatial distances
become zero. More precisely, when the blow-up exponent in velocity commu-
nication weight is greater than unity and the blow-up exponent in temperature
communication weights is more than twice of blow-up exponent in velocity
communication, we show that there will be no finite time collision between
particles, unless there are collisions initially. In contrast, when the blow-up
exponent of velocity communication weight is smaller than unity, we show
that there can be a collision in finite time. For the kinetic TCS equation, we
present a local-in-time existence of a unique weak solution using the suitable
regularization and compactness arguments.
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1. Introduction. Collective behaviors of classical and quantum many-body sys-
tems are ubiquitous in our biological, chemical and physical complex systems in
nature, e.g., flocking of birds, swarming of fish, aggregation of bacteria, or synchro-
nization of neurons, synchronization of Josephson junction arrays, etc. [28, 29, 30].
In previous literature, many mathematical models were proposed to describe these
collective dynamics. Among those models, our main interest in this paper lies on
the thermomechanical Cucker-Smale (in short, TCS) model which is recently in-
troduced in [19]. Consider an ensemble consisting of N TCS particles, i.e., the
Cucker-Smale particles with internal temperature variables, and let z;(t),v;(t) and
0;(t) be the spatial position, velocity, and temperature of the i-th TCS particle at
time t. Then, the ensemble of TCS particles is governed by the following first-order
ordinary differential equations:

d; .
i, t>0, i=1,2,--- N
dt
U S gy (2 2
dt N 4 " 0, 0;)’ (1)
Jj=1
N
dgl K2 1 1
7= w2 (57
j=1 v
subject to initial data:
N
(2i(0),vi(0),6;(0)) = (m?,v?ﬂ?), ZU? =0. (2)
i=1
Here 7;; := |2z; — x;| denotes the Euclidean distance between i-th and j-th particles,

and the positive constants k;, i = 1, 2 represent the coupling strengths for velocities
and temperatures, and the interaction kernels ¢ : Ry — R4 and ¢ : Ry — Ry
are generally non-increasing functions in their arguments. Note that the zero mean
velocity condition (2), will be propagated along the dynamics (1). To fix the idea,
we consider the following specific forms of communication weights:
1 1 .

o(s) := et ¢(s) = 7 with a,8>0, s>0. (3)
As its name suggests, TCS model is one of generalizations for the Cucker-Smale (in
short, C-S) model introduced in [9]:

=y, t>0, i=1,2--- N,

dt
d”Ui K (4)

N
it N ;gb(rij)(vj — ;).

Note that for the same constant temperatures §; = 6, > 0, system (1) is formally
reduced to the C-S model with k = 0% (see [5, 6, 8, 9, 10, 11, 15, 14, 16, 17,
18, 22, 23] and a recent survey article [4, 7]). Recently, the TCS model [19] has
been studied in many different aspects, including the case of interaction kernels are
spatially dependent, uniform stability issue, and kinetic and hydrodynamic limits
[13, 12]. In those previous works, the interaction kernels are always assumed to be
Lipschtiz continuous and regular. However, as in the case of the original C-S model
[1, 3, 26, 25], we can also consider the case when the interaction kernels ¢ and ¢
are singular to avoid collisions between particles. At least formally, as the number
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of particles tends to infinity, the dynamics of the whole ensemble {(:cl, v;, 91)} can
be effectively described by the Vlasov type equation which can be obtained via
the BBGKY hierarchy in the formal level. More precisely, let f = f(z,v,0,t) be
the one-particle probability density function of the ensemble of TCS particle at
position x, velocity v and temperature € at time t. Then, the dynamics of the
density function f is governed by the following Cauchy problem for the Vlasov type
equation:

Ocf + Vo (vf) + Vo - (FIfIf) + 0(G[f1f) =0, @0 ERT O ER, t>0,

0
voov,
PG = [ ol (= ) e )b
L1 ] (5)
0,t) := — 2 (= =) flz,t) dz,
@00 =r [ (G )10
z=(z,v,0), dz:=dxdvdb,
subject to the initial condition:
f(2,0) =: fo(z)’ z=(z,v,0) €R2dXR+' (6)

Below, we briefly discuss our main issues to be explored throughout the paper. In
this paper, we are interested in the following two questions for the Cauchy problems
(1) - (2) and (5) - (6):

e (Q1) : Can the strong singularity in ¢ and ¢ prevent the spatial
collisions between TCS particles? If it is true, what will be the
sufficient conditions leading to the absence of collisions?

e (Q2) : Can we establish the well-posedness of the kinetic TCS equa-
tion at least locally in time?

Next, we comment on the above questions. The collision avoidance between par-
ticles has been studied for the Cucker-Smale model and its variants in [1, 8, 3, 26, 25]
due to the possible applications of the C-S model (4) to the traffic control of un-
manned aerial vehicles and robot systems. More precisely, some special class of
initial configurations are taken to guarantee collision avoidance for strong commu-
nication weight with a > 1 in [1], and later those initial conditions are completely
removed in [3]. On the other hand, due to the singularity of the interaction kernel,
the system (1) may not be well-defined after collision of particles. If two particles
collide, their relative position converges to 0, which makes singularity on the R.H.S.
of (1). For weakly singular communication weights with o < 1, the collisions can
occur for some initial configurations. Moreover, the kinetic TCS equation (5) has a
singular kernel. Thus, the well-posedness issue is not clear at all. In this paper, we
consider the concept of weak solutions and study its local-in-time well-posedness.

The main novelty of this paper are three-fold. First, we show that the particle
TCS model (1) - (3) with a strong communication weights a > 1, 8 > 2« cannot
have collisions unless they have them initially. The proof for the non-existence of
collisions will be made via the contradiction argument. Suppose that there will be
a finite time collision between some particles, say [ and ¢ at time tg. Then, we
consider the set of all particles to collide with I-th particle at time ¢y, and we will
denote it by [/]. Then, for this colliding particles at time ¢, we set

|wmm:¢§waxﬂwamnwmw¢zhw>wmﬁ

h,j€ll] .3 €[l]
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Then, we will show that || X || and [|V[|j;; satisfy the following relation (see Section
4.1):

¢
[@([[ X[ ()] S/O SUX N DIV Nl () dr + [@ ([ X[ (0))]- (7)
where ® is anti-derivative of ¢, i.e., ®(x) = / @(t) dt which satisfies
. _ S
701_1>r(r)1_~_<I>(7") oo, fora>1. (8)

By laborious estimates, we can show that the R.H.S. of (7) is finite for all ¢ > 0.
However, at the first collision time ¢, , lign X(t) = 0. Then, this and (8) imply
—to—

Jim (201X (8)] = o

which gives a contradiction. As long as there are no collisions, the R.H.S. of (1) is
still locally Lipschitz. Hence, the classical Cauchy-Lipschitz theory can be applied
to (1) - (3), and this yields the global smooth solutions. Second, for weakly singular
communication ¢ with o < 1, we can show the existence of non-collisional initial
configuration leading to the finite-time collisions (see Section 4.3). Third, we present
a local existence and uniqueness of weak solutions to the corresponding kinetic
equation (5), which can be formally derived by the standard BBGKY hierarchy
from the particle system (1). The rigorous derivation of (5) through the mean-field
limit is recently obtained in [12] when the interaction kernels are regular enough,
e.g., ¢ and ( are bounded Lipschitz functions. On the other hand, it is not known
whether system (5) has a unique regular solution and exhibits an emergent behavior
when at least one of the interaction kernels ¢ or ¢ is singular. In order to show
the local-in-time existence of weak solutions to the equation (5), we use the 1-
Wasserstein metric which is defined by

Wi(p, p2) == inf / |z — yldvy(z,y),
YEl (p1,p2) JR24

for two probability measures u1, o € P1(R?), where the T'(puy, p2) is defined as a

set of all joint probability measures whose marginals are p; and ps respectively.

Here P;(R?) stands for the set of probability measures with bounded moments of

order 1.

The rest of this paper is organized as follows. In Section 2, we provide a several
preliminaries for the TCS model, which will be crucially used in the later sections.
In Section 3, we briefly review some relevant results for the C-S model and present
our main results on the global existence of solutions and local existence of weak
solutions for the particle system (1)-(2). In Section 4, we provide the conditions on
the communication weight ¢ and { to guarantee the global existence of the TCS
system (1). We also give some examples of finite-time collision when the condition
suggested in Section 3 is violated. In Section 5, we provide the existence and
uniqueness of local-in-time weak solutions of kinetic TCS model. Finally, Section 6
is devoted to the summary of our main results and some discussion on the future
works.

Notation: Throughout this paper, |- | denotes the standard Euclidean £2-norm in
R?, and ©Q can be either R? or R2? or R?? x R.. For a function f : Qx [0,00) — R,
|| /]l represents the usual L?(€)-norm and

Ifllziace = fller + ([ fllze,  and ([f]] = [ £l 0.1 nr)-
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Moreover, we will use the notation of volume element dz = dx dv df in the extended
phase space R?? x R,.

2. Preliminaries. In this section, we briefly review theoretic minimum of the TCS
model and kinetic TCS equation and Wasserstein distances.

2.1. Basic a priori estimates. First, we study a priori estimates for the particle
TCS model (1) which will be crucially used in later sections. For position, velocity
and temperature configurations X, V, O, respectively, we define their diameters as
follows: For ¢t > 0,

DX(1) = max foi(t) —z; (1), DV() = max [ui(t) —v;(t)],

and

D(O®t) := max_|0:(t) — 0,(t)].

1<i,j<N
The most basic property of system (1) is the monotonicity and boundedness of
temperature, position and velocity diameters.

Lemma 2.1. For a positive constant T € (0,00), let (X,V,0) be a solution of
(1) with initial data (X°,V°,0°) in the time-interval [0,T). Then, the diameters
D(X), D(V) and D(O©) satisfy contraction property and boundedness, respectively.
1. The temperature diameter D(O) is monotonically decreasing in t:
D(O(t)) < D(B(s)), 0<s<t.

2. The velocity and position diameters are bounded:

sup D(V(t)) <Cr, sup D(X(t)) <Cr
0<t<T 0<t<T

where Cp and Cp are positive constants depending on initial configuration
(X%, V0.0% and T.
Proof. (1) For a given t > 0, we set

Or(t) = 1rgniz%>§vt9i(t), O (t) == lglgnNHl(t)

Then, it follows from (1), that we have

N
df s K9 1 1
di j=1C(TM]) (9M o ) =0

=

and
N
d@m K2 1 1
—om __ 74 . — ) >0.
i = 2 ) <9m ej) 20
These yield

O (5) < O (t) < 0;(t) < Op(t) < Opi(s), t>s>0.

Then, we have
D(O(t)) < D(O(s)), t>s>0.

(2) It follows from the differential inequalities in [12, Lemma 3.2] that we have

o 0
%D(V) < —:L(Z(?\/IDX)DV +2K4 z;n@)gDU/) < 2r1 l()@f)Q)D(V)-
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Then, Gronwall’s lemma yields

0
D(V(t)) g D(VO) exp (2/‘@1 ?9(0@)2 T> =: OT.

Finally, note that the following differential inequality in [12, Lemma 3.2] also holds:

d
—D(X) < D(V).
ZD(X) < D(V)
Then, we use the boundedness of velocity diameter to get
D(X(t)) < D(X(0)) + CrT,
which implies the boundedness of diameter of position. O

Next, for position and temperature vectors X = (x1,--- ,2n), © = (01, - ,0n),
we set a production functional: For t > 0,

N 2
P(t) :=P(X(t),0(t) = Z C(Tij(t))W'

Lemma 2.2. Suppose that the coupling strength ko is positive and let (X,V,0) be
a global solution of (1) with initial data (X°,V°,0°). Then, the functional P(t) is

integrable in t:
) N N
Pt)dt < — > |692.
|, Poas S 3w

Proof. We multiply (1) by 26; to obtain

N N
d 2 2I€2 1 - 2%2 9j — 01
dt Z |9 ‘ Z C 7”1] ( - 9J> 02 - N Z C(T'L]) ( elej ) 91

3,j=1 i,j=1
N
2/&2 Z 9 o Ko Z |91 —0j|2 _ )
iim 1<T” ( )0 Nij:lc(r”) 0:0; N

We integrate the above relation in time to get

N K t N
Sl + 52 [ Plds =Y e
i=1 0 i=1

which yields the desired estimate. O

Next, we study the propagation of velocity and temperature moments along the
kinetic TCS equation. For this, we set

— — 2y ._ 2
(1) = / fdz (o) = / ofds, (= [ o, IS
- 2\ . 2 -
0) = /R?dx]R+ 0fdz, (6°):= /]R2de+ 0 fdz, and(logf) := /RMXRJr(logO)f dz.

In next lemma, we study propagation of above moments along (5).

Lemma 2.3. Let f = f(z,t) be a solution of kinetic TCS equation (5) decaying
sufficiently fast at infinity |x| = oo, |v| = o0 and § = 0,00. Then, we have

n dv) o A0y U)o gna H08O)

a Y dt a = dt




THERMOMECHANICAL CUCKER-SMALE MODEL WITH A SINGULAR KERNEL 385

Proof. (i) The conservation of mass follows from the divergence form of (5).
(ii) We multiply (5) by v and integrate the resulting relation over the extended
phase space using the exchange symmetry (z,v,0) <> (24, vs, 6.) to get

d{v) _
dt _/R?d><R+ vOLf d

T / 0(v- Vaf) + 0V - (FIfIF) = v06(GLf1S) dz

[ 7nse
=d Vs v . N do d
= akK1 /]R4d><(]R+)2 d)(‘x—l'*b <9*_9> f(Z, )f(z*v ) zdz,
=0.

The case for (§) can be treated similarly.
(iii) We multiply (5) by 6% and integrate over the extended phase space to get the
dissipativity for (62):

%2) - / 020 - Vo f +0°V, - (FIfIff) + 0205(G[f1f) d=
R24 xR,
S
1 1
— 2/wa(R+)2 |z — z]) (0 - 9*> Of(2,) f(24,1) dz dz.

- ’/ o= )OO0 1 p et dede <0
Rid x (R, )2 6.

(iv) Finally, we can estimate (log#) in a similar way:

L - o U080 T + 10m0)Vo - (FIFIF) + (om0)00(G1A1) o=
-/ HARITE
_ /RMX(RN e — z.)) (; - ;) L0 (20t dz d
- ;/() (o — . (; - 1*)2f<z,t>f<z*,t> dz d.
>0

O

2.2. Forward characteristic curves. In this subsection, we introduce forward
characteristic curves associated with the kinetic TCS equation (5). First, we define
forward characteristics (z(s),v(s),0(s)) := (x(s;0,2,v,0),v(s;0,z,v,0),0(s;0,x,v,
#)) as a solution to the following ODE system:
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dz(s)

dgé) =v(s), s>0,
)  Fifl((s). o(5).6(5)).

dﬁ(ss) ©)
) — 611151, 605)).

(2(0),v(0),0(0)) = (z,v,0).

Moreover, we also define the section of support of f for each variables which can be
obtained as projections of the support of f in x,v and #-variables:

Q. (1) := {x eRe| f(z,v,0,t) # 0},
O, (t) == {v ERY | f(z,0,0,t) # o},
Q(t) = {9 eR, | f(z,v,0,t) £ o}.

Lemma 2.4. Let f = f(z,t) be a solution of kinetic TCS equation (5). Then the
set Qg is contractive along the dynamics (5):

Qg(s) QQg(t), 0<t<s.

Proof. In fact, the maximum value of €y decreases, whereas the minimum value
of Qp increases as in particle model (see Lemma 2.1). It suffices to show that
is decreasing along the characteristic curve which gives the maximum value of 2.
The increase of a lower bound can be shown similarly using the characteristic curve
that gives the minimum value of 4. To see this, we multiply (9)s by 6(s) to get

1.d6(s)? do(s)
2 ds 0(s) ds

Clhats) =) (i~ g ) O et

RZdXR+
= —x 0. — 0(s) $) (2 "
- [ <t 0 (%D o) ste. . <o

where we use (0, — 0(s))f(s) < 0. This implies that the maximum value of Qg is
non-increasing. 0

2.3. Wasserstein distances. In this section, we provide some basic properties
of Wasserstein metric between two measures for later use. First, we begin with
definition of push-forward measure in the following definition.

Definition 2.5. Let u; be a Borel measure on R? and f : (R%,u;) — R? be a
measurable function. Then we define the push-forward measure of py by f, which
will be denoted by po = f#u1:

p2(B) = (f1(B)), BCRY

Next, we list several results about push-forward measure and Wasserstein metric
without proofs.

Proposition 1. [31, 32] The following assertions hold.
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(1) Let py and ps be two measures on R and let f : R? — R be a measurable
function. Then,

ho = fhu /quduz:/RdQSofdul, Vo € Ch(RY).

(2) Suppose that ug is measure on R¢, which has bounded p-th moment, and let
f1 and fo be two measurable functions from R? to itself. Then, we have

Wyt fottn) < [ fe=alPdnean) = [ 1A@) = B@)Pdu).

Rd x
where v is any measure with marginals f1#ug and foFpo.

(3) Let {un}52, be a sequence of measures in P1(RY) and p € P1(RY). Then pn,
converges to p in the sense of Wasserstein 1-distance if and only if p, con-
verges to u weakly, and the first moment of p, converges to the first moment

of w:
/ \ac|d,un(x)—>/ |z|dp(z), as n— oco.
R4 R4

Note that the space P,(R?), the space of all probability measure with finite p-th
moment, equipped with the Wasserstein p-distance is Polish space. For p = 1, the
Wasserstein 1-distance has a dual representation which is given as

Wi (pa, p2) = SHP{ L O@)d(ps — p2)(2) ‘ ¢ € Lip(R%, R), [|¢]lLip < 1},
R
where ||¢|| i, denotes the Lipschitz constant of ¢.

3. Presentation of main results. In this section, we briefly present our main
results on the collision avoidance and local well-posedness of the particle TCS model
and kinetic TCS equation, respectively.

First, we briefly review the previous results [3, 17, 24, 25, 26] on the particle and
kinetic C-S models with power-law communication weights from three perspectives:
“flocking dynamics, non-existence and local-in-time well-posedness’. As far as the
authors know, the particle C-S model with a singular communication weight was
first treated in [17] to study the flocking dynamics and then the global regularity
and emergence of finite-time collisions has been established in a series of works by
Peszek and his collaborators [3, 25, 26]. In a recent work [24], Mucha and Peszek
studied the existence of measure-valued solutions and weak-atomic uniqueness for
the kinetic C-S equation with singular communication weights. In the sequel, we
explicitly state our main results for the particle and kinetic TCS models. The
detailed proofs will be given in the later sections.

3.1. The particle TCS model. In this subsection, we provide two results on the
collision avoidance and asymptotic mono-cluster flocking of the particle TCS model.

Our first result deals with the collision avoidance and finite-time collisions of the
particle model (1) depending on the blow-up exponents at the singular point of the
communication weight ¢ and ¢ in (1).

Theorem 3.1. (Collision avoidance and collisions) The following assertions hold.

1. Suppose that the blow-up exponents a and 3 in (3) and initial data (X°,V°,00)
satisfy

1<a<

o™

and x?;«ém? forall1 <i#j <N.
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Then, there exists a unique global solution (X,V,0) to (1)-(2) satisfying
zi(t) #xj(t) foralll<i#j<N andt>0.

2. Suppose that the exponent « in (3), number of particles and dimension d
satisfy
0<a<l and N=2, d=1.
Then, there exists initial data (X°,V°,0°) such that the local solution (X,V,©)
to (1)-(2) with initial data (X°,V°,0°) satisfying a finite-time collision:

x1(te) = xa(t.), for some time t. > 0.

Remark 1. For the second assertion, note that if all initial temperatures are equal
with 0°°, then the TCS model (1) reduces to the Cucker-Smale model (4) with
k = %=. Then we can directly use the results in [26], where the finite collision
between Cucker-Smale particles with singular communication weights are studied.

(See Section 4.3 for more details).

As a direct corollary of Theorem 3.1, we have the following equivalence relation.
Corollary 1. Let (X,V,0) be a solution of (1) - (2) with initial data (X°,V°,00°).
If 8 > 2a, then the following two statements are equivalent:

(i) The exponents o and § in the communication weights satisfy o > 1.
(ii) For any d > 1 and N > 2, the particles will not collide with each other if they
are initially mon-collisional.

Next, we introduce a concept of mono-cluster flocking for the TCS model (1) in
the following definition.

Definition 3.2. [19] Let Z = {(z;,v;,6;)} be a global solution to TCS model (1)-
(2). Then, the solution Z exhibits an asymptotic mono-cluster (global) flocking if
the following estimates hold: For 1 <i,j < N,

S fzi(t) =@ (t)] <oo,  Jim (Juilt) —v; (0] + 10:(8) = 0;(8)]) = 0.

Remark 2. The mono-cluster flocking dynamics for the particle, kinetic, and hy-
drodynamic C-S models have been studied in [9, 11, 15, 17, 18, 20, 21, 22, 23, 27].

Our second result is concerned about the emergent dynamics of the TCS model
(1) - (2) with singular communications.

Theorem 3.3. (Emergence of mono-cluster flocking) Suppose that the exponents o
and B in (3) and initial data (X°,V°,00) satisfy the relations:

1SO¢S£, 20 # 2% forall1 <i#j <N, D<@°>Sw,
2 ! 2069,
D¥
DV < L [ go)ds, —p(D(XY) < G(DF) < (D(X?),
203 Jp(x0) 3C

(10)
where C' > 0 and DY are some positive constants. Then we have a mono-cluster
flocking:

00 0 — =25 (D)t
swp D(X(1) < DF, DO(1) < DO WX,

0<t<oo
mé(D), , 2r1(03,)°D(E")
D(V(t)) < D(V") exp (— : %X b ngl(GSZSQC(D?)

)7 v t>0.
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Remark 3. Note that the existence of global solutions is guaranteed by Theorem
3.1 at least under the conditions in (10) in the interactions kernels ¢ and (.

3.2. The kinetic TCS equation. We first recall the definition of weak solutions
to (5) in the following definition.

Definition 3.4 (Weak solution). For a given finite 7 € (0,00), f = f(z,t) is a weak
solution of (5) in the finite time interval [0, 7) if and only if the following conditions
are satisfied:

1. feL>0,7; (L NLP)(R* x Ry )) N C((0,7); P1 (R x R,)).

2. For any ® € C®(R? x R, x [0,7)),

/ flz,7)®(z,7)dz —/ fo(z)@(z,O) dz
R24 xR 4 R24 xR

r (11)
=/ / F(0:® +v -V, @+ F[f] - Vo @ + G[f]0pP) dz dt.
0 JR2dxR,

Then, our third result is concerned with local-in-time existence of weak solutions.

Theorem 3.5. Suppose that p, o, 3 and initial data f° satisfy the following rela-
tions:

d
1<p<oo, 0<a,f<——1, fOe(LinL’nP)(R* xRy),
p

where p* is the Holder conjugate of p defined by 1/p+1/p* = 1. Then, there exists
a unique weak solution f to (5) in the sense of Definition 3.4 in the time interval
[0,7) for some T > 0 satisfying uniform stability in Wasserstein-1 distance: For
two local-in-time solutions f;,i = 1,2 to (5), we have

sup Wi(f1(t), fa(t)) < GoWi(f7, £2),
o<t<r
where Gq is a positive constant independent of the time 7.

4. A global regularity v.s. finite time collision. In this section, we provide
the detailed proof of Theorem 3.1. For this, we use a similar strategy to that in
[3] which is based on the construction of a system of locally dissipative differential
inequalities (SDDI) for quantifying collisions between particles. Note that this idea
is proposed in [17] to show the flocking behavior of the original Cucker-Smale model.

4.1. Global regularity. For a fixed T' € (0,00), assume that there is ¢ty € (0,7
in which at least two particles are colliding with another, i.e., there is two indices ¢
and j such that

Jim (wi(t) - ;(0)) = 0.

Next, we will consider colliding particles and non-colliding particles separately. For
the colliding particles, we will use the standard index changing trick (¢,j) < (j,%)
to estimate, and for the non-colliding particles, we will use the Lipschtiz continuity
of interaction kernel ¢ away from 0. More precisely, suppose that ¢y is the first
collision time, and define the set of all indices j € {1,--- , N} that the j-th particle
collides with the [-th particle by

[:={je{l,--- ,N}|rjy—0 ast—t;},
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i.e., [I] denotes the set of all particles which will collide with the I-th particle at
time t =t . Let § be a positive constant such that

rii(t) >0 >0 in [0,%o) for all j ¢ [I].
Without loss of generality, we may assume r;; < 1. Now we define

1 1 (8) ¢Z|x — (O and V] \/Zm s

JE( JEN
(12)

Note that || X||;;(t) = 0ast —t;.

Lemma 4.1. Suppose that the exponents a and 8 in (3) satisfy the condition

1<a<
S 9
and let (z;,v;,0;) be the solution of (1) with initial condition (z9,v9,09), and let

to > 0 is the first collision time. Then || X || and |V in (12) satisfy

IN

||V||[l]7 0<t<t07

d
%HXHU]
d

IVl < =Cro( X IV iy + C2v/P(X, ©) + Cs,

where Cy,1 = 1,2,3 are positive constants.

Proof. e Step A (Derivation of (13),): By definition in (12), we have
d
—||X|ln £ IV
X o < 1Vl

e Step B (Derivation of (13),): We use (1), to obtain

vl
K vp v K1 o Y
1 kUi 1 kY
722 <v1 UJ;NZQb(Tkz)(ekei)NZ¢(Tkzy)(9 93>>
i,j€ll] k=1 k=1

=:T11 + L1a.

o (Estimation for Z71): We use the symmetry of the communication kernel ¢ and
index exchange trick (i, k) «— (k, ) and Cauchy-Schwarz’s inequality to get

2K V4
Ill—W Z ¢ Tki <9k oivvz_vj>

i,5,k€l]
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i,5,k€ll]
H1|[l]| U Uj
= — Z ¢(’I“ij) 0* - 9 y Vi — Uj
i.jell] ’
k1|l o(ri it 0i — 6
= 1] Z ( ])| i — ol + 1] Z o(rij) _ .] (v, vi — vj)
Z N 6.0,
i,5€(l] i,5€[1]

K o(r; k1|l 0;
< 1| | Z z] _ j|2+ 1]‘\/!” Z ¢2(7‘ij)¥| ]|2 HVH[l]v
J

V; Vi U — U l_l iy (ej_9z> )
6. 0, 4 +(9¢ aj)vj_ o, " o0,

We use Lemma 2.1 and the assumption o < §/2 to obtain

N

N
1 1
i =+ | 22 (v <G l—ul <DV) <Gy, and ¢ <¢ (14)
k=1 =
for 0 <t < tg, where we used ¢?(s) < ((s) for s < 1. Then we find
1/2
ra|[1]] o(rij) k1 G |[1] |2
In<-—x > Tjj|vi—vg‘|2+$ Z C(rij) =5 V-
ijely " m ij=1 6:0
=P(X,0)
Now, we define positive constants C; and C5 as
Fa | (1| r1CE |[1]]
Ch = d Cs:= u
LT ongy, MO T2 200,
This gives
T < =2Cy Z (/ﬁ(rij)\vi — ’Uj|2 + 202731/2”‘/“[1]
i,j€ll]
o (Estimation for Zp): We rearrange terms to get
2K1 Vg V5
Tip = -+ ze:” {ﬁﬁ T < 9/ ’Uj>—¢(mj)<%—9*j,vi—vj>
i,
ke[l]
2K Vi v v V;
== Z {d’ Tki < L 5oV~ Uj> + (¢(rwi) — ¢(Tkj))<£ - 94‘,1)1' - Uj>}
k2 o j
k]g[[;]

2 Zyo1 + Zhoo.
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o (Estimation for Zy21): We use Lemma 2.1 and (14) to obtain

21 O(Tki) 2 4 2K1
Ty = N Z T\Uz‘—vﬂ Z O(rwi) 0,0, <’UJ7'UZ

i,j€[l] i,j€[l
ki) k¢[z]
2/€1 91 - 0j
< N ng ¢(7’m’)T9j (vj,v; — v;)
Kel[l]
261 (N = [[1]])
< WD(@)D(V) Z v; — ;
i,J €[]
261 (N = [[1]) 1/ a0
g 2MAST TR
- N(;a(g?n) D(@ )Cto‘[ZHHVH[lh

where we used Cauchy-Schwarz inequality in the last inequality.

— ;)

o (Estimation for Zy92): We use the Lipschitz continuity of ¢ far from 0 and (14)

to find
2K vk Vj
T2 < — i) j — = 2,V — U
ké[l]
2K U — U; 1 1
< ) N .
<% Z: [6(rii) = @)l | =5 + s (ek ej) &
kgl
2k (V) D<@)
< ~ ZL5|:1:Z 33]|( ( 70 |vi — vy
et
2k1Ls(N — |[1]]) Cy D(e°)
< 2alsR oD G (1 DOVY 5 oy~

i,5€ll]

K - to i
Sw; <1+ ég))ctou]ll‘/”[l]’

m
where Ls is a positive constant defined by the following relation:

Ls = l9llLipqr=s)
Now we combine (15) and (16) to obtain
2r (N —[[UD)

T2 < "y DOCu IVl
21 Ls(N — [[1]]) Ci D(O°)\ -
i 2ol DS (44 2850 Gty
=:2C5[|V |-

Finally, we combine all the above estimates to get

d
VI < T+ Te < —2C16(l2 ) IV I + 20, P2V ||y + 2G5 VI

or equivalently,

d
2Vl < =Cro(IX lp) IV Il + CoV'P + Cs.

— vy
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4.2. Proof of the first part in Theorem 3.1. We are now ready to provide the
proof of the first part of Theorem 3.1. We apply Grénwall’s inequality for (13), to
yield

VIl (t) < 1V g (s)e O o 2 N

We set
o) = [ o) dy (18)
On the other hand, we use (13), and to obtain
B(1XTn ) < [ X DIV ) HRX ) (19)

=:T(s,t)
Next, we claim:
|T(t,s)| < Cq for 0<s,t<t.
Proof of claim: First, we set
B(s,t) :=e L o(IX N (o))do
Then, it is easy to see that
0B = —Cio([ Xy (t)B(s,t) and B(r,t)B(s,7) = B(s,t), fors <7<t

(20)
Note that

IVIim@) < IV IIg(s)B(s,t) +/ (Co/P(7) + C3)B(7,t) dr
< CuB(s,t) + / t(cm/P(T) + C3)B(r, 1) dr.

Thus, we have
t T
760 < [ oXInr)[CBls,r) + [ (Cov/PT@) + Co)B(o ) do] dr o
S S
=:TI31 + I3s.
Next, we estimate the terms Zs;, ¢ = 1,2 separately.

e (Estimation for Z3;): We use (20) together with the fact B(s,s) =1 and B > 0
to find

Ty = 04/ (X ||y (1) B(r, s) dr = —%/ 0.(B(r, s)) dr < %‘1* (22)
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e (Estimation for Z32): By direct calculation, we have

I5o = /<I5HX||[I] [/ F+CBBTS; }dT
[/ 2v/P(0) + Cs) 5 ) do| dr

—aB(t ,5) / (02 P(a)—l—C;;)ﬁda 25)

/ \/7+03} id
01/< 2V/P(T) +Cs) dr

S C57

Il
\
°
E

where we used integration by parts and fot P(s)ds < oo in Lemma 2.2. In (21), we
combine estimates (22) and (23) to obtain

‘_7(8 t)<g+05

C1
However, if a > 1,
Sl—a
@(8): I—a 1fOf>17

Hence we have
(@[ X ()] =00 ast —tg. (24)
On the other hand in (19), we have
[@([[ X[ ()] < o0,
which is contradictory to (24). O

4.3. Proof of the second part in Theorem 3.1. In this section, we provide
some initial configurations leading to collision between TCS particles in finite time.
Note that if all initial temperatures are the same, then the TCS system (1)-(2) can
be reduced to the particle C-S model with singular communication weight which
has been extensively studied in [1, 2, 3, 26, 25]. In particular, the authors in
[26] showed that the finite time collision between the Cucker-Smale particles with
singular weights under certain assumptions on the initial configurations. For the
same initial temperatures, as a direct application of [26, Proposition 3.1], we have
a counterexample leading to the finite time collision.

More precisely, consider a two-body system on the real line, and its initial con-
figuration (z,0,09), i = 1,2 is given by the following conditions:

0 K1

2y > a9, vy — ) = )(J:?—xg)l_a, 00 =0=0">0, 0<a<l.

00(1 —
Then there exists a finite time t. < oo such that x1(t.) = xa2(t.) (see [26] for
detailed argument). Inspired by the above observation, we can construct the initial
configurations leading to the finite time collision between TCS particles even for
the case where the initial temperatures can be different from each other. For this,
we again consider a two-body system on the real line:
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i’lZUl, 'i:2:v27 t>07

. R v v . K v (%
= Lol —aal (-3 o2 = ol - aal) (32— 22)).

—_ L1y gm 1
b= 2eler— ) (= )+ o=l —aal) (-~ ).
1 1
P(lz1 — 22|) |21 — 2| C(|lz1 — 22|) |21 — 22]?’ 0<a<l, >0

(25)

In the sequel, we will show that there exists an initial configuration leading to the
finite time collision for the system (25).

Next, we define the difference of positions, velocities and temperatures of two
particles as follows:

z(t) := x1(t) — 22(¢), v(t) = vy (t) —va(t), 0(t) :=01(t) — b2(¢).
Then the TCS dynamics can be rewritten in terms of (x, v, 8):

dx dv v90 v do 0

i k19(x) (0102 — 01> = —ﬁgC(m)—glaz, t>0. (26)

To show the finite-time collisions in one-dimensional setting for the two-particle
system, we consider the following initial configuration (see Figure 1):

zy < 29, 0] >0 >0, 05 > 7.
“® v 4 @”
z3 Iy

FI1GURE 1. Initial configuration

In the sequel, we will show that as long as there is no collisions between two
particles, the ordering of velocity and temperatures will remain as it is, i.e., before
the collision, we will have
1}20
0102
e Step A: First of all, we will prove 6;(t) < 62(t) until the collision happens if
0 < 69 < 09. To show this, suppose that there exists 0 < t, < oo such that
01(t.) = O2(ts) and 61(t) < O2(¢) for 0 < ¢t < t.. Moreover, suppose |z(t)| > J for
0 <t < t, to assure that there is no collision up to time t,. Then from the equation
(25), we get

UQ(t) > 0, og(t) > 04 (t), ie., > 0.

do 0 0
7 K2((x) 6.0, = r2((6) GIE 0<t<t,

Now, we use Gronwall’s lemma to get

0 H2C(6)t
0(t) <40 exp(— @e ) 0<t<t,.
This implies 0(t.) < 0° exp ( - %) < 0, which is a contradiction to 0(t.) = 0.
1

Thus we obtain that 61 (t) < 62(¢) until the collision occurs.
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e Step B: Next we will show that the velocity of each particle maintains its sign
until the collision occurs. More precisely, we will show v9(¢) > 0. To show this, due
to the zero-mean velocity condition, it suffices to show v(t) < 0 until the collision.
Similar to Step A, we again assume that there exists t, < oo such that

v(ty) =0, and wv(t) <0, |z(t)] >0, for 0<t<t,.
Then it follows from (26) that

dv v w Kk1o(x)v Kk1d(d)v
— = — - — )| < — < -
o) <9192 91> =TT ST T o

Here, we use the fact that v(¢) < 0 and 6(¢) < 0 for 0 < ¢t < t,. Again, it follows
from Groénwall’s lemma that we have

v(t) < v exp <

0<t<t,.

K19(6)t
o7
which is a contradictory to v(t.) = 0 since v < 0. Hence, we have v(t) < 0 and

consequently va(t) > 0 until the collision occurs.

), 0<t<ty,

e Step C: So far, we have obtained v2 > 0 and € < 0 as long as there is no collisions
between TCS particles. Thus, we have

v29
0
6010, =

This together with (26), yields a differential inequality for v:
dv < Koy < 7n1¢(w)v.

dt — 01 - 9(1)

Now, we set

d(r) = /T(b(s) ds = 1ia

i.e., ® is a primitive of ¢. Then the above differential inequality can be rewritten
as

Tl—a’

dv K1 d
— < ——=—(® .
dt — 609 dt (®()
We integrate the above equation from 0 to ¢ > 0 to obtain

u(t) —° < —%(@(x(t)) — o(a?)). (27)

On the other hand, under our main assumptions in Theorem 3.1, we find

0 k1 0 0yl—a K1 0
=———(] — =——0 .

Thus, (27) is again reduced to the following sub-linear differential inequality:

Cflitc — () < —%é(x(t)) < —ﬁ(m(ﬂ)l‘a,

which is equivalent to
d K1ov
— () < — =
PO =~

This yields

R1&

x(t)” — mt.

g
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Hence, we have that the collision will occur at some time to earlier than (z§69(1 —
a))/(k1a). O

4.4. Proof of Theorem 3.3. In this subsection, we study a mono-clustering of
the thermomechanical Cucker-Smale model (1)-(2). Note that the global existence
of solutions is guaranteed by Theorem 3.1. The proof of Theorem 3.3 is exactly
the same as in [12, Theorem 3.1]. More precisely, in [12], system (1)-(2) with
regular weights are taken into account and the asymptotic emergent behavior is also
obtained. However, the strategy used in [12] does not depend on the singularity of
¢ or (, thus we can directly apply it to our system with singular communications.
Thus, we briefly sketch the details of the proof of Theorem 3.1 here. Below, we
sketch the proof in two steps:

e Step A (Derivation of differential inequalities): We first derive a system of differ-
ential inequalities for the extreme values for positions, velocities, and temperatures
as follows:

’dD;:()’éD(V), 10,
dDd(tV) < _51¢(019?4(X))D(V) + 2(0;171)2D(®)D(V), (28)
dD(®) _  ral(D(X))

@ = 2(99\4)2 o).

e Step B (Exponential flocking from the SDDI) : The next step is showing the
exponential flocking from the SDDI (28). To do this, we first assume that the
following conditions for initial configuration hold: Suppose that there exist X > 0

such that
a0@XO))  py () < & /X o(s) ds,

bD(O(0)) <
2 Jp(x(0)

IN

and
§¢<D<X<o>>> < 9(X*) < ¢(DX(0)).

Then, we use the bootstrapping argument to conclude the following flocking esti-

mation:
sup D(X(1)) < X, D(V(t)) < D(V(0))e X IHEZEL
0<t<o0
and
D(O(t)) < D(©(0))e~ <™t ¢ >0.
O

5. Local well-posedness of the kinetic TCS equation. In this section, we
provide a local-in-time well-posedness of weak solutions (see Definition 3.4) to the
kinetic TCS equation:

Ouf + Vo (Wf) + Vo (FIAIF) +06(GIf1f) =0, z,veR?, OER, t>0,

v
‘F[f}(’z?t) = k1 /deXRJr T — Ty (5 07).]8 2*7 dz*7 (29)
ol )= s [ clo =G o)1t den
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where the interaction kernels are given as follows:

@(s) = sia’ C(s) = siﬁ’ with «,8 > 0.

The existence of weak solutions to (29) will be obtained via a suitable weak limit
of the regularized system for (29). To do so, we introduce a radially symmetric
standard mollifiers 7 € C2°(R%) and its scaled family:

) = illa) > 0. swpnc B0, [ a@)de =1 na)= Zn(%).

Now, we use this family of mollifier to mollify the communication kernels:
¢ :=¢xn. and (. =(xmn. foreache>0.
With the regularized weights ¢. and (., we have the regularized system:
Oufe +v-Vafe + Vo [F(f)f] + 0r[G°(f)f:] =0, @veR:, 0€Ry, t>0,

F(f0 = | g, Pell = 2D (G = ) et
0" (100 = [ Gllo=an(G— o) et e

fe(2,0) =: fo(z).
(30)

Note that the global-in-time existence of solution to (30) can be proved by using
standard method of characteristics since all of the kernels are regular enough.

5.1. A priori estimates. We next provide uniform estimates for f in LP-norm
and the velocity support of f with respect to the regularization parameter . For
this, we present several lemmas.

Lemma 5.1. For p € [1,00), let X and Y be two positive differentiable functions
satisfying

dX (1)

O coxmam ., P <expyorin . >0

where C' is a positive constant and p’ is Holder conjugate of p. Then, there exist

T < 00 and positive constant C' such that

sup. (X(@)+Y(t) <C.
te|0,7

Proof. We set X and Y
)~(::X—|—17 Y=Y +1.
Then, X and Y satisfy the following differential inequalities:

dx dX d ~o~ d

= = <CX*2(Y» +1)<CX%Y», t>0
dt dt — ( +1) < ’ >0,
dy dYy a e (e
=< OXY(YV +1) < cxy (i),

This yields
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On the other hands, we use Young’s inequality to get

~ d

XY < C(X7% + V7H) < O(X + V)75,
This together with (32) gives

d & = N
S(X+¥) O +7)

Therefore, although the value X+Y may blow up at the finite time ¢, we can choose
smaller time 7 < # so that we have the following uniform bound for X + Y in time
interval [0, 7]

sup (X()+Y(0) < swp (KO +T (1) <C.

which yields the desired estimate. O
In next lemma, we show that ||f.||L1nr» and the velocity support of f satisfy

the system of differential inequalities in Lemma 5.1. For ¢t > 0, we set the velocity
support R:

R; = max{|v0| tvg € {v € R?: Iz € R?@ x R, such that f.(z,t) # O}}

Lemma 5.2. Let f. = f.(z,t) be a solution for the reqularized system (30). Then,
there exists a positive constant C' > 0 independent of € such that

d e\ 2
Zlfellnee <O (B +1) 1 fellfanm t>0,
dR;,

G < OR:[(R)

Proof. Below, we will derive the differential inequalities one by one.
e (Derivation of (32);): We use (3) to obtain

d
7

7+ 1] el

d

dt R2d><]R+

iz = —(p—1) / (Vo - (FILD + QG LD P dz (33)

RQd’XR+
To estimate the R.H.S. of (33), we use the standard cutoff function x; € C2°(R?):
1 Jz| <1,
x) =
xa(@) {o ] > 2.

We use a similar strategy in [2] to estimate ||V, - (F¢[fe])||co. For the convenience
of reader, we provide the detailed calculation. We separate ¢. = ¢ x 1, as

¢ xne = (dx1) * - + (O(1 — x1)) * 72
and use Young’s convolution inequality to get following inequalities:

[(ox1) * nell o < lloxallpo lImellr = lloxall e < C,
[(A(1 = x1)) * el < [lp(1 = x1)l[z < 1.
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Now, thanks to the boundedness of velocity support and (34), we have

Vo - (FELfED
_d
N 0 R2d xR

d
< %(/RMX& |(@x1) * 7el | fe| dz +/RMXR+ (61— x1)) *778||f5|dz*>

< C(l1t6x2) # n(@) g0, me) )l o 110 + (61 = x2)) el el )
< C(R) 7 |61l 1 Fellw + 161 = x0) o= 1 £l
= C((R)7 + 1)1 fellnns,

for some C' > 0 which is independent of . Similarly, we also estimate ||0g(G[f:])l oo
as

¢5(|x - x*|)f€(z*,t) dzs

1
gl < ([, VO el [ 1€ =) » el d=.)

< C(R)P 63l o 1l + 16 = x)lzoe 1
= C((R)7 +1) 1 felliarr-

Thus, we have

a
7

d
lfellnee < C((R)F +1)1felfins for ¢>0,

where C' > 0 is independent of ¢.

o (Derivation of (32),): Consider a characteristic curve similarly defined as in (9),
generated by approximated solutions f. and g.. Then along that specific charac-
teristic curve which gives the maximum modulus of velocity, we have

1d (R9)*(s

par(re? < T [ 1ats) )00, 9)
2 ds 0m R2d xR

< OB ((R)Y +1) I fe e

Note that in the last inequality, we used similar estimate as in the previous step.
Thus we have

dR¢ 4
S < OR ((B)Y +1) | ellnir,
where C' > 0 is independent of e. O

By direct applications of Lemma 5.1 and Lemma 5.2, we have the following
uniform bound estimates and stability estimate.
Proposition 2. The following assertions hold.

1. (Uniform boundedness): Let f. be a solution of the regularized system (30).
Then there exist a positive constant T such that uniform L' N LP-estimate of
fe and the boundedness of velocity support hold:

sup ”faHLlﬂLP <C, Rv(t) = sup |Qv(t)| <C,

tel0,7] tel0,7]

where C' is a positive constant independent of e.
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2. Let f. and for be two solutions of the system (29). Then there exists C inde-
pendent of € and €' such that

SW(L(0), 1 () < CONL ), fo®) +e+€), VO<t<r

Proof. (1) The uniform boundedness follow from Lemma 5.1 and Lemma 5.2.

(2) The stability estimate can be done as for the regular case. First, we define
the family of characteristic curves Z.(s) := (z.(s),v:(s),0-(s)) as a solution to the
following ODEs:

d
ixg(t;s,:c,vﬁ) =v:(t;8,2,0,0), 0<s<t

d
%US(t; 57 1’7 U? 0) = ]:E [f&](ZE(ta 57 $7 U7 0)7 t)7 (35)
d

ﬁﬁg(t; s,2,0,0) = G°[fe](xe(t; 8, 2,v,0),0:(t; s, x,0,0),t),

and define Z./ in similar way. Note that Z. is well-defined since ¢. and (. are
regular kernels. Now, we define the optimal transport map

To(xvvve) = (ﬂo(xvvu 9)7750(‘%»”’0)77?30(1'71)7 0))

between f.(tg) and f./(to), i.e., for(to) = TO#f-(to). Moreover, as in [17], we can
obtain f.(t) = Z.(t;to,-,,-)#f-(to). We combine two observations to get

Tt#.f&‘(t) = fE' (t)a where Tl = ZE’ (t;th ERE) ) © TO o ZE(tO;t7 BRE) )

Now, it follows from the Proposition 1 that we have

WA L) < [ 1Zutit0,2) = Zoltito TG t0) o = Qe
R2 XR+
Then, it follows from (35) that we have
d
— Qe (T
dtQ = ®) t=to+
<[ fetite ) - oo tst. T
deXR+

H [ FRE G - F 60, T,
R24XR 4

* /]R2d><R+
= G [ (@ (b0, TO(2)), Ocr (£ 0, TO(2)), 1)
=: T4 +Lyo +1Lys.

fe(z,t0) dz

t=to+

fe(z,t0) dz‘
t=to+

gs[fa}(xa(m to, Z)a Hs(t;th Z)vt)

fe(z,t0) dz

t=to+

Below, we estimate the terms Zy; separately.
e (Estimate of Z41): By direct estimate, we have

IM:/ v = TR (2)\ =2 to) dz < OWi(f(to), £ (o).
R24XR 4

e (Estimate of Zy5): We separate Z in two parts to get

v v
7 :/ / ¢ (x — L ) fa(ze, o) d2
42 deXR+ RQdXR+ ( y)(g* 9>f( 0)
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v z

[ s -0 (5 - 28 ftae,
R2d XR+ * (Z

)
)
B /RdeRJr ‘ /]R2d><1R+ Qbs(ff - y) (Z - Z) fs(2*7t0) e

fe(z,t0) dz

- (T —7*’*(2 T /(24 to) d| fe(2, o) dz.
Lo, 0T =T (T2 - o) Fo ettty
Now, we define the further subterms of 7,5 as
te ::/ a1 + Lazalfe(z to) d2 < / [Taot| + [Taza (2, to) dz,
R24xRy R4 xR

where

0, 0

TP(2)  T3(2)
_ /deX]R+ ¢s’(710(2) - 7-10(2'*)) (750(2*) - 730(27)) fs(z*,to) dzs.

o (Estimate of Zy21): Again, we add and subtract terms to find

o 2 f&(z*atO) dz.

< [ 16— o) —nl|5E =7
xRy *

UV

+/RM+ [0tz = ) = 60 (T2(2) = T | 3 = | Feleto) e

Now we estimate |¢.(x) — ¢(z)| as

¢e(x) —
/|¢x— e dy<2/w i )

1 Ce
< 25/ ( )9 )dy <
{y:lyl<e} |x|1+a |x— y[i+e /7" Jz[ire’

(36)

Recall that the velocity support and temperature support have finite diameters at
any finite time. Then, we use this fact together with the estimate (36) to obtain

/ (e — 8)(z — v)|
(R24 xR, )2

1
< CE/ ——————— fe(24, to) fe (2, t0) dzdzs
(RexQ, (1) xQ2p(r))2 1T — Y1 T : e

Vi v
@ - 5 fE(Z*,tO)fe(zatO) dZdZ*
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< Ce/ (/ +/
R24 xR, {y:|lz—y|<1}xQy (1) X Qr (1) {y:|z—y|>1} xQy (1) x Q1 (1)

1
T ga = (o) dz.) f.(2to) d2

1
7

1
SCé/ / ) el el | fo (e o) dz
R24 xR, |:( {y:|lz—y|<1} |x_y|(l+a)p ) H HL H ”L} ( O)

< Cel|f-|1?
< Ce.

This yields

/ (6. — 6) (& — )|
(R24 xR )2

For the second term of 7457, we again use the boundedness of velocity and temper-
ature support and change of variables to get

Vs

v
— — < /'
. fe(z)dze < Cle+€)

/ 622 =) = 6 (TO(2) = TP (z))] |55 = 5| fo(zt0) o (22, to) ded,
(RExQ (1) xQr (7))? .

[70(2) — x|
= i ey e [T0) — TP Jo5 fo el o) dedz.

T2(2) —z
+C/(Rdxn ()X 0 (1))? m’fs(z’tO)fE(z*’tO)dzdz*
v \T T\T

< Cmax(||fel], | for VW1 (fe(to), f=r (t0))-

Thus, we combine these estimation to get
/ | Za211f (2, to) dz < C(Wi(fe(to), fer(to)) +€ + ). (37)
R2d xR
o (Estimate of Zy90) : Similar to Zy21, we divide the term into two parts as

/ Zasal o (2, to) d=
RQd XR+

< ~/(]R2d><R+)2 |¢€’(710(Z) - 710(2*))| Zf - ggzj fg(Z,to)fE(Z*,to) dzdz,
v T(2)
+/(R2de+)2 6=/ (T2 (2) = TP ()l | 5 — 7‘20(z) Folzto) - (20, to) dzdz,

=: Ty201 + L4220

However, it is easy to see that

Lyoo1 = / (/ |¢)s’(7-10(z) - 710(2*))|fs(2at0) dZ)
R24 xRy RIXQ, (T)XQr (T)

v TH()
97* - 7;)0(2*) fE(Z*vtO) dZ*
o TRz
<all [, |5 - | et

< CWi(f<(to), for (to)).
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Similarly, we also can estimate Z4305 to obtain

Tyo22 < CWi(fe(to), fer(to))-

Hence, we have

/ . |Za22| f= (2, t0) dz < Tyoor + Lazee < CWi(fe(to), fer (to))- (38)
R24 xR

We combine (37)-(38) to get

Zyz < C(Wi(fe(to), fer(to)) ++¢€).
o (Estimate of Zy3): We can estimate Z3 in a same way with estimate of Z4o and
get

Zyz < C(Wi(fe(to), fer(to)) ++¢€).

Now, we combine the estimation of Zy; for ¢ = 1,2, 3 to find

DQuat| < ONLl10), Jolto) 42 +).

t=to+

This implies that for arbitrary ¢ € [0, 7), we have

d
i Wife (), fo(8)) < CWL(fe(8), for () + & + £,
where C' is a positive constant which does not depend on € or €’. O

5.2. Proof of Theorem 3.5. Now, we are ready to prove the local-in-time ex-
istence and uniqueness of weak solution in the sense of Definition 3.4. Note that
Proposition 2 implies that the family of regularized solution {f.}c>o is a Cauchy
sequence in C([0, 7]; P1(R?? x R, )) and hence there exists a limit function f. Then,
the remaining thing is to show that f is indeed the unique weak solution, and this
completes the proof of Theorem 3.5.

e (Existence part): Fix any test function ® € C°(R?? x Ry x [0,7)). Then the
approximate solution f. satisfies

/ fe(z,7)®(2,7)dz —/ fe(2,0)®(z,0) dz
R24 xR 4 R24 xR

, (39)
:/ / f6(6t¢+v'vz¢+]:€[fs] -VU¢+gE[fg]60(b)dzdt.
0 JR2IXR,

Note that we can pass the limit ¢ — 0 easily for the linear terms: As ¢ — 0, we
have

/ fe(z,1)®(2,7)dz —/ fe(2,0)®(z,0) dz
R24 xR

R2d xR

— flz,7)®(z,7) dzf/ f(z,0)9(2,0)dz,

R2d XR+ R2d XR+

/ / f(O®+v -V, @)dzdt —> / / f(O®+v-V,D)dzdt.
0 JR2dxR, 0 JR2axR,
(40)
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Thus, we only need to show that as ¢ — 0,

/T/RW]R+ fs}'a[fg]~VU<I>dzdt_>/T/deXR+ FFLf] - Vo dz dt,

/ / JeG°[f=]0p® dz dt —>/ / G[f]0p® dz dt.
R2dxRy R?de+

Since proofs of two limiting processes are almost same, we only focus on first limit
n (41). Note that

(41)

// (feFelfe] = fFIf]) - Vo dzdt
0 JR2xR,

= /o /RR Je (FeUfe) = FIf)) - Vo dz dt

fel = FIf]) - Vo®dzdt

R24 xR

~ PFIf] Vo dzdt

R24 xR
=:Z51 + Is2 + Is3.

Next, we estimate the terms Zs;, @ = 1, 2, 3 separately.
o (Estimate of Z51): As in [2, Section 3.2], we can estimate Z5; as follows.

I = =)z — 2. [)(Vo @) - <Z* - Z) fe(zt) fe (2, t) dz dzs dt

(R24 xR, )2

T 1
< Ce/ / GOt dzde dt
0 J(RIXQ, (7)xQr(7))2 |z — a1 : :

<Ce|lfaP <Ce—=0 ase—0.

o (Estimate of Zs5): We set

(%

ML) = g, Jo 0 ) (5-7) vnoG s

Then, we have

Iso =

H[f2] (2, ) (fo (20, t) — f(24, 1)) dze dl] .

R2d XR+

On the other hand, we employ similar arguments as in the proof of Lemma 5.2 and
the estimate of Zso in the proof of Proposition 2, we find that the function H[f:] is
locally Lipschitz and bounded uniformly in . Thus, by definition, we obtain

Tso < C sup Wi(f°(t),f(t)) =0 as e£—0. (43)
0<t<r

o (Estimate of Z53): Similarly to previous case, we can also show that F[f]-V,® is
locally Lipschitz and bounded, and consequently, we have

Iss < C sup Wi(fe(t),f(t)) =0 as e—0. (44)
0<t<r
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In (41), we collect all estimates (42), (43) and (44) to obtain the limiting convergence
(41);. Onme can prove (41), in a similar way, as in the proof of (41),. Thus, the
detailed proof of (41), is omitted. Finally, in (39), we combine (40) and (41) to
show that the limit function f satisfies the weak formulation (11).

e (Uniqueness and stability) : Let fi and fo be two weak solutions of equation (29)
with same initial data f°. Then, it follows from Proposition 2 that we have

LWL, £(0) £ CWA(AW), L), € [0,7)

Then, the Gronwall lemma yields the uniqueness of the solution.

6. Conclusion. In this paper, we have studied the dynamic features of the TCS
model with singular power-law kernels in their velocity and temperature dynamics.
For strong singularities in communication weights, collisions cannot occur in any
finite time. Thus, the classical Cauchy-Lipschitz theory can be applied to yield the
global existence of smooth solutions. In contrast, when the singularity is mildly
weak, finite-time collisions can still occur from some prepared initial configurations.
Hence, the global smooth solutions cannot be guaranteed in general. As far as the
authors know, after a finite-time collision occur, there is no existence theory after
collision time. Formal BBGKY hierarchy argument yields the kinetic TCS equation
with singular kernel. For this kinetic equation with singular kernel, we also provide
a local existence of weak solutions. At present, we do not have a global existence
theory for weak or strong solutions for the kinetic TCS equation. This will be an
interesting future work to be explored.
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