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Abstract. We study dynamical behaviors of the ensemble of thermomechan-

ical Cucker-Smale (in short TCS) particles with singular power-law communi-

cation weights in velocity and temperatures. For the particle TCS model, we
present several sufficient frameworks for the global regularity of solution and

a finite-time breakdown depending on the blow-up exponents in the power-

law communication weights at the origin where the relative spatial distances
become zero. More precisely, when the blow-up exponent in velocity commu-

nication weight is greater than unity and the blow-up exponent in temperature
communication weights is more than twice of blow-up exponent in velocity
communication, we show that there will be no finite time collision between
particles, unless there are collisions initially. In contrast, when the blow-up
exponent of velocity communication weight is smaller than unity, we show

that there can be a collision in finite time. For the kinetic TCS equation, we

present a local-in-time existence of a unique weak solution using the suitable
regularization and compactness arguments.
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1. Introduction. Collective behaviors of classical and quantum many-body sys-
tems are ubiquitous in our biological, chemical and physical complex systems in
nature, e.g., flocking of birds, swarming of fish, aggregation of bacteria, or synchro-
nization of neurons, synchronization of Josephson junction arrays, etc. [28, 29, 30].
In previous literature, many mathematical models were proposed to describe these
collective dynamics. Among those models, our main interest in this paper lies on
the thermomechanical Cucker-Smale (in short, TCS) model which is recently in-
troduced in [19]. Consider an ensemble consisting of N TCS particles, i.e., the
Cucker-Smale particles with internal temperature variables, and let xi(t), vi(t) and
θi(t) be the spatial position, velocity, and temperature of the i-th TCS particle at
time t. Then, the ensemble of TCS particles is governed by the following first-order
ordinary differential equations:

dxi
dt

= vi, t > 0, i = 1, 2, · · · , N,

dvi
dt

=
κ1

N

N∑
j=1

φ(rij)

(
vj
θj
− vi
θi

)
,

dθi
dt

=
κ2

N

N∑
j=1

ζ(rij)

(
1

θi
− 1

θj

)
,

(1)

subject to initial data:

(xi(0), vi(0), θi(0)) =: (x0
i , v

0
i , θ

0
i ),

N∑
i=1

v0
i = 0. (2)

Here rij := |xi−xj | denotes the Euclidean distance between i-th and j-th particles,
and the positive constants κi, i = 1, 2 represent the coupling strengths for velocities
and temperatures, and the interaction kernels φ : R+ → R+ and ζ : R+ → R+

are generally non-increasing functions in their arguments. Note that the zero mean
velocity condition (2)2 will be propagated along the dynamics (1). To fix the idea,
we consider the following specific forms of communication weights:

φ(s) :=
1

sα
, ζ(s) =

1

sβ
, with α, β > 0, s > 0. (3)

As its name suggests, TCS model is one of generalizations for the Cucker-Smale (in
short, C-S) model introduced in [9]:

dxi
dt

= vi, t > 0, i = 1, 2, · · · , N,

dvi
dt

=
κ

N

N∑
j=1

φ(rij)(vj − vi).
(4)

Note that for the same constant temperatures θi = θ∞ > 0, system (1) is formally
reduced to the C-S model with κ = κ1

θ∞
(see [5, 6, 8, 9, 10, 11, 15, 14, 16, 17,

18, 22, 23] and a recent survey article [4, 7]). Recently, the TCS model [19] has
been studied in many different aspects, including the case of interaction kernels are
spatially dependent, uniform stability issue, and kinetic and hydrodynamic limits
[13, 12]. In those previous works, the interaction kernels are always assumed to be
Lipschtiz continuous and regular. However, as in the case of the original C-S model
[1, 3, 26, 25], we can also consider the case when the interaction kernels φ and ζ
are singular to avoid collisions between particles. At least formally, as the number
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of particles tends to infinity, the dynamics of the whole ensemble
{

(xi, vi, θi)
}

can
be effectively described by the Vlasov type equation which can be obtained via
the BBGKY hierarchy in the formal level. More precisely, let f = f(x, v, θ, t) be
the one-particle probability density function of the ensemble of TCS particle at
position x, velocity v and temperature θ at time t. Then, the dynamics of the
density function f is governed by the following Cauchy problem for the Vlasov type
equation:

∂tf +∇x · (vf) +∇v · (F [f ]f) + ∂θ(G[f ]f) = 0, x, v ∈ Rd, θ ∈ R+, t > 0,

F [f ](z, t) := −κ1

∫
R2d×R+

φ(|x− x∗|)
(v
θ
− v∗
θ∗

)
f(z∗, t) dz∗,

G[f ](x, θ, t) := κ2

∫
R2d×R+

ζ(|x− x∗|)
(1

θ
− 1

θ∗

)
f(z∗, t) dz∗,

z = (x, v, θ), dz := dx dv dθ,

(5)

subject to the initial condition:

f(z, 0) =: f0(z), z = (x, v, θ) ∈ R2d × R+. (6)

Below, we briefly discuss our main issues to be explored throughout the paper. In
this paper, we are interested in the following two questions for the Cauchy problems
(1) - (2) and (5) - (6):

• (Q1) : Can the strong singularity in φ and ζ prevent the spatial
collisions between TCS particles? If it is true, what will be the
sufficient conditions leading to the absence of collisions?
• (Q2) : Can we establish the well-posedness of the kinetic TCS equa-

tion at least locally in time?

Next, we comment on the above questions. The collision avoidance between par-
ticles has been studied for the Cucker-Smale model and its variants in [1, 8, 3, 26, 25]
due to the possible applications of the C-S model (4) to the traffic control of un-
manned aerial vehicles and robot systems. More precisely, some special class of
initial configurations are taken to guarantee collision avoidance for strong commu-
nication weight with α ≥ 1 in [1], and later those initial conditions are completely
removed in [3]. On the other hand, due to the singularity of the interaction kernel,
the system (1) may not be well-defined after collision of particles. If two particles
collide, their relative position converges to 0, which makes singularity on the R.H.S.
of (1). For weakly singular communication weights with α < 1, the collisions can
occur for some initial configurations. Moreover, the kinetic TCS equation (5) has a
singular kernel. Thus, the well-posedness issue is not clear at all. In this paper, we
consider the concept of weak solutions and study its local-in-time well-posedness.

The main novelty of this paper are three-fold. First, we show that the particle
TCS model (1) - (3) with a strong communication weights α ≥ 1, β ≥ 2α cannot
have collisions unless they have them initially. The proof for the non-existence of
collisions will be made via the contradiction argument. Suppose that there will be
a finite time collision between some particles, say l and i at time t0. Then, we
consider the set of all particles to collide with l-th particle at time t0, and we will
denote it by [l]. Then, for this colliding particles at time t0, we set

‖X‖[l](t) :=

√∑
i,j∈[l]

|xi(t)− xj(t)|2 and ‖V ‖[l](t) :=

√∑
i,j∈[l]

|vi(t)− vj(t)|2,
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Then, we will show that ‖X‖[l] and ‖V ‖[l] satisfy the following relation (see Section
4.1):

|Φ(‖X‖[l](t))| ≤
∫ t

0

φ(‖X‖[l](τ))‖V ‖[l](τ)dτ + |Φ(‖X‖[l](0))|. (7)

where Φ is anti-derivative of φ, i.e., Φ(x) =

∫ x

φ(t) dt which satisfies

lim
r→0+

Φ(r) =∞, for α ≥ 1. (8)

By laborious estimates, we can show that the R.H.S. of (7) is finite for all t ≥ 0.
However, at the first collision time t0, lim

t→t0−
X(t) = 0. Then, this and (8) imply

lim
t→t0−

|Φ(‖X‖[l](t))| =∞

which gives a contradiction. As long as there are no collisions, the R.H.S. of (1) is
still locally Lipschitz. Hence, the classical Cauchy-Lipschitz theory can be applied
to (1) - (3), and this yields the global smooth solutions. Second, for weakly singular
communication φ with α < 1, we can show the existence of non-collisional initial
configuration leading to the finite-time collisions (see Section 4.3). Third, we present
a local existence and uniqueness of weak solutions to the corresponding kinetic
equation (5), which can be formally derived by the standard BBGKY hierarchy
from the particle system (1). The rigorous derivation of (5) through the mean-field
limit is recently obtained in [12] when the interaction kernels are regular enough,
e.g., φ and ζ are bounded Lipschitz functions. On the other hand, it is not known
whether system (5) has a unique regular solution and exhibits an emergent behavior
when at least one of the interaction kernels φ or ζ is singular. In order to show
the local-in-time existence of weak solutions to the equation (5), we use the 1-
Wasserstein metric which is defined by

W1(µ1, µ2) := inf
γ∈Γ(µ1,µ2)

∫
R2d

|x− y|dγ(x, y),

for two probability measures µ1, µ2 ∈ P1(Rd), where the Γ(µ1, µ2) is defined as a
set of all joint probability measures whose marginals are µ1 and µ2 respectively.
Here P1(Rd) stands for the set of probability measures with bounded moments of
order 1.

The rest of this paper is organized as follows. In Section 2, we provide a several
preliminaries for the TCS model, which will be crucially used in the later sections.
In Section 3, we briefly review some relevant results for the C-S model and present
our main results on the global existence of solutions and local existence of weak
solutions for the particle system (1)-(2). In Section 4, we provide the conditions on
the communication weight φ and ζ to guarantee the global existence of the TCS
system (1). We also give some examples of finite-time collision when the condition
suggested in Section 3 is violated. In Section 5, we provide the existence and
uniqueness of local-in-time weak solutions of kinetic TCS model. Finally, Section 6
is devoted to the summary of our main results and some discussion on the future
works.
Notation: Throughout this paper, | · | denotes the standard Euclidean `2-norm in
Rd, and Ω can be either Rd or R2d or R2d×R+. For a function f : Ω× [0,∞)→ R,
‖f‖Lp represents the usual Lp(Ω)-norm and

‖f‖L1∩Lp := ‖f‖L1 + ‖f‖Lp , and ‖f‖ := ‖f‖L∞(0,τ ;L1∩Lp).
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Moreover, we will use the notation of volume element dz = dx dv dθ in the extended
phase space R2d × R+.

2. Preliminaries. In this section, we briefly review theoretic minimum of the TCS
model and kinetic TCS equation and Wasserstein distances.

2.1. Basic a priori estimates. First, we study a priori estimates for the particle
TCS model (1) which will be crucially used in later sections. For position, velocity
and temperature configurations X,V,Θ, respectively, we define their diameters as
follows: For t ≥ 0,

D(X(t)) := max
1≤i,j≤N

|xi(t)− xj(t)|, D(V (t)) := max
1≤i,j≤N

|vi(t)− vj(t)|,

and

D(Θ(t)) := max
1≤i,j≤N

|θi(t)− θj(t)|.

The most basic property of system (1) is the monotonicity and boundedness of
temperature, position and velocity diameters.

Lemma 2.1. For a positive constant T ∈ (0,∞), let (X,V,Θ) be a solution of
(1) with initial data (X0, V 0,Θ0) in the time-interval [0, T ). Then, the diameters
D(X), D(V ) and D(Θ) satisfy contraction property and boundedness, respectively.

1. The temperature diameter D(Θ) is monotonically decreasing in t:

D(Θ(t)) ≤ D(Θ(s)), 0 ≤ s ≤ t.

2. The velocity and position diameters are bounded:

sup
0≤t≤T

D(V (t)) ≤ CT , sup
0≤t≤T

D(X(t)) ≤ C̃T

where CT and C̃T are positive constants depending on initial configuration
(X0, V 0,Θ0) and T .

Proof. (1) For a given t ≥ 0, we set

θM (t) := max
1≤i≤N

θi(t), θm(t) := min
1≤i≤N

θi(t).

Then, it follows from (1)3 that we have

dθM
dt

=
κ2

N

N∑
j=1

ζ(rMj)

(
1

θM
− 1

θj

)
≤ 0,

and

dθm
dt

=
κ2

N

N∑
j=1

ζ(rmj)

(
1

θm
− 1

θj

)
≥ 0.

These yield

θm(s) ≤ θm(t) ≤ θi(t) ≤ θM (t) ≤ θM (s), t ≥ s ≥ 0.

Then, we have

D(Θ(t)) ≤ D(Θ(s)), t ≥ s ≥ 0.

(2) It follows from the differential inequalities in [12, Lemma 3.2] that we have

d

dt
D(V ) ≤ −κ1φ(DX)

θ0
M

DV + 2κ1
D(Θ)

(θ0
m)2

D(V ) ≤ 2κ1
D(Θ0)

(θ0
m)2

D(V ).
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Then, Gronwall’s lemma yields

D(V (t)) ≤ D(V 0) exp

(
2κ1

D(Θ0)

(θ0
m)2

T

)
=: CT .

Finally, note that the following differential inequality in [12, Lemma 3.2] also holds:

d

dt
D(X) ≤ D(V ).

Then, we use the boundedness of velocity diameter to get

D(X(t)) ≤ D(X(0)) + CTT,

which implies the boundedness of diameter of position.

Next, for position and temperature vectors X = (x1, · · · , xN ), Θ = (θ1, · · · , θN ),
we set a production functional: For t ≥ 0,

P(t) := P(X(t),Θ(t)) =

N∑
i,j=1

ζ(rij(t))
|θi(t)− θj(t)|2

θi(t)θj(t)
.

Lemma 2.2. Suppose that the coupling strength κ2 is positive and let (X,V,Θ) be
a global solution of (1) with initial data (X0, V 0,Θ0). Then, the functional P(t) is
integrable in t: ∫ ∞

0

P(t)dt ≤ N

κ2

N∑
i=1

|θ0
i |2.

Proof. We multiply (1)3 by 2θi to obtain

d

dt

N∑
i=1

|θi|2 =
2κ2

N

N∑
i,j=1

ζ(rij)

(
1

θi
− 1

θj

)
θi =

2κ2

N

N∑
i,j=1

ζ(rij)

(
θj − θi
θiθj

)
θi

=
2κ2

N

N∑
i,j=1

ζ(rij)

(
θi − θj
θjθi

)
θj = −κ2

N

N∑
i,j=1

ζ(rij)
|θi − θj |2

θiθj
= −κ2

N
P.

We integrate the above relation in time to get

N∑
i=1

|θi(t)|2 +
κ2

N

∫ t

0

P(s)ds =

N∑
i=1

|θ0
i |2,

which yields the desired estimate.

Next, we study the propagation of velocity and temperature moments along the
kinetic TCS equation. For this, we set

〈1〉 :=

∫
R2d×R+

fdz, 〈v〉 :=

∫
R2d×R+

vf dz, 〈v2〉 :=

∫
R2d×R+

|v|2fdz,

〈θ〉 :=

∫
R2d×R+

θf dz, 〈θ2〉 :=

∫
R2d×R+

θ2fdz, and〈log θ〉 :=

∫
R2d×R+

(log θ)f dz.

In next lemma, we study propagation of above moments along (5).

Lemma 2.3. Let f = f(z, t) be a solution of kinetic TCS equation (5) decaying
sufficiently fast at infinity |x| =∞, |v| =∞ and θ = 0,∞. Then, we have

d〈1〉
dt

= 0,
d〈v〉
dt

= 0,
d〈θ〉
dt

= 0,
d〈θ2〉
dt
≤ 0, and

d〈log θ〉
dt

≥ 0.
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Proof. (i) The conservation of mass follows from the divergence form of (5).
(ii) We multiply (5) by v and integrate the resulting relation over the extended
phase space using the exchange symmetry (x, v, θ)↔ (x∗, v∗, θ∗) to get

d〈v〉
dt

=

∫
R2d×R+

v∂tf dz

= −
∫
R2d×R+

v(v · ∇xf) + v∇v · (F [f ]f)− v∂θ(G[f ]f) dz

= d

∫
R2d×R+

F [f ]f dz

= dκ1

∫
R4d×(R+)2

φ(|x− x∗|)
(
v∗
θ∗
− v

θ

)
f(z, t)f(z∗, t) dz dz∗

= 0.

The case for 〈θ〉 can be treated similarly.
(iii) We multiply (5) by θ2 and integrate over the extended phase space to get the
dissipativity for 〈θ2〉:

d〈θ2〉
dt

= −
∫
R2d×R+

θ2v · ∇xf + θ2∇v · (F [f ]ff) + θ2∂θ(G[f ]f) dz

= 2

∫
R2d×R+

θG[f ]f dz

= 2

∫
R4d×(R+)2

ζ(|x− x∗|)
(

1

θ
− 1

θ∗

)
θf(z, t)f(z∗, t) dz dz∗

= −
∫
R4d×(R+)2

ζ(|x− x∗|)
(θ − θ∗)2

θθ∗
f(z, t)f(z∗, t) dz dz∗ ≤ 0.

(iv) Finally, we can estimate 〈log θ〉 in a similar way:

d〈log θ〉
dt

= −
∫
R2d×R+

(log θ)v · ∇xf + (log θ)∇v · (F [f ]f) + (log θ)∂θ(G[f ]f) dz

=

∫
R2d×R+

1

θ
G[f ]f dz

=

∫
R4d×(R+)2

ζ(|x− x∗|)
(

1

θ
− 1

θ∗

)
1

θ
f(z, t)f(z∗, t) dz dz∗

=
1

2

∫
R4d×(R+)2

ζ(|x− x∗|)
(

1

θ
− 1

θ∗

)2

f(z, t)f(z∗, t) dz dz∗

≥ 0.

2.2. Forward characteristic curves. In this subsection, we introduce forward
characteristic curves associated with the kinetic TCS equation (5). First, we define
forward characteristics (x(s), v(s), θ(s)) := (x(s; 0, x, v, θ), v(s; 0, x, v, θ), θ(s; 0, x, v,
θ)) as a solution to the following ODE system:
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

dx(s)

ds
= v(s), s > 0,

dv(s)

ds
= F [f ](x(s), v(s), θ(s)),

dθ(s)

ds
= G[f ](x(s), θ(s)),

(x(0), v(0), θ(0)) = (x, v, θ).

(9)

Moreover, we also define the section of support of f for each variables which can be
obtained as projections of the support of f in x, v and θ-variables:

Ωx(t) :=
{
x ∈ Rd | f(x, v, θ, t) 6= 0

}
,

Ωv(t) :=
{
v ∈ Rd | f(x, v, θ, t) 6= 0

}
,

Ωθ(t) :=
{
θ ∈ R+ | f(x, v, θ, t) 6= 0

}
.

Lemma 2.4. Let f = f(z, t) be a solution of kinetic TCS equation (5). Then the
set Ωθ is contractive along the dynamics (5):

Ωθ(s) ⊆ Ωθ(t), 0 ≤ t ≤ s.

Proof. In fact, the maximum value of Ωθ decreases, whereas the minimum value
of Ωθ increases as in particle model (see Lemma 2.1). It suffices to show that θ
is decreasing along the characteristic curve which gives the maximum value of Ωθ.
The increase of a lower bound can be shown similarly using the characteristic curve
that gives the minimum value of Ωθ. To see this, we multiply (9)3 by θ(s) to get

1

2

dθ(s)2

ds
= θ(s)

dθ(s)

ds

=

∫
R2d×R+

ζ(|x(s)− x∗|)
(

1

θ(s)
− 1

θ∗

)
θ(s)f(z∗, t) dz∗

=

∫
R2d×R+

ζ(|x(s)− x∗|)
(
θ∗ − θ(s)
θ(s)θ∗

)
θ(s)f(z∗, t) dz∗ ≤ 0,

where we use (θ∗ − θ(s))θ(s) ≤ 0. This implies that the maximum value of Ωθ is
non-increasing.

2.3. Wasserstein distances. In this section, we provide some basic properties
of Wasserstein metric between two measures for later use. First, we begin with
definition of push-forward measure in the following definition.

Definition 2.5. Let µ1 be a Borel measure on Rd and f : (Rd, µ1) → Rd be a
measurable function. Then we define the push-forward measure of µ1 by f , which
will be denoted by µ2 = f#µ1:

µ2(B) = µ1(f−1(B)), B ⊂ Rd.

Next, we list several results about push-forward measure and Wasserstein metric
without proofs.

Proposition 1. [31, 32] The following assertions hold.
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(1) Let µ1 and µ2 be two measures on Rd and let f : Rd → Rd be a measurable
function. Then,

µ2 = f#µ1 ⇐⇒
∫
Rd
φdµ2 =

∫
Rd
φ ◦ fdµ1, ∀φ ∈ Cb(Rd).

(2) Suppose that µ0 is measure on Rd, which has bounded p-th moment, and let
f1 and f2 be two measurable functions from Rd to itself. Then, we have

W p
p (f1#µ0, f2#µ0) ≤

∫
Rd×Rd

|x− y|pdγ(x, y) =

∫
Rd
|f1(x)− f2(x)|pdµ0(x),

where γ is any measure with marginals f1#µ0 and f2#µ0.

(3) Let {µn}∞k=1 be a sequence of measures in P1(Rd) and µ ∈ P1(Rd). Then µn
converges to µ in the sense of Wasserstein 1-distance if and only if µn con-
verges to µ weakly, and the first moment of µn converges to the first moment
of µ: ∫

Rd
|x|dµn(x)→

∫
Rd
|x|dµ(x), as n→∞.

Note that the space Pp(Rd), the space of all probability measure with finite p-th
moment, equipped with the Wasserstein p-distance is Polish space. For p = 1, the
Wasserstein 1-distance has a dual representation which is given as

W1(µ1, µ2) = sup
{∫

Rd
φ(x)d(µ1 − µ2)(x)

∣∣∣ φ ∈ Lip(Rd,R), ‖φ‖Lip ≤ 1
}
,

where ‖φ‖Lip denotes the Lipschitz constant of φ.

3. Presentation of main results. In this section, we briefly present our main
results on the collision avoidance and local well-posedness of the particle TCS model
and kinetic TCS equation, respectively.

First, we briefly review the previous results [3, 17, 24, 25, 26] on the particle and
kinetic C-S models with power-law communication weights from three perspectives:
“flocking dynamics, non-existence and local-in-time well-posedness”. As far as the
authors know, the particle C-S model with a singular communication weight was
first treated in [17] to study the flocking dynamics and then the global regularity
and emergence of finite-time collisions has been established in a series of works by
Peszek and his collaborators [3, 25, 26]. In a recent work [24], Mucha and Peszek
studied the existence of measure-valued solutions and weak-atomic uniqueness for
the kinetic C-S equation with singular communication weights. In the sequel, we
explicitly state our main results for the particle and kinetic TCS models. The
detailed proofs will be given in the later sections.

3.1. The particle TCS model. In this subsection, we provide two results on the
collision avoidance and asymptotic mono-cluster flocking of the particle TCS model.

Our first result deals with the collision avoidance and finite-time collisions of the
particle model (1) depending on the blow-up exponents at the singular point of the
communication weight φ and ζ in (1).

Theorem 3.1. (Collision avoidance and collisions) The following assertions hold.

1. Suppose that the blow-up exponents α and β in (3) and initial data (X0, V 0,Θ0)
satisfy

1 ≤ α ≤ β

2
and x0

i 6= x0
j for all 1 ≤ i 6= j ≤ N.
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Then, there exists a unique global solution (X,V,Θ) to (1)-(2) satisfying

xi(t) 6= xj(t) for all 1 ≤ i 6= j ≤ N and t ≥ 0.

2. Suppose that the exponent α in (3), number of particles and dimension d
satisfy

0 < α < 1 and N = 2, d = 1.

Then, there exists initial data (X0, V 0,Θ0) such that the local solution (X,V,Θ)
to (1)-(2) with initial data (X0, V 0,Θ0) satisfying a finite-time collision:

x1(tc) = x2(tc), for some time tc > 0.

Remark 1. For the second assertion, note that if all initial temperatures are equal
with θ∞, then the TCS model (1) reduces to the Cucker-Smale model (4) with
κ = κ1

θ∞ . Then we can directly use the results in [26], where the finite collision
between Cucker-Smale particles with singular communication weights are studied.
(See Section 4.3 for more details).

As a direct corollary of Theorem 3.1, we have the following equivalence relation.

Corollary 1. Let (X,V,Θ) be a solution of (1) - (2) with initial data (X0, V 0,Θ0).
If β ≥ 2α, then the following two statements are equivalent:

(i) The exponents α and β in the communication weights satisfy α ≥ 1.
(ii) For any d ≥ 1 and N ≥ 2, the particles will not collide with each other if they

are initially non-collisional.

Next, we introduce a concept of mono-cluster flocking for the TCS model (1) in
the following definition.

Definition 3.2. [19] Let Z = {(xi, vi, θi)} be a global solution to TCS model (1)-
(2). Then, the solution Z exhibits an asymptotic mono-cluster (global) flocking if
the following estimates hold: For 1 ≤ i, j ≤ N ,

sup
0≤t<∞

|xi(t)− xj(t)| <∞, lim
t→∞

(|vi(t)− vj(t)|+ |θi(t)− θj(t)|) = 0.

Remark 2. The mono-cluster flocking dynamics for the particle, kinetic, and hy-
drodynamic C-S models have been studied in [9, 11, 15, 17, 18, 20, 21, 22, 23, 27].

Our second result is concerned about the emergent dynamics of the TCS model
(1) - (2) with singular communications.

Theorem 3.3. (Emergence of mono-cluster flocking) Suppose that the exponents α
and β in (3) and initial data (X0, V 0,Θ0) satisfy the relations:

1 ≤ α ≤ β

2
, x0

i 6= x0
j for all 1 ≤ i 6= j ≤ N, D(Θ0) ≤ (θ0

m)2φ(D(X0))

2Cθ0
M

,

D(V 0) ≤ κ1

2θ0
M

∫ D∞X

D(X0)

φ(s)ds,
8

3C
φ(D(X0)) ≤ φ(D∞X ) < φ(D(X0)),

(10)

where C > 0 and D∞X are some positive constants. Then we have a mono-cluster
flocking:

sup
0≤t<∞

D(X(t)) ≤ D∞X , D(Θ(t)) ≤ D(Θ0)e
− κ2

(θ0
M

)2
ζ(D∞X )t

,

D(V (t)) ≤ D(V 0) exp

(
−κ1φ(D∞X )

θ0
M

t+
2κ1(θ0

M )2D(Θ0)

κ2(θ0
m)2ζ(D∞X )

)
, ∀ t ≥ 0.
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Remark 3. Note that the existence of global solutions is guaranteed by Theorem
3.1 at least under the conditions in (10) in the interactions kernels φ and ζ.

3.2. The kinetic TCS equation. We first recall the definition of weak solutions
to (5) in the following definition.

Definition 3.4 (Weak solution). For a given finite τ ∈ (0,∞), f = f(z, t) is a weak
solution of (5) in the finite time interval [0, τ) if and only if the following conditions
are satisfied:

1. f ∈ L∞(0, τ ; (L1
+ ∩ Lp)(R2d × R+)) ∩ C((0, τ);P1(R2d × R+)).

2. For any Φ ∈ C∞c (R2d × R+ × [0, τ)),∫
R2d×R+

f(z, τ)Φ(z, τ) dz −
∫
R2d×R+

f0(z)Φ(z, 0) dz

=

∫ τ

0

∫
R2d×R+

f(∂tΦ + v · ∇xΦ + F [f ] · ∇vΦ + G[f ]∂θΦ) dz dt.

(11)

Then, our third result is concerned with local-in-time existence of weak solutions.

Theorem 3.5. Suppose that p, α, β and initial data f0 satisfy the following rela-
tions:

1 ≤ p ≤ ∞, 0 < α, β <
d

p∗
− 1, f0 ∈ (L1

+ ∩ Lp ∩ P1)(R2d × R+),

suppvf
0(x, ·, θ) ⊂ Rd, suppθf

0(x, v, ·) ⊂ R+, for each x, v ∈ Rd, θ ∈ R+,

where p∗ is the Hölder conjugate of p defined by 1/p+ 1/p∗ = 1. Then, there exists
a unique weak solution f to (5) in the sense of Definition 3.4 in the time interval
[0, τ) for some τ > 0 satisfying uniform stability in Wasserstein-1 distance: For
two local-in-time solutions fi, i = 1, 2 to (5), we have

sup
0≤t≤τ

W1(f1(t), f2(t)) ≤ G0W1(f0
1 , f

0
2 ),

where G0 is a positive constant independent of the time τ .

4. A global regularity v.s. finite time collision. In this section, we provide
the detailed proof of Theorem 3.1. For this, we use a similar strategy to that in
[3] which is based on the construction of a system of locally dissipative differential
inequalities (SDDI) for quantifying collisions between particles. Note that this idea
is proposed in [17] to show the flocking behavior of the original Cucker-Smale model.

4.1. Global regularity. For a fixed T ∈ (0,∞), assume that there is t0 ∈ (0, T ]
in which at least two particles are colliding with another, i.e., there is two indices i
and j such that

lim
t→t0−

(xi(t)− xj(t)) = 0.

Next, we will consider colliding particles and non-colliding particles separately. For
the colliding particles, we will use the standard index changing trick (i, j) ↔ (j, i)
to estimate, and for the non-colliding particles, we will use the Lipschtiz continuity
of interaction kernel φ away from 0. More precisely, suppose that t0 is the first
collision time, and define the set of all indices j ∈ {1, · · · , N} that the j-th particle
collides with the l-th particle by

[l] :=
{
j ∈ {1, · · · , N} | rjl → 0 as t→ t−0

}
,
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i.e., [l] denotes the set of all particles which will collide with the l-th particle at
time t = t−0 . Let δ be a positive constant such that

rjl(t) ≥ δ > 0 in [0, t0) for all j /∈ [l].

Without loss of generality, we may assume rjl < 1. Now we define

‖X‖[l](t) :=

√∑
i,j∈[l]

|xi(t)− xj(t)|2 and ‖V ‖[l](t) :=

√∑
i,j∈[l]

|vi(t)− vj(t)|2.

(12)
Note that ‖X‖[l](t)→ 0 as t→ t−0 .

Lemma 4.1. Suppose that the exponents α and β in (3) satisfy the condition

1 ≤ α ≤ β

2
,

and let (xi, vi, θi) be the solution of (1) with initial condition (x0
i , v

0
i , θ

0
i ), and let

t0 > 0 is the first collision time. Then ‖X‖[l] and ‖V ‖[l] in (12) satisfy

d

dt
‖X‖[l] ≤ ‖V ‖[l], 0 < t < t0,

d

dt
‖V ‖[l] ≤ −C1φ(‖X‖[l])‖V ‖[l] + C2

√
P(X,Θ) + C3,

(13)

where Ci, i = 1, 2, 3 are positive constants.

Proof. • Step A (Derivation of (13)1): By definition in (12), we have

d

dt
‖X‖[l] ≤ ‖V ‖[l].

• Step B (Derivation of (13)2): We use (1)2 to obtain

d

dt
‖v‖2[l]

= 2
∑
i,j∈[l]

〈
vi − vj ,

κ1

N

N∑
k=1

φ(rki)

(
vk
θk
− vi
θi

)
− κ1

N

N∑
k=1

φ(rkij)

(
vk
θk
− vj
θj

)〉

=
2κ1

N

 ∑
i,j,k∈[l]

+
∑
i,j∈[l]

k/∈[l]

[φ(rki)

〈
vk
θk
− vi
θi
, vi − vj

〉
− φ(rkj)

〈
vk
θk
− vj
θj
, vi − vj

〉]

=: I11 + I12.

� (Estimation for I11): We use the symmetry of the communication kernel φ and
index exchange trick (i, k)←→ (k, i) and Cauchy-Schwarz’s inequality to get

I11 =
2κ1

N

∑
i,j,k∈[l]

φ(rki)

〈
vk
θk
− vi
θi
, vi − vj

〉

= −2κ1

N

∑
i,j,k∈[l]

φ(rki)

〈
vk
θk
− vi
θi
, vk − vj

〉
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=
κ1

N

∑
i,j,k∈[l]

φ(rki)

〈
vk
θk
− vi
θi
, vi − vk

〉

= −κ1|[l]|
N

∑
i,j∈[l]

φ(rij)

〈
vi
θi
− vj
θj
, vi − vj

〉

= −κ1|[l]|
N

∑
i,j∈[l]

φ(rij)

θi
|vi − vj |2 +

κ1|[l]|
N

∑
i,j∈[l]

φ(rij)
θi − θj
θiθj

〈vj , vi − vj〉

≤ −κ1|[l]|
N

∑
i,j∈[l]

φ(rij)

θi
|vi − vj |2 +

κ1|[l]|
N

 ∑
i,j∈[l]

φ2(rij)
|θi − θj |2

θ2
i θ

2
j

|vj |2
 1

2

‖V ‖[l],

where we used the relation:

vi
θi
− vj
θj

=
vi − vj
θi

+
( 1

θi
− 1

θj

)
vj =

vi − vj
θi

+
(θj − θi)
θiθj

vj .

We use Lemma 2.1 and the assumption α ≤ β/2 to obtain

|vj | =
1

N

∣∣∣∣∣
N∑
k=1

(vj − vk)

∣∣∣∣∣ ≤ 1

N

N∑
k=1

|vj − vk| ≤ D(V ) ≤ Ct0 , and φ2 ≤ ζ (14)

for 0 ≤ t ≤ t0, where we used φ2(s) ≤ ζ(s) for s < 1. Then we find

I11 ≤ −
κ1|[l]|
N

∑
i,j∈[l]

φ(rij)

θi
|vi − vj |2 +

κ1C
2
t0 |[l]|
T 0
m


N∑

i,j=1

ζ(rij)
|θi − θj |2

θiθj︸ ︷︷ ︸
=P(X,Θ)


1/2

‖V ‖[l].

Now, we define positive constants C1 and C2 as

C1 :=
κ1|[l]|
2Nθ0

M

and C2 :=
κ1C

2
t0 |[l]|

2θ0
m

.

This gives

I11 ≤ −2C1

∑
i,j∈[l]

φ(rij)|vi − vj |2 + 2C2P1/2‖V ‖[l].

• (Estimation for I2): We rearrange terms to get

I12 =
2κ1

N

∑
i,j∈[l]

k/∈[l]

[
φ(rki)

〈vk
θk
− vi
θi
, vi − vj

〉
− φ(rkj)

〈vk
θk
− vj
θj
, vi − vj

〉]

=
2κ1

N

∑
i,j∈[l]

k/∈[l]

[
φ(rki)

〈vj
θj
− vi
θi
, vi − vj

〉
+ (φ(rki)− φ(rkj))

〈vk
θk
− vj
θj
, vi − vj

〉]

=: I121 + I122.



392 YOUNG-PIL CHOI, SEUNG-YEAL HA AND JEONGHO KIM

� (Estimation for I121): We use Lemma 2.1 and (14) to obtain

I121 = −2κ1

N

∑
i,j∈[l]

k/∈[l]

φ(rki)

θi
|vi − vj |2 +

2κ1

N

∑
i,j∈[l]

k/∈[l]

φ(rki)
θi − θj
θiθj

〈vj , vi − vj〉

≤ 2κ1

N

∑
i,j∈[l]

k/∈[l]

φ(rki)
θi − θj
θiθj

〈vj , vi − vj〉

≤ 2κ1(N − |[l]|)
Nδα(θ0

m)2
D(Θ)D(V )

∑
i,j∈[l]

|vi − vj |

≤ 2κ1(N − |[l]|)
Nδα(θ0

m)2
D(Θ0)Ct0 |[l]|‖V ‖[l],

(15)

where we used Cauchy-Schwarz inequality in the last inequality.
� (Estimation for I122): We use the Lipschitz continuity of φ far from 0 and (14)

to find

I122 ≤
2κ1

N

∑
i,j∈[l]

k/∈[l]

|φ(rki)− φ(rkj)|
∣∣∣∣〈vkθk − vj

θj
, vi − vj

〉∣∣∣∣
≤ 2κ1

N

∑
i,j∈[l]

k/∈[l]

|φ(rki)− φ(rkj)|
∣∣∣∣vk − vjθk

+ vj

(
1

θk
− 1

θj

)∣∣∣∣ |vi − vj |
≤ 2κ1

N

∑
i,j∈[l]

k/∈[l]

Lδ|xi − xj |
(
D(V )

θ0
m

(
1 +

D(Θ)

θ0
m

))
|vi − vj |

≤ 2κ1Lδ(N − |[l]|)
N

Ct0
θ0
m

(
1 +

D(Θ0)

θ0
m

) ∑
i,j∈[l]

|xi − xj ||vi − vj |

≤ 2κ1Lδ(N − |[l]|)
N

Ct0
θ0
m

(
1 +

D(Θ0)

θ0
m

)
C̃t0 |[l]|‖V ‖[l],

(16)

where Lδ is a positive constant defined by the following relation:

Lδ := ||φ||Lip(|r|≥δ).

Now we combine (15) and (16) to obtain

I12 ≤
2κ1(N − |[l]|)
Nδα(θ0

m)2
D(Θ0)Ct0 |[l]|‖V ‖[l]

+
2κ1Lδ(N − |[l]|)

N

Ct0
θ0
m

(
1 +

D(Θ0)

θ0
m

)
C̃t0 |[l]|‖V ‖[l]

=: 2C3‖V ‖[l].
Finally, we combine all the above estimates to get

d

dt
‖V ‖2[l] ≤ I11 + I12 ≤ −2C1φ(‖x‖[l])‖V ‖2[l] + 2C2P1/2‖V ‖[l] + 2C3‖V ‖[l],

or equivalently,

d

dt
‖V ‖[l] ≤ −C1φ(‖X‖[l])‖V ‖[l] + C2

√
P + C3.
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4.2. Proof of the first part in Theorem 3.1. We are now ready to provide the
proof of the first part of Theorem 3.1. We apply Grönwall’s inequality for (13)2 to
yield

‖V ‖[l](t) ≤ ‖V ‖[l](s)e−C1

∫ t
s
φ(‖X‖[l](τ))dτ

+

∫ t

s

(
C2

√
P(τ) + C3

)
e−C1

∫ t
τ
φ(‖X‖[l](σ)dσ)dτ.

(17)

We set

Φ(x) :=

∫ x

φ(y) dy. (18)

On the other hand, we use (13)1 and to obtain

|Φ(‖X‖[l](t))| ≤
∫ t

s

φ(‖X‖[l](τ))‖V ‖[l](τ)dτ︸ ︷︷ ︸
=:J (s,t)

+|Φ(‖X‖[l](s))|. (19)

Next, we claim:

|J (t, s)| ≤ CJ for 0 ≤ s, t ≤ t0.

Proof of claim: First, we set

B(s, t) := e−C1

∫ t
s
φ(‖X‖[l](σ))dσ.

Then, it is easy to see that

∂tB = −C1φ(‖X‖[l](t))B(s, t) and B(τ, t)B(s, τ) = B(s, t), for s ≤ τ ≤ t.
(20)

Note that

‖V ‖[l](t) ≤ ‖V ‖[l](s)B(s, t) +

∫ t

s

(C2

√
P(τ) + C3)B(τ, t) dτ

≤ C4B(s, t) +

∫ t

s

(C2

√
P(τ) + C3)B(τ, t) dτ.

Thus, we have

J (s, t) ≤
∫ t

s

φ(‖X‖[l](τ))
[
C4B(s, τ) +

∫ τ

s

(C2

√
P(σ) + C3)B(σ, τ) dσ

]
dτ

=: I31 + I32.

(21)

Next, we estimate the terms I3i, i = 1, 2 separately.
• (Estimation for I31): We use (20) together with the fact B(s, s) = 1 and B ≥ 0
to find

I31 = C4

∫ t

s

φ(‖X‖[l](τ))B(τ, s) dτ = −C4

C1

∫ t

s

∂τ (B(τ, s)) dτ ≤ C4

C1
. (22)
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• (Estimation for I32): By direct calculation, we have

I32 =

∫ t

s

φ(‖X‖[l](τ))
[ ∫ τ

s

(C2

√
P(σ) + C3)

B(τ, s)

B(σ, s)
dσ
]
dτ

=

∫ t

s

φ(‖x‖[l](τ))B(τ, s)
[ ∫ τ

s

(C2

√
P(σ) + C3)

1

B(σ, s)
dσ
]
dτ

= − 1

C1
B(t, s)

∫ t

s

(
C2

√
P(σ) + C3

) 1

B(σ, s)
dσ

+
1

C1

∫ t

s

[
C2

√
P(τ) + C3

]B(τ, s)

B(τ, s)
dτ

≤ 1

C1

∫ t

s

(
C2

√
P(τ) + C3

)
dτ

≤ C5,

(23)

where we used integration by parts and
∫ t

0
P(s)ds <∞ in Lemma 2.2. In (21), we

combine estimates (22) and (23) to obtain

J (s, t) ≤ C4

C1
+ C5.

However, if α ≥ 1,

Φ(s) =

 s1−α

1− α
if α > 1,

log s if α = 1.

Hence we have
|Φ(‖X‖[l](t))| → ∞ as t→ t−0 . (24)

On the other hand in (19), we have

|Φ(‖X‖[l](t))| <∞,
which is contradictory to (24). �

4.3. Proof of the second part in Theorem 3.1. In this section, we provide
some initial configurations leading to collision between TCS particles in finite time.
Note that if all initial temperatures are the same, then the TCS system (1)-(2) can
be reduced to the particle C-S model with singular communication weight which
has been extensively studied in [1, 2, 3, 26, 25]. In particular, the authors in
[26] showed that the finite time collision between the Cucker-Smale particles with
singular weights under certain assumptions on the initial configurations. For the
same initial temperatures, as a direct application of [26, Proposition 3.1], we have
a counterexample leading to the finite time collision.

More precisely, consider a two-body system on the real line, and its initial con-
figuration (x0

i , v
0
i , θ

0
i ), i = 1, 2 is given by the following conditions:

x0
1 > x0

2, v0
2 − v0

1 =
κ1

θ0(1− α)
(x0

1−x0
2)1−α, θ0

1 = θ0
2 =: θ0 > 0, 0 < α < 1.

Then there exists a finite time tc < ∞ such that x1(tc) = x2(tc) (see [26] for
detailed argument). Inspired by the above observation, we can construct the initial
configurations leading to the finite time collision between TCS particles even for
the case where the initial temperatures can be different from each other. For this,
we again consider a two-body system on the real line:
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ẋ1 = v1, ẋ2 = v2, t > 0,

v̇1 =
κ1

2
φ(|x1 − x2|)

(
v2

θ2
− v1

θ1

)
, v̇2 =

κ1

2
φ(|x1 − x2|)

(
v1

θ1
− v2

θ2

)
,

θ̇1 =
κ2

2
ζ(|x1 − x2|)

(
1

θ1
− 1

θ2

)
, θ̇2 =

κ2

2
ζ(|x1 − x2|)

(
1

θ2
− 1

θ1

)
,

φ(|x1 − x2|) =
1

|x1 − x2|α
, ζ(|x1 − x2|) =

1

|x1 − x2|β
, 0 < α < 1, β > 0.

(25)

In the sequel, we will show that there exists an initial configuration leading to the
finite time collision for the system (25).

Next, we define the difference of positions, velocities and temperatures of two
particles as follows:

x(t) := x1(t)− x2(t), v(t) := v1(t)− v2(t), θ(t) := θ1(t)− θ2(t).

Then the TCS dynamics can be rewritten in terms of (x, v, θ):

dx

dt
= v,

dv

dt
= κ1φ(x)

(
v2θ

θ1θ2
− v

θ1

)
,

dθ

dt
= −κ2ζ(x)

θ

θ1θ2
, t > 0. (26)

To show the finite-time collisions in one-dimensional setting for the two-particle
system, we consider the following initial configuration (see Figure 1):

x0
2 < x0

1, v0
2 > 0 > v0

1 , θ0
2 > θ0

1.

Figure 1. Initial configuration

In the sequel, we will show that as long as there is no collisions between two
particles, the ordering of velocity and temperatures will remain as it is, i.e., before
the collision, we will have

v2(t) > 0, θ2(t) > θ1(t), i.e.,
v2θ

θ1θ2
> 0.

• Step A: First of all, we will prove θ1(t) < θ2(t) until the collision happens if
0 < θ0

1 < θ0
2. To show this, suppose that there exists 0 < t∗ < ∞ such that

θ1(t∗) = θ2(t∗) and θ1(t) < θ2(t) for 0 ≤ t < t∗. Moreover, suppose |x(t)| > δ for
0 ≤ t ≤ t∗ to assure that there is no collision up to time t∗. Then from the equation
(25), we get

dθ

dt
= −κ2ζ(x)

θ

θ1θ2
≤ −κ2ζ(δ)

θ

(θ0
1)2

, 0 < t < t∗.

Now, we use Grönwall’s lemma to get

θ(t) ≤ θ0 exp

(
−κ2ζ(δ)t

(θ0
1)2

)
, 0 ≤ t < t∗.

This implies θ(t∗) ≤ θ0 exp
(
− κ2ζ(δ)t∗

(θ0
1)2

)
< 0, which is a contradiction to θ(t∗) = 0.

Thus we obtain that θ1(t) < θ2(t) until the collision occurs.
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• Step B: Next we will show that the velocity of each particle maintains its sign
until the collision occurs. More precisely, we will show v2(t) > 0. To show this, due
to the zero-mean velocity condition, it suffices to show v(t) < 0 until the collision.
Similar to Step A, we again assume that there exists t∗ <∞ such that

v(t∗) = 0, and v(t) < 0, |x(t)| > δ, for 0 ≤ t < t∗.

Then it follows from (26) that

dv

dt
= κ1φ(x)

(
v2θ

θ1θ2
− v

θ1

)
≤ −κ1φ(x)v

θ1
≤ −κ1φ(δ)v

θ0
1

, 0 < t < t∗.

Here, we use the fact that v(t) < 0 and θ(t) < 0 for 0 ≤ t < t∗. Again, it follows
from Grönwall’s lemma that we have

v(t) ≤ v0 exp

(
−κ1φ(δ)t

θ0
1

)
, 0 ≤ t < t∗,

which is a contradictory to v(t∗) = 0 since v0 < 0. Hence, we have v(t) < 0 and
consequently v2(t) > 0 until the collision occurs.

• Step C: So far, we have obtained v2 > 0 and θ < 0 as long as there is no collisions
between TCS particles. Thus, we have

v2θ

θ1θ2
< 0,

This together with (26)2 yields a differential inequality for v:

dv

dt
≤ −κ1φ(x)v

θ1
≤ −κ1φ(x)v

θ0
1

.

Now, we set

Φ(r) :=

∫ r

φ(s) ds =
1

1− α
r1−α,

i.e., Φ is a primitive of φ. Then the above differential inequality can be rewritten
as

dv

dt
≤ −κ1

θ0
1

d

dt
(Φ(x)) .

We integrate the above equation from 0 to t > 0 to obtain

v(t)− v0 ≤ −κ1

θ0
1

(Φ(x(t))− Φ(x0)). (27)

On the other hand, under our main assumptions in Theorem 3.1, we find

v0 = − κ1

θ0
1(1− α)

(x0
1 − x0

2)1−α = −κ1

θ0
1

Φ(x0).

Thus, (27) is again reduced to the following sub-linear differential inequality:

dx

dt
= v(t) ≤ −κ1

θ0
1

Φ(x(t)) ≤ − κ1

θ0
1(1− α)

(x(t))1−α,

which is equivalent to
d

dt
(x(t)α) ≤ − κ1α

θ0
1(1− α)

.

This yields

x(t)α ≤ xα0 −
κ1α

θ0
1(1− α)

t.
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Hence, we have that the collision will occur at some time t0 earlier than (xα0 θ
0
1(1−

α))/(κ1α). �

4.4. Proof of Theorem 3.3. In this subsection, we study a mono-clustering of
the thermomechanical Cucker-Smale model (1)-(2). Note that the global existence
of solutions is guaranteed by Theorem 3.1. The proof of Theorem 3.3 is exactly
the same as in [12, Theorem 3.1]. More precisely, in [12], system (1)-(2) with
regular weights are taken into account and the asymptotic emergent behavior is also
obtained. However, the strategy used in [12] does not depend on the singularity of
φ or ζ, thus we can directly apply it to our system with singular communications.
Thus, we briefly sketch the details of the proof of Theorem 3.1 here. Below, we
sketch the proof in two steps:
• Step A (Derivation of differential inequalities): We first derive a system of differ-
ential inequalities for the extreme values for positions, velocities, and temperatures
as follows: ∣∣∣∣dD(X)

dt

∣∣∣∣ ≤ D(V ), t > 0,

dD(V )

dt
≤ −κ1φ(D(X))

θ0
M

D(V ) + 2
κ1

(θ0
m)2

D(Θ)D(V ),

dD(Θ)

dt
≤ −κ2ζ(D(X))

(θ0
M )2

D(Θ).

(28)

• Step B (Exponential flocking from the SDDI) : The next step is showing the
exponential flocking from the SDDI (28). To do this, we first assume that the
following conditions for initial configuration hold: Suppose that there exist X∞ ≥ 0
such that

bD(Θ(0)) ≤ aφ(D(X(0)))

4
, D(V (0)) ≤ a

2

∫ X∞

D(X(0))

φ(s) ds,

and
2

3
φ(D(X(0))) ≤ φ(X∞) < φ(DX(0)).

Then, we use the bootstrapping argument to conclude the following flocking esti-
mation:

sup
0≤t<∞

D(X(t)) ≤ X∞, D(V (t)) ≤ D(V (0))e−aφ(X∞)+
bD(Θ(0))
cζ(X∞) ,

and

D(Θ(t)) ≤ D(Θ(0))e−cζ(X
∞)t, t ≥ 0.

�

5. Local well-posedness of the kinetic TCS equation. In this section, we
provide a local-in-time well-posedness of weak solutions (see Definition 3.4) to the
kinetic TCS equation:

∂tf +∇x · (vf) +∇v · (F [f ]f) + ∂θ(G[f ]f) = 0, x, v ∈ Rd, θ ∈ R+, t > 0,

F [f ](z, t) := −κ1

∫
R2d×R+

φ(x− x∗)
(v
θ
− v∗
θ∗

)
f(z∗, t) dz∗,

G[f ](x, θ, t) := κ2

∫
R2d×R+

ζ(x− x∗)
(1

θ
− 1

θ∗

)
f(z∗, t) dz∗,

(29)
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where the interaction kernels are given as follows:

φ(s) :=
1

sα
, ζ(s) =

1

sβ
, with α, β > 0.

The existence of weak solutions to (29) will be obtained via a suitable weak limit
of the regularized system for (29). To do so, we introduce a radially symmetric
standard mollifiers η ∈ C∞c (Rd) and its scaled family:

η(x) = η̃(|x|) ≥ 0, supp η ⊂ B1(0),

∫
Rd
η(x) dx = 1, ηε(x) :=

1

εd
η
(x
ε

)
.

Now, we use this family of mollifier to mollify the communication kernels:

φε := φ ∗ ηε and ζε = ζ ∗ ηε for each ε > 0.

With the regularized weights φε and ζε, we have the regularized system:

∂tfε + v · ∇xfε +∇v · [Fε(fε)fε] + ∂T [Gε(fε)fε] = 0, x, v ∈ Rd, θ ∈ R+, t > 0,

Fε(fε)(z, t) :=

∫
R2d×R+

φε(|x− x∗|)
(v∗
θ∗
− v

θ

)
fε(z∗, t) dz∗,

Gε(fε)(x, θ, t) :=

∫
R2d×R+

ζε(|x− x∗|)
(1

θ
− 1

θ∗

)
fε(z∗, t) dz∗,

fε(z, 0) =: f0(z).

(30)

Note that the global-in-time existence of solution to (30) can be proved by using
standard method of characteristics since all of the kernels are regular enough.

5.1. A priori estimates. We next provide uniform estimates for f in Lp-norm
and the velocity support of f with respect to the regularization parameter ε. For
this, we present several lemmas.

Lemma 5.1. For p ∈ [1,∞), let X and Y be two positive differentiable functions
satisfying

dX(t)

dt
≤ CX2(t)(Y

d
p′ (t) + 1),

dY (t)

dt
≤ CX(t)Y (t)(Y

d
p′ (t) + 1), t > 0,

where C is a positive constant and p′ is Hölder conjugate of p. Then, there exist
τ <∞ and positive constant C such that

sup
t∈[0,τ ]

(X(t) + Y (t)) ≤ C.

Proof. We set X̃ and Ỹ :

X̃ := X + 1, Ỹ := Y + 1.

Then, X̃ and Ỹ satisfy the following differential inequalities:

dX̃

dt
=
dX

dt
≤ CX2(Y

d
p′ + 1) ≤ CX̃2Ỹ

d
p′ , t > 0,

dỸ

dt
=
dY

dt
≤ CXY (Y

d
p′ + 1) ≤ CX̃Ỹ

(
1+ d

p′

)
.

This yields
d

dt
(X̃ + Ỹ ) ≤ CX̃Ỹ

d
p′ (X̃ + Ỹ ) for t ≥ 0. (31)
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On the other hands, we use Young’s inequality to get

X̃Ỹ
d
p′ ≤ C(X̃

d
p′+d + Ỹ

d
p′+d ) ≤ C(X̃ + Ỹ )

d
p′+d .

This together with (32) gives

d

dt
(X̃ + Ỹ ) ≤ C(X̃ + Ỹ )

1+ d
p′+d .

Therefore, although the value X̃+Ỹ may blow up at the finite time t̃, we can choose
smaller time τ < t̃ so that we have the following uniform bound for X̃ + Ỹ in time
interval [0, τ ]

sup
0≤t≤τ

(X(t) + Y (t)) ≤ sup
0≤t≤τ

(X̃(t) + Ỹ (t)) ≤ C,

which yields the desired estimate.

In next lemma, we show that ‖fε‖L1∩Lp and the velocity support of f satisfy
the system of differential inequalities in Lemma 5.1. For t ≥ 0, we set the velocity
support Rεv:

Rεv := max
{
|v0| : v0 ∈ {v ∈ Rd : ∃z ∈ R2d × R+ such that fε(z, t) 6= 0}

}
.

Lemma 5.2. Let fε = fε(z, t) be a solution for the regularized system (30). Then,
there exists a positive constant C > 0 independent of ε such that

d

dt
‖fε‖L1∩Lp ≤ C

[
(Rεv)

d
p′ + 1

]
‖fε‖2L1∩Lp , t > 0,

dRεv
ds
≤ CRεv

[
(Rεv)

d
p′ + 1

]
‖fε‖L1∩Lp .

(32)

Proof. Below, we will derive the differential inequalities one by one.
• (Derivation of (32)1): We use (3) to obtain

d

dt

∫
R2d×R+

fpε dz = −(p− 1)

∫
R2d×R+

(∇v · (Fε[fε]) + ∂θGε[fε])fpε dz. (33)

To estimate the R.H.S. of (33), we use the standard cutoff function χ1 ∈ C∞c (Rd):

χ1(x) :=

{
1 |x| ≤ 1,

0 |x| > 2.

We use a similar strategy in [2] to estimate ‖∇v · (Fε[fε])‖∞. For the convenience
of reader, we provide the detailed calculation. We separate φε = φ ∗ ηε as

φ ∗ ηε = (φχ1) ∗ ηε + (φ(1− χ1)) ∗ ηε

and use Young’s convolution inequality to get following inequalities:

‖(φχ1) ∗ ηε‖Lp′ ≤ ‖φχ1‖Lp′‖ηε‖L1 = ‖φχ1‖Lp′ < C,

‖(φ(1− χ1)) ∗ ηε‖L∞ ≤ ‖φ(1− χ1)‖L∞ ≤ 1.
(34)
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Now, thanks to the boundedness of velocity support and (34), we have

|∇v · (Fε[fε])|

=
d

θ

∫
R2d×R+

φε(|x− x∗|)fε(z∗, t) dz∗

≤ d

θm

(∫
R2d×R+

|(φχ1) ∗ ηε||fε| dz∗ +

∫
R2d×R+

|(φ(1− χ1)) ∗ ηε||fε| dz∗
)

≤ C
(
‖(φχ1) ∗ ηε(x)1B(0,Rεv)(v)‖Lp′‖f‖Lp + ‖(φ(1− χ1)) ∗ ηε‖L∞‖fε‖1

)
≤ C(Rv)

d
p′ ‖φχ1‖Lp′‖fε‖Lp + ‖φ(1− χ1)‖L∞‖fε‖1

= C
(

(Rv)
d
p′ + 1

)
‖fε‖L1∩Lp ,

for some C > 0 which is independent of ε. Similarly, we also estimate ‖∂θ(Gε[fε])‖∞
as

|∂θGε[fε]| ≤
1

θ2
m

(∫
R2d×R+

|(ζχ1) ∗ ηε||fε| dz∗ +

∫
R2d×R+

|(ζ(1− χ1)) ∗ ηε||fε| dz∗
)

≤ C(Rv)
d
p′ ‖ζχ1‖Lp′‖fε‖Lp + ‖ζ(1− χ1)‖L∞‖fε‖1

= C
(

(Rv)
d
p′ + 1

)
‖fε‖L1∩Lp .

Thus, we have

d

dt
‖fε‖L1∩Lp ≤ C

(
(Rv)

d
p′ + 1

)
‖fε‖2L1∩Lp for t > 0,

where C > 0 is independent of ε.

• (Derivation of (32)2): Consider a characteristic curve similarly defined as in (9),
generated by approximated solutions fε and gε. Then along that specific charac-
teristic curve which gives the maximum modulus of velocity, we have

1

2

d

ds
(Rεv)

2 ≤ (Rεv)
2(s)

θm

∫
R2d×R+

φ(|x(s)− x∗|)f(y, v∗, θ∗, s) dz∗

≤ C(Rεv)
2
(

(Rεv)
d
p′ + 1

)
‖fε‖L1∩Lp .

Note that in the last inequality, we used similar estimate as in the previous step.
Thus we have

dRεv
ds
≤ CRεv

(
(Rεv)

d
p′ + 1

)
‖fε‖L1∩Lp ,

where C > 0 is independent of ε.

By direct applications of Lemma 5.1 and Lemma 5.2, we have the following
uniform bound estimates and stability estimate.

Proposition 2. The following assertions hold.

1. (Uniform boundedness): Let fε be a solution of the regularized system (30).
Then there exist a positive constant τ such that uniform L1 ∩ Lp-estimate of
fε and the boundedness of velocity support hold:

sup
t∈[0,τ ]

‖fε‖L1∩Lp ≤ C, Rv(t) := sup
t∈[0,τ ]

|Ωv(t)| ≤ C,

where C is a positive constant independent of ε.
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2. Let fε and fε′ be two solutions of the system (29). Then there exists C inde-
pendent of ε and ε′ such that

d

dt
W1(fε(t), fε′(t)) ≤ C(W1(fε(t), fε′(t)) + ε+ ε′), ∀ 0 ≤ t < τ.

Proof. (1) The uniform boundedness follow from Lemma 5.1 and Lemma 5.2.
(2) The stability estimate can be done as for the regular case. First, we define
the family of characteristic curves Zε(s) := (xε(s), vε(s), θε(s)) as a solution to the
following ODEs:

d

dt
xε(t; s, x, v, θ) = vε(t; s, x, v, θ), 0 ≤ s ≤ t

d

dt
vε(t; s, x, v, θ) = Fε[fε](Zε(t; s, x, v, θ), t),

d

dt
θε(t; s, x, v, θ) = Gε[fε](xε(t; s, x, v, θ), θε(t; s, x, v, θ), t),

(35)

and define Zε′ in similar way. Note that Zε is well-defined since φε and ζε are
regular kernels. Now, we define the optimal transport map

T 0(x, v, θ) = (T 0
1 (x, v, θ), T 0

2 (x, v, θ), T 0
3 (x, v, θ))

between fε(t0) and fε′(t0), i.e., fε′(t0) = T 0#fε(t0). Moreover, as in [17], we can
obtain fε(t) = Zε(t; t0, ·, ·, ·)#fε(t0). We combine two observations to get

T t#fε(t) = fε′(t), where T ′ := Zε′(t; t0, ·, ·, ·) ◦ T 0 ◦ Zε(t0; t, ·, ·, ·)

Now, it follows from the Proposition 1 that we have

W1(fε(t), fε′(t)) ≤
∫
R2d×R+

|Zε(t; t0, z)− Zε′(t; t0, T 0(z))|fε(z, t0) dz =: Qε,ε′(t).

Then, it follows from (35) that we have

d

dt
Qε,ε′(t)

∣∣∣
t=t0+

≤
∫
R2d×R+

∣∣∣vε(t; t0, z)− vε′(t; t0, T 0(z))
∣∣∣fε(z, t0) dz

∣∣∣
t=t0+

+

∫
R2d×R+

∣∣∣Fε[fε](Zε(t; t0, z), t)−Fε′ [fε′ ](Zε′(t; t0, T 0(z)), t)
∣∣∣fε(z, t0) dz

∣∣∣
t=t0+

+

∫
R2d×R+

∣∣∣Gε[fε](xε(t; t0, z), θε(t; t0, z), t)
− Gε

′
[fε′ ](xε′(t; t0, T 0(z)), θε′(t; t0, T 0(z)), t)

∣∣∣fε(z, t0) dz
∣∣∣
t=t0+

=: I41 + I42 + I43.

Below, we estimate the terms I4i separately.
• (Estimate of I41): By direct estimate, we have

I41 =

∫
R2d×R+

|v − T 0
2 (z)|fε(z, t0) dz ≤ CW1(fε(t0), fε′(t0)).

• (Estimate of I42): We separate I2 in two parts to get

I42 =

∫
R2d×R+

∣∣∣ ∫
R2d×R+

φε(x− y)
(v∗
θ∗
− v

θ

)
fε(z∗, t0) dz∗
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−
∫
R2d×R+

φε′(T 0
1 (z)− y)

(
v∗
θ∗
− T

0
2 (z)

T 0
3 (z)

)
fε′(z∗, t0) dz∗

∣∣∣fε(z, t0) dz

=

∫
R2d×R+

∣∣∣ ∫
R2d×R+

φε(x− y)

(
v∗
θ∗
− v

θ

)
fε(z∗, t0) dz∗

−
∫
R2d×R+

φε′(T 0
1 (z)− T 0

1 (z∗))

(
T 0

2 (z∗)

T 0
3 (z∗)

− T
0

2 (z)

T 0
3 (z)

)
fε′(z∗, t0) dz∗

∣∣∣fε(z, t0) dz.

Now, we define the further subterms of I42 as

I42 =:

∫
R2d×R+

|I421 + I422|fε(z, t0) dz ≤
∫
R2d×R+

|I421|+ |I422|fε(z, t0) dz,

where

I421 :=

∫
R2d×R+

(
φε(x− y)− φε′(T 0

1 (z)− T 0
1 (z∗))

)(v∗
θ∗
− v

θ

)
fε(z∗, t0) dz∗,

I422 :=

∫
R2d×R+

φε′(T 0
1 (z)− T 0

1 (z∗))
(v∗
θ∗
− v

θ

)
fε(z∗, t0) dz∗

−
∫
R2d×R+

φε′(T 0
1 (z)− T 0

1 (z∗))

(
T 0

2 (z∗)

T 0
3 (z∗)

− T
0

2 (z)

T 0
3 (z)

)
fε(z∗, t0) dz∗.

� (Estimate of I421): Again, we add and subtract terms to find

I421 ≤
∫
R2d×R+

|(φε − φε′)(x− y)|
∣∣∣∣v∗θ∗ − v

θ

∣∣∣∣ fε(z∗, t0) dz∗

+

∫
R2d×R+

∣∣φε′(x− y)− φε′(T 0
1 (z)− T 0

1 (z∗))
∣∣ ∣∣∣∣v∗θ∗ − v

θ

∣∣∣∣ fε(z∗, t0) dz∗.

Now we estimate |φε(x)− φ(x)| as

|φε(x)− φ(x)|

≤
∫
Rd
|φ(x− y)− φ(x)|θε(y) dy ≤ 2

∫
Rd

( 1

|x|1+α
+

1

|x− y|1+α

)
|y|θε(y)dy

≤ 2ε

∫
{y:|y|≤ε}

( 1

|x|1+α
+

1

|x− y|1+α

)
θε(y) dy ≤ Cε

|x|1+α
.

(36)

Recall that the velocity support and temperature support have finite diameters at
any finite time. Then, we use this fact together with the estimate (36) to obtain

∫
(R2d×R+)2

|(φε − φ)(x− y)|
∣∣∣∣v∗θ∗ − v

θ

∣∣∣∣ fε(z∗, t0)fε(z, t0) dzdz∗

≤ Cε
∫

(Rd×Ωv(τ)×ΩT (τ))2

1

|x− y|1+α
fε(z∗, t0)fε(z, t0) dzdz∗
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≤ Cε
∫
R2d×R+

(∫
{y:|x−y|<1}×Ωv(τ)×ΩT (τ)

+

∫
{y:|x−y|≥1}×Ωv(τ)×ΩT (τ)

1

|x− y|1+α
fε(z∗, t0) dz∗

)
fε(z, t0) dz

≤ Cε
∫
R2d×R+

[( ∫
{y:|x−y|<1}

1

|x− y|(1+α)p′
dy
) 1
p′ ‖fε‖Lp + ‖fε‖L1

]
fε(z, t0) dz

≤ Cε‖fε‖2

≤ Cε.

This yields∫
(R2d×R+)2

|(φε − φε′)(x− y)|
∣∣∣∣v∗θ∗ − v

θ

∣∣∣∣ fε(z∗) dz∗ ≤ C(ε+ ε′).

For the second term of I421, we again use the boundedness of velocity and temper-
ature support and change of variables to get∫

(Rd×Ωv(τ)×ΩT (τ))2

∣∣φε′(x− y)− φε′(T 0
1 (z)− T 0

1 (z∗))
∣∣ ∣∣∣∣v∗θ∗ − v

θ

∣∣∣∣ fε(z, t0)fε(z∗, t0) dzdz∗

≤ C
∫

(Rd×Ωv(τ)×ΩT (τ))2

|T 0
1 (z)− x|

|T 0
1 (z)− T 0

1 (z∗)|1+α
fε(z, t0)fε(z∗, t0) dzdz∗

+ C

∫
(Rd×Ωv(τ)×ΩT (τ))2

|T 0
1 (z)− x|
|x− y|1+α

fε(z, t0)fε(z∗, t0) dzdz∗

≤ C max(‖fε‖, ‖fε′‖)W1(fε(t0), fε′(t0)).

Thus, we combine these estimation to get∫
R2d×R+

|I421|fε(z, t0) dz ≤ C(W1(fε(t0), fε′(t0)) + ε+ ε′). (37)

� (Estimate of I422) : Similar to I421, we divide the term into two parts as∫
R2d×R+

|I422|fε(z, t0) dz

≤
∫

(R2d×R+)2

|φε′(T 0
1 (z)− T 0

1 (z∗))|
∣∣∣∣v∗θ∗ − T

0
2 (z∗)

T 0
3 (z∗)

∣∣∣∣ fε(z, t0)fε(z∗, t0) dzdz∗

+

∫
(R2d×R+)2

|φε′(T 0
1 (z)− T 0

1 (z∗))|
∣∣∣∣vθ − T 0

2 (z)

T 0
3 (z)

∣∣∣∣ fε(z, t0)fε(z∗, t0) dzdz∗

=: I4221 + I4222

However, it is easy to see that

I4221 =

∫
R2d×R+

(∫
Rd×Ωv(τ)×ΩT (τ)

|φε′(T 0
1 (z)− T 0

1 (z∗))|fε(z, t0) dz

)

×
∣∣∣∣v∗θ∗ − T

0
2 (z∗)

T 0
3 (z∗)

∣∣∣∣ fε(z∗, t0) dz∗

≤ C‖fε′‖
∫
R2d×R+

∣∣∣∣v∗θ∗ − T
0

2 (z∗)

T 0
3 (z∗)

∣∣∣∣ fε(z∗, t0) dz∗

≤ CW1(fε(t0), fε′(t0)).
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Similarly, we also can estimate I4222 to obtain

I4222 ≤ CW1(fε(t0), fε′(t0)).

Hence, we have∫
R2d×R+

|I422|fε(z, t0) dz ≤ I4221 + I4222 ≤ CW1(fε(t0), fε′(t0)). (38)

We combine (37)-(38) to get

I42 ≤ C(W1(fε(t0), fε′(t0)) + ε+ ε′).

• (Estimate of I43): We can estimate I3 in a same way with estimate of I42 and
get

I43 ≤ C(W1(fε(t0), fε′(t0)) + ε+ ε′).

Now, we combine the estimation of I4i for i = 1, 2, 3 to find

d

dt
Qε,ε′(t)

∣∣∣
t=t0+

≤ C(W1(fε(t0), fε′(t0)) + ε+ ε′).

This implies that for arbitrary t ∈ [0, τ), we have

d

dt
W1(fε(t), fε′(t)) ≤ C(W1(fε(t), fε′(t)) + ε+ ε′),

where C is a positive constant which does not depend on ε or ε′.

5.2. Proof of Theorem 3.5. Now, we are ready to prove the local-in-time ex-
istence and uniqueness of weak solution in the sense of Definition 3.4. Note that
Proposition 2 implies that the family of regularized solution {fε}ε≥0 is a Cauchy
sequence in C([0, τ ];P1(R2d×R+)) and hence there exists a limit function f . Then,
the remaining thing is to show that f is indeed the unique weak solution, and this
completes the proof of Theorem 3.5.
• (Existence part): Fix any test function Φ ∈ C∞c (R2d × R+ × [0, τ)). Then the
approximate solution fε satisfies∫

R2d×R+

fε(z, τ)Φ(z, τ) dz −
∫
R2d×R+

fε(z, 0)Φ(z, 0) dz

=

∫ τ

0

∫
R2d×R+

fε(∂tΦ + v · ∇xΦ + Fε[fε] · ∇vΦ + Gε[fε]∂θΦ) dz dt.

(39)

Note that we can pass the limit ε → 0 easily for the linear terms: As ε → 0, we
have∫

R2d×R+

fε(z, τ)Φ(z, τ) dz −
∫
R2d×R+

fε(z, 0)Φ(z, 0) dz

−→
∫
R2d×R+

f(z, τ)Φ(z, τ) dz −
∫
R2d×R+

f(z, 0)Φ(z, 0) dz,∫ τ

0

∫
R2d×R+

fε(∂tΦ + v · ∇xΦ) dz dt −→
∫ τ

0

∫
R2d×R+

f(∂tΦ + v · ∇xΦ) dz dt.

(40)
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Thus, we only need to show that as ε→ 0,∫ τ

0

∫
R2d×R+

fεFε[fε] · ∇vΦ dz dt→
∫ τ

0

∫
R2d×R+

fF [f ] · ∇vΦ dz dt,∫ τ

0

∫
R2d×R+

fεGε[fε]∂θΦ dz dt→
∫ τ

0

∫
R2d×R+

fG[f ]∂θΦ dz dt.

(41)

Since proofs of two limiting processes are almost same, we only focus on first limit
in (41). Note that∣∣∣∣∣

∫ τ

0

∫
R2d×R+

(fεFε[fε]− fF [f ]) · ∇vΦ dz dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ τ

0

∫
R2d×R+

fε (Fε[fε]−F [fε]) · ∇vΦ dz dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ τ

0

∫
R2d×R+

fε (F [fε]−F [f ]) · ∇vΦ dz dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ τ

0

∫
R2d×R+

(fε − f)F [f ] · ∇vΦ dz dt

∣∣∣∣∣
=: I51 + I52 + I53.

Next, we estimate the terms I5i, i = 1, 2, 3 separately.
� (Estimate of I51): As in [2, Section 3.2], we can estimate I51 as follows.

I51 =

∣∣∣∣∣
∫ τ

0

∫
(R2d×R+)2

(φε − φ)(|x− x∗|)(∇vΦ) ·
(
v∗
θ∗
− v

θ

)
fε(z, t)fε(z∗, t) dz dz∗ dt

∣∣∣∣∣
≤ Cε

∫ τ

0

∫
(Rd×Ωv(τ)×ΩT (τ))2

1

|x− x∗|1+α
fε(z, t)fε(z∗, t) dz dz∗ dt

≤ Cε‖fε‖2 ≤ Cε→ 0 as ε→ 0.

(42)

� (Estimate of I52): We set

H[fε](z, t) :=

∫
R2d×R+

fε(z∗, t)φ(|x∗ − x|)
(
v

θ
− v∗
θ∗

)
· ∇v∗Φ(z∗) dz∗.

Then, we have

I52 =

∣∣∣∣∣
∫ τ

0

∫
R2d×R+

H[fε](z∗, t)(fε(z∗, t)− f(z∗, t)) dz∗ dt

∣∣∣∣∣ .
On the other hand, we employ similar arguments as in the proof of Lemma 5.2 and
the estimate of I52 in the proof of Proposition 2, we find that the function H[fε] is
locally Lipschitz and bounded uniformly in ε. Thus, by definition, we obtain

I52 ≤ C sup
0≤t≤τ

W1(fε(t), f(t))→ 0 as ε→ 0. (43)

� (Estimate of I53): Similarly to previous case, we can also show that F [f ] · ∇vΦ is
locally Lipschitz and bounded, and consequently, we have

I53 ≤ C sup
0≤t≤τ

W1(fε(t), f(t))→ 0 as ε→ 0. (44)
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In (41), we collect all estimates (42), (43) and (44) to obtain the limiting convergence
(41)1. One can prove (41)2 in a similar way, as in the proof of (41)1. Thus, the
detailed proof of (41)2 is omitted. Finally, in (39), we combine (40) and (41) to
show that the limit function f satisfies the weak formulation (11).
• (Uniqueness and stability) : Let f1 and f2 be two weak solutions of equation (29)
with same initial data f0. Then, it follows from Proposition 2 that we have

d

dt
W1(f1(t), f2(t)) ≤ CW1(f1(t), f2(t)), t ∈ [0, τ).

Then, the Grönwall lemma yields the uniqueness of the solution.

6. Conclusion. In this paper, we have studied the dynamic features of the TCS
model with singular power-law kernels in their velocity and temperature dynamics.
For strong singularities in communication weights, collisions cannot occur in any
finite time. Thus, the classical Cauchy-Lipschitz theory can be applied to yield the
global existence of smooth solutions. In contrast, when the singularity is mildly
weak, finite-time collisions can still occur from some prepared initial configurations.
Hence, the global smooth solutions cannot be guaranteed in general. As far as the
authors know, after a finite-time collision occur, there is no existence theory after
collision time. Formal BBGKY hierarchy argument yields the kinetic TCS equation
with singular kernel. For this kinetic equation with singular kernel, we also provide
a local existence of weak solutions. At present, we do not have a global existence
theory for weak or strong solutions for the kinetic TCS equation. This will be an
interesting future work to be explored.
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