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Abstract. The aim of this short note is: (i) to report an error in [1]; (ii) to

explain why the comparison result of [1] lacks an hypothesis in the definition

of subsolutions if we allow them to be discontinuous; (iii) to describe a simple
counter-example; (iv) to show a simple way to correct this mistake, considering

the classical Ishii’s definition of viscosity solutions; (v) finally, to prove that

this modification actually fixes the the comparison and stability results of [1].

1. Introduction. The aim of this note is to report and correct an error that we
have found in [1]. We illustrate the problem we are facing by producing an explicit
counter-example to the comparison result but we also solve this difficulty by updat-
ing the definition of subsolutions (no modification is needed for the supersolution
condition). To give the reader a quick (yet precise) formulation of the corrections
we develop hereafter, let us summarize them as

1. All the results in [1] are valid, as they are formulated, if the subsolutions are
assumed to be continuous functions in RN .

2. All the results in [1] are also valid in the case of upper semi-continuous subso-
lutions, provided we assume that they satisfy an Ishii’s subsolution condition
in addition to the “stratified” definition found in [1].

Let us now give more details. In [1], we are considering deterministic control
problems whose dynamics and costs (b, l) at any point (x, t) ∈ RN × [0, T ] are
chosen in a bounded, closed and convex set BL(x, t). The classical Hamiltonian is
defined by

H(x, t, p) := sup
(b,l)∈BL(x,t)

{
− b · p− l

}
,

and the aim is to give a suitable sense and study the associated Hamilton-Jacobi-
Bellman Equation which, for classical problems, reads

wt +H(x, t,Dw) = 0 in RN × (0, T ] . (1)
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If, for such classical problems, BL(x, t) and H are continuous everywhere, having
a stratified problem means on the contrary that they can have discontinuities but
with a particular structure.

More precisely, RN can be decomposed as

RN = M0 ∪M1 ∪ · · · ∪MN ,

where, for any k, Mk is a k-dimensional submanifold of RN . The manifolds
M0,M1, . . . ,MN−1 are disjoints (but they may have several connected compo-
nents) and they are the locations where either BL(x, t) or H can have discontinu-
ities, which essentially means (taking into account the assumptions made on BL)
that we have more dynamics and costs on each Mk, which can be seen as specific
control problems on Mk.

To treat in a proper way these specific control problems on Mk, it is necessary
to introduce the Hamiltonians which are defined on Mk by

Hk(x, t, p) := sup
(b,l)∈BL(x,t)

b∈TxM
k

{
− b · p− l

}
,

where TxM
k is the tangent space to Mk at x and the associated Hamilton-Jacobi-

Bellman Equation

wt +Hk(x, t,Dw) = 0 on Mk × (0, T ] . (2)

The first aim of [1] was to provide a definition of viscosity sub and supersolution
for Hamilton-Jacobi-Bellman Equations in Stratified Domain [(HJB-SD) for short],
namely (1)-(2).

Before going further, we point out that we assume throughout this short note
that the natural assumptions for a stratified problem are always satisfied: (i) M =
(Mk)k=0..N is a regular stratification of RN , (ii) the Hamiltonians (or BL) satisfy
the key assumptions of [1], namely (TC) (tangential continuity), (NC) (normal
controllability) and (LP) (Lipschitz continuity).

The definition of super and subsolutions in [1] follows the ones of Bressan &
Hong [2]: a lower semi-continuous function v is a supersolution of (HJB-SD) if it is
a supersolution of (1) in the classical Ishii’s sense, while an upper semi-continuous
function u is a subsolution of (HJB-SD) if it is a subsolution (again in the classical
Ishii’s sense) of each equation (2) for any k = 0, · · · , N . And it is worth pointing
out that these Hk-inequalities are really inequalities on Mk × (0, T ], i.e. they are
obtained by considering maxima of u − φ on Mk × (0, T ] for any smooth test-
function φ.

Unfortunately, this way of defining subsolutions only in terms of the Hk’s is not
sufficent since it treats all the Mk separately without linking them and this allows u
to have artificial values on certain manifolds Mk. Let us mention that this difficulty
does not appear in Bressan & Hong [2] since the subsolutions are assumed to be
continuous.

A counter-example — Consider in RN the equation

|DU |+ U = min(|x|, 1) in RN ,

for which the “control” solution is given, in B(0, 1) by

U(x) = |x|+ exp(−|x|)− 1 .
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Now we can consider the stratification where MN−1 = S(0, 1) = {x : |x| = 1} and
MN = RN \MN−1. Then the above equation can be reformulated in terms of this
stratified domain: for subsolutions, we have the same equation in MN while

|DTu|+ u ≤ 1 on MN−1 ,

where DTu stands for the tangent derivative of u on the sphere S(0, 1). For this
stratified formulation,

u(x) :=

{
1 if x ∈ S(0, 1) ,

U(x) if x ∈ RN \ S(0, 1)

is obviously a subsolution which is upper semi-continuous since U(x) = exp(−1) < 1
on S(0, 1). But v := U in all RN is a also a supersolution and of course u(x) ≤ v(x)
does not hold in RN because on S(0, 1), u(x) = 1 > v(x) = exp(−1).

As we said above, the key fact in this counter-example to comparison is that
we can put artificial values on MN−1 for the subsolution u since these values are
unrelated with those of u on MN . If u is assumed to be continuous, then the only
solution is U .

We also point out that we could have provided a more pathological counter-
example: if x0 ∈ S(0, 1), we can set M0 = {x0} and MN = RN \M0. Then the
condition on M0 reduces to

u ≤ 1 on M0 ,

and a pathological subsolution can be built by changing only the value of U at x0
by setting u(x0) = α ∈ (exp(−1), 1], this interval of values ensuring the upper-semi-
continuity of u.

2. Correcting the definition of subsolutions. As we already mention it above,
a simple way to correct our results is just to assume the subsolutions to be contin-
uous. In this case, no extra requirement in the definition of subsolutions is needed
and all the results in [1] –in particular the comparison result– apply readily as they
are formulated. From another point of view, properties (a) − (b) below which are
needed for having a comparison result with an upper semi-continuous subsolution
u, are obviously true for continuous subsolutions.

In order to have the right properties for upper semi-continuous subsolutions
(namely (a)− (b) below), without stating them as assumptions, it is enough to add
a global Ishii type requirement for subsolutions, namely

Definition 2.1. An upper semi-continuous function u is a stratified subsolution of
(HJB-SD) if it satisfies

ut +H∗(x, t,Du) ≤ 0 in RN × (0, T ] (3)

and for any k = 0..N ,

ut +Hk(x, t,Du) ≤ 0 on Mk × (0, T ] , (4)

We recall that

H∗(x, t, p) = lim inf{H(y, s, q) : (y, s, q) ∈ RN × [0, T ]× RN → (x, t, p)}

is the lower semi-continuous enveloppe of H in RN × [0, T ] × RN . This way we
ensure that the control problem on Mk (with perhaps low costs) is really seen in
terms of HJB Equations. The supersolution condition is unchanged.
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3. Correcting the approximation argument. A key step in the comparison
proof in [1] is to regularize u by a tangent sup-convolution and then by a standard
convolution. We claim in [1, Lemma 5.5] that, by doing so, we obtain a sequence of
subsolutions (uε)ε which are continuous but the above counter-example shows that
this statement was wrong in general. The reason is that if x ∈Mk and

u(x) > lim sup
{
u(y) : y → x y /∈Mk

}
,

then the tangential sup-convolution need not be continuous in the normal direction
to Mk. The fix consists in making sure that the following property is fulfilled

(a) For any x ∈Mk, k < N − 1, u(x) = lim sup{u(y), y → x, y /∈Mk}.
(b) For any x ∈MN−1,

u(x) = lim sup{u(y), y → x, y ∈ U+} = lim sup{u(y), y → x, y ∈ U−},

where, for r > 0 small enough, U+, U− ⊂MN ∩B(x, r) are the locally disjoint
connected components of

(
RN \MN−1) ∩B(x, r).

Lemma 5.5 in [1] can now be corrected by assuming (a) and (b)

Lemma 3.1. Let x ∈ Mk and t, h > 0. There exists r′ > 0 such that if u is a
subsolution of (HJB-SD) in B(x, r′)× (t−h, t) satisfying in addition conditions (a)
and (b), then for any a ∈ (0, r′), there exists a sequence of Lipschitz continuous
functions (uε)ε in B(x, r′ − a)× (t− h/2, t) satisfying

(i) the uε are subsolutions of (HJB-SD) in B(x, r′ − a)× (t− h/2, t),

(ii) lim sup∗ uε = u.

(iii) The restriction of uε to Mk ∩
[
B(x, r′ − a)× (t− h/2, t)

]
is C1.

Proof. The proof is exactly the one given in [1] but we need a little additional
argument. We first reduce to the case of a flat stratification through a change
of variables. Without loss of generality, we can assume that x = 0, and writing
the coordinates in RN as (y1, y2) with y1 ∈ Rk, y2 ∈ RN−k we may assume that
Mk := {(y1, y2) : y2 = 0}.

Then we perform a sup-convolution in the Mk directions (and also the time
direction) by setting

uε1,α1
1 (y1, y2, s) := max

z1∈Rk,s′∈(t−h,t)

{
u(z1, y2, s

′)− exp(Kt)

(
|z1 − y1|2

ε21
+
|s− s′|2

α2
1

)}
,

for some large enough constant K > 0 (as explained in [1], for k = 0 it is enough
to do only a time sup-convolution).

Here is the place where we introduce an additional regularity argument: the
sup-convolution is clearly is Lipschitz continuous in the y1 and s variables and the
normal controllability implies that it is also Lipschitz continuous in the y2-variable
for y2 6= 0. It remains to connect the values of uε1,α1

1 (y1, y2, s) for y2 6= 0 and
y2 = 0; this is where we need conditions (a) and (b). With this addition, the rest
of the proof remains identical.

Let us notice that in particular, Lemma 3.1 is valid if u is continuous since (a) and
(b) are obviously satisfied. This is why there is no problem at all in [1] if we consider
continuous subsolutions. Now, in the case of upper semi-continuous subsolutions, a
more usable assumption than (a) − (b) is to consider viscosity subsolutions in the
sense of Ishii.
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Lemma 3.2. Let u be an upper semi-continuous function satisfying (3). Then (a)
and (b) hold.

Proof. In order to prove (a) we can assume that we are in the stationary case (for
simplicity) and that Mk if flat (this reduction is done in [1] using the regularity of
Mk). Consider the function

y 7→ u(y)− |y − x|
2

ε
− Ce · (y − x) := u(y)− φ(y) ,

where e is any unit vector normal to Mk. If u(x) > lim sup{u(y), y → x, y /∈Mk},
the maximum of this function is necessarily achieved on Mk at yε. Using the normal
controllabillity in MN we deduce that H∗ is coercive in any normal direction to Mk

so that if C is large enough we reach a contradiction in H∗(yε, u(yε), Dφ(yε)) ≤ 0,
which gives the desired property (i).

In the case of MN−1, the same proof works but this is not enough since, locally,
RN \MN−1 has two connected components, U+ and U− and we have to show that
the property is true separately for both connected components. Here, we assume
again that MN−1 is an hyperplane and we take the same test-function but with
e = +n or −n where n is a normal vector to MN−1.

If u(x) > lim sup{u(y), y → x, y /∈MN−1, n · (y − x) > 0}, we consider

y 7→ u(y)− |y − x|
2

ε
+ Cn · (y − x) .

The maximum cannot be achieved in the domain where n · (y − x) > 0 because
of the above hypothesis on u(x). But in the complementary of this set, the term
+Cn · (y − x) has the right sign (i.e., it is non-positive), allowing to show that a
maximum is achieved and is converging to x as ε → 0. Therefore we can choose
C � ε−1 and again the normal controllability of H∗ allows to get the contradiction.
The argument is the same for the other connected component of MN−1.

4. Comparison and stability results. The comparison result [1, Theorem 5.2]
relies on local arguments, a descending induction and the tangential regularization
of the subsolution. With the corrected version of the regularization (Lemma 3.1
above), all the arguments that are used apply for either continuous, or stratified
solutions.

Theorem 4.1. For any open subset Ω of RN and for any 0 ≤ t1 < t2 ≤ T , we have
a comparison result for (HJB-SD) in Q = Ω × (t1, t2), i.e. for any bounded upper
semi-continuous stratified subsolution u of (HJB-SD) in Q and any bounded lower
semi-continuous supersolution v of (HJB-SD) in Q, then

‖(u− v)+‖L∞(Q) ≤ ‖(u− v)+‖L∞(∂pQ) ,

where ∂pQ denotes the parabolic boundary of Q, i.e. ∂pQ := ∂Ω× [t1, t2]∪Ω×{t1}.

The immediate Corollary is that there is a unique stratified solution of the prob-
lem. Concerning the stability result [1, Theorem 6.2], we need only to modify the
subsolution part as follows

Theorem 4.2. Assume that (HJB− SD)ε is a sequence of stratified problems asso-
ciated to sequences of regular stratifications (Mε)ε and of Hamiltonians (Hε, H

k
ε )ε.

If Mε
RS−→M, then the following holds
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(i) if for all ε > 0, vε is a lower semi-continuous supersolution of (HJB− SD)ε,
then v = lim inf∗ vε is a lower semi-continuous supersolution of (HJB-SD),
the HJB problem associated with H = lim sup∗ Hε.

(ii) If for ε > 0, uε is a stratified upper semi-continuous subsolution of

(HJB− SD)ε and if the Hamiltonians (Hk
ε )k=0..N satisfy (NC) and (TC)

with uniform constants, then ū = lim sup∗ uε is a stratified upper semi-con-

tinuous subsolution of (HJB-SD) with Hk = lim inf∗ H
k
ε for any k = 0..N .

Proof. The proof is identical to the one in [1], the only new argument we need to add
concerns the fact that the Ishii condition is stable as ε→ 0: if uε is the subsolution
satisfying (Hε)∗(x, uε, Duε) ≤ 0 in RN , then u := lim sup∗ uε also satisfies the limit
Ishii condition H∗(x, u,Du) ≤ 0 in RN .

Then, Corollary 1 in [1] immediately follows in the class of stratified solutions.
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