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Abstract. Flotation is a unit operation extensively used in the recovery of
valuable minerals in mineral processing and related applications. Essential

insight to the hydrodynamics of a flotation column can be obtained by study-
ing just two phases: gas and fluid. To this end, the approach based on the

drift-flux theory, proposed in similar form by several authors, is reformulated

as a one-dimensional non-linear conservation law with a multiply discontin-
uous flux. The unknown is the gas volume fraction as a function of height

and time, and the flux function depends discontinuously on spatial position

due to several feed inlets. The resulting model is similar, but not equivalent,
to previously studied clarifier-thickener models for solid-liquid separation and

therefore adds a new real-world application to the field of conservation laws

with discontinuous flux. Steady-state solutions are studied in detail, including
their construction by applying an appropriate entropy condition across each

flux discontinuity. This analysis leads to operating charts and tables collect-

ing all possible steady states along with some necessary conditions for their
feasibility in each case. Numerical experiments show that the transient model

recovers the steady states, depending on the feed rates of the different inlets.

1. Introduction.

1.1. Scope. Flotation is a unit operation that is extensively used in the recov-
ery of valuable minerals and coals in mineral processing but also in many other
applications in environmental and chemical engineering [12, 21, 33, 36, 42]. It is a
physico-chemical separation process that utilizes the difference in surface properties
of the valuable hydrophobic minerals and the unwanted hydrophilic gangue mate-
rial. The theory of froth flotation is complex and involves three phases (solids,
water, and froth or gas) with many subprocesses [42]. The principle of the conven-
tional flotation process is roughly as follows. Gas is introduced close to the bottom

2010 Mathematics Subject Classification. Primary: 35L65, 35R05; Secondary: 76T10.
Key words and phrases. Kinematic flow models, flotation, steady state, conservation law, dis-

continuous flux.
∗ Corresponding author: M.C. Mart́ı.

339

http://dx.doi.org/10.3934/nhm.2018015
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Figure 1. Left: Schematic of a typical flotation column (after
[21, 38]), including heights of singular sources zG, zF and zW, the
underflow level zU, and the effluent level zE. Right: Corresponding
conceptual model of the flotation column used in this work, indi-
cating the volumetric feed flows QG, QF and QW, the underflow
rate QU, the effluent rate QE, and the spatially piecewise constant
bulk velocity q = q(z, t).

of a flotation column (see Figure 1), and the bubbles generated then rise upward
throughout the pulp that contains hydrophobic and hydrophilic solid particles. The
hydrophobic particles in the pulp attach to the bubbles. Since the overall density of
the bubble-particle aggregates is less than that of the medium, the aggregates then
float to the top of the column, where the desired product, the foam or froth carry-
ing the valuable material (the concentrate in mining) is removed, usually through
a launder. Additionally, close to the top wash water is injected to assist with the
rejection of entrained impurities [39] and to increase the froth stability and improve
recovery [21, 31]. Once the hydrophobic particles have attached to the air bubbles,
flotation can be considered as a separation between relatively large low-density enti-
ties, called air bubbles, and a suspension of liquid and gangue. Consequently, flota-
tion can be described as a gas-liquid separation process by buoyancy analogous to
the solid-liquid separation by gravity sedimentation in clarifier-thickeners [8,10,15].

Well-established spatially one-dimensional models of clarifier-thickeners can be
formulated as a scalar conservation law for the local solids concentration as a func-
tion of depth and time, where the flux is discontinuous as a function of spatial
position due to upward- and downward-directed bulk flows, transitions to overflow
and underflow transport, and a singular source term marking the feed [8, 10, 15].
Clarifier-thickener models have motivated in part the mathematical research on
conservation laws with discontinuous flux [3, 4, 6, 10,14–20].
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It is the purpose of this paper to formulate, partially analyze, solve for steady
states, and numerically simulate a related model for a flotation column, where we
follow [13] and limit ourselves to a one-dimensional two-phase system of gas bubbles
dispersed in a fluid, or rather a suspension of liquid and gangue. Hence, we do not
model any sedimentation of solid particles in the suspension. The final form of the
model (cf. Figure 1) is the conservation law with multiply discontinuous flux

∂φ

∂t
+

∂

∂z
F (z, t, φ) =

∑
S∈{G,F,W}

qS(t)φS(t)δ(z − zS), z ∈ R, t > 0, (1.1)

where φ is the sought volume fraction of gas bubbles as a function of height z and
time t, and F (z, t, φ) is a flux function, made precise in later parts of the paper, that
is nonlinear in φ and discontinuous in z at five different positions. Three of these
positions, zG, zF and zW, are associated with singular feed sources of gas, feed
slurry, and wash water, respectively, at given rates qS and volume fractions φS ,
where δ(·) denotes the Dirac symbol. The model (1.1) is posed for z ∈ R without
boundary conditions, and is therefore supplied solely with initial data

φ(z, 0) = φ0(z), z ∈ R. (1.2)

While the time-dependent partial differential equation (PDE) (1.1) describes
transient variations of φ as a function of position and time, a property of practical
interest in applications are the stationary solutions to the model that correspond to
undisturbed normal states of operation. A steady-state solution of (1.1) is generally
a piecewise constant function, with possible jump discontinuities both within the
four zones of Figure 1, and across the five spatial discontinuities z = zE, etc.

The main outcomes of this work are to a classification of all steady-state solutions
by means of diagrams and tables, and numerical simulations of dynamic behaviour.
The variety of real-world applications of conservation laws with discontinuous flux
is hereby widened to include flotation.

1.2. Related work. Our model formulation is based on the description of a flota-
tion column by Stevenson et al. [38], Dickinson and Galvin [13], and Galvin and
Dickinson [22] that is based on algebraic expressions for the gas and liquid fluxes,
velocities and volume fractions. The description of one-dimensional two-phase flows
based on the continuity equations for both phases and closed by defining a relative
flux, or drift flux, between both phases as a function of volume fraction was intro-
duced by Wallis [40], as is elaborated in [35]. Treatments that invoke this drift-flux
analysis to describe flotation processes include [25, 27, 31, 39, 43, 44]. However, all
these works utilize these variables for steady-state analyses, but do not incorporate
the drift-flux variables into one solvable PDE model for transient simulations, which
is precisely the main contribution of the present paper.

As stated above, the theory of conservation laws with discontinuous flux has seen
a vast amount of interest in recent years, where the typical model equation is

∂φ

∂t
+

∂

∂z
F(z, φ) = 0, F(z, φ) =

{
f(φ) for z > 0,

g(φ) for z < 0

or equivalently, in terms of the Heaviside step function H(z),

∂φ

∂t
+

∂

∂z

(
H(z)f(φ) + (1−H(z))g(φ)

)
= 0. (1.3)
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The basic difficulty associated with (1.3) is as follows. Suppose, for simplicity, that
φ = φ(z, t), z ∈ R, t > 0 is a piecewise constant solution of (1.3) having traces
φ−(t) := limz↑0 φ(z, t) and φ+(t) := limz↓0 φ(z, t) at z = 0. Then the fluxes to both
sides of z = 0 must be equal at any time, which compels the jump condition

f(φ+(t)) = g(φ−(t)) for a.e. t > 0. (1.4)

This single equation does not define the two traces uniquely and one needs to spec-
ify a selection principle or jump entropy condition to single out pairs that besides
satisfying (1.4) are admissible. This selection principle usually depends on the par-
ticular physical reality (1.3) is supposed to model. For instance, applications of (1.3)
also include traffic flow with discontinuously changing road surface conditions, ion
etching, two-phase flow in heterogeneous porous media, and medical applications
(see [5], [24, Ch. 8], and [28] for overviews and references). We use here the admis-
sibility condition from [14], which has proved to be the natural one for the related
problem of continuous sedimentation [15]. Furthermore, its generalization [18] to
the case of a scalar convection-diffusion equation with spatial discontinuity in both
the flux and diffusion functions implies the physically relevant solution in the case
of the well-established model of continuous sedimentation with compression [10].
As is stated in [24, p. 426], there are different “recipes” to select unique solutions
of the Riemann problem of (1.3), and all of them eventually lead to uniqueness of
the initial value problem for (1.3), according to the unified treatment in [1].

1.3. Outline of the paper. In Section 2, we derive the model equations for the
local fraction of gas bubbles, detailing the definition of the flux density functions in
each zone of the spatial domain and the treatment of the feed inlets. Some notation
necessary for the description of the steady-state solutions is also introduced. In Sec-
tion 3, we focus on the characterization of all possible steady states for the flotation
model previously defined, providing a detailed study of the derivation process at the
different spatial discontinuities introduced by the feed inlets. Some steady states
exist only under certain conditions on the injection rates and to get an overview
of all possibilities, we present operating charts and tables for the categorization
of all steady states. In Section 4, we briefly review the numerical method to ap-
proximately solve the flotation model. Some numerical examples are provided in
Section 5 and, finally, we present some conclusions in Section 6.

2. Mathematical model.

2.1. Phase velocities and drift flux. Assume that we consider a region of space
that is free of sources and sinks, that φ is the local fraction of gas bubbles, and
that vf and vg are the phase velocities of the gas and fluid, respectively. Then the
conservation of mass equations for both can be written in local form as

∂φ

∂t
+∇ · (φvg) = 0,

∂(1− φ)

∂t
+∇ ·

(
(1− φ)vf

)
= 0, (2.1)

where we assume that the gas bubbles are incompressible and do not coalesce. Then,
defining the volume average velocity, or bulk flux of the suspension,

q := φvg + (1− φ)vf (2.2)

and the gas-fluid relative velocity vr := vg − vf , we may rewrite the first equation
in (2.1) and replace the second by the sum of both to obtain

∂φ

∂t
+∇ ·

(
φq + φ(1− φ)vr

)
= 0, ∇ · q = 0.
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It is assumed that vr = vrez, where ez is the upward-pointing unit vector and vr is
given as a function of φ so that the gas drift-flux function is

jg(φ) := φ(1− φ)vr(φ) = φvtermV (φ). (2.3)

The drift-flux function jg(φ) gives the gas flux in a closed column relative to the
column. Here, vterm is the terminal velocity of a single bubble in an unbounded
fluid. As is stated in [38], there exists a number of methods to calculate vterm,
and Wallis’ generalized correlation [41] leading to vterm is recommended, see [38,
Appendix A] for details. This correlation involves additional quantities such as
equilibrium surface tension and the viscosity of the fluid. Its detailed discussion
is beyond the focus of this paper; for the present analysis it suffices to assume
that vterm is a set constant for a given material and equipment.

Furthermore, in (2.3), V (φ) is a dimensionless hindered-bubbling function that
can, for instance, be given by the Richardson-Zaki expression [34]

V (φ) = (1− φ)nRZ , nRZ ≥ 0. (2.4)

The maximum possible volume fraction of bubbles is φmax = 1. Realistic values of
nRZ range from nRZ = 2 to nRZ = 3.2 (cf., e.g., [13, 22,25,31,39]).

Finally, in one space dimension (in the z-direction) and away from sinks or
sources, ∇ · q = 0 reduces to ∂q/∂z = 0, so q will depend on t only, and the
only equation that needs to be solved is the nonlinear first-order conservation law

∂φ

∂t
+

∂

∂z
j(φ, t) = 0, where j(φ, t) := q(t)φ+ jg(φ). (2.5)

Hence, j(φ, t) is the total flux of gas. If we denote the total fluid flux by ϕ :=
(1− φ)vf , then (2.2) yields the simple relation q = j + ϕ between the three fluxes,
which all generally may have any sign.

2.2. Volumetric flows, bulk velocities and flux functions. It is assumed that
the unit has a constant cross-sectional area A, and that concentrations are horizon-
tally constant so that all variables depend on height z and time t only. The unit is
fed at heights z = zW, z = zF and z = zG, with wash water, fluid (feed slurry), and
gas, respectively (see Figure 1), where we assume that zW > zF > zG. The corre-
sponding volumetric flows QW ≥ 0, QF ≥ 0 and QG ≥ 0 are assumed to be given
functions of time, as is the volumetric underflow rate QU ≥ 0. Furthermore, QE is
the resulting effluent volumetric overflow, which is assumed to be nonnegative, i.e.,
the mixture is conserved and the vessel is always completely filled with mixture.

The spatially piecewise constant bulk velocity q = q(z, t) is defined by the values
q1(t) to q4(t) in the corresponding four zones in the vessel; see Figure 1. To simplify
notation, we define the velocities qS(t) := QS(t)/A for S ∈ {E,F,G,U,W}.

Starting from the bottom of the vessel, we have q1 = −qU, q2 = q1 + qG, etc. and
we obtain the total bulk velocity function

q(z, t) :=


q1 = −qU for z < zG,

q2 = qG − qU for zG ≤ z < zF,

q3 = qG + qF − qU for zF ≤ z < zW,

q4 = qG + qF + qW − qU for z ≥ zW.

(2.6)

Hence, we always have qE = q4 ≥ 0 and q1 = −qU ≤ 0, whereas q2 and q3 may have
any sign.
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We denote the intervals z > zE and z < zU by the effluent and underflow zone,
respectively. During normal operation, zone 1 contains only liquid. Above z = zG

there is a region of bubbles rising with a high velocity up to an upper region of froth
with a high volume fraction of gas; see Figure 1. The large discontinuity between
the bubbly and froth regions is usually located in the interval [zF, zW], either at the
location of one injection point or within a zone. As we will see, discontinuities in φ
are possible at every injection point and inside some zones. Usually, zone 4 is small,
and sometimes zG = zF, i.e., gas and feed slurry are injected at the same location.

We assume that in the effluent and underflow zones, the gas and the fluid move
at the same velocity, so we set vr := 0, and therefore jg := 0 in these zones. The
total flux function is then defined as

F (z, t, φ) :=



jU(φ, t) := q1(t)φ for z < zU,

j1(φ, t) := q1(t)φ+ jg(φ) for zU ≤ z < zG,

j2(φ, t) := q2(t)φ+ jg(φ) for zG ≤ z < zF,

j3(φ, t) := q3(t)φ+ jg(φ) for zF ≤ z < zW,

j4(φ, t) := q4(t)φ+ jg(φ) for zW ≤ z < zE,

jE(φ, t) := q4(t)φ for z ≥ zE.

(2.7)

2.3. Feed sources and governing equation in final form. The conservation
law (2.5) is completed by including the feed of material at levels zW, zF and zG at
volume rates QW, QF and QG. The feed mechanisms give rise to singular source
terms that extend (2.5) to the final governing model equation (1.1). The given
gas volume fraction of the three time-dependent feed streams is denoted by φW, φF

and φG, respectively. In agreement to common practice, we assume that either pure
gas or pure liquid is injected through the respective singular sources, so we assume
from now on φG ≡ 1 and φF = φW ≡ 0.

2.4. Entropy solutions. Within each zone, the governing equation (1.1), (2.7)
reduces to (2.5), and we consider the Cauchy problem of this equation. A piecewise
smooth function φ = φ(x, t) is defined to be an entropy solution of the problem if
φ is continuously differentiable everywhere with the exception of a finite number of
curves z = zd(t) ∈ C1 of discontinuities. At each point (zd(t), t) of discontinuity,
the (non-equal) values φ± := φ(zd(t)±, t) satisfy the jump condition

z′d(t) = S(φ+, φ−) :=
f(φ+)− f(φ−)

φ+ − φ− , (2.8)

and the jump entropy condition

S(u, φ−) ≥ S(φ+, φ−) for all u between φ+ and φ−. (2.9)

It is well known that entropy solutions in the sense of Oleinik [30] are also the
unique entropy solutions in the sense of Kružkov-type [26] integral inequalities (cf.,
e.g., [24]). On the other hand and as mentioned in Section 1.2, at the five spatial
discontinuities of problem (1.1), a generalized entropy is needed [14, 18]. Since we
only construct steady-state solutions, we review that condition in Section 3.1 for
this purpose, which means less notation than for the dynamic case.

2.5. Properties of the zone flux functions. We assume that the drift-flux func-
tion jg(φ) ≥ 0 is continuously differentiable, satisfies jg(0) = jg(1) = 0, and is
concave-convex with an inflection point φinfl ∈ (0, 1); see Figure 2. (Drawings have
been made for jg given by (2.3) and (2.4), with vterm = 2.7 cm/s and nRZ = 3.2.
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Figure 2. Flux functions’ properties and specific volume fraction.
Left: Drift-flux function jg and flux curves for zones 1 and 4. Right:
The local minimum φM and appurtenant φm for a zone flux j with
positive q, and flux curves with zero derivatives at φmax = 1 and
φinfl. In these and other plots, we have used the expression (2.4)
with nRZ = 3.2 in the drift-flux function jg. The unit on the
vertical axis is cm/s.

These values are also utilized in [13].) The form of jg singles out certain distin-
guished values of the volume fraction that appear in the steady-state solution (see
Figure 2). The same values appear in the related problem of continuous sedimen-
tation [16,17].

Since we will mostly refer to steady-state situations, we often supress the depen-
dence on t in j1, . . . , j4. The functions j1, . . . , j4 and jg have the same inflection
point φinfl, since they only differ by a linear term. If jk(φ) has a zero in (0, 1], which
can happen only for k = 1, 2, 3 and qk < 0, then we denote it by φkZ. If jk(φ) < 0
for all φ ∈ (0, 1], we set φkZ := 0. We define

q̄ := −j′g(1), ¯̄q := −j′g(φinfl),

which are the bulk velocities such that the slope of jk(φ) is zero at φmax = 1 and
φinfl, respectively. To reduce the number of cases to investigate, we assume in this
work that

q̄ = −j′g(1) = 0, (2.10)

in accordance with the common Richardson-Zaki function (2.4). For intermediate
values of qk, i.e., q̄ < qk < ¯̄q, there is a local minimizer φkM of jk(φ) (k = 2, 3, 4)
on the right of φinfl. Then 0 = j′k(φkM) = j′g(φkM) + qk. To obtain a definition for
all values of qk, we note that the restriction (jg|(φinfl,1))

′ is a decreasing function so
that we can define

φkM :=


1 if qk ≤ q̄,
((jg|(φinfl,1))

′)−1(−qk) if q̄ < qk < ¯̄q,

φinfl if qk ≥ ¯̄q.

Given φkM and qk ≥ 0, we define φkm as the unique value satisfying

jk(φkm) = jk(φkM), 0 ≤ φkm ≤ φinfl.
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For qk < ¯̄q, jk(φ) assumes a local maximum point at φM
k ∈ [0, φinfl). Let qneg :=

−j′g(0) be the value below which jk is a decreasing function. For qk ≤ qneg, the
local maximum is φM

k := 0. For qk ≥ ¯̄q, we set φM
k := φinfl.

In some instances it is convenient to write out the dependence on q of the flux
function, i.e., jk(φ; qk), and of the specific concentrations, e.g., φM

k (qk). The follow-
ing properties follow directly from the definitions above (cf. [16, Lemma 2]).

Lemma 2.1. The following properties hold:

d

dqk
jk(φkM(qk); qk) = φkM(qk),

d

dqk
jk(φM

k (qk); qk) = φM
k (qk).

3. Steady-state solutions. In order to completely describe all possible steady
states of model (1.1) (under the assumptions of Section 2.5), we here extract from
the theory of conservation laws with discontinuous flux function [14, 18] what is
necessary to construct steady-state solutions in a neighbourhood of a spatial dis-
continuity.

To start with, we investigate the case when the steady-state solution is constant
φk in zone k = 1, 2, 3, 4, and constant φU and φE in the underflow and effluent
zones, respectively. In Section 3.9, we describe the general solution, having also
discontinuities within one or several zones. First, we review the necessary theory
and notation, and then go through the possible couplings between zones 1 to 4 and
the effluent and underflow zones.

3.1. Construction of steady-state solutions for a conservation law with
discontinuous flux function. We consider the conservation law with discontinu-
ous flux function (1.3). The equation should be interpreted in the weak sense and
we seek steady-state solutions of the form

φ(z) =

{
φ− if z < 0,

φ+ if z > 0,

where φ± are constants. The conservation law across z = 0 implies the jump
condition g(φ−) = f(φ+) (see (1.4)). This single equation has two unknowns.
The generalized entropy condition [14] selects the physically relevant solution in a
neighbourhood of z = 0 for a dynamic solution of (1.3) for given initial data at
t = 0. We define the auxiliary functions

f̂(φ;φ+) :=


min

v∈[φ,φ+]
f(v) if φ ≤ φ+,

max
v∈[φ+,φ]

f(v) if φ > φ+,

ǧ(φ;φ−) :=


max

v∈[φ,φ−]
g(v) if φ ≤ φ−,

min
v∈[φ−,φ]

g(v) if φ > φ−

 = ĝ(φ−;φ).

Since ǧ(·;φ−) is non-increasing and f̂(·;φ+) is non-decreasing, the intersection of the
graphs of these functions occurs at a unique flux value, if there exists an intersection.
For the model of flotation, this is always the case; the proof of this statement can
be made in the same way as for the problem of continuous sedimentation; see [15].

We define the set of possible φ-values of the intersection as

Φ̄ = Φ̄(φ+, φ−) :=
{
φ ∈ [0, 1] : f̂(φ;φ+) = ǧ(φ;φ−)

}
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and the corresponding unique flux value η(φ+, φ−) := f̂(Φ̄;φ+). Since we are here
only interested in stationary solutions, the generalized entropy condition can be
stated as

f̂(φ+;φ+) = η(φ+, φ−) = ǧ(φ−;φ−), (3.1)

where we note that f̂(φ+;φ+) = f(φ+) and ǧ(φ−;φ−) = g(φ−).

3.2. Couplings at the underflow location z = zU. In a neighbourhood of
z = zU, the PDE (1.1) becomes

∂φ

∂t
+

∂

∂z
F (z, t, φ) = 0,

where

F (z, t, φ) =

{
jU(φ, t) = q1(t)φ if z < zU,

j1(φ, t) = q1(t)φ+ jg(φ) if z > zU.

We now suppress the time dependence and seek possible constant solutions φ1 and
φU in the two neighbouring zones so that the entropy condition (3.1) is satisfied.
With the notation of Section 3.1, we have g(φ) = jU(φ) = q1φ and f(φ) = j1(φ) =
q1φ+jg(φ). The task is to find a pair φU and φ1 so that the entropy condition (3.1)
is satisfied. This condition now reads

̂1(φ1;φ1) = η(φ1, φU) = ̌U(φU;φU), (3.2)

where η(φ1, φU) denotes the flux value of the intersection of ̌U(·;φU) and ̂1(·;φ1).
As jU(φ) = −qUφ is a linear decreasing function, we have ̌U(·;φU) = jU for any
φU ∈ [0, 1]. The function j1 has two monotonicity intervals separated by the maxi-
mum point φM

1 , which leads to the following cases:

(a) φ1 ∈ [0, φM
1 ], see Fig. 3(a). The only possible intersection between ̂1 and ̌U

is φ1 = 0; hence φU = 0. Thus, the zero solution on both sides is the only
possible steady-state coupling in this case.

(b) φ1 ∈ (φM
1 , 1], see Fig. 3(b1) and (b2). If φ1 ∈ (φM

1 , φ1Z), the middle plot shows
that the only possible intersection is, as in the previous case, φ1 = 0, but is
outside the interval of definition of φ1, i.e., there is no possible steady state
with φ1 ∈ (φM

1 , φ1Z). If φ1 ∈ [φ1Z, 1] (right plot), then there is always a possi-
ble intersection between ̂1(·;φ1) and ̌U(·;φU) satisfying (3.2). Consequently,
the possible steady states satisfy φ1 ∈ [φ1Z, 1] and φU ∈ [0, 1].

We conclude this subsection by stating the possible steady-state values in the
underflow and the first zone:

φU ∈ [0, 1], φ1 ∈ {0} ∪ [φ1Z, 1]. (3.3)

3.3. Couplings at the effluent location z = zE. Here, jE(φ) = qEφ is an in-
creasing linear function. The procedure is analogous to the coupling at z = zU.
In fact, this case is the same as the one at the underflow level in the problem of
continuous sedimentation. Details can be found in [15, Section 9], and we state here
directly the possible steady-state values in zone 4 and the effluent zone:

φ4 ∈ [0, φ4m] ∪ [φ4M, 1], φE ∈ [0, 1]. (3.4)
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0 0.5 1

-0.1

0

0.1

0.2

0.3
(a)

1

M
1 1Z

0 0.5 1

-0.1

0

0.1

0.2

0.3
(b1)

0 0.5 1

-0.1

0

0.1

0.2

0.3
(b2)

Figure 3. The decreasing function ̌U(·;φU) = jU and three pos-
sible cases of graphs of ̂1(·;φ1) depending on φ1. The intersection
of ̂1(·;φ1) and jU defines the possible values in a steady-state so-
lution.

3.4. Couplings at z = zG. In a neighbourhood of z = zG, the PDE (1.1) is

∂φ

∂t
+

∂

∂z

(
(1−H(z − zG))j1(φ, t) +H(z − zG)j2(φ, t)

)
= qG(t)φG(t)δ(z − zG),

which, with φG(t) ≡ 1, is formally equivalent to

∂φ

∂t
+

∂

∂z

(
(1−H(z − zG))(j1(φ, t) + qG(t)) +H(z − zG)j2(φ, t)

)
= 0.

The flux functions to consider for the steady-state coupling are thus

j1(φ) + qG = jg(φ)− qUφ+ qG for z < zG,

j2(φ) = jg(φ) + (qG − qU)φ for z > zG,

which intersect only at φ = 1, and the entropy condition is

̂2(φ2;φ2) = η(φ1, φ2) = ̌1(φ1;φ1) + qG.

We have q1 = −qU ≤ 0, but q2 may have any sign. We will make a main division
depending on the sign of q2. From (3.3), we know that a steady state in zone 1
satisfies φ1 ∈ {0} ∪ [φ1Z, 1]. These two intervals should be coupled with the three
monotonicity intervals of j2, which are separated by φM

2 and φ2M. We will get
conditions on qG in the subcases.

Remark 1. In the division into subcases further on, we will sometimes let such
overlap in the following way. Instead of having disjoint intervals defining two sub-
cases, e.g., φ2 ∈ [0, φM

2 ] and φ2 ∈ (φM
2 , φ2M), the second subcase will instead be

φ2 ∈ [φM
2 , φ2M]. This overlap will reduce the number of conditions in terms of in-

equalities. Then the same steady-state solution can occur in two subcases, but the
final number of steady-state solutions is not affected.

1. Case G1. q1 ≤ 0 ≤ q2.
(a) φ1 = 0, φ2 ∈ [0, φM

2 ]; see Fig. 4(a). A necessary condition for a steady-
state solution is

j2(φM
2 ) ≥ qG. (G)

(b) φ1 = 0, φ2 ∈ [φM
2 , φ2M]; see Fig. 4(b). A necessary condition for a steady-

state solution is (G).
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Figure 4. Case G1: q1 ≤ 0 ≤ q2. Possible steady-state values for
zones 1 and 2. The gas injection velocity is set to qG = 0.2 cm/s in
all subplots except for (d) where it is 0.35 cm/s.

(c) φ1 = 0, φ2 ∈ (φ2M, 1]; see Fig. 4(c). The only possible solution is φ2 = 1
when q1 = 0.

(d) φ1 ∈ [φ1Z, 1], φ2 ∈ [0, φM
2 ]; see Fig. 4(d). The only possible steady-state

solution satisfies φ2 = φM
2 < φ1.

(e) φ1 ∈ [φ1Z, 1], φ2 ∈ (φM
2 , φ2M); see Fig. 4(e). A steady-state coupling is

possible with φ2 ≤ φ1 with equality if and only if q1 = q2, i.e., qG = 0.
(f) φ1 ∈ [φ1Z, 1], φ2 ∈ [φ2M, 1]; see Fig. 4(f). The only possible coupling is

φ1 = φ2 = 1.
2. Case G2. q1 ≤ q2 ≤ 0.

(a) φ1 = 0, φ2 ∈ [0, φM
2 ]; see Fig. 5(a). The same as Case G1(a) with condi-

tion (G).
(b) φ1 = 0, φ2 ∈ [φM

2 , 1]; see Fig. 5(b1) and (b2). As in Case G1(b) a
necessary condition is (G). The largest value in zone 2 is φ2 = φ2Z and
then q1 = q2, i.e., qG = 0, see plot (b2).

(c) φ1 ∈ [φ1Z, 1], φ2 ∈ [0, φM
2 ]; see Fig. 5(c). The same as Case G1(d):

φ2 = φM
2 < φ1.

(d) φ1 ∈ [φ1Z, 1], φ2 ∈ (φM
2 , 1]. Solution exists with either a positive, see

Fig. 5(d1) or a negative flux (d2).

3.5. Couplings at z = zF. We derive the possible constant steady states in zones 2
and 3 considering their coupling at z = zF. This is the most complicated case where
both bulk velocities, hence both fluxes, can be either positive or negative. Since
there is no injection of bubbles, φF = 0, the fluxes to consider are

j2(φ) = q2φ+ jg(φ), z < zF,
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0 0.5 1
-0.2

0

0.2

0.4

(a)

1 2

0 0.5 1
-0.2

0

0.2

0.4

(b1)

0 0.5 1
-0.4

-0.2

0

0.2

(b2)

0 0.5 1
-0.2

0

0.2

0.4

(c)

0 0.5 1
-0.2

0

0.2

0.4

(d1)

0 0.5 1
-0.2

0

0.2

0.4

(d2)

Figure 5. Case G2: q1 ≤ q2 ≤ 0. Possible steady-state values for
zones 1 and 2. The value of qG is set to qG = 0.2 cm/s except for
plot (b2), where it is 0 cm/s.

j3(φ) = q3φ+ jg(φ), z > zF,

where q2 = qG−qU ≤ qG+qF−qU = q3. We require that the entropy condition (3.1)
holds, which now reads

̂3(φ3;φ3) = η(φ3, φ2) = ̌2(φ2;φ2). (3.5)

We now study the possible intersections between ̌2(·;φ2) and ̂3(·;φ3) and make
a division into three main cases F1–F3 depending on the signs of the two bulk
velocities q2 and q3. Subdivisions are then made according to the intervals of mono-
tonicity of the flux functions j2 and j3, which give qualitatively different intersec-
tions of ̌2(·;φ2) and ̂3(·;φ3) because of their strictly monotone parts and plateaus.
Some cases will be empty, i.e., no steady-state solution is possible and this may
depend on q2 and q3. When a steady-state solution is possible, it always satisfies
j2(φ2) = j3(φ3).

1. Case F1. 0 ≤ q2 ≤ q3.
(a) φ2 ∈ [0, φM

2 ], φ3 ∈ [0, φM
3 ]; see Fig. 6(a). In this case there is a possible

intersection point between ̌2(·;φ2) and ̂3(·;φ3). We have q2 ≤ q3 ⇔
φ3 ≤ φ2.

(b) φ2 ∈ (φM
2 , φ2M), φ3 ∈ [0, φM

3 ]. The flux value of the intersection of ̌2 and
̂3 is η = j2(φM

2 ) = ̌2(φM
2 ;φ2). Since this case requires φM

2 < φ2, (3.5) is
not satisfied and there is no possible stationary solution.

(c) φ2 ∈ [φ2M, 1], φ3 ∈ [0, φM
3 ]; see Fig. 6(c). The only possibility for the

plateau of ̌2(·;φ2) to intersect the increasing part of ̂3(·;φ3) is that the
plateau lies above the value of the local maximum of j2. In other words,
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this case is empty unless the following condition is satisfied:

j2(1) ≥ j2(φM
2 ). (FI)

(d) φ2 ∈ [0, φM
2 ], φ3 ∈ (φM

3 , φ3M]; see Fig. 6(d). For (3.5) to be satisfied, two
plateaus are involved in the intersection. A necessary condition for this
is that the flux value of the local maximum of j2 is larger than or equal
to the flux value of the local minimum of j3, i.e.,

j2(φM
2 ) ≥ j3(φ3M). (FII)

(e) φ2 ∈ [φM
2 , φ2M), φ3 ∈ (φM

3 , φ3M]. An intersection occurs between the
decreasing part of ̌2(·;φ2) and the plateau of ̂3(·;φ3) only if (FII) holds.
We have q2 ≤ q3 ⇔ φ2 ≤ φ3.

(f) φ2 ∈ [φ2M, 1], φ3 ∈ (φM
3 , φ3M]. Two plateaus are necessarily involved in

the intersection, which occurs only if the following condition is satisfied:

j2(1) ≥ j3(φ3M). (FIII)

(g) φ2 ∈ [0, φM
2 ], φ3 ∈ (φ3M, 1]. The intersection occurs at the flux level

j3(φ3M) = ̂3(φ3M;φ3). However, φ3 = φ3M is not allowed in this subcase,
so (3.5) is not satisfied and this case is therefore empty.

(h) φ2 ∈ (φM
2 , φ2M), φ3 ∈ (φ3M, 1]. This case is empty with the same motiva-

tion as in subcase (g).
(i) φ2 ∈ [φ2M, 1], φ3 ∈ [φ3M, 1]. Similarly to subcase (f), a steady-state

solution is possible only if (FIII) holds. We have q2 ≤ q3 ⇔ φ2 ≤ φ3.

2. Case F2. q2 ≤ 0 ≤ q3. We use the same principle of subdivision as in
Case F1. However, when q2 ≤ 0, the local minimizer of j2(·; q2) is φ2M = 1, so
the domain of j2(·; q2) consists of two disjoint intervals where j2 is monotone.
Together with the three intervals of j3, we get six subcases.
(a) φ2 ∈ [0, φM

2 ], φ3 ∈ [0, φM
3 ]. As can be seen in Fig. 7(a), there is always

a possible intersection between ̌2(·;φ2) and ̂3(·;φ3). We have either
q2 < q3 ⇔ φ3 < φ2, or q2 = q3 = 0 ⇔ φ2 = φ3. This subcase is thus
similar to Case F1(a).

(b) φ2 ∈ (φM
2 , 1], φ3 ∈ [0, φM

3 ]. This case is empty with analogous arguments
as in Case F1(b).

(c) φ2 ∈ [0, φM
2 ], φ3 ∈ (φM

3 , φ3M]. The intersection of ̌2(·;φ2) and ̂3(·;φ3)
is qualitatively the same as in Case F1(d) and (e) and the steady state
represented in Fig. 7(c) is possible only if (FII) holds.

(d) φ2 ∈ (φM
2 , 1], φ3 ∈ (φM

3 , φ3M]. By analogy with subcase (c), (FII) has to
be satisfied.

(e) φ2 ∈ [0, φM
2 ], φ3 ∈ (φ3M, 1]. This case is analogous to Case F1(g), and is

consequently empty.
(f) φ2 ∈ (φM

2 , 1], φ3 ∈ (φ3M, 1]. Analogous to Case F1(h) and empty case.

3. Case F3. q2 ≤ q3 ≤ 0. In this case φ2M = φ3M = 1, so there are only
four subcases with the maximum point of each flux function as the point of
division of two monotonicity intervals.
(a) φ2 ∈ [0, φM

2 ], φ3 ∈ [0, φM
3 ]. This is qualitatively the same as Case F2(a)

with steady-state solution possible.
(b) φ2 ∈ (φM

2 , 1], φ3 ∈ [0, φM
3 ]. This case is empty with analogous arguments

as in Case F1(b) or F2(b) (no plot is shown).



352 RAIMUND BÜRGER, STEFAN DIEHL AND MARÍA CARMEN MARTÍ
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Figure 6. Case F1: 0 ≤ q2 ≤ q3. Possible steady-state values for
zones 2 and 3. In the special case q2 = q3, the diagonal plots (a),
(e) and (i) are the only ones where φ2 = φ3 occurs.

(c) φ2 ∈ [0, φM
2 ], φ3 ∈ (φM

3 , 1]. There is a possible intersection only at a
non-negative flux value. Then bubbles flow upwards and we have φ3 ∈
[φM

3 , φ3Z], see Fig. 8(c).
(d) φ2 ∈ (φM

2 , 1], φ3 ∈ (φM
3 , 1]. Intersection may occur at a positive or neg-

ative flux value (bubbles moving downwards or upwards), see Fig. 8(d1)
and (d2), respectively.

3.6. Couplings at z = zW. Since φW = 0, the fluxes to consider for the entropy
condition are ̌3(·;φ3) and ̂4(·;φ4). From (3.4) we know that only φ4 ∈ [0, φ4m] ∪
[φ4M, 1] are possible steady states in zone 4. In these two intervals, j4 is increasing
and we combine these intervals with the three monotone parts of j3.

1. Case W1. 0 ≤ q3 ≤ q4.
(a) φ3 ∈ [0, φM

3 ], φ4 ∈ [0, φ4m]; see Fig. 9(a).
(b) φ3 ∈ (φM

3 , φ3M), φ4 ∈ [0, φ4m] is an empty case (no plot is shown).
(c) φ3 ∈ [φ3M, 1], φ4 ∈ [0, φ4m] is an empty case (no plot is shown).
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Figure 7. Case F2, q2 ≤ 0 ≤ q3: Possible intersections and steady
states for zones 2 and 3.

(d) φ3 ∈ [0, φM
3 ], φ4 ∈ [φ4M, 1]; see Fig. 9(d). Necessarily, φ4 = φ4M holds.

Another necessary condition for this steady state is that the flux value of
the local maximum of j3 is larger than or equal to the flux value of the
local minimum of j4, i.e.,

j3(φM
3 ) ≥ j4(φ4M). (WI)

(e) φ3 ∈ [φM
3 , φ3M), φ4 ∈ [φ4M, 1]; see Fig. 9(e). In this case φ4 = φ4M and

the necessary condition is (WI).
(f) φ3 ∈ [φ3M, 1], φ4 ∈ [φ4M, 1]; see Fig. 9(f). This case is empty unless the

following condition holds:

j3(1) ≥ j4(φ4M). (WII)

2. Case W2. q3 ≤ 0 ≤ q4. The conclusions are the same as in Case W1.

3.7. Operating charts for bulk velocities. The different necessary conditions
on the fluxes that appear in the derivation of possible steady states can be visu-
alized in operating charts. These are two-dimensional diagrams involving the bulk
velocities at an injection point.

Condition (G) can be written as

qG ≤ j2(φM
2 (q2); q2), (G)

where the dependence on q2 is written out as in Lemma 2.1. This lemma gives
that j2(φM

2 (q2); q2) is an increasing function of intermediate (normal) values of q2

and otherwise constant (for q2 < qneg and q2 > ¯̄q). Its graph, and consequently the
region in (q2, qG)-space where (G) is satisfied, are shown in Fig. 10(a). In Fig. 10(b),
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Figure 8. Case F3, q2 ≤ q3 ≤ 0. Possible intersections and
steady-state values for zones 2 and 3. (d1) and (d2) correspond
to positive and negative intersection flux values in subcase (d),
respectively.

the corresponding region in (qU, qG)-space is shown. This has been obtained by the
linear mapping of the curve qG = j2(φM

2 (q2); q2) (since qU = qG − q2):{
qU = j2(φM

2 (q2); q2)− q2,

qG = j2(φM
2 (q2); q2).

We will now do the same for the coupling at z = zF and conditions (FI)–(FIII).
These lead to overlapping regions in the (q2, q3)-plane leading to different numbers
of possible steady states in different regions. In Fig. 11, the regions are shadowed
in which (FI) (red), (FII) (blue) and (FIII) (grey) hold.

To obtain these regions, we define the following functions with respect to condi-
tions (FI)–(FII):

hI(q2) := j2(1; q2)− j2(φM
2 (q2); q2) = q2 − j2(φM

2 (q2); q2),

hII(q2, q3) := j2(φM
2 (q2); q2)− j3(φ3M(q3); q3).

These functions are continuously differentiable by Lemma 2.1. The following lemma
gives the qualitative properties of the boundaries of the regions.
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Figure 9. Case W1: 0 ≤ q3 ≤ q4. Possible steady-state values for
zones 3 and 4. Subcases (b) and (c) are not plotted since they are
empty cases.

Lemma 3.1. There exists a unique q̃ ∈ (0, ¯̄q) and a unique continuously differen-

tiable function h̃II such that q̃ = j3(φ3M(q̃); q̃) and the following hold:

(FI) ⇔ hI(q2) = 0 ⇔ q2 = q̃, (3.6)

(FII) ⇔ hII(q2, q3) ≥ 0 ⇔ q3 ≤ h̃II(q2), (3.7)

(FIII) ⇔ q2 ≥ j3(φ3M(q3); q3), (3.8)

h̃II(q2) =


0 if q2 ≤ qneg,

increasing if qneg < q2 < ¯̄q,

q2 if q2 ≥ ¯̄q,

j3(φ3M(q3); q3) =


q3 if q3 ≤ q̄,
increasing if q̄ < q3 < ¯̄q,

jg(φinfl) + q3φinfl if q3 ≥ ¯̄q.

Proof. Using Lemma 2.1, we get

h′I(q2) = 1− φM
2 > 0,

hI(0) = −j2(φM
2 (0); 0) = −jg(φM

2 (0)) < 0,

hI(¯̄q) = j2(1; ¯̄q)− j2(φinfl; ¯̄q) > 0,
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Figure 10. Operating charts in which condition (G) is satisfied
in (a) (q2, qG)-plane and (b) (qU, qG)-plane. As usual, the unit of
q-fluxes is cm/s.

Figure 11. Operating charts in which conditions (FI)–(FIII) are
satisfied in (a) (q2, q3)-plane (where q3 ≥ q2 holds) and (b) (qG, qF)-
plane. The value qneg = −2.6941 cm/s is not shown in these and
further plots. In the latter plot, the scale of the horizontal axis is
adjusted with respect to the previously chosen fixed value qSS

U .

where the last inequality follows from the fact that j2(·; ¯̄q) is an increasing function.
Hence, hI is a continuous increasing function and (3.6) follows. For condition (FII),
we have (by means of Lemma 2.1)

∂hII

∂q2
= φM

2 (q2) = 0 ⇔ q2 = qneg,
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∂hII

∂q3
= −φ3M(q3) < 0 for all q3.

Since the latter derivative is always non-zero, the implicit function theorem implies
the existence of a continuously differentiable function h̃II satisfying

hII

(
q2; h̃II(q2)

)
= 0 for all q2,

h̃′II(q2) = −∂hII/∂q2

∂hII/∂q3
= 0 ⇔ q2 = qneg.

For q2 ≤ qneg and q3 = 0, we have

hII(q2, 0) = j2(0; q2)− j3(1; 0) = 0− 0 = 0 ⇒ h̃II(q2) = 0,

and for q3 = q2 ≥ ¯̄q, we have

hII(q2, q2) = j2(φinfl; q2)− j3(φinfl; q2) = φinfl(q2 − q2) = 0 ⇒ h̃II(q2) = q2,

Condition (FIII) can directly be rewritten by using the identity j2(1; q2) = q2.
Hence, the boundary of the region where condition (FIII) holds is given by the
curve j3(φ3M(q3); q3), and its properties follow from Lemma 2.1 and the definition
of φ3M(q3). Finally, the definition of q̃ gives that

j3(φM
3 (q̃); q̃)− q̃ = j2(φM

2 (q̃); q̃)− q̃ = hI(q̃) = 0.

As we did for the gas injection point, we now transform the boundary curves of
conditions (FI)–(FIII) from the (q2, q3)-plane to the (qG, qF)-plane with the linear
mapping {

qG = qSS
U + q2,

qF = q3 − q2.
⇔

{
qG − qSS

U = q2,

qF = q3 − q2.

This mapping depends on the chosen steady-state value of qU, denoted by qSS
U , from

the chart in Fig. 10(b). For a given value of qSS
U , we therefore use the scale qG− qSS

U

on the horizontal axis; see Fig. 11(b).
For the coupling at z = zW, we note that conditions (WI) and (WII) are the

same as conditions (FII) and (FIII) except for the zone index increased by one.
Hence, the analogous statements of Lemma 3.1 hold, except for those involving q̃.
We can draw the operating chart in the (q3, q4)-plane, and with the mapping{

qF = qSS
U − qSS

G + q3,

qW = q4 − q3,
⇔

{
qF − (qSS

U − qSS
G ) = q3,

qW = q4 − q3,

the chart in the (qF, qW)-plane, where the steady-state values qSS
U and qSS

G have been
chosen from the previous operating charts; see Fig. 12.

It seems logical that when working with steady states, it is necessary to re-
strict the amount of gas, fluid or water pumped into the tank. Moreover, from the
desliming point of view, situations as huge quantities of fluid leaving at the top of
the column, loosening the froth or washing it in excess, or gas bubbles flowing down
and out of the tank through the bottom tailings underflow, are not convenient.
Conditions (G), (FI)–(FIII) and (WI)–(WII) set a theoretical upper limit for the
values of qG, qF and qW, respectively, for a fixed given value of qSS

U , as Figures 10–12
show. For instance, Fig. 11(b) shows that if we want any condition (FI)–(FIII) to
be satisfied for qG − qSS

U ∈ [−0.1, 0.9] cm/s, then we should set qF < 0.7 cm/s.
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Figure 12. Operating charts in which conditions (WI)–(WII) are
satisfied in (a) (q3, q4)-plane and (b) (qF, qW)-plane. In the latter
plot, the scale of the horizontal axis is adjusted with respect to the
previously chosen fixed values qSS

U and qSS
G .

3.8. Tables and visualization of steady states. Whereas the operating charts
in Section 3.7 give an overview on how to choose the bulk velocities with respect to
conditions for certain steady-state couplings at the points of injection and outlets,
we here collect in Tables 1 and 3 all possible steady-state combinations between
these couplings for the cases q3 ≥ q2 ≥ 0 and q2 < 0, respectively. Some of the
couplings made locally, for example for φ2 and φ3 in Section 3.5, do not appear in
the tables because they are not possible when taking into account also the couplings
with φ1 and φ4.

The tables should be read as follows. A possible steady-state solution with
constant concentration in each zone is obtained by connecting adjacent rectangles
passing only over vertical lines (and no corners), from the left column φU to the
right φE. In Table 2 we show some examples of admissible and inadmissible paths,
in green and red respectively, for steady states for the case q3 ≥ q2 ≥ 0 in Table 1.
As it can be seen, the inadmissible path passes over a horizontal line in the φ2-
column, yielding two different possible intervals of definition for φ2, which is not
allowed.

Table 3 shows the possible steady states when q2 < 0 and the sign restrictions of
q3 are given in the table. The appearance of conditions (G), (FI), etc. in the tables
means that the corresponding steady state is possible only if the corresponding
conditions are satisfied. As can be seen in the first and the last columns of the
tables, the values of φU and φE are uniquely given by the chosen value of φ1 and
φ4, respectively. Also notice that although in the derivation of the cases we allow
the intervals of definition of φi to overlap, we do not do this in the construction of
the tables, to avoid the appearance of a possible steady state more than once and
keep the tables as simple as possible.

3.9. Steady states having discontinuities within zones. Despite the diversity
of possible steady states with a constant value in each zone, which are categorized
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φU φ1 φ2 φ3 φ4 φE

0

[0, φM
2 ]∗

[0, φM
3 ]

[0, φ4m]

(G)

[φ1Z, 1]
φ4M

0

(φM
2 , φ2M]

(φM
3 , φ3M] (WI)

(G) (FII)

−j1(φ1)

qU [φ1Z, 1]

j4(φ4)

qE

0

1

[0, φM
3 ] [0, φ4m]

(q1 = 0)
(FI)

φ4M
(φM

3 , φ3M]
(WI)

(FIII)

1 [φ3M, 1] φ4M

(FIII) (WII)

Table 1. Collection of possible steady states for the flotation col-
umn when q2 = qG − qU ≥ 0. (∗)When φ1 ∈ [φ1Z, 1] then φ2 = φM

2 .

φU φ1 φ2 φ3 φ4 φE

-I X

-I X

-I X

-I ×

Table 2. Admissible (green) and inadmissible (red) paths for
steady-state construction in Table 1.

in Tables 1 and 3, there exist further steady states with possible stationary discon-
tinuities within the zones. For example, in zone 1, the constant solutions φ1 = 0
and φ1Z have the same flux value, i.e., j1(0) = j1(φ1Z). This means that there may
be a stationary discontinuity from φ1 = 0 below to φ1Z above the discontinuity,
which may be located anywhere in the interval (zU, zG), since the entropy condi-
tion (2.9) is satisfied. If such a discontinuity exists in zone 1, then the value φ1Z

can be coupled with admissible values of φ2 according to Table 1 or 3.
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φU φ1 φ2 φ3 φ4 φE

[0, φM
3 ]

[0, φ4m]

0

(G) (φM
3 , φ3M]

[0, φM
2 ]∗ (FII)

q3 ≥ 0

[φ1Z, 1] (φM
3 , φ3Z]

−j1(φ1)

qU
q3 ≤ 0 φ4M

j4(φ4)

qE

0
(φM

3 , φ3M] (WI)

(G)
(FII)

(φM
2 , φ2Z] q3 ≥ 0

[φ1Z, 1]
(φM

3 , φ3Z]

q3 ≤ 0

Table 3. Collection of possible steady-states for the flotation col-
umn when q2 = qG − qU < 0. (∗)When φ1 ∈ [φ1Z, 1] then φ2 = φM

2 .

In the same way, stationary discontinuities from a lower to a higher value are pos-
sible in zones 2, 3 and 4 for all bulk velocities qk that imply that the drift-flux func-
tion in the zone is not monotone; hence, qk > qneg should hold. Analogously, there
may be discontinuities from higher gas volume fraction below a standing disconti-
nuity than above, if the drift flux has its local minimum point φkM(qk) ∈ (φinfl, 1),
which is equivalent to qk ∈ (q̄, ¯̄q). We provide examples of such discontinuities in
Section 5.

4. Numerical method. For the discretization of the model, we follow the proce-
dure of [3] for the sedimentation process in a clarifier-thickener.

We subdivide the tank into N internal layers, or cells, and four external layers,
two at the top and two at the bottom, corresponding to the overflow and underflow
zones, respectively, each of them with depth ∆z = 1/N . We let φi(t) ≈ φ(zi, t)
denote the average of the exact solution over layer i, i.e. (zi−1, zi), at time t, i.e.,

φi(t) :=
1

∆z

∫ zi

zi−1

φ(z, t) dz.

For each layer i, we use the balance law corresponding to (1.1) to obtain

dφi

dt
= −F (zi, t, φ

i)− F (zi−1, t, φ
i−1)

∆z
+

1

∆z

∑
S∈{G,F,W}

∫ zi

zi−1

qSφSδ(z − zS) dz,

(4.1)

where the flux F (z, t, φ) is defined by (2.7). This is approximated by Godunov’s
numerical flux [23], which is

Fi := Fi(φi, φi+1, t) =

 min
φi≤φ≤φi+1

jk(φ) if φi ≤ φi+1,

max
φi≥φ≥φi+1

jk(φ) if φi > φi+1,
(4.2)
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where k ∈ {E, 1, 2, 3, 4,U} denotes the present zone of the vessel (k depends on i).
We define the indices iG, iF, iW to indicate that the gas inlet is located in the layer
(ziG−1, ziG), and the fluid and wash water inlets in (ziF−1, ziF) and (ziW−1, ziW),
respectively. For instance, the numerical fluxes Fi between layers (ziG−1, ziG) and
(ziF−1, ziF) will be computed using the function j2(φ).

Substituting the numerical fluxes into the exact version of the conservation law
(4.1), we get the following method-of-lines formula:

dφi

dt
= −Fi −Fi−1

∆z
+

∑
S∈{W,F,G}

qSφS
∆z

δi,iS , (4.3)

where δi,iS = 1 if i = iS and 0 otherwise. Since we utilize the Godunov flux, the
following is valid. For given piecewise constant (in each cell) initial data at t = 0,
equation (4.3) is in fact exact for the cell average of the solution of PDE (1.1) for
small times until any wave from a cell boundary hits another cell boundary.

Using an explicit Euler step for the approximation of the time derivative and the
CFL condition

∆t max
k∈{U,1,2,3,4,E}

(
max

0≤φ≤1
|j′k(φ)|+ |qk|

)
≤ ∆z, (4.4)

we obtain the following fully discrete method for φi,n ≈ φi(tn), where the upper
index n stands for evaluation at time t = tn:

φi,n+1 = φi,n +
∆t

∆z

[
−Fni + Fni−1 +

∑
S∈{W,F,G}

qnSφ
n
Sδi,iS

]
, i = −1, . . . , N + 2.

5. Numerical examples. The examples demonstrate the dynamic and steady-
state behaviour of a flotation column and we use dimensionless numbers. The drift-
flux function jg(φ) = vtermφ(1− φ)3.2 has been applied. We chose vterm = 2.7 cm/s
in agreement with [13]. Furthermore, the height of the vessel is 100 cm and we have
placed the injection points equidistantly: zG = 25 cm, zF = 50 cm and zW = 75 cm.
From now on the following units are used: q [cm/s], z [cm] and t [s].

5.1. Examples 1 and 2: Transition between steady states. First, we define
an initial set of velocities for the inlets and the outlets. In order to maximize the
number of possible steady states, and also satisfying conditions (G), (FII), (FIII),
(WI) and (WII), we use the operating charts in Figures 10–12 to first choose qU =
0.1 and qG = 0.2, and then qF = 0.1 and qW = 0.0353, which satisfy j1(φ1) + qG =
j4(φ4M). With these values, the velocities in the column are

q(z, t) =


q1 = −0.1 for z < zG,

q2 = 0.1 for zG ≤ z < zF,

q3 = 0.2 for zF ≤ z < zW,

q4 = 0.2353 for z ≥ zW,

and hence qU = q1 = −0.1 and qE = q4 = 0.2353. Using Table 1 we know that, for
these values satisfying conditions (G), (FII), (FIII), (WI) and (WII), there are eight
possible steady states with a constant volume fraction in each zone. In Table 4, the
admissible paths for the case φ1 = 0 can be seen, corresponding to steady states
(a)–(d) in Figure 13. The paths with φ1 ∈ [φ1Z, 1] can be obtained analogously,
starting from the corresponding rectangle in Table 1. A detailed description of all
steady states is provided by Figures 13–15.
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φU φ1 φ2 φ3 φ4 φE

I (a)
I (b)
I (c)

I (d)

Table 4. Examples 1 and 2: admissible paths for steady states
with φ1 = 0, corresponding to steady states (a)–(d) in Figure 13.
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Figure 13. Examples 1 and 2: possible steady states with φ1 = 0
for initial data corresponding to Figures 15(a)–(d).

In addition to the volume fractions φk, k ∈ {U, 1, 2, 3, 4,E}, Figure 15 shows the
gas and fluid fluxes (jk and ϕk) in each zone k represented by red and blue arrows,
respectively. In all eight cases, the gas flux is zero below z = zG, since j1(φ1) = 0,
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Figure 14. Examples 1 and 2: Possible steady states with φ1 ∈
[φ1Z, 1] for initial data corresponding to Figures 15(e)–(h).

and equal to the constant value j4(φ4M) above. The flux of water in zone k is then
ϕk = qk − jk(φk).

Let us now run two simulations.

Example 1. Initially, we consider a column filled with only fluid, i.e., φ(z, 0) = 0 for
all z, and we start pumping gas, fluid and wash water into it, with the velocities
stated above. The gas rises fast and reaches the top of the vessel in a short time;
see Figure 16, which shows the time evolution of the gas concentration. As can be
seen in Figure 17(a), at t = 150, the first steady state, see Figure 15(a), has been
reached. Then we close the top of the vessel by setting qE = 0 and qU = −0.3353
and let the gas accumulate at the top until t = 300, see Figure 17(b), when we
open the top again (the previous values are used). As can be seen in Figures 17(c)
and (d), after opening the top, a discontinuity arises within zone 3 between the
fluid and wash water inlets, and becomes stationary at z ≈ 55; see the explanation
in Section 3.9. The new steady state is thus not among the eight ones shown in
Figure 15, but can be seen as combination of cases (b) and (c) of both Figures 13
and 15.

Example 2. Figures 18 and 19 show the results when we close the top of the tank
for a longer period, in this case until t = 400. Then, still another steady state is
reached, namely the intermediate one of Figure 15(d) and (h) having a discontinuity
in zone 1. The flux of gas is zero in zone 1, which means that there is a region of
bubbles standing still with the concentration φ ≈ 0.65 just below the gas inlet
zG = 25.
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Figure 15. Examples 1 and 2: possible steady states with gas
(red) and fluid (blue) fluxes.
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Figure 16. Example 1: time evolution of gas concentration from
different angles.

5.2. Example 3: Overloaded tank. We now define an initial set of velocities for
the inlets and the outlets for which no steady state with φ1 = 0 is possible. Conse-
quently, the system is overloaded and gas has to leave also through the underflow,
so that φ1 > 0. The velocities in the column chosen are
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Figure 17. Example 1: gas concentration profiles for (a) t = 150,
(b) t = 300, (c) t = 500 and (d) t = 2000.
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Figure 18. Example 2: time evolution of gas concentration from
different angles.

q(z, t) =



q1 = −0.1 for z < zG,

q2 = 0.1 for zG ≤ z < zF,

q3 = 0.15 for zF ≤ z < zW,

q4 = 0.17 for z ≥ zW,

and hence qU = q1 = −0.1 and qE = q4 = 0.17. A detailed description of the
possible steady states is provided by Figure 20.

As in Examples 1 and 2, we start with a column filled with only fluid, i.e.,
φ(z, 0) = 0 for all z, and we start pumping gas, fluid and wash water into it, with
the velocities stated above. In Figure 21, we can see how the gas rises and reaches
the top of the column in a short time. A steady state, corresponding to case (d) in
Figure 20, has been reached by t = 2000, as it can be seen in Figure 21(d). Clearly
this is not an acceptable set of parameters for the desliming process: an unnecessary
excess of gas is flowing downwards and leaving the tank through the bottom.
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Figure 19. Example 2: gas concentration profiles for (a) t = 150,
(b) t = 400, (c) t = 500 and (d) t = 2000.
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Figure 20. Example 3: possible steady states for initial data in Example 3.

5.3. Example 4: Desliming. A flotation column is generally operated so that
there are two regions: one with bubbles (intermediate gas volume fraction) and one
with froth. In the bubbly region, usually in zone 2 and sometimes the lower part
of zone 3, the hydrophobic particles of the pulp slurry attach to the air bubbles. In
the froth region, located above the bubbly region, further enrichment takes place
and the foam is efficient for promoting water rejection. The injection of wash water
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Figure 21. Example 3: gas concentration profiles for (a) t = 150,
(b) t = 500, (c) t = 1000 and (d) t = 2000.

into the foam assists with rejection of entrained slimes. This is, however, effective
only if the wash water flows downwards through the foam and bubbly regions, as
stated by Dickinson and Galvin in [13]. Then the the foam is washed properly. In
all steady states of Experiment 1, the wash water flows upwards.

To achieve a proper wash, the flux of water in zone 3, and consequently in
zones 1 and 2, should be negative, while in zone 4, it should remain relatively
small. We set qU = 0.11 and qG = 0.1, and choose qF = 0.05 and qW = 0.0714,
satisfying j1(φ1) + qG = j4(φ4M) to ensure that the steady state with the higher
concentration of bubbles in zone 4, and hence the most ideal scenario for desliming,
can be achieved. With these values, the average bulk velocities in the vessel are the
following:

q(z, t) =


q1 = −0.11 for z < zG,

q2 = −0.01 for zG ≤ z < zF,

q3 = 0.04 for zF ≤ z < zW,

q4 = 0.1114 for z ≥ zW,

hence qU = −0.11 and qE = 0.1114. The bulk velocity in zone 2 is negative and
relatively small compared with the velocity in zone 1. Figure 22 shows the steady
state with maximum concentration of gas in zones 2, 3 and 4 for the conditions
given, along with the gas and water fluxes in each zone. Despite the bulk velocity
in zone 3 is positive, most of the wash water injected at z = zW flows downwards
through zone 3, with ϕ3 = −0.06, while the flux of fluid flowing up in zone 4 and
the effluent zone remains small, ϕ4 = 0.0114, compared with the flux of fluid in
other zones.

6. Conclusions. The present work has shown how the available drift-flux theory
for flotation columns, to the authors’ knowledge so far utilized in the engineering
literature for stationary analyses only, can be combined with results coming from
the mathematical and numerical analysis of conservation laws with discontinuous
flux to obtain a model for transient simulations as well as prediction of steady states.

The well-posedness established in [10] for the problem of continuous sedimen-
tation, which has one flux discontinuity, covers the case here with flotation with



368 RAIMUND BÜRGER, STEFAN DIEHL AND MARÍA CARMEN MARTÍ
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Figure 22. Example 4: Steady state with gas (red) and fluid
(blue) fluxes for a desliming test.

several (but finite number of) discontinuities. In [10], a Kružkov-type of entropy
condition was used together with a crossing condition for the fluxes for the proof
of uniqueness. It is worth noting that the flux discontinuities within the present
model do satisfy this condition. The entropy condition used here implies, however,
the Kružkov-type and uniqueness is obtained without the crossing condition [18].

One-dimensional models such as the one treated herein are easier to solve than
multi-dimensional multiphase flow models, and may be useful to model a flotation
cell within plant-wide simulators [2]. Nevertheless, for practical use, the present
model should be improved and refined in future work. Some suggested directions
of future work are as follows. Starting with a property of the model in its present
formulation, we recall that the present analysis is limited to drift flux functions jg
that satisfy (2.10), i.e., that have a horizontal tangent at φ = 1, for which the
Richardson-Zaki expression (2.3), (2.4) is the most common example. Results of
the steady-state analysis will be more complicated, but can be obtained by similar
techniques to those of Section 3, whenever q̄ = −j′g(1) > 0. To underline that this
case is relevant for investigation we mention that Pal and Masliyah [31] come to
the conclusion that the Richardson-Zaki expression (2.4), with q̄ = 0, is suitable
with nRZ = 2.39. However, their Figures 10 and 11, displaying drift flux data
obtained by their own experiments and from the literature, including those obtained
within the froth region, strongly indicate that a function jg with q̄ > 0 is more
suitable. In fact, in their next paper [32] they modify the expression for V to
V (φ) = 0.8(1− φ) exp(−2.9φ2.1), such that indeed −j′g(1) = 0.8 exp(−2.9) > 0.

With respect to the hydrodynamical setup of the flotation column and its con-
ceptual counterpart as drawn in Figure 1, we mention that Vandenberghe et al. [39]
propose an interesting recirculation: according to their Figure 1, mixture is sucked
from the column at a determined level, aerated, and re-injected at another position.
The extraction of material at a given rate but whose composition is part of the
solution gives rise to a singular sink term whose mathematical treatment is more
involved than that of a singular source term (as those appearing in (1.1)). The
basic difficulty is that the sink term cannot be incorporated into the flux function;
rather, the sink is represented by a new non-conservative transport term (see [6]).

In several instances, our analyses invoke available mathematical and numeri-
cal results for clarifier-thickener models. If sediment compressibility is included in a
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clarifier-thickener model, an effect that arises if the solid-liquid suspension is floccu-
lated, then the governing equation for such models features an additional strongly
degenerating diffusion term [10] whose appropriate treatment, roughly speaking,
arises from handling it as part of the convective flux. Such a term may also be mo-
tivated in the application to flotation in future works: for instance, Narsimhan [29]
derives such a term to account for gradual compressibility of the foam layer that
is caused by flow of liquid through a network of plateau borders due to gravita-
tional and capillary forces [29]. On the other hand, Stevenson et al. [37] propose a
convection-diffusion model for the transport of gangue in flotation froth.

Clearly, an obvious shortcoming of the present description, although it is in line
with the cited treatments of literature [13, 22, 25, 27, 31, 32, 38, 39, 43, 44], is that it
does not explicitly model the transport and settling of solid particles. It would be
highly desirable to extend the model by solids phases, for example of hydrophobic
and hydrophilic particles (of minerals and gangue material), and to include their
attachment to bubble and transport via the liquid and gas components. The likely
outcome of such a description is a convection-diffusion-reaction system with discon-
tinuous flux akin to a recently advanced model of continuous sedimentation with
reactions [4]. On the other hand, several gas or solid phases representing size classes
that segregate and form areas of different composition can be included, and lead to
first-order hyperbolic systems of conservation laws with discontinuous flux, under
determined circumstances (see, e.g., [11] and the references cited in that paper).

Within the present work the emphasis has been on the construction of stationary
solutions. The numerical scheme utilized, Godunov’s scheme with suitable modi-
fications to handle the flux discontinuities (see Section 4), is monotone provided
that ∆t and ∆z satisfy the CFL condition (4.4), and therefore delivers approxi-
mate solutions that converge to the unique entropy solution of the problem (1.1),
(1.2). However, formally second-order accurate solvers are possible for instance by
techniques of variable extrapolation, see e.g. [7, 9].
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