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Abstract. This work analyzes the estimation performance of the Kalman

filter (KF) on transportation networks with junctions. To facilitate the analy-
sis, a hybrid linear model describing traffic dynamics on a network is derived.

The model, referred to as the switching mode model for junctions, combines

the discretized Lighthill-Whitham-Richards partial differential equation with
a junction model. The system is shown to be unobservable under nearly all of

the regimes of the model, motivating attention to the estimation error bounds

in these modes. The evolution of the estimation error is investigated via ex-
ploring the interactions between the update scheme of the KF and the intrinsic

physical properties embedded in the traffic model (e.g., conservation of vehi-
cles and the flow–density relationship). It is shown that the state estimates of

all the cells in the traffic network are ultimately bounded inside a physically

meaningful interval, which cannot be achieved by an open-loop observer.

1. Introduction. The unprecedented growth of sensing and computational capa-
bilities have advanced the development of real-time traffic estimation techniques.
However, many estimation algorithms proposed to monitor traffic conditions are
only verified through experiments (e.g., [5,13,26,27,42,43]), while a theoretical anal-
ysis on the estimator performance is lacking. This is mainly due to the complexity of
the models describing traffic (e.g., non-linearity and non-differentiability) [2], and,
more importantly, the non-observability [30, 37] of the systems subject to conser-
vation laws. When a system is not observable, the available sensor measurements
(in conjunction with the model describing system dynamics) are insufficient to cor-
rectly reconstruct the full state to be estimated. In traffic estimation problems,
the non-observability issue is inevitable when a shock exists and the sensors cannot
measure every state variable in the road network of interest.

This work aims at addressing the issue of the lack of a theoretical performance
analysis for traffic estimation problems under unobservable scenarios occurring at
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junctions. Note that in classical estimation / filtering theory, an unobservable sys-
tem is very likely to result in an estimation error that diverges [1,17]. Nevertheless,
in this work we derive theoretical error bounds for traffic estimation on unobserv-
able transportation networks (with junctions), where the state estimate is provided
by the Kalman filter (KF). Specifically, when the system is not observable, the error
bounds are derived through leveraging the intrinsic properties of traffic models (e.g.,
mass conservation and the flow-density relationship), and exploring the interactions
between these intrinsic properties and the update scheme in the Kalman filtering
algorithm.

1.1. Related work. The classical conservation law describing the evolution of traf-
fic density on a road link (i.e., a road section without junctions) is the Lighthill-
Whitham-Richards partial differential equation (LWR PDE) [25,32]. The cell trans-
mission model (CTM) [7, 8, 23] is a discretization of the LWR PDE using the Go-
dunov scheme [11]. In [30, 35], the CTM is transformed to a hybrid linear system
known as the switching mode model (SMM) that switches among different linear
modes, and the observability of each mode is analyzed.

To extend the traffic model on road links to networks, a model is needed to
describe how the traffic exiting the road links on the upstream side of a junction is
received by the road links on the downstream side of the junction. A well known
issue is that the conservation of vehicles across the junction is insufficient to uniquely
define the flows at the junction. To address this issue, a number of junction models
[8–10, 12, 14, 15, 18–20, 22] have been proposed via additional rules governing the
distribution or priority of the flows on different road links.

In parallel to the ongoing development of traffic models, a number of sequential
traffic estimation algorithms have been proposed to integrate model predictions with
real-time sensor measurements. For example, the mixture Kalman filter is applied
to the SMM in [35] to estimate traffic densities for ramp metering. The parallelized
particle filters and the parallelized Gaussian sum particle filter are designed in [27]
for computational scalability. In [40], an efficient multiple model particle filter is
proposed for joint traffic estimation and incident detection on freeways. Other
treatments of traffic estimation include [5,26,29,38,41–43]. A comprehensive survey
of sequential estimation techniques for traffic models can be found in [34].

Although many traffic estimation algorithms proposed in the existing literature
are verified experimentally, very few theoretical results exist that analyze the perfor-
mance of traffic estimators (e.g., bounds on the estimation error), especially under
unobservable scenarios. The main results to date are as follows. In [16], the KF is
applied on a Gaussian approximation of a stochastic traffic model, and the stochas-
tic observability of the system is proved. To ensure observability of the system, a
warm-up period is required where the initial conditions are restricted to be free-flow
traffic conditions. In [6], the local observability around an equilibrium traffic state
is studied using a Lagrangian formulation of the traffic model. The authors of [28]
prove the performance of a noise-free Luenberger observer for traffic estimation
based on the SMM, which is the first work to provide theoretical performance anal-
ysis for any traffic estimator under both observable and unobservable scenarios. The
Luenberger observer in [28] discards measurement feedback in unobservable modes,
ensuring the spatial integral of the estimation error is conserved. Similarly in [39],
the estimator runs an open-loop predictor under unobservable cases to ensure that
the estimation error does not diverge. Although conserving the spatial integral of
the estimation error, it is illustrated in [36] that dropping measurement feedback
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can lead to physically unreasonable estimates. In our earlier work [37], we showed
that incorporating measurement feedback under unobservable scenarios is essential
in maintaining physically reasonable estimates, i.e., due to the interactions of the
model prediction and the measurement feedback in the filtering algorithm, the mean
estimates of all state variables are guaranteed to be ultimately bounded inside the
physically meaningful interval under unobservable modes. Note that the results
in [6, 16, 28, 37, 39] are restricted to road stretches without considering junction
dynamics, which is the focus of the work in this article.

1.2. Contributions and outline of the article. The main contribution of this
article is the theoretical analysis of the estimation error bounds when using the
KF to estimate traffic densities on transportation networks with junctions. To
support a performance study of the KF, we first propose a switched linear system
to model the evolution of traffic densities on road networks with junctions, namely
the switching mode model for junctions (SMM-J). The SMM-J is an extension of
the SMM, in the sense that the SMM-J describes the traffic density evolution on a
road section with a junction, while the SMM only considers one-dimensional (i.e.,
without junctions) road sections. The SMM-J combines a switched linear system
representation of the CTM with the junction model developed in [24], however, other
junction models can also be incorporated in a similar fashion to derive linear traffic
models on junctions. We also provide the observability result on each mode of the
SMM-J, and show that nearly all modes are unobservable due to the irreversibility
of the conservation laws in the presence of shocks and junctions. Compared to
the one-dimensional road sections, the issue of non-observability is more frequently
encountered when junctions exists, motivating attentions to the error bounds under
unobservable scenarios. Next, we prove the estimation error properties of the KF
that uses the SMM-J to estimate an unobservable freeway section with a junction
inside. Although an unobservable system typically results in diverging estimation
errors [17], we show that by combining the update scheme of the KF with the
physical properties embedded in the traffic model, the following properties can be
derived for traffic estimation under unobservable modes:

1. For an unobservable road section, the Kalman gain has bounded infinity norm.
This is a necessary condition to ensure bounded mean estimation error for the
KF.

2. When a road section stays in an unobservable mode, the mean estimate of each
state variable is ultimately bounded inside a physically meaningful interval,
thus the mean estimation error of the enire state is also ultimately bounded.

This work complements our previous work studying the performance of traffic esti-
mators that use the SMM to monitor unobservable one-dimensional freeway traffic
conditions [37]. Thus, when estimating the traffic conditions in a large-scale road
network, we can partition the traffic network into local sections which are either one-
dimensional, or having a junction inside. The traffic condition in each local section
is estimated by a local estimator based on the KF and the SMM-J (or the SMM).
Under this distributed computing manner, the estimation errors for the sections
without junctions reside below the bounds derived in [37], and the error bounds
studied in this work are used to justify the estimation accuracy in the sections with
junctions.

This work is organized as follows. Section 2 reviews the KF and its error proper-
ties under observable and unobservable systems, and briefly summarizes the CTM.
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Section 3 introduces the SMM-J, its observability under different modes, and the
properties of the state transition matrices that reflect the intrinsic physical prop-
erties of the traffic model. The properties of the state transition matrices of the
SMM-J are applied in Section 4, where we prove the boundedness of the Kalman
gain and the ultimate bound of the mean estimation error under unobservable sce-
narios. Finally, some concluding remarks are provided in Section 5.

Notations. Let In and 0n,m be the n × n identity matrix and the n × m zero
matrix, respectively. The subscripts of In and 0n,m are sometimes omitted, when
dimensionality is clear from the context. Denote as E[·] the expectation operator,
and the “bar” symbol is used to denote the expected value of random vector x, i.e.,
x̄ = E[x]. The symbol > is used to denote the transpose operator.

2. Preliminaries. In this section, we first review the Kalman filter and the prop-
erties of its error covariance as well as mean estimation error under observable and
unobservable scenarios. We also provide a brief overview of the cell transmission
model used to construct the SMM-J.

2.1. Kalman filter. In this subsection, we briefly review the KF and introduce
necessary notations in this article. Consider a general linear time-varying system

ρk+1 = Akρk + uk + ωk, ρk ∈ Rn, (1)

zk = Hkρk + vk, zk ∈ Rm, (2)

where ρk and zk are the state vector and sensor measurement vector at time k ∈ N,
respectively. The matrices Ak and Hk are the state transition matrix and the
observation matrix at time k. The term uk in (1) is a deterministic system input.
The noise terms ωk ∼ N (0, Qk) and vk ∼ N (0, Rk) are the white Gaussian model
and measurement noise, where Qk and Rk denote the model and the measurement
error covariance matrices at time k. Given the sensor data up to time k denoted
by Zk = {z0, · · · , zk}, the prior estimate and posterior estimate of the state can be
expressed as ρk|k−1 = E[ρk|Zk−1] and ρk|k = E[ρk|Zk], respectively. Let ηk|k−1 =
ρk|k−1 − ρk and ηk|k = ρk|k − ρk denote the prior and posterior estimation errors.
The estimation error covariance matrices associated with ρk|k−1 and ρk|k are given

by Γk|k−1 = E[ηk|k−1η
>
k|k−1|Zk−1] and Γk|k = E[ηk|kη

>
k|k|Zk]. The KF sequentially

computes ρk|k from ρk−1|k−1 as follows:

Prediction:

{
ρk|k−1 = Ak−1ρk−1|k−1 + uk
Γk|k−1 = Ak−1Γk−1|k−1A

>
k−1 +Qk−1,

(3)

Correction:

 ρk|k = ρk|k−1 +Kk(zk −Hkρk|k−1)
Γk|k = Γk|k−1 −KkHkΓk|k−1

Kk = Γk|k−1H
>
k (Rk +HkΓk|k−1H

>
k )−1.

(4)

In (4), the matrix Kk is denoted as the Kalman gain at time k. Note that for
all k, the state estimates ρk|k−1 and ρk|k are random vectors. The mean posterior

estimate and the mean posterior estimation error1 are denoted as ρ̄k|k and η̄k|k,
respectively.

1For the remainder of this article, the term state estimates/estimation errors/error covariance
refers to the posterior estimates, unless specified otherwise.
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Observability. The discrete system (1)-(2) is uniformly completely observable if there
exists a positive integer N and positive constants α, β such that

αIn < Ik,k−N < βIn, for all k ≥ N , (5)

where Ik1,k0 is defined as the information matrix for time interval k ∈ [k0, k1]:

Ik1,k0 =

k1∑
k=k0

Ξ>k,k1H
>
k R
−1
k HkΞk,k1 ,

where

Ξk,k1 =

k1−1∏
κ=k

A−1
κ , and Ξk1,k = Ξ−1

k,k1
=

k∏
κ=k1−1

Aκ. (6)

The observability of a system characterizes whether the sensor measurements of the
system is sufficient for the KF to correctly estimate the state vector. Given the
positive definiteness of the information matrix, the observability grammian matrix
linking the the initial state ρ0 to the sensor measurements up to time N (i.e., ZN )
is invertible. The next lemma states the boundedness (both from below and above)
of the estimation error covariance and the convergence (to zero) of the estimation
error, when using the KF (3)-(4) to estimate a uniformly completely observable
system.

Lemma 1 (Chapter 7.6 in [17]). If the dynamical system (1)-(2) is uniformly com-
pletely observable and the following conditions hold:

(C.1): there exist positive constants q1, q2, r1 and r2 such that q1In < Qk < q2In
and r1Im < Rk < r2Im for all k;

(C.2): the initial error covariance is positive definite, i.e., Γ0|0 > 0;
(C.3): the state transition matrix Ak is nonsingular for all k,

then there exist positive constants c1 > 0 and c2 > 0 such that the error covariance
of the KF (3)-(4) satisfies

c1In < Γk|k < c2In, for all k ≥ 0.

Moreover, there exists positive constants a > 0 and 0 < q < 1 such that the 2-norm2

of the mean estimation error satisfies∥∥η̄k|k∥∥ < aqk
∥∥η̄0|0

∥∥ , for all k ≥ 0.

When system (1)-(2) is not observable, the mean estimation error η̄k|k will di-
verge, unless the unobservable part of the state is bounded or converges to zero
automatically. In Appendix.1, we present an example illustrating the evolution of
the mean estimation error given by the KF when tracking an unobservable system.

2.2. Cell transmission model. The classical conservation law describing the evo-
lution of traffic density ρ(t, x) on a road at location x and time t is the Lighthill-
Whitham-Richards partial differential equation (LWR PDE) [25,32]:

∂tρ+ ∂xF(ρ) = 0. (7)

The function F(ρ) = ρv(ρ) is called the flux function, where v(ρ) is an empirical
velocity function used to close the model.

The cell transmission model (CTM) [7, 8, 23] is a discretization of (7) using a
Godunov scheme [11]. Consider a uniformly sized discretization grid defined by

2For the remainder of this article, we denote as ‖ · ‖ the 2-norm of a matrix or a vector.
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a space step ∆x > 0 and a time step ∆t > 0. Let l index the cell defined by
x ∈ [l∆x, (l + 1)∆x), and denote as ρlk the density at time k∆t in cell l, where

k ∈ N and l ∈ N+. Moreover, denote as f(ρl−1
k , ρlk) the flux between cell l − 1 and

l. In the CTM, the discretized model (7) becomes

ρlk+1 = ρlk +
∆t

∆x

(
f(ρl−1

k , ρlk)− f(ρlk, ρ
l+1
k )

)
, (8)

where f(ρl−1
k , ρlk) is computed by

f(ρl−1
k , ρlk) = min

{
s
(
ρl−1
k

)
, r
(
ρlk
)}
. (9)

In (9), s(ρl−1
k ) is the sending capacity (i.e., maximum sending flow) of cell l − 1

at time k, which is a function of ρl−1
k , and r(ρlk) is the receiving capacity (i.e.,

maximum receiving flow) of cell l at time k, which is a function of ρlk. Note that if
the Courant-Friedrichs-Lewy (CFL) condition is satisfied, the solution of the CTM
converges in L1 to the weak solution of the LWR PDE as ∆x→ 0 [33].

Remark 1. Note that the terminologies sending capacity and receiving capacity
are equivalent to the notions of demand and supply. Both sending/receiving and
demand/supply terminologies are widely used in the traffic community, with the
former introduced in [7, 8], and the latter introduced in [23]. In this work we use
the sending/receiving terminology, which is consistent throughout the article, and
is also consistent with our previous work [37].

ρ

F( )ρ

mv w−

mc

mq

Figure 1. The triangular fundamental diagram in (10).

The flux function [8] used in this work is the triangular flux function (shown in
Figure 1) given by

F(ρ) =

{
ρvm if ρ ∈ [0, %c]
w(%m − ρ) if ρ ∈ [%c, %m],

(10)

where w = %cvm
%m−%c , vm denotes the freeflow speed, and %m denotes the maximum

density. The parameter %c is the critical density at which the maximum flux is
realized. For the triangular fundamental diagram, the flux function has different
slopes in freeflow (0 < ρ ≤ %c) and congestion (%c < ρ ≤ %m). In freeflow, the slope
is vm, and in congestion, it is w. Under the triangular flux function, the sending
and receiving capacities are determined by:

s(ρ) =

{
ρvm if ρ ∈ [0, %c]
qm if ρ ∈ [%c, %m]

r(ρ) =

{
qm if ρ ∈ [0, %c]
w(%m − ρ) if ρ ∈ [%c, %m],

(11)

where qm is the maximum flow given by qm = vm%c.
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3. The switching mode model for junctions. In this section, we derive the
hybrid linear model describing traffic density evolution on a road section with a
junction, namely the switching mode model for junctions (SMM-J). The SMM-
J combines a switched linear system representation of the CTM (i.e., the CTM
where the flux function is the triangular fundamental diagram) with a junction
solver. This section starts with a review of the applied junction solver. Next, we
introduce the SMM-J and provide examples regarding its explicit formulas. Finally,
the observability of the SMM-J is discussed.

cell i
cell jcell l

f (
,

)
l

i

k
k

ρ
ρ

f (
,

)
l

jk
k

ρ
ρ

cell 
flow

(a) Diverge junction

cell 

cell l

cell i

cell j

flowf (
,

)
i

lk
k

ρ
ρ

f (
,

)
j

l

k
k

ρ
ρ

(b) Merge junction

Figure 2. A diverge and a merge junction connected by three cells
indexed by i, j, and l.

3.1. Junction solver on traffic networks. This subsection introduces the junc-
tion solver proposed in [24]. As shown in Figure 2a, the junction solver computes

flux f(ρlk, ρ
i
k) and f(ρlk, ρ

j
k) between the connecting cells l, i and j forming a diverge

junction. In the merge junction shown in Figure 2b, the junction solver computes
f(ρik, ρ

l
k) and f(ρjk, ρ

l
k) between the connecting cells. This solver is later applied in

Section 3.2 to develop the SMM-J.

3.1.1. Diverge junction. At a diverge junction in Figure 2a, the junction solver is
governed by the following rules:

(R.1): The mass across the junction is conserved.

(R.2): The throughput flow f(ρlk, ρ
i
k) + f(ρlk, ρ

j
k), i.e., the outgoing flow of cell l, is

maximized subject to the maximum flow that can be sent or received on
each connecting cell.

(R.3): The distribution of flux f(ρlk, ρ
i
k) and f(ρlk, ρ

j
k) satisfies f(ρlk, ρ

j
k) = αdf(ρlk,

ρik), where αd is the prescribed distribution parameter that models the
routing preference to the downstream cells. When (R.3) conflicts (R.2), i.e.,
the flow solution that satisfies the distribution equation does not maximize
the throughput, then (R.3) is relaxed, such that the solution satisfies (R.2)
and minimizes the deviation from the prescribed distribution parameter,
e.g., |f(ρlk, ρ

j
k)/f(ρlk, ρ

i
k)− αd|.

The diverge junction solver is posed as a convex program with a carefully con-
structed objective function to accommodate the throughput maximization (R.2)
and the flow distribution (R.3). The mathematical formula of the diverge junction
solver is given below (see [24, Section 3.2] for more details).
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Definition 1 (Convex program for the diverge junction solver). Define the objective
function J(f1, f2) as:

J(f1, f2) = (1− λ) (f1 + f2)− λ (f2 − αdf1)
2
,

where 0 < λ < 1 and λ is chosen such that ∂J
∂f1

> 0 and ∂J
∂f2

> 03. The conditions

on λ is used to prioritize maximizing the throughput f(ρlk, ρ
i
k) + f(ρlk, ρ

j
k) (as stated

in (R.2)), then minimizing the deviation from the prescribed distribution parameter

αd (as stated in (R.3)). The fluxes f(ρlk, ρ
i
k) and f(ρlk, ρ

j
k) are obtained by solving

the following convex program:

f(ρlk, ρ
i
k), f(ρlk, ρ

j
k) = arg max

f1,f2

J(f1, f2)

s.t. f1 ≤ r(ρik) (12)

f2 ≤ r(ρjk) (13)

f1 + f2 ≤ s(ρlk). (14)

Figure 3 provides a graphical illustration for the solutions of the convex program
defined in Definition 1. The blue vertical solid line denotes the receiving capacity of
cell i, i.e., r(ρik), and the blue horizontal solid line denotes the receiving capacity of

cell j, i.e., r(ρjk). The intercepts of the blue dashed line (with slope -1) denote the

sending capacity of cell l, i.e., s(ρlk). The shaded area denotes the feasible values of
the flux from cell l to i and the flux from cell l to j, the feasible area is obtained
based on (12)-(14). The slope of the black dotted line is the prescribed distribution
ratio αd. The fluxes computed by the junction solver in Definition 1 is marked by
the red dot, whose horizontal axis and vertical axis values are the obtained f(ρlk, ρ

i
k)

and f(ρlk, ρ
j
k), respectively.

According to the convex program in Definition 1, to obtain f(ρlk, ρ
i
k) and f(ρlk, ρ

j
k)

we need to find the solution point (i.e., the red dot) in Figure 3 that satisfies the
following requirements:

• The point lies in the shaded feasible area, so that conditions (12)-(14) are
satisfied;

• The point is as close as possible to the blue dashed line (with slope -1), so that

the throughput f(ρlk, ρ
i
k) + f(ρlk, ρ

j
k) is maximized; this is due to the fact that

the distance d0 between the point and the blue dashed line is proportional
to the disparity between the sending capacity of cell l and the throughput,
i.e., |s(ρlk)− (f(ρlk, ρ

i
k) + f(ρlk, ρ

j
k))| =

√
2d0 (as illustrated in diverge case I of

Figure 3);
• Conditioned on prioritizing maximizing the throughput, the point is as close

as possible to the black dotted line (with slope αd), so that the distribution
ratio is respected; this means that when maximizing the throughput conflicts
with the distribution ratio, the requirement f(ρlk, ρ

j
k) = αdf(ρlk, ρ

i
k) can be

relaxed.

As shown in Figure 3, there are in total three scenarios depending on the values
of s(ρlk), r(ρik) and r(ρjk). The three scenarios are: (i) diverge case I, when s(ρlk) ≥
r(ρik) + r(ρjk); (ii) diverge case II, when s(ρlk) < r(ρik) + r(ρjk), and the prescribed

distribution ratio αd can be followed exactly; and (iii) diverge case III, when s(ρlk) <

3One possible choice of λ is λ = min
{

(1 + 2α2
dqm + ε)−1, (1 + 2qm + ε)−1

}
, where ε > 0 can be

any positive value.
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Diverge case I

dα

Diverge case II Diverge case III

0d
1−

1− 1−

s( )l
kρ s( )l

kρ s( )l
kρ

s( )l
kρ s( )l

kρ s( )l
kρr( )i

kρ r( )i
kρ r( )i

kρ

r( )j
kρ

r( )j
kρ r( )j

kρ

Solution point: Solution point:
( )f ( , ), f ( , )l i l j

k k k kρ ρ ρ ρ
Solution point:

dα

( )f ( , ), f ( , )l i l j
k k k kρ ρ ρ ρ ( )f ( , ), f ( , )l i l j

k k k kρ ρ ρ ρ

Figure 3. Three scenarios in the junction solver [24] for the di-
verge junction shown in Figure 2a, where cell l diverges to cell i and
cell j. The blue vertical (resp. horizontal) solid line denotes the
receiving capacity of cell i (resp. cell j). The intercepts of the blue
dashed line denote the sending capacity of cell l. The shaded area
denotes the feasible values of the flux from cell l to i and the flux
from cell l to j. The slope of the black dotted line is the prescribed
distribution ratio αd. The fluxes computed by the junction solver
is marked by the red dot, whose horizontal axis and vertical axis
values are the obtained f(ρlk, ρ

i
k) and f(ρlk, ρ

j
k), respectively. Note

that in diverge case II and diverge case III, the receiving capacities
of cell i and cell j are not necessarily smaller than the sending ca-
pacity of cell l, and the graphical illustration of the flux solutions
is also applicable for r(ρik) ≥ s(ρlk) and/or r(ρjk) ≥ s(ρlk).

r(ρik)+r(ρjk), but (due to throughput maximization) the prescribed distribution ratio
αd cannot be followed exactly.

Under diverge case I, the fluxes f(ρlk, ρ
i
k) and f(ρlk, ρ

j
k) are computed by:

f(ρlk, ρ
i
k) = r(ρik), f(ρlk, ρ

j
k) = r(ρjk). (15)

Under diverge case II, the fluxes f(ρlk, ρ
i
k) and f(ρlk, ρ

j
k) are given as follows:

f(ρlk, ρ
i
k) =

1

αd + 1
s(ρlk), f(ρlk, ρ

j
k) =

αd

αd + 1
s(ρlk). (16)

Under diverge case III, the junction solver first finds the two vertices of the
shaded area that lie on the dashed line, and next define the point closer to the
dotted line as the flux solutions f(ρlk, ρ

i
k) and f(ρlk, ρ

j
k). Hence, depending on the

magnitude of s(ρlk), r(ρik) and r(ρjk), the solutions could be either

f(ρlk, ρ
i
k) = r(ρik), f(ρlk, ρ

j
k) = s(ρlk)− r(ρik), (17)

or

f(ρlk, ρ
i
k) = s(ρlk)− r(ρjk), f(ρlk, ρ

j
k) = r(ρjk). (18)

Note that the diverge case III shown in Figure 3 illustrates the flux solutions pre-
sented in (17).

Remark 2. The diverge junction solver described above is a non-First-In-First-Out
(FIFO) model [8,10]. The FIFO diverge model maximizes the outgoing flow of cell l

subject to the distribution ratio f(ρlk, ρ
j
k) = αdf(ρlk, ρ

i
k). Although the FIFO model

circumvents the conflicts between throughput maximization and flow distribution,
it produces unrealistic solutions in some circumstances. Several diverge junction



270 YE SUN AND DANIEL B. WORK

models have been proposed to resolve this issue [14, 20, 22]. In the same spirit
of these models, the diverge junction solver applied in this article is developed to
produce similar traffic condition dependent solutions without introducing additional
complexity on the traffic dynamics [24]. As a related note, the results proved in
this article can be extended to FIFO models with minor changes to the proof.

3.1.2. Merge junction. At a merge junction in Figure 2b, the junction solver con-
serves mass, and maximizes the throughput while minimizing the deviation from
a prescribed priority parameter αp denoting the flow assignment ratio f(ρjk, ρ

l
k) =

αpf(ρik, ρ
l
k). This priority equation is relaxed if it conflicts with flow maximization.

The reader is referred to [10,12] for a detailed description of the merge model.
The structure of the diverge and merge models are similar, in the sense that

both maximize the throughput while minimizing the deviation from the prescribed
distribution or priority parameters. Therefore, the remainder of this article focuses
on deriving the linear traffic model and analyzing the performance of the KF on
the road network with a diverge junction. The analysis can be transferred to the
merge case via combining the merge junction solver with the switched linearized
representation of the CTM, exploring the properties of the resulting state transition
matrices as in the diverge case, and analyzing the effect of these properties on the
boundedness of the Kalman gain and the mean estimation error.
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Figure 4. A local section with n cells, three links and a junction.

3.2. The switching mode model for junctions. As stated in Section 1.2, when
monitoring traffic on large-scale networks, the road network is partitioned into local
sections which are either one-dimensional, or having a junction inside. The traffic
states on the one-dimensional local sections evolve according to the SMM, and the
SMM-J is used to describe the evolution of traffic states on local sections with
junctions.

As shown in Figure 4, consider a local section with n cells, three links and a
junction. The number of cells on each link is n1, n2, and n3, respectively, with
n1 + n2 + n3 = n. The state variable at time k ∈ N is constructed as ρk =(
ρ1
k, · · · , ρ

n1

k , ρ
n1+1
k , · · · , ρn1+n2

k , ρn1+n2+1
k , · · · , ρnk

)>
. As a common treatment [28,

30, 35, 38, 39], the boundary flows, denoted by φ1
k, φ2

k, and φ3
k, are considered to

be deterministic system inputs (please refer to [3] for the concept of using ghost
cells to compute boundary flows using boundary state measurements). The SMM-J
describes the evolution of ρk using a switched linear dynamics, and is derived under
the following assumptions:
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(A.1): For each local section, there is at most one transition between freeflow and
congestion in each of the three links.

(A.2): The three connecting cells forming the junction (i.e., cell n1, n1 + 1 and
n1 + n2 + 1 in Figure 4) are either all in freeflow or all in congestion.

Assumption (A.1) is practically meaningful since the local sections are usually parti-
tioned sufficiently short such that at most one queue is growing or dissipating within
each link, which is also a commonly used assumption in the SMM [28,30,35,37,39].
Assumption (A.2) is imposed to simplify the model by reducing the number of
modes considered. Note that when (A.2) is relaxed, the number of modes is greatly
increased, but without yielding new insights into the estimation performance at
junctions. The analysis in this work still holds, the only difference is to consider an
enormously increased number of modes.

Given the assumptions stated above, on each local section with a junction, the
SMM-J may switch among 32 modes (defined in Table 1) depending on (i) the
freeflow/congestion status of the boundary cells and the connecting cells near the
junction, and (ii) the flux solution of the junction solver characterized by the three
scenarios shown in Figure 3.

In the SMM-J, the density update scheme for the interior cells in each link (i.e.,
cells indexed by l ∈ {2, · · · , n1−1}∪{n1+2, · · · , n1+n2−1}∪{n1+n2+2, · · · , n−1})
is given by (8), where the flow between two adjacent cells is computed according to
(9). For the three boundary cells, their density updates are given as follows:

ρ1
k+1 = ρ1

k +
∆t

∆x

(
φ1
k − f(ρ1

k, ρ
2
k)
)
,

ρn1+n2

k+1 = ρn1+n2

k +
∆t

∆x

(
f(ρn1+n2−1

k , ρn1+n2

k )− φ2
k

)
,

ρnk+1 = ρnk +
∆t

∆x

(
f(ρn−1

k , ρnk )− φ3
k

)
,

where f(ρ1
k, ρ

2
k), f(ρn1+n2−1

k , ρn1+n2

k ) and f(ρn−1
k , ρnk ) are also obtained from (9). The

density update scheme for the three cells near the junction reads:

ρn1

k+1 = ρn1

k +
∆t

∆x

(
f(ρn1−1

k , ρn1

k )− f(ρn1

k , ρ
n1+1
k )− f(ρn1

k , ρ
n1+n2+1
k )

)
,

ρn1+1
k+1 = ρn1+1

k +
∆t

∆x

(
f(ρn1

k , ρ
n1+1
k )− f(ρn1+1

k , ρn1+2
k )

)
,

ρn1+n2+1
k+1 = ρn1+n2+1

k +
∆t

∆x

(
f(ρn1

k , ρ
n1+n2+1
k )− f(ρn1+n2+1

k , ρn1+n2+2
k )

)
,

where f(ρn1−1
k , ρn1

k ), f(ρn1+1
k , ρn1+2

k ), and f(ρn1+n2+1
k , ρn1+n2+2

k ) are computed by

(9), and the flows between neighboring cells (i.e., f(ρn1

k , ρ
n1+1
k ) and f(ρn1

k , ρ
n1+n2+1
k ))

are computed based on the junction solver discussed in Section 3.1.
When applying the triangular fundamental diagram (10) to compute the flow

across the cells, the traffic state ρk in a local section evolves with linear dynamics
in each mode stated in Table 1, forming a hybrid system:

ρk+1 = Akρk +Bρk1%m +Bqk1qm +Bφkφk, (19)

where 1 is the vector of all ones, the vector φk = (φ1
k, φ

2
k, φ

3
k)>, and Ak ∈ Rn×n,

Bρk ∈ Rn×n, Bqk ∈ Rn×n, Bφk ∈ Rn×3 are constructed based on the current mode of
the local section, the locations of the shocks and expansion fans (if they exist), and
the moving direction of the shocks.
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Table 1. Mode definition and observability of the SMM-J

Mode
F/C1 status of cell(s) Transition3 on link Diverge Obser–

1 n1 + n2 n near junction2 1 2 3 case vability4

1 F F F F none none none II O
2 F F F C Sh. Ep. Ep. I U
3 F F F C Sh. Ep. Ep. II U
4 F F F C Sh. Ep. Ep. III U
5 C C C C none none none I U
6 C C C C none none none II U
7 C C C C none none none III U
8 C C C F Ep. Sh. Sh. II U
9 F C C C Sh. none none I U
10 F C C C Sh. none none II U
11 F C C C Sh. none none III U
12 F C C F none Sh. Sh. II U
13 C C F C none none Ep. I U
14 C C F C none none Ep. II U
15 C C F C none none Ep. III U
16 C C F F Ep. Sh. none II U
17 C F C C none Ep. none I U
18 C F C C none Ep. none II U
19 C F C C none Ep. none III U
20 C F C F Ep. none Sh. II U
21 C F F F Ep. none none II O
22 C F F C none Ep. Ep. I U
23 C F F C none Ep. Ep. II U
24 C F F C none Ep. Ep. III U
25 F C F F none Sh. none II U
26 F C F C Sh. none Ep. I U
27 F C F C Sh. none Ep. II U
28 F C F C Sh. none Ep. III U
29 F F C F none none Sh. II U
30 F F C C Sh. Ep. none I U
31 F F C C Sh. Ep. none II U
32 F F C C Sh. Ep. none III U

1 “F” and “C” stand for freeflow and congestion, respectively.
2 Cells indexed by n1, n1 + 1 and n1 + n2 + 1.
3 “Sh.” and “Ep.” stand for shock (i.e., transition from freeflow to congestion)

and expansion fan (i.e., transition from congestion to freeflow), respectively.
4 “O” stands for uniformly completely observable and “U” stands for unobserv-

able. Note that the observability results are derived under sensor locations
shown in Figure 4.

The next two examples demonstrate the construction of matrices Ak, Bρk , Bqk
and Bφk . Specifically, the construction of matrices Ak provides insights on the
properties of the state transition matrices of the SMM-J that reflect the intrinsic
physical properties of the traffic model. These properties are critical in proving
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the estimation error bounds of the KF on traffic networks. Before showing the
examples, we first introduce some notation which will be used as elements of the
matrices to be constructed. For p ∈ N+, define Θp ∈ Rp×p and ∆p ∈ Rp×p by their
(i, j)th entries as

Θp(i, j) =

 1− vm∆t
∆x if i = j

vm∆t
∆x if i = j + 1

0 otherwise,
(20)

∆p(i, j) =

 1− w∆t
∆x if i = j

w∆t
∆x if i = j − 1

0 otherwise.
(21)

For p1 ∈ N+, p2 ∈ N+, p3 ∈ N+ and p4 ∈ N+, define Ep3,p4p1,p2 ∈ Rp1×p2 as the p1 × p2

matrix with all entries zero except its (p3, p4)th entry, which is one. Explicitly,

Ep3,p4p1,p2 (i, j) =

{
1 if i = p3 and j = p4

0 otherwise.
(22)

Moreover, define Θ̃p ∈ Rp×p and ∆̃p ∈ Rp×p as:

Θ̃p =


(

Θp−1 0p−1,1
vm∆t
∆x E1,p−1

1,p−1 1

)
if p ≥ 2,

1 if p = 1,

and

∆̃p =


(

1 w∆t
∆x E

1,1
1,p−1

0p−1,1 ∆p−1

)
if p ≥ 2,

1 if p = 1.

Example 1 (System dynamics of the SMM-J under Mode 1). Consider the local
section in Figure 4 where all the cells are in freeflow. Within a single link, the flux
between two neighboring cells indexed by i and i+ 1 is given by f(ρik, ρ

i+1
k ) = vmρ

i
k.

At the junction, it holds that s(ρn1

k ) = vmρ
n1

k < r(ρn1+1
k )+r(ρn1+n2+1

k ) = 2qm. Also

note that s(ρn1

k ) ≤ r(ρn1+1
k ) = qm and s(ρn1

k ) ≤ r(ρn1+n2+1
k ) = qm, the distribution

ratio αd can be followed exactly. Hence, the state is under Mode 1 at time k, and
the junction solver computes fluxes f(ρn1

k , ρ
n1+1
k ) and f(ρn1

k , ρ
n1+n2+1
k ) according to

diverge case II (16) as follows:

f(ρn1

k , ρ
n1+1
k ) =

ρn1

k vm

1 + αd
, f(ρn1

k , ρ
n1+n2+1
k ) =

αdρ
n1

k vm

1 + αd
.

Substituting the flows computed above into the update scheme of the traffic density

on each cell, it follows that the explicit forms of Ak, Bρk , Bqk, and Bφk in (19) are

Ak =

 Θn1
vm∆t

(1+αd)∆xE
1,n1
n2,n1

Θ̃n2

αdvm∆t
(1+αd)∆xE

1,n1
n3,n1

Θ̃n3

 , Bρk = Bqk = 0n,n, (23)

Bφk =
∆t

∆x

(
E1,1
n,3 − E

n1+n2,2
n,3 − En,3n,3

)
in Mode 1. Note that in the above definitions and for the remainder of this subsec-
tion, blocks in the matrices which are left blank are zeros everywhere. 2
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Example 2 (System dynamics of the SMM-J under Modes 2-4). Consider the local
section in Figure 4 where the three boundary cells indexed by 1, n1 + n2 and n are
all in freeflow, and the three cells near the junction, i.e., the cells indexed by n1,
n1 +1 and n1 +n2 +1 are in congestion. Given the assumption that there is at most
one transition between freeflow and congestion in each of the three links connecting
the junction, it can be concluded that there is a shock (i.e., transition from freeflow
to congestion) on link 1, while link 2 and link 3 each has an expansion fan. Let l1
be the location of the shock on link 1, i.e., the transition from freeflow to congestion
on link 1 occurs between cell l1 and l1 + 1. Moreover, we define

l̃1 =

{
l1 if the shock has positive velocity or is stationary
l1 − 1 if the shock has negative velocity,

and

l̂1 = n1 − 1− l̃1,

which are later used to simplify the notations to define matrices Ak, Bρk , Bqk, and

Bφk . Similarly, denote as l2 (resp. l3) the location of the expansion fan on link 2
(resp. link 3), i.e., the transition from congestion to freeflow on link 2 (resp. link
3) occurs between cells l2 and l2 + 1 (resp. cells l3 and l3 + 1). To simplify the
notation, we also define

l̃2 = l2 − n1, l̂2 = n2 − l̃2, l̃3 = l3 − n1 − n2, l̂3 = n3 − l̃3.

At the junction, the sending capacity of cell n1 is s(ρn1

k ) = qm, and the receiv-

ing capacities of cell n1 + 1 and cell n1 + n2 + 1 are r(ρn1+1
k ) = w(%m − ρn1+1

k )

and r(ρn1+n2+1
k ) = w(%m − ρn1+n2+1

k ), respectively. Depending on the magnitudes

of s(ρn1

k ), r(ρn1+1
k ), and r(ρn1+n2+1

k ), the junction solver follows one of the three
possible scenarios shown in Figure 3.

1. Diverge case I: when s(ρn1

k ) ≥ r(ρn1+1
k )+r(ρn1+n2+1

k ). In this case, the state is

under Mode 2 at time k, and the junction solver computes fluxes f(ρn1

k , ρ
n1+1
k )

and f(ρn1

k , ρ
n1+n2+1
k ) according to diverge case I (15) as follows:

f(ρn1

k , ρ
n1+1
k ) = r(ρn1+1

k ) = w(%m − ρn1+1
k ),

f(ρn1

k , ρ
n1+n2+1
k ) = r(ρn1+n2+1

k ) = w(%m − ρn1+n2+1
k ).

Hence in Mode 2, the explicit forms of Ak, Bρk , Bqk, and Bφk in (19) are

Ak =



Θl̃1
vm∆t
∆x E1,l̃1

1,l̃1
1 w∆t

∆x E
1,1

1,l̂1

∆l̂1
w∆t
∆x E

l̂1,1

l̂1,l̃2

w∆t
∆x E

l̂1,1

l̂1,l̃3

∆l̃2

Θ̃l̂2
∆l̃3

Θ̃l̂3


,

Bρk =
w∆t

∆x

(
−E l̃1+1,l̃1+2

n,n − En1,n1+n2+1
n,n + El2,l2n,n + El3,l3n,n

)
,

Bqk =
∆t

∆x

(
−El2.l2n,n + El2+1,l2

n,n − El3,l3n,n + El3+1,l3
n,n

)
,
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Bφk =
∆t

∆x

(
E1,1
n,3 − E

n1+n2,2
n,3 − En,3n,3

)
.

2. Diverge case II: when s(ρn1

k ) < r(ρn1+1
k ) + r(ρn1+n2+1

k ), and the prescribed
distribution ratio αd can be followed exactly. In this case, the state is under
Mode 3 at time k, and the junction solver computes fluxes f(ρn1

k , ρ
n1+1
k ) and

f(ρn1

k , ρ
n1+n2+1
k ) according to diverge case II (16) as follows:

f(ρn1

k , ρ
n1+1
k ) =

1

αd + 1
s(ρn1

k ) =
1

αd + 1
qm,

f(ρn1

k , ρ
n1+n2+1
k ) =

αd

αd + 1
s(ρn1

k ) =
αd

αd + 1
qm.

In Mode 3, the explicit forms of Ak, Bρk , Bqk, and Bφk in (19) are

Ak =



Θl̃1
vm∆t
∆x E1,l̃1

1,l̃1
1 w∆t

∆x E
1,1

1,l̂1

∆l̂1

∆̃l̃2

Θ̃l̂2

∆̃l̃3

Θ̃l̂3


,

Bρk =
w∆t

∆x

(
−E l̃1+1,l̃1+2

n,n + En1,n1
n,n − En1+1,n1+2

n,n

+El2,l2n,n − En1+n2+1,n1+n2+2
n,n + El3,l3n,n

)
,

Bqk =
∆t

∆x

(
−En1+n1

n,n +
1

1 + αd
En1+1,n1
n,n +

αd

1 + αd
En1+n2+1,n1
n,n

−El2,l2n,n + El2+1,l2
n,n − El3,l3n,n + El3+1,l3

n,n

)
,

Bφk =
∆t

∆x

(
E1,1
n,3 − E

n1+n2,2
n,3 − En,3n,3

)
.

3. Diverge case III: when s(ρn1

k ) < r(ρn1+1
k ) + r(ρn1+n2+1

k ), but the prescribed
distribution ratio αd cannot be followed exactly. In this case, the state is
under Mode 4 at time k. Depending on the magnitudes of s(ρn1

k ), r(ρn1+1
k )

and r(ρn1+n2+1
k ), the fluxes f(ρn1

k , ρ
n1+1
k ) and f(ρn1

k , ρ
n1+n2+1
k ) computed by

the junction solver are either obtained from (17), i.e.,

f(ρn1

k , ρ
n1+1
k ) = r(ρn1+1

k ) = w(%m − ρn1+1
k ),

f(ρn1

k , ρ
n1+n2+1
k ) = s(ρn1

k )− r(ρn1+1
k ) = qm − w(%m − ρn1+1

k ),
(24)

or obtained from (18), i.e.,

f(ρn1

k , ρ
n1+1
k ) = s(ρn1

k )− r(ρn1+n2+1
k ) = qm − w(%m − ρn1+n2+1

k ),

f(ρn1

k , ρ
n1+n2+1
k ) = r(ρn1+n2+1

k ) = w(%m − ρn1+n2+1
k ).

(25)

For conciseness of the presentation, we provide next the explicit formulas of

Ak, Bρk , Bqk, and Bφk when the fluxes are computed according to (24), and the
construction of the system dynamics when the fluxes are given by (25) can be
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done in a similar fashion. The matrices Ak, Bρk , Bqk, and Bφk read

Ak =



Θl̃1
vm∆t
∆x E1,l̃1

1,l̃1
1 w∆t

∆x E
1,1

1,l̂1

∆l̂1
w∆t
∆x E

l̂1,1

l̂1,l̃2

∆l̃2

Θ̃l̂2
w∆t
∆x E

1,1

l̃3,l̃2
∆̃l̃3

Θ̃l̂3


,

Bρk =
w∆t

∆x

(
−E l̃1+1,l̃1+2

n,n + El2,l2n,n

−En1+n2+1,n1+n2+2
n,n − En1+n2+1,n1+1

n,n + El3,l3n,n

)
,

Bqk =
∆t

∆x

(
−El2.l2n,n + El2+1,l2

n,n

+En1+n2+1,n1+1
n,n − El3,l3n,n + El3+1,l3

n,n

)
,

Bφk =
∆t

∆x

(
E1,1
n,3 − E

n1+n2,2
n,3 − En,3n,3

)
.

2

3.3. Properties of the state transition matrices of the SMM-J. Some prop-
erties of the state transition matrix Ak are summarized below, which will be demon-
strated in Section 4.1 to assume important roles in proving the boundedness of the
Kalman gain (a necessary condition to ensure the ultimate boundedness of the
mean estimation error) when using the KF to estimate traffic conditions based on
the SMM-J.

(P.1): For Ak in all modes, each element satisfies

0 ≤ Ak(r, c) ≤ 1, for all k ∈ N and r, c ∈ {1, · · · , n}.

This property is due to the CFL condition [33] in the discretization scheme
(8).

(P.2): When Ak is derived under diverge case I and diverge case II, the sum of
the elements in Ak at the same column c satisfies

n∑
r=1

Ak(r, c) ≤ 1, for all k ∈ N and c ∈ {1, · · · , n}.

This property is due to the CFL condition as in (P.1) and the conservation
law embedded in the traffic model.

(P.3): When Ak is derived under diverge case III, the sum of the elements in Ak
at the same column c satisfies
n∑
r=1

Ak(r, c) ≤ 1, for all k ∈ N and c ∈ {c|c ∈ {1, · · · , n}, c 6= `},

where ` = n1 + 1 if f(ρn1

k , ρ
n1+1
k ) = r(ρn1+1

k ) and ` = n1 + n2 + 1 if

f(ρn1

k , ρ
n1+1
k ) = s(ρn1

k ) − r(ρn1+n2+1
k ). Moreover, it also holds that for Ak

under diverge case III,

Ak(r, c) = 0, for all k, r ∈ {n1 + 1, · · · , n} and c ∈ {1, · · ·n1}.
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This is due to the facts that (i) the flows from cell n1 at the junction to
the two downstream cells (i.e., cell n1 + 1 and cell n1 + n2 + 1) do not
depend on the densities of the cells on link 1, as shown in (24)-(25), and
(ii) the internal flows between adjacent cells on link 2 and link 3 are also
independent of the densities of the cells on link 1.

Based on the above properties, the following lemma derives the bounds on each
entry of the product of the state transition matrices, which will later be applied to
prove the boundedness of the Kalman gain (see Lemma 3).

Lemma 2. Consider the local section in Figure 4 that stays inside a SMM-J mode
while k ∈ (k0, k1]4, where 0 ≤ k0 < k1 ≤ +∞. Recall from (6) that the product of
the state transition matrices is defined as

Ξk+1,k0+1 =

k0+1∏
κ=k

Aκ, for k ∈ (k0, k1]. (26)

The (i, j)th entry of Ξk+1,k0+1 satisfies

0 ≤ Ξk+1,k0+1(i, j) ≤ 1 for all k ∈ (k0, k1] and i, j ∈ {1, · · · , n}. (27)

Proof. The proof applies properties (P.1)-(P.3), and is reported in Appendix.2.

3.4. Observability of the SMM-J. From an estimation point of view, it is as-
sumed that the sensors are located on the far ends of the three links connecting the
junction (as illustrated in Figure 4), measuring the densities of the boundary cells
of the local section (i.e., ρ1

k, ρn1+n2

k and ρnk ).
Incorporating model noise in the SMM-J (19) yields:

ρk+1 = Akρk + uk + ωk, ρk ∈ Rn, (28)

where ωk ∼ N (0, Qk) is the white Gaussian model noise, and define the determin-
istic system input as:

uk = Bρk1%m +Bqk1qm +Bφkφk.

The sensor measurements are modeled as follows:

zk = Hkρk + vk, zk ∈ R3, (29)

where the observation matrix Hk = E1,1
3,n + E2,n1+n2

3,n + E3,n
3,n , and vk ∼ N (0, Rk) is

the white Gassian measurement noise. Hence, as shown in (28)-(29), the system
dynamics of the SMM-J is rewritten in the form of (1)-(2).

The observability of system (28)-(29) under different modes are listed in Table 1,
which can be derived directly from the definition of observability stated in Section
2.1, i.e., checking the boundedness of the information matrix. According to Table
1, most of the modes are not observable except (i) when all cells in the local section
are in freeflow, and (ii) when an expansion fan sits on link 1 and no other tran-
sitions between freeflow and congestion exist in the local section. From a physical
viewpoint, the non-observability of the SMM-J is due to the irreversibility of the
vehicle conservation law given the available sensor measurements in the presence
of shocks, and the presence of the junction. It is indicated that compared to the
observability of the SMM [30], the issue of non-observability is more critical when
junctions exist. For example, a one-dimensional road section where the traffic is in
congestion everywhere is observable given measurements of the upstream boundary

4Recall that the time instant k ∈ N, hence k ∈ (k0, k1] denotes k ∈ {k0 + 1, · · · , k1}.
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cell [30], while a congested local section with a junction is not observable even with
the measurements of all the three boundary cells (as shown by the cases for Modes
5-7). The performance of the KF under uniformly completely observable systems is
widely studied (as summarized in Lemma 1). In this article, we focus on analysing
the theoretical performance of the KF under the unobservable modes of the SMM-J.

4. Performance analysis of the KF for unobservable traffic network es-
timation. Challenges for estimating an unobservable system stem from the fact
that the estimation error covariance could grow unbounded, thus the mean estima-
tion error also potentially diverges (as shown in Example 3 in the appendix). In
this subsection, we show that when combining the physical properties of the traffic
model (i.e., vehicle conservation and the flow–density relationship) with the update
scheme of the KF, the mean estimation errors of all the cells in an unobservable local
section are ultimately bounded inside (−ε, %m + ε) for all ε > 0, provided that the
density measurements of the three boundary cells are available. This ensures that
the mean estimates of the KF for unobservable modes are always physically mean-
ingful to within ε. Comparatively, it is shown in [36] that an open-loop observer
may result in non-physical state estimates in unobservable modes.

Note that the three conditions (C.1)-(C.3) in Lemma 1 are necessary for proving
the properties of the KF for traffic estimation under unobservable systems. For
system (28)-(29), we assume that conditions (C.1) and (C.2) can be ensured when
setting up the parameters in the KF. It can also be directly verified that condition
(C.3) always holds for all the modes of the SMM-J.

4.1. Boundedness of the Kalman gain. Let (kU
0 , k

U
1 ] be the time interval in-

side which the local section shown in Figure 4 stays in an unobservable mode of
the SMM-J. In this subsection, we present a lemma stating the boundedness of the
Kalman gain for k ∈ (kU

0 , k
U
1 ], which is obtained based on the boundedness of the

cross-covariance of the observable and unobservable subsystems in the Kalman ob-
servability canonical form (see Appendix.3). According to the KF update scheme
in (4), the boundedness of the Kalman gain is a necessary condition for the bound-
edness of the state estimate.

Lemma 3. Consider an unobservable local section shown in Figure 4. The local
section stays inside an unobservable mode of the SMM-J while k ∈ (kU

0 , k
U
1 ], where

0 ≤ kU
0 < kU

1 ≤ +∞. Given density measurements of the three boundary cells, the
infinity norm5 of the Kalman gain computed by the KF (3)-(4) satisfies

‖Kk‖∞ ≤ k
(

ΓkU0 |kU0

)
, for all k ∈ (kU

0 , k
U
1 ], (30)

where k (·) is a function of the error covariance at time kU
0 .

Proof. The explicit formula of k
(

ΓkU0 |kU0

)
is presented in Appendix.4.1, and is de-

rived in Appendix.4.2.

In the proof of Lemma 3, the Kalman gain is partitioned into blocks correspond-
ing to the observable and unobservable subsystems (as shown in (49)). The part
corresponding to the observable subsystem is a function of the estimation error co-
variance of the observable subsystem (see (50)), thus its boundedness is relatively

5Recall that for matrix M ∈ Rp×q , its infinity norm is defined as ‖M‖∞ =

max
r∈{1,··· ,p}

∑q
c=1 |M(r, c)|.
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straightforward to justify. On the other hand, the block of the Kalman gain that
corresponds to the unobservable subsystem is a function of the cross-covariance of
the observable and the unobservable subsystems (see (51)). By exploring the in-
teraction between the evolution equation of the cross-covariance (shown in (48))
and the physical properties of the traffic model (reflected in (P.1)-(P.3)), we also
derive the boundeness of the unobservable block of the Kalman gain. In summary,
the combination of the update scheme of the KF and the intrinsic properties of
the traffic model is critical in showing the boundedness of the Kalman gain under
unobservable modes.

4.2. Ultimate boundedness of the mean error. In this subsection, we show
that for an unobservable local section, the mean estimate of each cell will ultimately
achieve the physically meaningful interval, thus the mean estimation error is also
ultimately bounded. Unlike typical unobservable scenarios where the mean estima-
tion error diverges (as shown in Example 3), the boundedness of the mean error
here is ensured by the intrinsic physical properties of the traffic model, i.e., the
relationship between the density and the sending/receiving capacity for each cell,
as illustrated in the proof of the next proposition.

Proposition 1. Consider an unobservable local section as shown in Figure 4 that
stays inside an unobservable mode while k ∈ (kU

0 ,∞). For all ε > 0, a finite time t(ε)
exists such that ρ̄lk|k ∈ (−ε, %m + ε) for all k > kU

0 + t(ε) and for all l ∈ {1, · · · , n},
independent of the initial estimate. Moreover, the mean estimation error satisfies
‖η̄k|k‖ <

√
n(%m + ε) for all k > kU

0 + t(ε), independent of the initial estimate.

Proof. Denote as η̄b
k|k = (η̄1

k|k, η̄
n1+n2

k|k , η̄nk|k)> the mean error of the three boundary

cells. Since the three boundary cells are all inside the observable subsystem, it

follows that
∥∥∥η̄b
k|k

∥∥∥→ 0 as k →∞.

The proof is by induction. In Step 1, we use an induction from cell 1 to the
downstream cells to show that if the estimate of cell 1 converges to the true state,
then the estimate of all cells will ultimately be greater than −ε for all ε > 0. In
Step 2, we use an induction from the two downstream boundary cells (i.e., cell
n1 + n2 and cell n) to their upstream cells to show that if the estimates of the two
downstream boundary cells converge to the true state, then the estimate of all cells
will ultimately be smaller than %m + ε for all ε > 0. In Step 3, we combine Step 1
and Step 2 to derive an ultimate bound for the mean estimation error.

Step 1. We use induction to show that for all ε > 0 and l ∈ {1, · · · , n}, there exists
a finite time tl1(ε) such that ρ̄lk|k > −ε for all k > kU

0 + tl1(ε).

Since the upstream boundary cell (i.e., cell 1) is in the observable subsystem, we
have η̄1

k|k → 0 and ρ̄1
k|k → ρ1

k, where ρ1
k ≥ 0. Hence a finite time t1

1(ε) exists such

that ρ̄1
k|k > −

ε
n for all k > kU

0 + t1
1(ε).

For all interior cells on link 1, i.e., cells indexed by l ∈ {2, 3, · · · , n1}, suppose

ρ̄l−1
k|k > −

(l−1)ε
n , if ρ̄lk|k < −

(l−1)ε
n , we obtain from (9) that

f
(
ρ̄l−1
k|k , ρ̄

l
k|k

)
= vmρ̄

l−1
k|k > −vm

(l − 1)ε

n
, (31)

f
(
ρ̄lk|k, ρ̄

l+1
k|k

)
≤ vmρ̄

l
k|k. (32)
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It follows that the estimate of cell l satisfies

ρ̄lk+1|k+1 = ρ̄lk|k + ∆t
∆x

(
f
(
ρ̄l−1
k|k , ρ̄

l
k|k

)
− f
(
ρ̄lk|k, ρ̄

l+1
k|k

))
−Kk+1(l, 1)η̄1

k+1|k −Kk+1(l, 2)η̄n1+n2

k+1|k −Kk+1(l, 3)η̄nk+1|k

> ρ̄lk|k + vm∆t
∆x

∣∣∣ρ̄lk|k + (l−1)ε
n

∣∣∣− k
(

ΓkU0 |kU0

)∥∥∥η̄b
k|k

∥∥∥
∞
,

(33)

where the inequality is due to ‖Kk‖∞ ≤ k(ΓkU0 |kU0 ) given in Lemma 3. Thus there

exists a scalar v1 >
∆xk

(
Γ
kU
0 |kU

0

)
vm∆t such that

ρ̄lk+1|k+1 − ρ̄
l
k|k >v0

∣∣∣∣ρ̄lk|k +
(l − 1)ε

n

∣∣∣∣ ,
for all

∣∣∣∣ρ̄lk|k +
(l − 1)ε

n

∣∣∣∣ ≥ v1

∥∥∥η̄b
k|k

∥∥∥
∞

,

(34)

where v0 = vm∆t
∆x −

k
(

Γ
kU
0 |kU

0

)
v1

> 0. Also note that
∥∥∥η̄b
k|k

∥∥∥
∞
→ 0 as k → ∞,

which indicates that the one-step change of the estimates is ultimately positive,
and large enough so that a finite time tl1(ε) exists such that ρ̄lk|k > −

lε
n > −ε for all

k > kU
0 + tl1(ε) [21].

We now show that for the two cells on the downstream side of the junction, i.e.,
cell n1 +1 and cell n1 +n2 +1, there exist finite times tn1+1

1 (ε) and tn1+n2+1
1 (ε) such

that ρ̄n1+1
k|k > − (n1+1)ε

n > −ε for all k > kU
0 + tn1+1

1 (ε) and ρ̄n1+n2+1
k|k > − (n1+1)ε

n >

−ε for all k > kU
0 +tn1+n2+1

1 (ε). Suppose ρ̄n1

k|k > −
n1ε
n , if ρ̄n1+1

k|k < −n1ε
n , the junction

solver follows diverge case II or diverge case III. Hence, the flow from cell n1 to cell
n1 + 1 satisfies:

f
(
ρ̄n1

k|k, ρ̄
n1+1
k|k

)
=


1

αd+1 s
(
ρ̄n1

k|k

)
> −vm

n1ε
n diverge case II

s
(
ρ̄n1

k|k

)
− r
(
ρ̄n1+n2+1
k|k

)
> −vm

n1ε
n diverge case III,

and the outgoing flow for cell n1 + 1 satisfies:

f
(
ρ̄n1+1
k|k , ρ̄n1+2

k|k

)
≤ vmρ̄

n1+1
k|k .

Following the similar arguments as in (33)-(34), it can be concluded that there exist

a finite time tn1+1
1 (ε) such that ρ̄n1+1

k|k > − (n1+1)ε
n > −ε for all k > kU

0 + tn1+1
1 (ε).

Applying the same analysis for cell n1 + n2 + 1, it can be concluded that there

exist a finite time tn1+n2+1
1 (ε) such that ρ̄n1+n2+1

k|k > − (n1+1)ε
n > −ε for all k >

kU
0 + tn1+n2+1

1 (ε). Continuing the induction on link 2 from cell n1 + 1 to cell
n1 + n2, we obtain that for all ε > 0 and l ∈ {n1 + 1, n1 + 2, · · · , n1 + n2}, there
exists a finite time tl1(ε) such that ρ̄lk|k > −

lε
n > −ε for all k > kU

0 + tl1(ε). As for

the cells on link 3, we process the same induction from cell n1 + n2 + 1 to cell n,
which yields that for all ε > 0 and l ∈ {n1 +n2 + 1, n1 +n2 + 2, · · · , n}, there exists

a finite time tl1(ε) such that ρ̄lk|k > −
(l−n2)ε

n > −ε for all k > kU
0 + tl1(ε).
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Let t1(ε) = maxl∈{1,··· ,n}{tl1(ε)}, it is concluded that ρ̄lk|k > −ε for all k >

kU
0 +t1(ε) and l ∈ {1, · · · , n}. This proves the ultimate lower bound of the estimates.

Step 2. We use induction to show that for all ε > 0 and l ∈ {1, · · · , n}, there exists
a finite time tl2(ε) such that ρ̄lk|k < %m + ε for all k > kU

0 + tl2(ε).

Since the two downstream boundary cells (indexed by n1 + n2 and n) are in
the observable subsystem, we have η̄n1+n2

k|k → 0 and ρ̄n1+n2

k|k → ρn1+n2

k , as well as

η̄nk|k → 0 and ρ̄nk|k → ρnk . Given the facts that ρn1+n2

k ≤ %m and ρnk ≤ %m, there exist

finite times tn1+n2
2 (ε) and tn2 (ε) such that ρ̄n1+n2

k|k < %m+ ε
n for all k > kU

0 +tn1+n2
2 (ε),

and ρ̄nk|k < %m + ε
n for all k > kU

0 + tn2 (ε).

For all interior cells on link 3, i.e., cells indexed by l ∈ {n1 + n2 + 1, n1 + n2 +

2, · · · , n− 1}, suppose ρ̄l+1
k|k < %m + (n−l)ε

n , if ρ̄lk|k > %m + (n−l)ε
n , we obtain from (9)

that

f
(
ρ̄l−1
k|k , ρ̄

l
k|k

)
≤ w

(
%m − ρ̄lk|k

)
, (35)

f
(
ρ̄lk|k, ρ̄

l+1
k|k

)
= w

(
%m − ρ̄l+1

k|k

)
> w

(
− (n− l)ε

n

)
. (36)

It follows that the estimate of cell l satisfies

ρ̄lk+1|k+1 = ρ̄lk|k + ∆t
∆x

(
f
(
ρ̄l−1
k|k , ρ̄

l
k|k

)
− f
(
ρ̄lk|k, ρ̄

l+1
k|k

))
−Kk+1(l, 1)η̄1

k+1|k −Kk+1(l, 2)η̄n1+n2

k+1|k −Kk+1(l, 3)η̄nk+1|k

< ρ̄lk|k −
w∆t
∆x

∣∣∣ρ̄lk|k − %m − (n−l)ε
n

∣∣∣+ k
(

ΓkU0 |kU0

)∥∥∥η̄b
k|k

∥∥∥
∞
.

(37)

Thus there exists scalar w1 such that
∆xk

(
Γ
kU
0 |kU

0

)
w∆t < w1, and

ρ̄lk+1|k+1 − ρ̄
l
k|k <− w0

∣∣∣∣ρ̄lk|k − %m −
(n− l)ε

n

∣∣∣∣ ,
for all

∣∣∣∣ρ̄lk|k − %m −
(n− l)ε

n

∣∣∣∣ ≥ w1

∥∥∥η̄b
k|k

∥∥∥
∞

.

(38)

Also note that
∥∥∥η̄b
k|k

∥∥∥
∞
→ 0 as k → ∞, which indicates that the one-step change

of the estimates is ultimately negative, and large enough so that a finite time tl2(ε)

exists such that ρ̄lk|k < %m + (n−l+1)ε
n < %m + ε for all k > kU

0 + tl2(ε).

The above arguments can be generalized for all cells on link 2. Hence for all
ε > 0 and l ∈ {n1 + 1, n1 + 2, · · · , n1 + n2 − 1}, there exists a finite time tl2(ε) such

that ρ̄lk|k < %m + (n1+n2−l+1)ε
n < %m + ε for all k > kU

0 + tl2(ε).

We now show that for the cell on the upstream side of the junction, i.e., cell

n1, there exists finite time tn1
2 (ε) such that ρ̄n1

k|k < %m + (n−n1+1)ε
n < %m + ε for

all k > kU
0 + tn1

2 (ε). Suppose ρ̄n1+1
k|k < %m + n2ε

n and ρ̄n1+n2+1
k|k < %m + n3ε

n , if

ρ̄n1

k|k > %m + (n−n1)ε
n = %m + (n2+n3)ε

n , the incoming and outgoing flows of cell n1

satisfy

f
(
ρ̄n1−1
k|k , ρ̄n1

k|k

)
≤ w

(
%m − ρ̄n1

k|k

)
,
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and

f
(
ρ̄n1

k|k, ρ̄
n1+1
k|k

)
+ f
(
ρ̄n1

k|k, ρ̄
n1+n2+1
k|k

)
=

 s
(
ρ̄n1

k|k

)
= qm > w

(
−n2+n3

n ε
)

diverge case II or III

r
(
ρ̄n1+1
k|k

)
+ r
(
ρ̄n1+n2+1
k|k

)
> w

(
−n2+n3

n ε
)

diverge case I.

Following the similar arguments as in (37)-(38) it can be concluded that there

exist finite time tn1
2 (ε) such that ρ̄n1

k|k < %m + (n−n1+1)ε
n < %m + ε for all k >

kU
0 + tn1

2 (ε). Continuing the induction from cell n1 to cell 1, it follows that for all

l ∈ {1, 2, · · · , n1} there exists a finite time tl2(ε) such that ρ̄lk|k < %m + (n−l+1)ε
n ≤

%m + ε for all k > kU
0 + tl2(ε).

Let t2(ε) = maxl∈{1,··· ,n}{tl2(ε)}, we obtain ρ̄lk|k < %m + ε for all k > kU
0 + t2(ε)

and l ∈ {1, · · · , n}. This proves the ultimate upper bound of the estimates.

Step 3. Combining Steps 1 and 2, and define t(ε) = maxl{t1(ε), t2(ε)}, we obtain
ρ̄lk|k ∈ (−ε, %m + ε) for all l ∈ {1, · · · , n} and k > kU

0 + t(ε). Consequently, ‖η̄k|k‖ <√
n(%m + ε) for all k > kU

0 + t(ε).

Proposition 1 indicates that when the mean estimation error of the three bound-
ary cells converges to zero, it will drive the state estimate of all the interior cells
inside [0, %m] due to the conservation law and the flow-density relationship embed-
ded in the traffic model. For example, when the state estimate ρ̄lk|k is smaller than

zero, the sending capacity of cell l is much smaller than the receiving capacity of
cell l (as shown in equations (31)-(32)). Consequently, the update equation of the
estimate (33) ensures that the one-step change of the state estimate of cell l is
always positive, and the magnitude of the one-step change is proportional to the
distance between zero and the current state estimate ρ̄lk|k. This ensures that the

estimate of cell l is constantly pushed towards zero unless it is sufficiently close to
zero. The ultimate upper bound can also be derived under the same fashion.

5. Conclusions. In this article, we establish the theoretical performance of the KF
applied to estimate the traffic density on transportation networks under unobserv-
able scenarios. To facilitate the performance analysis of the KF, a linear SMM-J
model is introduced which combines a junction solver with the switched linear sys-
tem representation of the CTM. It is shown that in addition to the existence of
shocks, the presence of junctions contributes significantly to the non-observability
of the system.

To derive the error bounds for the KF under unobservable traffic estimation
problems, we analyze several properties of the state transition matrices of the SMM-
J, which reflect the intrinsic physical properties (e.g., vehicle conservation and the
CFL condition in the discretization scheme) of the traffic model. Based on the
above properties of the SMM-J, we show that the infinity norm of the Kalman gain
is uniformly bounded under unobservable modes. Finally, we show that the mean
estimate of each cell is ultimately bounded inside the physically meaningful interval,
provided that the density measurements of the boundary cells are available. The
ultimate lower and upper bounds are derived based on the convergence (to zero) of
the mean estimation error of the boundary cells, the boundedness of the Kalman
gain, and the flow–density relationship embedded in the model prediction step of
the KF. As indicated in the proof, feeding sensor data back to the estimator is



ERROR BOUNDS FOR KALMAN FILTERS ON TRAFFIC NETWORKS 283

critical to ensure physically meaningful estimates under unobservable system, which
cannot be naturally achieved by an open-loop observer. These results provide some
theoretical insights into the performance of sequential estimation algorithms widely
used in traffic monitoring applications.
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dynamics is given by

ρk+1 = Akρk + ωk, ρk ∈ R3, (39)

where ωk ∼ N (0, Qk), the state transition matrix and the model error covariance
matrices are given as follows:

Ak =

 1 1 0.5
0 1 1
0 0 1

 , Qk =

 1 0 0
0 1 0
0 0 1

 , for all k.

The initial state is ρ0 = (2, 1, 0.05)>. The sensor measures the acceleration of the
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Figure 5. The evolutions of the estimation errors (A) and the
trace of the error covariance (B) when using the KF to track the
unobservable system (39)-(40).

moving object, i.e., the measurement is modeled by

zk = Hkρk + vk, zk ∈ R, (40)

where

Hk =
(

0 0 1
)
, vk ∼ N (0, Rk) with Rk = 1, for all k.

We use the KF (3)-(4) to estimate the state, where the initial condition is set to be
η̄0|0 = (3, 2, 0.2)> and Γ0|0 = I3.

The system (39)-(40) is not observable, which can be concluded by computing its
observability matrix [4, Theorem 6.O1], and showing that the observability matrix
is not full rank. The mean estimation error evolves as the following equation:

η̄k|k = (I −KkHk)Ak−1η̄k−1|k−1. (41)

In Figure 5a, the solid curve shows the analytical evolution of
∥∥η̄k|k∥∥ which follows

(41). A Monte Carlo test of Nr = 10, 000 realizations of the KF is also conducted,
and the dashed curve in Figure 5a shows the empirical evolution of the estimation

error
∥∥η̂k|k∥∥, where η̂k|k = 1

Nr

∑Nr

r=1 ηr,k|k, and ηr,k|k is the posterior estimation

error at time k on the rth realization. We also plot in Figure 5b the trace of the
estimation error covariance tr(Γk|k). It is shown that unlike the observable scenarios
described in Lemma 1, the error covariance and the estimation error diverge as k
increases in this example, which is typical for unobservable systems. 2
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Appendix.2. Proof of Lemma 2. The proof is divided into two steps. In Step 1,
we apply properties (P.1) and (P.2) to show that (27) holds for the modes where
the junction solver follows diverge case I or diverge case II. In Step 2, properties
(P.1) and (P.3) are applied to show that (27) holds for the modes where the junction
solver follows diverge case III.

For all k0 + 1 ≤ ` < k ≤ k1 and i, j ∈ {1, · · · , n}, the (i, j)th entry of
∏`
κ=k Aκ

is given by (∏̀
κ=k

Aκ

)
(i, j) =

n∑
r=1

((
`+1∏
κ=k

Aκ

)
(i, r)

)
(A` (r, j)) . (42)

Step 1. Suppose Ak is under a mode where the junction solver follows diverge case
I or diverge case II. Recall from (P.2) that

n∑
r=1

Ak (r, j) ≤ 1, for all k ∈ (k0, k1] and j ∈ {1, · · · , n}.

Hence, the (i, j)th entry of
∏`
κ=k Aκ is no greater than the convex combination of

all the entries on the ith row of
∏`+1
κ=k Aκ. Moreover, recall from (P.1) that

0 ≤ Ak(r, c) ≤ 1, for all k ∈ (k0, k1] and r, c ∈ {1, · · · , n},
it follows that

0 ≤

(∏̀
κ=k

Aκ

)
(i, j) ≤ 1, for all k ∈ (k0, k1], ` ∈ [k0 + 1, k) and i, j ∈ {1, · · · , n},

thus (27) follows directly by setting ` = k0 + 1 in the above equation.

Step 2. Suppose Ak is under a mode where the junction solver follows diverge case
III. We prove for the case where f(ρn1

k , ρ
n1+1
k ) = r(ρn1+1

k ), and the proof for the case

where f(ρn1

k , ρ
n1+1
k ) = s(ρn1

k )− r(ρn1+n2+1
k ) follows by symmetry.

Recall from (P.3) that
n∑
r=1

Ak(r, j) ≤ 1, for all k ∈ (k0, k1] and j ∈ {j|j ∈ {1, · · · , n}, j 6= n1 + 1}. (43)

For j = n1 + 1, the sum of all entries of Ak on column j is given by
n∑
r=1

Ak(r, n1 + 1) = Ak(n1, n1 + 1) +Ak(n1 + 1, n1 + 1) +Ak(n1 + n2 + 1, n1 + 1)

=
w∆t

∆x
+

(
1− w∆t

∆x

)
+
w∆t

∆x
= 1 +

w∆t

∆x
, for all k ∈ (k0, k1].

Additionally, one may note that for all k ∈ (k0, k1],

Ak(r, n1 + n2 + 1) =

{
1 if r = n1 + n2 + 1
0 otherwise.

It follows that for all k0 + 1 ≤ ` < k ≤ k1,(∏̀
κ=k

Aκ

)
(r, n1 + n2 + 1) =

{
1 if r = n1 + n2 + 1
0 otherwise.

(44)

Combining (43) and (44) with (42), we obtain that for all (i, j) 6= (n1+n2+1, n1+1),

the (i, j)th entry of
∏`
κ=k Aκ is no greater than the convex combination of all the
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(non-zero) entries on the ith row of
∏`+1
κ=k Aκ. Also recall from (P.3) that for all

k ∈ (k0, k1],

Ak(r, c) = 0, for all r ∈ {n1 + 1, · · · , n} and c ∈ {1, · · ·n1},

which yields that for all k0 + 1 ≤ ` < k ≤ k1,(
`+1∏
κ=k

Aκ

)
(r, c) = 0, for all r ∈ {n1 + 1, · · · , n} and c ∈ {1, · · ·n1},

thus (
`+1∏
κ=k

Aκ

)
(n1 + n2 + 1, n1) = 0, for all k0 + 1 ≤ ` < k ≤ k1.

Hence for (i, j) = (n1 + n2 + 1, n1 + 1), the (i, j)th entry of
∏`
κ=k Aκ is also no

greater than the convex combination of all the (non-zero) entries on the ith row of∏`+1
κ=k Aκ. Moreover, according to (P.1) it holds that

0 ≤ Ak(r, c) ≤ 1, for all k ∈ (k0, k1] and r, c ∈ {1, · · · , n}.

It can be concluded that

0 ≤

(∏̀
κ=k

Aκ

)
(i, j) ≤ 1, for all k ∈ (k0, k1], ` ∈ [k0 + 1, k) and i, j ∈ {1, · · · , n},

thus (27) follows directly by setting ` = k0 + 1 in the above equation.

Appendix.3. Observable and unobservable subsystems in the unobservable
modes. In an unobservable mode, the SMM-J can be transformed to the Kalman
observability canonical form. The transformed state consists of the observable and
the unobservable parts of the system, i.e.,

ρ
(t)
k = Uρk =

(
ρ

(1)
k

ρ
(2)
k

)
,

where U is an orthogonal matrix, ρ
(1)
k ∈ Rd1 and ρ

(2)
k ∈ Rd2 are the state in the

observable and unobservable subsystems, respectively, with d1 + d2 = n. Moreover,
since the densities of the three boundary cells are directly measured, it holds that
d1 ≥ 3. As a consequence, system (28)-(29) is transformed to the following formula:

ρ
(t)
k+1 = A

(t)
k ρ

(t)
k + u

(t)
k + ω

(t)
k , ρk ∈ Rn,

zk = H
(t)
k ρ

(t)
k + vk, zk ∈ R3,

where the transformed state transition matrix A
(t)
k and the transformed observation

matrix H
(t)
k can also be partitioned according to the observable and unobservable

subsystems, i.e.,

A
(t)
k = UAkU

> =

(
A

(1)
k 0d1,d2

A
(21)
k A

(2)
k

)
, H

(t)
k = HkU

> =
(
H

(1)
k 0

)
, (45)

with H
(1)
k ∈ R3×d1 defined as follows:

H
(1)
k =

{
I3 if d1 = 3(
I3 03,d1−3

)
if d1 > 3,

for all k.



288 YE SUN AND DANIEL B. WORK

Moreover, the transformed system input is given by u
(t)
k = Uuk, and the transformed

model noise is given by w
(t)
k = Uwk ∼ N (0, Q

(t)
k ), where the transformed model

error covariance Q
(t)
k can be partitioned to blocks corresponding to the observable

and unobservable subsystems, i.e.,

Q
(t)
k = UQkU

> =

(
Q

(1)
k Q

(12)
k

Q
(21)
k Q

(2)
k

)
.

The prior estimation error covariance matrix partitioned into the observable and
unobservable subsystems is constructed as follows:

Γ
(t)
k|k−1 =

(
Γ

(1)
k|k−1 Γ

(12)
k|k−1

Γ
(21)
k|k−1 Γ

(2)
k|k−1

)
.

In the KF, the prior error covariance matrix is computed recursively by the Riccati
equation

Γ
(t)
k+1|k =A

(t)
k

(
Γ

(t)
k|k−1 − Γ

(t)
k|k−1

(
H

(t)
k

)>(
H

(t)
k Γ

(t)
k|k−1

(
H

(t)
k

)>
+Rk

)−1

×

H
(t)
k Γ

(t)
k|k−1

)(
A

(t)
k

)>
+Q

(t)
k , (46)

Define

Υ
(1)
k = A

(1)
k −A

(1)
k Γ

(1)
k|k−1

(
H

(1)
k

)>(
H

(t)
k Γ

(t)
k|k−1

(
H

(t)
k

)>
+Rk

)−1

H
(1)
k

= A
(1)
k −A

(1)
k K

(1)
k H

(1)
k ,

and apply partition into observable and unobservable subsystems to both sides of
(46), we obtain the following two blocks of equations describing the evolutions of

Γ
(1)
k+1|k and Γ

(12)
k+1|k :

Γ
(1)
k+1|k = Υ

(1)
k Γ

(1)
k|k−1

(
A

(1)
k

)>
+Q

(1)
k , (47)

Γ
(12)
k+1|k = Υ

(1)
k Γ

(12)
k|k−1

(
A

(2)
k

)>
+ Υ

(1)
k Γ

(1)
k|k−1

(
A

(21)
k

)>
+Q

(12)
k . (48)

Appendix.4. Explicit formula of the Kalman gain bound and proof of

Lemma 3. In this section, we present the explicit formula of k
(

ΓkU0 |kU0

)
and prove

Lemma 3. As detailed in Appendix.3, we transform the state vector according to
observable and unobservable subsystems, i.e.,

ρ
(t)
k = Uρk =

(
ρ

(1)
k

ρ
(2)
k

)
,

where ρ
(1)
k ∈ Rd1 and ρ

(2)
k ∈ Rd2 are the state in the observable and unobservable

subsystems, respectively. The transformed Kalman gain is given by

K
(t)
k = UKk =

(
K

(1)
k

K
(21)
k

)
, (49)
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where K
(1)
k and K

(21)
k correspond to the observable and unobservable subsystems,

respectively, with

K
(1)
k = Γ

(1)
k|k−1

(
H

(1)
k

)>(
Rk +H

(1)
k Γ

(1)
k|k−1

(
H

(1)
k

)>)−1

, (50)

K
(21)
k = Γ

(21)
k|k−1

(
H

(1)
k

)>(
Rk +H

(1)
k Γ

(1)
k|k−1

(
H

(1)
k

)>)−1

. (51)

Appendix.4.1. Explicit formula of the Kalman gain bound. Define

a1 = max
k∈(kU0 ,k

U
1 ]
{‖Ak‖∞} , a2 = max

k∈(kU0 ,k
U
1 ]

{∥∥A>k ∥∥∞} ,
and

ã1 = max
k∈(kU0 ,k

U
1 ]

∥∥∥A(1)
k

∥∥∥
∞
, ã2 = max

k∈(kU0 ,k
U
1 ]

∥∥∥∥(A(1)
k

)>∥∥∥∥
∞
,

ã3 = max
k∈(kU0 ,k

U
1 ]
σmax

(
A

(1)
k

)
, ã4 = max

k∈(kU0 ,k
U
1 ]

∥∥∥A(21)
k

∥∥∥
∞
.

Moreover, define as c̃1 and c̃2 the lower and upper bounds of the error covariance
of the observable subsystem, i.e.,

c̃1I < Γ
(1)
k|k < c̃2I, for all k ∈ (kU

0 , k
U
1 ], (52)

and let

c̃3 =
(
c̃2 + q−1

1 c̃22ã3

)−1
, t̃ = n2

√
d1

(
č2č
−1
1

) 1
2 , q̃ = (1− c̃3c̃1)

1
2

p̃ = d1c̃2ã4 (ã1ã2c̃2 + q2) q−1
1 + q2,

γ̃ = n
√
n
∥∥∥ΓkU0 |kU0

∥∥∥ (a1a2)
2

+ n
√
na1a2q2 +

√
nq2.

The upper bound of ‖Kk‖∞ for k ∈ (kU
0 , k

U
1 ] in (30) is defined as

k
(

ΓkU
0 |k

U
0

)
=

√
3d1
r1

max

{√
n

d1

(∥∥∥ΓkU
0 |k

U
0

∥∥∥ a1a2 + q2
)
,

1√
d1

(ã1ã2c̃2 + q2) , γ̃, t̃q̃γ̃ + p̃,
t̃p̃q̃

1− q̃ + p̃

}
.

Appendix.4.2. Proof of Lemma 3. The proof consists of the following five steps.

Step 1 derives an upper bound for
∥∥∥KkU0 +1

∥∥∥
∞

. Step 2 derives an upper bound of∥∥∥K(1)
k

∥∥∥
∞

for k ∈ (kU
0 + 1, kU

1 ]. In Step 3, we study the convergence rate of the error

dynamics of the observable subsystem, which is also related to the boundedness of

K
(21)
k . Based on the convergence rate obtained in Step 3, Step 4 derives an upper

bound of
∥∥∥K(21)

k

∥∥∥
∞

for k ∈ (kU
0 + 1, kU

1 ]. Step 5 combines the above steps together

and concludes the proof.

Step 1. At time step kU
0 + 1, the Kalman gain is computed as follows:

KkU0 +1 = ΓkU0 +1|kU0 H
>
kU0 +1

(
RkU0 +1 +HkU0 +1ΓkU0 +1|kU0 H

>
kU0 +1

)−1

,
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where ΓkU0 +1|kU0 = AkU0 ΓkU0 |kU0 A
>
kU0

+ QkU0 . Given that
∥∥∥ΓkU0 |kU0

∥∥∥
∞
≤
√
n
∥∥∥ΓkU0 |kU0

∥∥∥,

‖Qk‖∞ <
√
nq2, and define

a1 = max
k∈(kU0 ,k

U
1 ]
{‖Ak‖∞} , a2 = max

k∈(kU0 ,k
U
1 ]

{∥∥A>k ∥∥∞} ,
the prior error covariance at time kU

0 + 1 satisfies∥∥∥ΓkU0 +1|kU0

∥∥∥
∞
≤
∥∥∥AkU0 ∥∥∥∞ ∥∥∥ΓkU0 |kU0

∥∥∥
∞

∥∥∥A>kU0 ∥∥∥∞ +
∥∥∥QkU0 ∥∥∥∞

<
√
n
∥∥∥ΓkU0 |kU0

∥∥∥ a1a2 +
√
nq2.

Moreover, since ∥∥∥∥(RkU0 +1 +HkU0 +1ΓkU0 +1|kU0 H
>
kU0 +1

)−1
∥∥∥∥
∞

≤
√

3

∥∥∥∥(RkU0 +1 +HkU0 +1ΓkU0 +1|kU0 H
>
kU0 +1

)−1
∥∥∥∥

=
√

3
(
σmin

(
RkU0 +1 +HkU0 +1ΓkU0 +1|kU0 H

>
kU0 +1

))−1

≤
√

3
(
σmin

(
RkU0 +1

))−1

<

√
3

r1
,

it follows that∥∥∥KkU0 +1

∥∥∥
∞
≤
∥∥∥ΓkU0 +1|kU0

∥∥∥
∞

∥∥∥H>kU0 +1

∥∥∥
∞

∥∥∥∥(RkU0 +1 +HkU0 +1ΓkU0 +1|kU0 H
>
kU0 +1

)−1
∥∥∥∥
∞

<

√
3n

r1

(∥∥∥ΓkU0 |kU0

∥∥∥ a1a2 + q2

)
.

Step 2. As stated in (50), Kalman gain associated with the observable subsystem
is given by

K
(1)
k = Γ

(1)
k|k−1

(
H

(1)
k

)>(
Rk +H

(1)
k Γ

(1)
k|k−1

(
H

(1)
k

)>)−1

.

According to Lemma 1, there exist constants c̃1 and c̃2 such that the error covariance
of the observable subsystem satisfies

c̃1I < Γ
(1)
k|k < c̃2I, for all k ∈ (kU

0 , k
U
1 ]. (53)

Given that

Γ
(1)
k|k−1 = A

(1)
k Γ

(1)
k−1|k−1

(
A

(1)
k

)>
+Q

(1)
k−1,

we have∥∥∥Γ
(1)
k|k−1

∥∥∥
∞
≤ ã1ã2

∥∥∥Γ
(1)
k−1|k−1

∥∥∥
∞

+
∥∥∥Q(1)

k−1

∥∥∥
∞
<
√
d1 (ã1ã2c̃2 + q2) ,

with ã1 and ã2 defined as

ã1 = max
k∈(kU0 ,k

U
1 ]

∥∥∥A(1)
k

∥∥∥
∞
, ã2 = max

k∈(kU0 ,k
U
1 ]

∥∥∥∥(A(1)
k

)>∥∥∥∥
∞
.
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Following the similar argument as in Step 1, we obtain∥∥∥K(1)
k

∥∥∥
∞
<

√
3d1

r1
(ã1ã2c̃2 + q2) , for all k ∈ (kU

0 + 1, kU
1 ].

Step 3. Define the Lyapunov function of the observable subsystem as

V
(1)
k =

(
η̄

(1)
k|k

)> (
Γ

(1)
k|k

)−1

η̄
(1)
k|k.

According to Lemma 3 in [31], the one-step change of V
(1)
k is given by:

V
(1)
k+1 − V

(1)
k

=−
(
η̄

(1)
k|k

)>(
Γ

(1)
k|k + Γ

(1)
k|k

(
A

(1)
k

)>
×

(
Q

(1)
k + Γ

(1)
k+1|k

(
H

(1)
k

)>
R−1
k+1H

(1)
k Γ

(1)
k+1|k

)−1

A
(1)
k Γ

(1)
k|k

)−1

η̄
(1)
k|k

≤−
∥∥∥η̄(1)
k|k

∥∥∥2
∥∥∥∥Γ

(1)
k|k + Γ

(1)
k|k

(
A

(1)
k

)>
×

(
Q

(1)
k + Γ

(1)
k+1|k

(
H

(1)
k

)>
R−1
k+1H

(1)
k Γ

(1)
k+1|k

)−1

A
(1)
k Γ

(1)
k|k

∥∥∥∥∥
−1

,

where∥∥∥∥∥Γ
(1)
k|k + Γ

(1)
k|k

(
A

(1)
k

)>(
Q

(1)
k + Γ

(1)
k+1|k

(
H

(1)
k

)>
R−1
k+1H

(1)
k Γ

(1)
k+1|k

)−1

A
(1)
k Γ

(1)
k|k

∥∥∥∥∥
<c̃2 + q−1

1

∥∥∥∥Γ
(1)
k|k

(
A

(1)
k

)>
A

(1)
k Γ

(1)
k|k

∥∥∥∥
≤c̃2 + q−1

1

∥∥∥Γ
(1)
k|k

∥∥∥∥∥∥∥(A(1)
k

)>
A

(1)
k

∥∥∥∥∥∥∥Γ
(1)
k|k

∥∥∥
<c̃2 + q−1

1 c̃22ã3,

with ã3 defined as

ã3 = max
k∈(kU0 ,k

U
1 ]
σmax

(
A

(1)
k

)
,

and σmax(M) is the maximum singular value of matrix M . It follows that for all

k ∈ (kU
0 , k

U
1 ], the Lyapunov function V

(1)
k satisfies

c̃−1
2

∥∥∥η̄(1)
k|k

∥∥∥2

< V
(1)
k < c̃−1

1

∥∥∥η̄(1)
k|k

∥∥∥2

, and V
(1)
k+1 − V

(1)
k < −c̃3

∥∥∥η̄(1)
k|k

∥∥∥2

,

where

c̃3 = c̃2 + q−1
1 c̃22ã3.
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Hence, for all k ∈ (kU
0 + 1, kU

1 ], the 2-norm of the mean estimation error of the
observable subsystem satisfies∥∥∥η̄(1)

k|k

∥∥∥ < (c̃2V (1)
k

) 1
2

<
(
c̃2V

(1)

kU0 +1
(1− c3c̃1)

k−kU0 −1
) 1

2

<

(
c̃2
c̃1

∥∥∥η̄(1)

kU0 +1|kU0 +1

∥∥∥2

(1− c̃3c̃1)
k−kU0 −1

) 1
2

=

(
c̃2
c̃1

) 1
2 ∥∥∥η̄(1)

kU0 +1|kU0 +1

∥∥∥((1− c̃3c̃1)
1
2

)k−kU0 −1

.

(54)

Moreover, for all k ∈ (kU
0 + 1, kU

1 ], the mean estimation error of the observable
subsystem is given as follows:

η̄
(1)
k|k =

kU0 +2∏
κ=k

Υ(1)
κ η̄

(1)

kU0 +1|kU0 +1
, (55)

where Υ
(1)
κ = Γ

(1)
κ|κ

(
Γ

(1)
κ|κ−1

)−1

A
(1)
κ−1. Combining (54) and (55), it is concluded

based on the definition of matrix induced norm that∥∥∥∥∥∥
kU0 +2∏
κ=k

Υ(1)
κ

∥∥∥∥∥∥ ≤
(
c̃2
c̃1

) 1
2 (

(1− c̃3c̃1)
1
2

)k−kU0 −1

, for k ∈ (kU
0 + 1, kU

1 ]. (56)

Step 4. Vectorizing both sides of (48) yields that for k ∈ (kU
0 , k

U
1 ],

vec
{

Γ
(12)
k+1|k

}
=
(
A

(2)
k ⊗Υ

(1)
k

)
vec
{

Γ
(12)
k|k−1

}
+ vec

{
Υ

(1)
k Γ

(1)
k|k−1

(
A

(21)
k

)>}
+ vec

{
Q

(12)
k

}
,

which implies that for all k ∈ (kU
0 + 1, kU

1 ],

vec
{

Γ
(12)
k+1|k

}
=

kU0 +2∏
κ=k

(
A(2)
κ ⊗Υ(1)

κ

) vec
{

Γ
(12)

kU0 +2|kU0 +1

}
+ Φk, (57)

where

Φk =vec

{
Υ

(1)
k Γ

(1)
k|k−1

(
A

(21)
k

)>
+Q

(12)
k

}
+
(
A

(2)
k ⊗Υ

(1)
k

)
vec

{
Υ

(1)
k−1Γ

(1)
k−1|k−2

(
A

(21)
k−1

)>
+Q

(12)
k−1

}
+
(
A

(2)
k ⊗Υ

(1)
k

)(
A

(2)
k−1 ⊗Υ

(1)
k−1

)
vec

{
Υ

(1)
k−2Γ

(1)
k−2|k−3

(
A

(21)
k−2

)>
+Q

(12)
k−2

}

+ · · ·+
kU0 +3∏
κ=k

(
A(2)
κ ⊗Υ(1)

κ

)
vec

{
Υ

(1)

kU0 +2
Γ

(1)

kU0 +2|kU0 +1

(
A

(21)

kU0 +2

)>
+Q

(12)

kU0 +2

}
.
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The explicit form of A
(2)
k ⊗Υ

(1)
k reads

A
(2)
k ⊗Υ

(1)
k =


A

(2)
k (1, 1)Υ

(1)
k · · · A

(2)
k (1, d2)Υ

(1)
k

...
. . .

...

A
(2)
k (d2, 1)Υ

(1)
k · · · A

(2)
k (d2, d2)Υ

(1)
k

 ,

hence

kU0 +2∏
κ=k

(
A(2)
κ ⊗Υ(1)

κ

)
=


ϑk(1, 1)

∏kU0 +2
κ=k Υ

(1)
κ · · · ϑk(1, d2)

∏kU0 +2
κ=k Υ

(1)
κ

...
. . .

...

ϑk(d2, 1)
∏kU0 +2
κ=k Υ

(1)
κ · · · ϑk(d2, d2)

∏kU0 +2
κ=k Υ

(1)
κ

 ,

where ϑk(i, j) is the (i, j)th element of
∏kU0 +2
κ=k A

(2)
κ . Define

P =
(

0d2,n−d2 Id2
)
,

and given that the top right block of A
(t)
k is a zero matrix 0d1,d2 (as shown in (45)),

it can be concluded that

kU0 +2∏
κ=k

A(2)
κ = P

kU0 +2∏
κ=k

A(t)
κ

P> = P

kU0 +2∏
κ=k

UAκU
>

P>

= PU

kU0 +2∏
κ=k

Aκ

U>P>. (58)

Based on Lemma 2, the (i, j)th element of
∏kU0 +2
κ=k Aκ satisfies

0 ≤

kU0 +2∏
κ=k

Aκ

 (i, j) ≤ 1, for all i, j ∈ {1, · · · , n}.

Hence, it can be derived from (58) that∥∥∥∥∥∥
kU0 +2∏
κ=k

Ǎ(2)
κ

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
kU0 +2∏
κ=k

Ǎκ

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥U
kU0 +2∏

κ=k

Aκ

UT

∥∥∥∥∥∥
∞

≤
√
n

∥∥∥∥∥∥
kU0 +2∏
κ=k

Aκ

∥∥∥∥∥∥ ≤ n2.

Consequently,∥∥∥∥∥∥
kU0 +2∏
κ=k

(
A(2)
κ ⊗Υ(1)

κ

)∥∥∥∥∥∥
∞

≤ n2

∥∥∥∥∥∥
kU0 +2∏
κ=k

Υ(1)
κ

∥∥∥∥∥∥
∞

≤ n2
√
d1

(
c̃2
c̃1

) 1
2 (

(1− c̃3c̃1)
1
2

)k−kU0 −1

= t̃q̃k−k
U
0 −1,

(59)

where the last inequality is due to (56). Recall from (53) that c̃1I < Γ
(1)
k|k < c̃2I for

k ∈ (kU
0 , k

U
1 ]. Since

Γ
(1)
k|k−1 = A

(1)
k Γ

(1)
k−1|k−1

(
A

(1)
k

)>
+Q

(1)
k−1,
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it follows that
∥∥∥Γ

(1)
k|k−1

∥∥∥
∞
≤
√
d1 (ã1ã2c̃2 + q2) for all k ∈ (kU

0 +1, kU
1 ], and the prior

error covariance of the observable subsystem satisfies q1I < Γ
(1)
k|k−1for k ∈ (kU

0 , k
U
1 ].

As a consequence,∥∥∥Υ
(1)
k

∥∥∥
∞
≤
√
d1

∥∥∥∥Γ
(1)
k|k

(
Γ

(1)
k|k−1

)−1
∥∥∥∥ <√d1c̃2q

−1
1 , for k ∈ (kU

0 , k
U
1 ]. (60)

Define ã4 as

ã4 = max
k∈(kU0 ,k

U
1 ]

∥∥∥A(21)
k

∥∥∥
∞
,

it follows that6 for k ∈ (kU
0 + 1, kU

1 ],∥∥∥∥vec

{
Υ

(1)
k Γ

(1)
k|k−1

(
A

(21)
k

)>}
+ vec

{
Q

(12)
k

}∥∥∥∥
∞

≤
∥∥∥∥Υ

(1)
k Γ

(1)
k|k−1

(
A

(21)
k

)>∥∥∥∥
∞

+
∥∥∥Q(12)

k

∥∥∥
max

<
√
d1c̃2q

−1
1 ã4

∥∥∥Γ
(1)
k|k−1

∥∥∥
∞

+ q2

<d1c̃2ã4 (ã1ã2c̃2 + q2) q−1
1 + q2

=p̃.

(61)

Substituting (59) and (61) into (57), we obtain that for k ∈ (kU
0 + 1, kU

1 ],∥∥∥vec
{

Γ
(12)
k+1|k

}∥∥∥
∞
≤ b (k) , t̃q̃k−k

U
0 −1

∥∥∥vec
{

Γ
(12)

kU0 +2|kU0 +1

}∥∥∥
∞

+ p̃+ t̃p̃

k−kU0 −2∑
`=1

q̃`,

where b(k) is either a non-increasing or a non-decreasing function of k. Hence, we
obtain that for k ∈ (kU

0 , k
U
1 ],∥∥∥vec

{
Γ

(12)
k+1|k

}∥∥∥
∞

≤max

{∥∥∥vec
{

Γ
(12)

kU0 +2|kU0 +1

}∥∥∥
∞
, b(kU

0 + 2), lim
k→∞

b(k)

}
≤max

{∥∥∥vec
{

Γ
(12)

kU0 +2|kU0 +1

}∥∥∥
∞
, t̃q̃

∥∥∥vec
{

Γ
(12)

kU0 +2|kU0 +1

}∥∥∥
∞

+ p̃,
t̃p̃q̃

1− q̃
+ p̃

}
,

where ∥∥∥vec
{

Γ
(12)

kU0 +2|kU0 +1

}∥∥∥
∞
≤
∥∥∥Γ

(12)

kU0 +2|kU0 +1

∥∥∥
∞

<
√
na1a2

∥∥∥ΓkU0 +1|kU0 +1

∥∥∥+
√
nq2

≤
√
na1a2

∥∥∥ΓkU0 +1|kU0

∥∥∥+
√
nq2

< n
√
n
∥∥∥ΓkU0 |kU0

∥∥∥ (a1a2)
2

+ n
√
na1a2q2 +

√
nq2

= γ̃.

Also since

K
(21)
k =

(
Γ

(12)
k|k−1

)> (
H

(1)
k

)>(
Rk +H

(1)
k Γ

(1)
k|k−1

(
H

(1)
k

)>)−1

,

6Recall that for matrix M ∈ Rp×q , ‖M‖max ≤ ‖M‖2 = max1≤r≤p,1≤c≤q |M(r, c)|.
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it follows that for k ∈ (kU
0 + 1, kU

1 ],∥∥∥K(21)
k

∥∥∥
∞
≤
√

3

r1

∥∥∥∥(Γ
(12)
k|k−1

)>∥∥∥∥
∞
≤ d1

√
3

r1
max

{
γ̃, t̃q̃γ̃ + p̃,

t̃p̃q̃

1− q̃
+ p̃

}
.

Step 5. Combining Steps 1, 2 and 4, it can be concluded that for k ∈ (kU
0 , k

U
1 ]

‖Kk‖∞ =
∥∥∥U>K(t)

k

∥∥∥
∞
≤ n

∥∥∥K(t)
k

∥∥∥
∞

≤
√

3d1

r1
max

{√
n

d1

(∥∥∥ΓkU0 |kU0

∥∥∥ a1a2 + q2

)
,

1√
d1

(ã1ã2c̃2 + q2) , γ̃, t̃q̃γ̃ + p̃,
t̃p̃q̃

1− q̃
+ p̃

}
,k
(∥∥∥ΓkU0 |kU0

∥∥∥) ,
which completes the proof.
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