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Abstract. Intelligent use of network capacity via responsive signal control
will become increasingly essential as congestion increases on urban roadways.

Existing adaptive control systems require lengthy location-specific tuning pro-

cedures or expensive central communications infrastructure. Previous theoret-
ical work proposed the application of a max pressure controller to maximize

network throughput in a distributed manner with minimal calibration. Yet

this algorithm as originally formulated has unpractical hardware and safety
constraints. We fundamentally alter the formulation of the max pressure con-

troller to a setting where the actuation can only update once per multiple time
steps of the modeled dynamics. This is motivated by the case of a traffic signal

that can only update green splits based on observed link-counts once per “cy-

cle time” of 60-120 seconds. Furthermore, we extend the domain of allowable
actuations from a single signal phase to any convex combination of available
signal phases to model intra-cycle signal changes dictated by pre-selected cycle

green splits. We show that this extended max pressure controller will stabi-
lize a vertical queueing network given restrictions on admissible demand flows

that are slightly stronger than those suggested in the original formulation of

max pressure. We ultimately apply our cycle-based extension of max pressure
to a simulation of an existing arterial network and provide comparison to the
control policy that is currently deployed at the modeled location.
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1. Introduction. This article investigates the design and stability of decentralized
controller for vertical queueing networks. In a vertical queueing network, agents
traveling across the network are stored in point queues that do not inhabit a “hor-
izontal” position along the length of a network edge, but instead are considered to
be stored in “vertical” stacks at each node. Such models are inherited from fields
such as supply chain management or internet routing, but are also representative
of signalized urban traffic networks and have recently regained popularity for use
in applications of arterial traffic control [6, 1, 17, 20]. The concept of a stabilizing
network controller, or one which ensures that the mean length of all queues in the
network remain bounded, is relevant to many applications such as communications
networks [8, 11, 12] or industrial systems [7, 4, 10].

In the present work we examine a vertical queueing model in which only a finite
set of non-conflicting flow movements (or phases) can be permitted to proceed si-
multaneously across each network node. Phase actuation is dictated by a controller,
such as a traffic light signaling specific combinations of green lights. Specifically,
we consider application of a maximum pressure controller.

Max pressure is a distributed network control policy derived from the concept of
a “back-pressure” or “MaxWeight” controller, which was first studied in the context
of routing packets through a multi-hop communications network [16]. It has since
been introduced to many other networked applications including process scheduling
[5], manufacturing [15], wireless networks [3] and general stochastic networks [14].
The idea was applied to road traffic management more recently by [18] as well as
[19]. The concept is intuitive: at each controlled network node, priority is given to
the control phase which will be able to service the most demand given knowledge
of both available upstream demand and the subsequent feasibility of downstream
queues. It is a particularly attractive concept for control of a signalized urban
traffic network because it can be operated in a distributed manner on local con-
troller hardware (such as locally-managed traffic lights) but still provides theoretical
guarantees on network-wide performance. Therefore unlike existing adaptive signal
control systems such as SCOOT [9] or SCATS [13], max pressure does not require
communications between each node or central control infrastructure. Also, max
pressure is a universal algorithm which does not have to be optimized and manu-
ally tuned for a given network geometry or expected flows. In fact it operates with
no a-priori knowledge of demand beyond a basic requirement of serviceability. This
presents a huge benefit over most existing traffic control systems which require a
timely and expensive re-timing process in the event of changes in demand patterns.

The original adaptation of this controller in [18], however, does not fully consider
the practical limitations on the rate of queue measurement and signal actuation in
vehicle traffic networks. For example, it has no bound on the rate of signal switches
which may occur relative to the rate of modeled queue formation and dissipation. In
implementation, a traffic signal incurs a penalty upon every change in actuation in
the form of capacity loss due to “intersection clearance time”: a 2-3 second period
where all movements are given a red light in order to allow traffic from the previous
phase to clear the intersection before possibly conflicting traffic can be permitted
to enter. Max pressure also lacks the ability to synchronize adjacent signals in a
network by constraining the actuation periods of critical phases to fixed relative
offsets. This feature is valued by traffic managers who wish to promote continuity
of flow and limit vehicle stops on a preferred throughway. Furthermore, a standard
max pressure implementation provides no explicit lower bound on the service rate
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of queues on minor approaches where demand may be very low relative to the main
direction.

These limitations motivate a new extension of the max pressure algorithm which
bounds signal switches and can maintain timed cyclical behaviors for signal coor-
dination and queue service equity. While a similar concept was suggested in [18],
the current work further extends a simple proportional phase controller to allow
model dynamics to explicitly act at a faster rate than the controller update period.
We then extend the stability proof of [18] to prove that our cycle-based max pres-
sure (Cb-MP) controller still provides the desired guarantee of queue stability with
a penalty to the theoretical bound on queue lengths due to the decreased rate of
controller update.

The remainder of this article is organized as follows: Sections 2-3 describe the
modeling framework and standard max pressure controller from [18]; Section 4
formulates an extended cycle-based max pressure controller; Section 5 proves that
this extended controller stabilizes a vertical queueing network; finally, Section 6
presents numerical results provided by this controller using a microscopic traffic
simulation running in the Aimsun platform.

2. Network model dynamics. We consider a network of arterial roads with in-
finite storage capacity, modeled topologically as a graph with road segments (or
links) being graph edges and intersections being nodes. We require that each link
in the network has an exit path, or a continuous set of connected links on which
vehicles can travel from the original link to eventually exit the network. This would
in fact be the case in a practical road network.

An individual link l ∈ L can be either at the entry of the network (l ∈ Lent) or
in the interior of the network (l ∈ L\Lent). The inflow on network entry links is
defined entirely by a random network demand flow. We assume the expectation of
this randomized boundary demand is known. The inflow on all other links (referred
to as link demand) depends on observable queues on upstream links and the known
set of constraints imposed by physical characteristics of the modeled network.

Each link in the network model can contain multiple queues, each of which corre-
spond to separate movements: all vehicles in a single queue are intending to advance
onto the same subsequent link. We describe the dynamics of network queues as a
discrete time dynamical model using the following notation:

• A movement (l,m) distinguishes an intention to travel from link l to imme-
diately downstream link m;

• A queue x(l,m)(t) is the number of vehicles on link l waiting to enter link m
at time step t, and X(t) is the set (vector or matrix) of all the queue lengths
on the network at time step t;

• A link capacity C(l,m)(t) is the number of vehicles that can travel from link l
to link m in time step t given maximum demand on queue x(l,m). To model
heterogenous driver behaviors we assume that C(l,m)(t) is a random variable,
but it has known expectation c(l,m).

• Random variable R(l,m)(t) = x(l,m)(t)∑
k x(l,k)(t) is the turn ratio at time t. R is

assumed to have known expectation r(l,m) ∈ [0, 1].
• The demand vector d of dimension |Lent| specifies demands at network entry

links;
• The flow vector f of dimension |L| denotes flows on all links of the network

such that fl is the flow in link l.
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The expected flow through an entry link is defined to be equal to the expected
demand on that link. Because we consider fixed turn ratios, the flow on an internal
link is a weighted sum of the flows on the upstream neighboring links (with weights
equal to the relevant expected turn proportions). Hence there is necessarily a linear
relationship between the expected link flow f and the boundary demand d:

f = dP (1)

where the (possibly non-unique) matrix P depends only on observed routing pro-
portions within the network.

Intersection signal controller. A road intersection is modeled as a node in our
framework. Controllers (traffic signals) are placed at every node to limit the set of
queues permitted to discharge at any given time. A set of movements that can be
simultaneously actuated without flow conflicts is called a phase. Each permissible
phase for a given intersection can be represented as a binary control matrix S that
is defined as follows:

S(l,m) =

{
1 if movement (l,m) is discharged in phase

0 otherwise
. (2)

We denote the known, finite set of permissible control matrices for a single node as
U . Note that U can be different for each node, as its construction depends on the
number and physical arrangement of node entrances and egresses.

At each modeled time step t, a single control matrix S(t) ∈ U encodes which
single non-conflicting set of queues approaching the intersection are permitted to
discharge during that time step. However in this work we consider a relaxed con-
troller which operates on a finite set of contiguous time steps. This relaxed controller
is defined as a matrix S̃(t), which is populated with elements S̃(l,m) ∈ [0, 1] that
each represent the fraction of the relevant set of time steps that are allocated to
the movement {l,m}. Such a relaxed controller must be able to be expressed as a
convex combination of all S ∈ U ,

S̃ =
∑
S∈U

λSS, with λS ∈ [0, 1] and
∑
S∈U

λS = 1. (3)

This work will demonstrate how to optimally select λS for a given set of time
steps

(
t + 1, t + 2, ..., t + τ

)
based only on the state of the network queues at the

previous time period
(
t− τ, t− (τ − 1), ..., t

)
.

Queue dynamics. The evolution of network queue lengths X(t) can be seen as a
Markov chain: the state at time (t+ 1) is a function of only the state at time t and
external demand d,

X(t+ 1) = F (X(t), d). (4)

Define [ a ∧ b ] := min{a, b}. To describe queue dynamics explicitly, we must make
a distinction between entry links and internal links: if l ∈ Lent,

x(l,m)(t+ 1) = x(l,m)(t) + dl(t+ 1)R(l,m)(t+ 1) (5)

− [C(l,m)(t+ 1)S(l,m)(t+ 1) ∧ x(l,m)(t)]



CYCLE-BASED MAX PRESSURE FOR TRAFFIC NETWORKS 245

and if l ∈ L\Lent,

x(l,m)(t+ 1) = x(l,m)(t)

+
∑
k

[C(k, l)(t+ 1)S(k, l)(t+ 1) ∧ x(k, l)(t)]R(l,m)(t+ 1)

− [C(l,m)(t+ 1)S(l,m)(t+ 1) ∧ x(l,m)(t)]. (6)

Demand feasibility. We focus on networks for which the boundary inflow de-
mands are feasible—that is, the network is servicing a distribution of inflows for
which it is possible to find a controller that allows in average more departures than
arrivals at each link. Note that a stabilizing controller, defined as one that ensures
that the mean length of all queues remains bounded, would not be possible by
definition if demands were not feasible.

Define C(U) to be the convex hull of the set of permissible control matrices U .
The following properties are then shown in [18]:

Property 1. A matrix M is in C(U) iff ∃ a sequence of control matrices S =
{S(1), S(2), ..., S(t), ...|S(·) ∈ U} such that ∀(l,m)

M(l,m) = lim inf
T

1

T

T∑
t=1

S(l,m)(t). (7)

The element M(l,m) in (7) can be interpreted as the long-term average propor-
tion of intersection capacity given to movement (l,m). Hence define MS to be the
long-term control proportion matrix constructed as in (7) using a specific control
sequence S = {S(1), S(2), ..., S(t), ...}.

Property 2. A demand d is feasible if and only if ∃ MS ∈ C(U) and ε > 0 such
that

c(l,m)MS(l,m) > flr(l,m) + ε (8)

where f = dP as in (1).

Define D0 to be the set of all average demand vectors d that satisfy (8) and are
therefore feasible.

A network is stable if the following quantity is bounded:

1

T

T∑
t=1

E
{
|X(t)|1

}
(9)

where |X|1 =
∑
l,m |x(l,m)| and the network state evolves according to dynamics

under state dynamics (5)-(6).

3. Max pressure controller. Consider a weight assigned to each queue (l,m) as
a function of all network queue lengths X:

w(l,m)(X(t)) = x(l,m)(t)−
∑

p∈Out(m)

r(m, p)x(m, p)(t) (10)

where Out(m) is the set of all links receiving flow from link m. The pressure γ(S)
that is potentially alleviated by a control action S at time step t is defined as follows:

γ(S)(X(t)) =
∑
l,m

c(l,m)w(l,m)(X(t))S(l,m)(t). (11)
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At each time step t, the standard max pressure controller u∗(X(t)) explicitly choses
the phase S∗ ∈ U that maximizes γ(S)(X(t)):

S∗(t) = u∗(X(t)) = arg max{γ(S)(X(t))|S ∈ U}. (12)

Reference [18] shows the following stability result for the standard max pressure
controller:

Theorem 3.1. The max pressure control u∗ is stabilizing, i.e. the quantity in
equation (9) remains bounded, whenever the average demand vector d = {dl} is
within the set of feasible demands D0.

We omit further explanation of the above theorem in this paper for brevity.
This theoretical guarantee is one of the many attractive qualities of max pres-

sure for controlling vehicular traffic in urban road networks. Yet the controller as
originally formulated is not practical for application on a signalized traffic network
for three reasons:

a) it does not account for capacity reductions (lost time) due to excessive signal
switching,

b) it cannot enforce coordination between subsequent intersections for purposes of
maximizing flow continuity, and

c) it does not provide guarantees that low-demand queues will be served within a
finite time period.

4. Cycle-based max pressure (Cb-MP). The above limitations motivate our
extension of the standard immediate feedback max pressure control algorithm. In
the following section, we define a new cycle-based max pressure (Cb-MP) controller
which bounds the number of signal switches per fixed time period, provides capacity
for standard signal coordination methods, and can easily guarantee a minimum
service rate for all intersection phases.

For safety reasons, an intersection controller cannot switch signal phase actuation
immediately. Instead, it must incorporate a pause of R ≈ 2.5 seconds in which
all signal phases have a red light. This clearance time allows all vehicles in the
previously actuated phase to clear the intersection before a conflicting phase can
be permitted to use the intersection. In the standard formulation of max pressure,
the controller chooses an appropriate action based feedback received at every time
step of the modeled dynamics. To accurately capture queuing behaviors observed
on arterial roadways, a model would need to operate with a time discretization
of ∆t < 10 seconds. A signal switch at every time step could therefore result in
more than 25% loss of intersection service capacity, which is not considered in the
theoretical examination presented in [18].

In this work, we explicitly specify the number of signal switches that occur in
a fixed number of model time steps using the familiar concept of a signal cycle.
As typical with modern traffic signals Cb-MP rotates through all available signal
phases within a known time period. We define cycle time τ as a predefined number
of model time steps and require that each controller phase S must be green for
some proportion λS ≥ κS of the τ steps, where the minimum green splits κS ∈
(0, 1) ∀ S ∈ U are parameters selected by a network manager to enforce equity in
movement actuation.

The selection of a cycle time τ intuitively affects intersection capacity. Our proof
of network stability in the following sections relies on the fact that road links are
undersaturated : that is, the expected demand is served (on average) within a signal
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cycle. To avoid link saturation, we pose the following convex optimization problem
(extended from that in [2]) to determine minimum constrained feasible actuation
time Λ∗:

Λ∗ = min
λ={λS}

∑
S∈U

λS

subject to λS ≥ κS ∀ S ∈ U

flr(l,m) <
∑
S

λSc(l,m)S(l,m)

(13)

where κS ∈ [0, 1] ∀S ∈ U and
∑
S κS < 1. If Λ∗ > 1, the demand is not feasible

under the set of {κS} for any cycle length. If Λ∗ < 1, then we can define a cycle
length for which flow is admissible without link saturation. However, this cycle
length τ must be significantly greater than Λ∗ to account for clearance times. If we
define L = d( R∆t · |U |)e to be the total number of lost time steps per cycle, a feasible
cycle length τ must satisfy the following condition:

τ >
L

1− Λ∗
. (14)

Given an appropriate τ which satisfies (14), the cycle-based max pressure controller
is a relaxed control matrix that is constructed as follows:

S̃∗(t) = uc∗(X(t)) =
∑
S∈U

λ∗SS, (15)

where {λ∗S} = arg max
λ1,...,λ|U|

∑
S∈U

λSγ(S)
(
X(bt/τc)

)
(16)

subject to λS ≥ κs,
∑
S

λS ≤ 1− L
τ .

At time step t = nτ for integer n, the controller uc∗ uses feedback measurements
x(t) to select a relaxed control matrix S̃∗ with components λ∗S that satisfy (16). This
relaxed controller is then applied for the subsequent τ time steps {t, t + 1, . . . , t +
τ − 1} before the controller is updated.

Note that this controller is modeled such that all phases in an intersection are
simultaneously actuated at some proportion of their maximum flow capacity. This is
not possible in practice, as many phases will have to make conflicting use of the same
intersection resources. Hence individual phases S will have to be actuated in series,
with each having a duration corresponding to a number of “time units” that are
equal to cycle proportions (λSτ ·∆t). Feedback measurements will then be a measure
of “average” cycle queue length acquired over a set of measurements spanning the
previous cycle. If the solution for (16) is not unique, one of the optimal solutions
is chosen at random using a uniform probability distribution (or according to some
practical actuation priority criteria chosen by the network manager). Because it can
be implemented such that phases occur in a predictable order, a controller running
Cb-MP can be synchronized with neighboring controllers to enforce a “green-wave
progression” as is standard practice in existing traffic signal control design.

The Cb-MP controller formulated in (15)-(16) is fundamentally different from
the standard max pressure formulation in [18] in two ways: first, it only updates
the controller once every signal cycle (or τ model time steps); second, it applies
a relaxed phase actuation (which is some convex combination of standard phase
actuations). In the next section, we address how each of these modifications impact
the resulting network dynamics, and ultimately show that the application of Cb-MP



248 L. ANDERSON, T. PUMIR, D. TRIANTAFYLLOS AND A. M. BAYEN

yields a similar stability guarantee to that shown by Varaiya for the standard max
pressure controller given slightly weaker conditions on demand flow.

5. Stability of Cb-MP. Define Cκ as the set of convex combinations of control
matrices with coefficients larger than κ:

Cκ =
{∑

S

λSS
∣∣ λS > κS ∀S ∈ U

}
. (17)

Also define a set of undersaturated admissible demands Dκ with elements d such
that f = dP and

flr(l,m) < c(l,m)S̃(l,m). (18)

This condition (also seen in (13)) ensures that a demand d ∈ Dκ can in average be
served within a single cycle by a relaxed control matrix that maintains a specified
minimum time allocation for each phase.

Theorem 5.1. The cycle-based max pressure controller defined in (15)-(16) sta-
bilizes a network whenever the demand is within a set of feasible undersaturated
demands Dκ.

The remainder of this section proves Theorem 5.1 by finding a bound on (9) given
a cycle-based max pressure controller. The structure of this proof is as follows:

1) First, we introduce the concept of a τ -updated controller and we show that
switching control only once every τ time steps does not impact the set of feasible
demands.

2) Then we explain the mathematical structure used in [18] to derive a bound for
the expected network state (9).

3) Next we define an intermediate “relaxed max pressure” formulation to demon-
strate the impacts of expanding the domain of control actions to relaxed con-
trollers which are convex combinations of allowable phase matrices.

4) We then demonstrate the intra-cycle queue dynamics given a τ -updated relaxed
controller.

5) We combine the above steps to show that queue stability holds given a Cb-MP
controller with both relaxed actuation and τ -updating.

6) Finally, we compare the our Cb-MP queue length bounds to those originally
derived in [18] to illustrate the increase due to cycle-updating.

5.1. Properties of a τ-updated controller. Suppose that we impose that the
control actuation S∗(t) can only be updated every τ model time steps. A resulting
τ -updated control sequence is composed of a single control matrix repeated for τ
time steps of the model dynamics:

S(nτ + 1) = S(nτ + 2) = . . . = S
(
(n+ 1)τ

)
. (19)

In the Appendix of this paper, we prove that the set of demands that can be
accommodated using τ -updated control sequences is the same set of feasible flows
as in (8). This equivalence becomes intuitive when one considers that our definition
of feasible flows considers only the long-term (more precisely, infinite-term) average
of both demand and service rates, and any infinite control sequence with limited
admissible phases can be re-arranged to form a τ -updated sequence for some τ .

As will be shown in Section 5.6, occasional updating will also lead to an increased
bound on queue lengths relative to the standard max pressure setting.
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5.2. Formulating a queue bound. Our ultimate goal is to derive a bound for
the average expected queue state (9). The approach taken in this work follows that
of [18]: we bound the incremental model-step queue increase |X(t+ 1)−X(t)| and
then recursively compute a bound on average queue lengths

∑
t∈[0,T ] E{|X(t)} for

an arbitrary time horizon T .
Begin by considering the expectation of the following function of queue state

perturbation conditioned on the past queue state:

|X(t+ 1)|2 − |X(t)|2 = |X(t) + δ(t)|2 − |X(t)|2 (20)

= 2X(t)T δ(t) + |δ(t)|2

= 2α(t) + β(t)

with δ(t) = X(t+ 1)−X(t), α(t) = X(t)T δ(t), and β(t) = |δ(t)|2. We continue by
addressing bounds on β and α separately.

First we consider β(t) = |δ(t)|2.

Lemma 5.2.
β(t) =

∣∣δ(t)∣∣2 ≤ NB2 (21)

where B = max
{
C(l,m),

∑
k C(k, l), d(l,m)

}
, N is the number of queues in the

network, C(l,m) is the maximum value of the random service rate C(l,m)(t), and
d(l,m) is the maximum value of random demand d(l,m).

The proof of Lemma 5.2 is exactly the same as presented in [18] and will there-
fore not be repeated here. Note that because these bounds hold for any arbitrary
S(l,m)(t) ∈ [0, 1], this bound on β is trivially extended to any convex combination
of control matrices; hence it is still valid in our extension.

Now we examine a bound on α(t) = X(t)T δ(t). Again following [18], we define
additional sub-terms:

E{α(t)|X(t)} =
∑
l∈L,m

w(l,m)(t) ·
[
flr(l,m) (22)

− E
{[
C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)

]∣∣X(t)
}]

= α1(t) + α2(t)

with

α1(t) =
∑
l∈L,m

[flr(l,m)− c(l,m)S(l,m)(t)]w(l,m)(t) (23)

α2(t) =
∑
l∈L,m

S(l,m)(t)w(l,m)(t) ·
[
c(l,m)− (24)

E
{[
C(l,m)(t+ 1) ∧ x(l,m)(t)

]∣∣X(t)
}]
.

Lemma 5.3. For all l, m, t,

α2(t) ≤
∑
l∈L,m

c(l,m)C(l,m). (25)

The proof of Lemma 5.3 again directly follows that presented in [18]; an extension

from a binary controller S ∈ {0, 1} to a relaxed controller S̃ ∈ [0, 1] is trivial.
In fact, the extension made here only affects the α1(t) term. To demonstrate

a bound on α1(t) given application of a cycle-based max pressure controller uc∗,
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we first examine the stability of a standard max pressure controller using relaxed
controllers with minimum phase proportion constraints and a stricter limitation on
network demands. We will then show that a τ -updated cycle-based max pressure
controller also stabilizes a network, but results in an increase in queue length bounds
that is proportional to cycle length τ .

5.3. Effect of a relaxed controller. Define an intermediate “relaxed max pres-
sure” policy in which relaxed controllers are applied at the standard max pressure
update rate (once per time step of the model dynamics). This situation was sug-
gested in [18] to simulate enforcing minimum phase proportions in a cycle formu-
lation of max pressure. Yet this proposal unrealistically models “cycle” updates
at the same rate as the model of queueing and discharging behaviors (hence the
introduction of the τ -updated formulation in this work). Nonetheless, we use this
intermediate formulation to demonstrate that queue stability is still achieved upon
use of a relaxed controller.

Lemma 5.4. If a “relaxed” max pressure control policy S̃∗ is updated and applied at
each time step t and the demand d is in the set of feasible undersaturated demands
Dκ, then there exists an ε > 0, η > 0 such that

α1(t) ≤ −εη
∣∣X(t)

∣∣. (26)

Proof of Lemma 5.4. Consider the relaxed max pressure control matrix S̃∗ defined
in (15) for τ = 1. By construction, ∀ S̃ ∈ Cκ∑

l,m

c(l,m)w(l,m)(X(t))S̃(l,m) ≤
∑
l,m

c(l,m)w(l,m)(X(t))S̃∗(l,m)

with equality only if S̃ = S̃∗. Thus ∀ (S̃ ∈ Cκ) 6= S̃∗,∑
l,m

[
flr(l,m)− c(l,m)S̃∗(l,m)(t)

]
w(l,m)(X(t)) (27)

<
∑
l,m

[
flr(l,m)− c(l,m)S̃(l,m)

]
w(l,m)(X(t)).

If the demand flow is admissible according to (18), then ∃ Ŝ ∈ Cκ and some small
ε > 0 such that

c(l,m)Ŝ(l,m) =

{
flr(l,m) + ε if w(l,m)(X(t)) > 0

0 otherwise
.

Therefore,

α1(t) =
∑
l,m

[flr(l,m)− c(l,m)S̃∗(l,m)(t)]w(l,m)(X(t))

<
∑
l,m

[
flr(l,m)− c(l,m)Ŝ(l,m)(t)

]
w(l,m)(X(t))

= −ε
∑
l∈L,m

max{w(l,m)(X(t)), 0}

+
∑
l∈L,m

flr(l,m) min{w(l,m)(X(t)), 0}. (28)

We assume that by our choice of Ŝ, flr(l,m) > ε. Hence α1(t) < −ε
∑
l,m w(l,m)(t).

Given the linearity of (10) and the known properties of r(l,m)(t), it can be show
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that
∑
l,m w(l,m)(t) ≥ η|X(t)| for some η > 0. This completes the derivation of

(26).

For ease of notation, now combine (21), (25) and (26) to obtain the following
expression given application of the “relaxed max pressure” controller:

E
{
|X(t+ 1)|2 − |X(t)|2|X(t)

}
= E

{
2α(t) + β(t)

}
< −2εη |X(t)|+ 2

∑
l∈L,m

[c(l,m)C(l,m)] +NB2 (29)

where N and B are as in (21).

5.4. Intra-cycle queue bound. Next we establish a bound on queue growth in a
single time step between controller updates.

Lemma 5.5. Assuming a cycle-based max pressure controller with an cycle steps
τ beginning at time t, the following bound on state perturbation holds for all steps
since update p ∈ [0, τ − 1]:

E
{
|X(t+ p+ 1)|2 − |X(t+ p)|2

∣∣X(t) . . . X(t+ p)
}

< Y + h(p)− 2εη|X(t+ p)| (30)

for Y = 2
∑
l,m

c(l,m)C(l,m) +NB2 and (31)

h(p) = 2pNB
(
εη +

∑
l,m

[
flr(l,m) + c(l,m)

])
. (32)

Proof of Lemma 5.5. As in Lemmas 5.2-5.4 above, begin by dividing the argument
of (30) into three parts: |X(t+p+1)|2−|X(t+p)|2 = 2(α1(t+p)+α2(t+p))+β(t+p),
where β, α1 and α2 are quantities that depend on the controller applied at (t+ p):

β(t+ p) = |X(t+ p+ 1)−X(t+ p)|2 (33)

α1(t+ p) = w(l,m)(X(t+ p)) ·
∑
l,m

(
flr(l,m)− c(l,m)S(l,m)(t)

)
(34)

α2(t+ p) = w(l,m)(X(t+ p)) ·
∑
l,m

(
c(l,m)S(l,m)(t)

− E
{[
C(l,m)(t+ p+ 1) ∧ x(l,m)(t+ p)

]∣∣X(t+ p)
})

(35)

Bounds on the expectations of β(·) and α2(·) were previously established for any
binary or relaxed control matrix in (21) and (25), respectively. Thus we already
know that:

E
{
|X(t+ p+ 1)|2−|X(t+ p)|2|X(t) . . . X(t+ p− 1)

}
< 2

∑
l,m

c(l,m)C(l,m) +NB2 + E
{

2α1(t+ p)
}
. (36)

The remainder of the bound proposed in (30) originates from the 2α1(t+ p) term,
which is directly dependent on the explicit form of the controller S. Rewrite 2 · α1
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from (34) as follows:

2
∑
l,m

w(l,m)(X(t+ p))[flr(l,m)− c(l,m)S(l,m)(t)]

= 2
∑
l,m

w(l,m)(X(t))[flr(l,m)− c(l,m)S(l,m)(t)]

+ 2
∑
l,m

{
w(l,m)

(
X(t+ p)−X(t)

)
· [flr(l,m)− c(l,m)S(l,m)(t)]

}
= ξ1(t, p, S) + ξ2(t, p, S)

for

ξ1(t, S) = 2
∑
l,m

w(l,m)(X(t))[flr(l,m)− c(l,m)S(l,m)(t)]

and

ξ2(t, p, S) = 2
∑
l,m

{
w(l,m)

(
X(t+ p)−X(t)

)
· [flr(l,m)− c(l,m)S(l,m)(t)]

}
.

By Lemma 5.4 we know that ξ1(t, S) < −2εη|X(t)|. Because |X(t)| = |X(t+ p)−
(X(t+ p)−X(t))| > |X(t+ p)| − |X(t+ p)−X(t)|, we find that

ξ1(t, p, S) < −2εη
(
|X(t+ p)| − |X(t+ p)−X(t)|

)
< −2εη|X(t+ p)|+ 2εη

p∑
i=1

|X(t+ i)−X(t+ i− 1)|

= −2εη|X(t+ p)|+ 2εη

p∑
i=1

|δ(t+ i− 1)|. (37)

So by (37) and (21),

ξ1(t, S) < 2εηp
∑
l,m

max

{
C(l,m),

∑
k

C(k, l), d(l,m)

}
− 2εη|X(t+ p)|

= 2εη ·
(
pNB − |X(t+ p)|

)
. (38)

To bound ξ2, we study the term

w(l,m)(X(t+ p))− w(l,m)(X(t))

=

p∑
n=1

w(l,m)(X(t+ n))− w(l,m)(X(t+ n− 1))

=

p∑
n=1

{
x(l,m)(t+ n)− x(l,m)(t+ n− 1)

−
∑

s∈Out(m)

[x(m, s)(t+ n)− x(m, s)(t+ n− 1)] · r(m, s)
}

=

p∑
n=1

w(l,m)(δ(t+ n− 1)) (39)

By (21) and the fact that w(·) is linear,

|w(l,m)(δ(t+ n− 1))| < NB. (40)
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Plugging (40) back into the definition of ξ2, we obtain

ξ2(t, p, S) = 2

(∑
l,m

[flr(l,m)− c(l,m)S(l,m)(t)] ·
p∑

n=1

w(l,m)(δ(t+ n− 1))

)

< 2

p∑
n=1

∑
l,m

[flr(l,m)− c(l,m)S(l,m)(t)] ·
∑
u,v

max
{
C(u, v),

∑
k

C(k, u), d(u, v)
}

= 2NB

p∑
n=1

∑
l,m

[flr(l,m)− c(l,m)S(l,m)(t)]. (41)

Also note that∣∣∣ p∑
n=1

∑
l,m

[flr(l,m)− c(l,m)S(l,m)(t)]
∣∣∣ < p

∑
l,m

[flr(l,m) + c(l,m)] (42)

so (41) becomes

ξ2(t, p, S) < 2NBp ·
(∑
l,m

[flr(l,m) + c(l,m)]
)
. (43)

Substituting (38) and (43) into (36) yields (30).

5.5. Network queue bound. Given Lemmas 5.2-5.5, we show that for a time t
within any number K of τ -updated cycles, the following quantity is bounded:

Kτ∑
t=1

E
{
|X(t+ 1)|2 − |X(t)|2|X(t)

}
=

K−1∑
t=1

τ−1∑
p=0

E
{
|X(t+ p+ 1)|2 − |X(t+ p)|2|X(t+ p)

}

<

K−1∑
t=1

τ−1∑
p=0

(Y + h(p)− 2εη|X(t+ p)|)

< −2εη
Kτ∑
t=1

|X(t)|+ (K − 1)
(
τY +

τ−1∑
p=0

h(p)
)

(44)

which, when taking the expectation, yields

E
{
|X(Kτ + 1)|2 − |X(1)|2

}
< −2εη

Kτ∑
t=1

E
{
|X(t)|

}
+ (K − 1)(τY +

τ−1∑
p=0

h(p)).

Rearranging gives

1

Kτ

Kτ∑
t=1

E
{
|X(t)|

}
<

1

2εηKτ
E
{
|X(1)|2 − |X(Kτ + 1)|2

}
+

τ − 1

2εηKτ

( τ−1∑
p=0

h(p) + τY
)

<
1

2εη Kτ
E
{
|X(1)|2

}
+

1

2εητ

(
τ−1∑
p=0

h(p) + τY

)
. (45)
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By (9), the bound

2εη
1

Kτ

Kτ∑
t=1

E
{
|X(t)|

}
< 1

Kτ E
{
|X(1)|2

}
+

1

τ

τ−1∑
p=0

h(p) + Y (46)

establishes that the cycle-based max pressure controller uc∗(X(t)) defined in (15)
will stabilize a vertical queueing network with dynamics X(t) as in (5)-(6).

5.6. Increase in queue bounds. The following bound on network queue state
for a standard max pressure controller is derived in [18] (for Y as in (31)):

2εη
1

T

T∑
t=1

E
{
|X(t)|

}
<

1

T
E
{
|X(1)|2

}
+ Y. (47)

Notice that by comparison between (47) and (46), the bound on the long-term sum
of expected network queues in cycle-based max pressure is larger by a term that
increases linearly in cycle length τ :

1

2εητ

τ−1∑
p=0

h(p) = (τ − 1)NB
(

1 +
1

εη

∑
l,m

[
flr(l,m) + c(l,m)

])
. (48)

6. Numerical implementation. To demonstrate the effectiveness of ours algo-
rithm, a cycle-based max pressure controller was implemented on a network of 11
signalized intersections modeled in the Aimsun, a commonly-used microsimulation
platform. While microsimulation dynamics do not precisely represent the queuing
behaviors represented above, the following results are provided as a valuable proof-
of-concept of this controller in an environment that is actually more realistic and
applicable than the vertical queueing model described in this work.

The specific model used in this work was generated as part of the I-15 Integrated
Corridor Management project undertaken by the San Diego Association of Gov-
ernments (SANDAG) in San Diego, CA. Demand and other model parameters are
calibrated to match the morning peak period (5:00 AM to 10:00 AM).

Figure 1. The chosen network was calibrated to represent realistic
demands and physical parameters observed on a stretch of Black
Mountain Road near the I-15 freeway in San Diego, California.

This section of road is currently controlled using an offset-optimized actuated-
coordinated control scheme. Under this system, each signal operates with a fixed
cycle time of 100 seconds and a fixed phase ordering, but uses instantaneous feed-
back of intersection vehicle approaches to adjust cycle green splits (effectively λi)



CYCLE-BASED MAX PRESSURE FOR TRAFFIC NETWORKS 255

within fixed minimum and maximum green time constraints per cycle. This con-
trol algorithm is coded and calibrated in the SANDAG Aimsun model to represent
realistic conditions and was therefore deemed an appropriate benchmark for perfor-
mance comparison to Cb-MP.

Six variations of Cb-MP were implemented. First, a version with a cycle length of
100 seconds and minimum green time constraints of 10 seconds for each available sig-
nal phase was used to closely match the operational constraints of the existing fully-
actuated controller. The relative offsets for the southbound coordination phases in
this implementation were the same as those used in the actuated-coordinated sys-
tem. We then ran variations which extended the cycle time for Cb-MP to 120, 140,
160, 180, and 200 seconds to demonstrate the effect of increased cycle time τ on
observed queue lengths.

To compare performance, we calculated vehicle service rates, average delay, aver-
age number of stops and stopped time, and mean and maximum queue lengths that
were modeled using each controller. These metrics were only calculated for vehicles
and links corresponding to the southbound direction on Black Mountain Road as
well as the short connections to the I-15 freeway on westbound Mira Mesa Blvd
and eastbound Mirimar Rd. This pathway simulates a viable “freeway-alternative”
in the congested direction during the morning peak period. During implemen-
tation, the Cb-MP algorithm most often chose to give actuation priority to this
high-demand Southbound direction, as expected.

The comparison of network vehicle counts in Figure 2 suggests that Cb-MP is able
to service approximately the same volumes as the optimized actuated-coordinated
control when cycle times were comparable. The higher cycle length Cb-MP imple-
mentations are omitted from this plot for clarity; these controllers resulted in higher
variations of vehicle service between 5-minute periods but ultimately only reduced
total service rates slightly.

Figure 2. Cb-MP demonstrated service rates that are consistent
with a fully-actuated control system for similar cycle lengths.

Yet distinct differences between the fully-actuated and Cb-MP controllers were
observed in measurements of delays. Figure 3 compares the average vehicle delay
given fully-actuated and max pressure control with the same cycle length. It is
apparent that while the fully-actuated controller produces less delay when demand
is far below network capacity, Cb-MP outperforms the existing controller given
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consistently high demand; it imposes less delay with a noticeably smaller variance.
This may not be surprising given known deficiencies in actuated controllers, however
it is important to point out that this implementation of max pressure produces very
promising network delays with almost no controller parameters that require tuning.

Figure 3. Cb-MP outperforms the actuated controller given high
demand in terms of vehicle delay.

Despite maintaining the same relative offsets for actuation of the main (coor-
dination) direction as the fully actuated controller, Cb-MP induced slightly more
stops during a vehicle’s south-bound journey across the network. Again, this may
be expected given the stop-minimizing design objectives of the fully-actuated sys-
tem: the small but consistent differences in average vehicle-stops shown in Figure
4 are likely caused by the on-demand service extensions provided for low density
“back-of-queue” arrivals in the fully-actuated system. Notice that the average ve-
hicle stopped time is actually lower in Cb-MP than with the fully actuated system
during peak demand, which is consistent with the estimates of total delay demon-
strated in Figure 3.

The higher cycle length Cb-MP implementations are again omitted from Figures
3-4 for clarity, yet it is important to note that higher cycle lengths predictably led
the longer stops and more delay, as vehicles which encountered a red light would
have to wait longer for the cycle to reach their desired green phase. This increase
in wait time also corresponds to the predicted larger queues.

Figure 5 demonstrates the increase in mean queue lengths with increase in cycle
length τ . While the linear increase in maximum queue length derived in (48) is not
explicitly depicted in the observations, these results appear to remain consistent
with such an upper bound.

7. Conclusion. The numerical implementation of cycle-based max pressure in Sec-
tion 6 suggests a promising alternative for signal control in periods of high demand
where the performance of existing actuated controllers is known to deteriorate. It
is an intuitive and scalable control algorithm that is appealing because it maintains
theoretical network-wide performance guarantees without the need for centralized
communication or control centers. The cyclical operation of Cb-MP can still main-
tain the flow-progression benefits obtained from existing offset optimization algo-
rithms along a prioritized route, as demonstrated by the fact that the average num-
ber of vehicle-stops on the southbound route only increases slightly using Cb-MP
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Figure 4. While Cb-MP caused more vehicle stop events, stop-
page times were similar to those observed using the actuated con-
troller.

Figure 5. Observed queues increase with cycle length using Cb-
MP control.

over an implementation of the optimized actuated system. Because the cycle splits
are more predictable in Cb-MP than in current actuated-coordinated algorithms,
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it may even be possible to further optimize progression on multiple (conflicting)
routes with additional linear constraints on cycle splits in (16).

Furthermore, Cb-MP is a widely-applicable algorithm which requires significantly
less tuning and site-specific adjustment than the typical fully-actuated control sys-
tem. For example, the timing parameters for a fully-actuation system deployed on
networks such as the SANDAG site referenced above are often a result of many
hours of both model-based and heuristic optimization procedures for a specific net-
work geometry and expected demand. Yet in our implementation, the generalized
Cb-MP algorithm with arbitrary reasonable minimum green parameters achieved
approximately equal performance without requiring any knowledge of location or
demand.

By addressing the practical problem of lost capacity due to frequent switching,
our extension of the proofs of [18] brings the concept of max pressure closer to
a realistic implementation. Yet it is important to point out that existing sensing
infrastructure does not typically provide the capabilities necessary to accurately
measure approaching link-counts, nor does it provide any measurement of down-
stream link state.

Future work should also address limitations of the unrealistic assumptions in-
herent in the vertical queueing model framework, such as the concept of infinite
link buffer size. In practice, over-saturation could cause unmodeled instabilities in
a traffic network if expected queue bounds exceed physical road storage.

One could also consider multiple ways in which the performance of Cb-MP could
benefit from heuristic modification, such as enforcing a maximum value of the green
split λl as a function of queue measurement xl to prevent wasted green in a given cy-
cle. Our extended proof of stability should hold for any additional linear constraints
on λ in (16) (which maintain the concept of a relaxed, τ -updated controller) given
that there exists any controller satisfying these constraints for which the network
demand is feasible according to (18).

Appendix A. Feasible flows with a τ-updated controller.

Lemma A.1. All flows which satisfy Property 2 given a controller u updated at
every model time step will also satisfy Property 2 with a τ -updated controller for
some τ .

Proof of Lemma A.1. Given the set admissible phases U , define:

• U is the set of control sequences with distinct elements
{S(1), S(2) . . . S(t) . . . |S(·) ∈ U},

• Uτ is the set of τ -updated control sequences
{S(1), S(1), . . . , S(τ + 1), S(τ + 1), . . . , S(nτ + 1), S(nτ + 1), . . . |S(·) ∈ U},

Also define the following sets of long-term control proportion matrices, which are
similar to the formulation in (7):

MU =
{

lim inf
T

1

T

T∑
t=1

S(t)
∣∣∣{S(1), S(2), . . . , S(t), . . .} ∈ U

}
MUτ =

{
lim inf

T

1

T

T∑
t=1

S(t) ·
∣∣∣{S(1), S(1), . . . , S(τ + 1),

S(τ + 1), . . .} ∈ Uτ
}
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By Property 2, a demand d is only feasible if there exists a control sequence S
such that the corresponding long-term control proportion matrix MS satisfies (8).
Here we show MU = MUτ , and therefore any flows that are admissible given an
unrestricted controller in U can also be accommodated using a τ -updated controller
in Uτ .

Obviously, MUτ ⊂MU . To show equality, we must also demonstrate that MU ⊂
MUτ . Suppose there exists a control sequence Ŝ = {S(1), S(2), . . .} ∈ U . By
definition,

MŜ = lim inf
T

1

T

T∑
t=1

S(t) = lim inf
T

1

τT

τT∑
t=1

S′(t)

where S′ = {S(1), S(1), . . . , S(t), S(t), . . .}

= lim inf
T

1

T

T∑
t=1

S′(t) ∈MUτ =⇒ MU ⊂MUτ

Acknowledgments. The authors would like to thank Pravin Varaiya for his in-
sights on this work, as well as Brian Peterson and Joe Butler for their support in
the numerical implementation.

REFERENCES

[1] K. Aboudolas, M. Papageorgiou and E. Kosmatopoulos, Store-and-forward based methods for

the signal control problem in large-scale congested urban networks, Transportation Research

Part C: Emerging Technologies, 17 (2009), 163–174.
[2] R. E. Allsop, Estimating the traffic capacity of a signalized road junction, Transportation

Research, 6 (1972), 245–255.
[3] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar and P. Whiting, Sched-

uling in a queuing system with asynchronously varying service rates, Probability in the Engi-

neering and Informational Sciences, 18 (2004), 191–217.
[4] R. Brockett, Stabilization of motor networks, in Proceedings of the 34th IEEE Conference on

Decision and Control , 1995, 1484–1488.

[5] J. G. Dai and W. Q. Lin, Maximum pressure policies in stochastic processing networks,
Operations Research, 53 (2005), 197–218.

[6] E. J. Davison and U. Ozguner, Decentralized control of traffic networks, IEEE Transactions

on Systems, Man, and Cybernetics, 13 (1983), 476–487.
[7] M. Egerstedt and Y. Wardi, Multi-process control using queuing theory, in Proceedings of the

41st IEEE Conference on Decision and Control , 2002, 1991–1996.

[8] P. Giaccone, E. Leonardi and D. Shah, On the maximal throughput of networks with finite
buffers and its application to buffered crossbars, in Proceedings of the 24th Annual Joint

Conference of the IEEE Computer and Communications Societies, 2005, 971–980.
[9] P. B. Hunt, D. I. Robertson, R. D. Bretherton and R. I. Winton, SCOOT - a Traffic Re-

sponsive Method of Coordinating Signals, Transport and Road Research Laboratory, UK,
1981.

[10] H. Ishii and B. A. Francis, Stabilizing a linear system by switching control with dwell time,
IEEE Trans. Automat. Control, 47 (2002), 1962–1973.

[11] M. J. Neely, E. Modiano and C. E. Rohrs, Dynamic power allocation and routing for time-
varying wireless networks, IEEE Journal on Selected Areas in Communications, 23 (2005),

89–103.
[12] M. Pajic, S. Sundaram and G. J. Pappas, Stabilizability over Deterministic Relay Networks,

in Proceedings of the 52nd IEEE Conference on Decision and Control, 2013.
[13] A. G. Sims and K. W. Dobinson, The Sydney coordinated adaptive traffic (SCAT) system

philosophy and benefits, IEEE Transactions on Vehicular Technology, 29 (1980), 130–137.
[14] A. L. Stolyar, MaxWeight scheduling in a generalized switch: State space collapse and work-

load minimization in heavy traffic, Annals of Applied Probability, 14 (2004), 1–53.

http://dx.doi.org/10.1016/j.trc.2008.10.002
http://dx.doi.org/10.1016/j.trc.2008.10.002
http://dx.doi.org/10.1016/0041-1647(72)90017-2
http://www.ams.org/mathscinet-getitem?mr=MR2037364&return=pdf
http://dx.doi.org/10.1017/S0269964804182041
http://dx.doi.org/10.1017/S0269964804182041
http://dx.doi.org/10.1109/CDC.1995.480312
http://www.ams.org/mathscinet-getitem?mr=MR2131925&return=pdf
http://dx.doi.org/10.1287/opre.1040.0170
http://www.ams.org/mathscinet-getitem?mr=MR713911&return=pdf
http://dx.doi.org/10.1109/TAC.1983.1103296
http://dx.doi.org/10.1109/CDC.2002.1184820
http://dx.doi.org/10.1109/INFCOM.2005.1498326
http://dx.doi.org/10.1109/INFCOM.2005.1498326
http://www.ams.org/mathscinet-getitem?mr=MR1946597&return=pdf
http://dx.doi.org/10.1109/TAC.2002.805689
http://dx.doi.org/10.1109/CDC.2013.6760504
http://dx.doi.org/10.1109/T-VT.1980.23833
http://dx.doi.org/10.1109/T-VT.1980.23833
http://www.ams.org/mathscinet-getitem?mr=MR2023015&return=pdf
http://dx.doi.org/10.1214/aoap/1075828046
http://dx.doi.org/10.1214/aoap/1075828046


260 L. ANDERSON, T. PUMIR, D. TRIANTAFYLLOS AND A. M. BAYEN

[15] L. Tassiulas, Adaptive back-pressure congestion control-based on local information, IEEE
Transactions on Automatic Control , 40 (1995), 236–250.

[16] L. Tassiulas and A. Ephremides, Stability properties of constrained queueing systems and

scheduling policies for maximum throughput in multihop radio networks, IEEE Transactions
on Automatic Control , 37 (1992), 1936–1948.

[17] M. van den Berg, A. Hegyi, B. De Schutter and H. Hellendoorn, A macroscopic traffic flow
model for integrated control of freeway and urban traffic networks, in Proceedings of the 42nd

IEEE Conference on Decision and Control, 2003, 2774–2779.

[18] P. Varaiya, Max pressure control of a network of signalized intersections, Transportation
Research Part C: Emerging Technologies, 36 (2013), 177–195.

[19] T. Wongpiromsarn, T. Uthaicharoenpong, Y. Wang, E. Frazzoli and D. Wang, Distributed

traffic signal control for maximum network throughput, in Proceedings of the 15th Interna-
tional IEEE Conference on Intelligent Transportation Systems, 2012, 588–595.

[20] H. M. Zhang, Y. M. Nie and Z. S. Qian, Modelling network flow with and without link interac-

tions: The cases of point queue, spatial queue and cell transmission model, Transportmetrica
B: Transport Dynamics, 1 (2013), 33–51.

Received May 2016; revised February 2018.

E-mail address: leah.anderson@berkeley.edu

E-mail address: tpumir@princeton.edu

E-mail address: dimitris.triantafyllos@gmail.com

E-mail address: bayen@berkeley.edu

http://www.ams.org/mathscinet-getitem?mr=MR1312890&return=pdf
http://dx.doi.org/10.1109/9.341781
http://www.ams.org/mathscinet-getitem?mr=MR1200609&return=pdf
http://dx.doi.org/10.1109/9.182479
http://dx.doi.org/10.1109/9.182479
http://dx.doi.org/10.1016/j.trc.2013.08.014
http://dx.doi.org/10.1109/ITSC.2012.6338817
http://dx.doi.org/10.1109/ITSC.2012.6338817
mailto:leah.anderson@berkeley.edu
mailto:tpumir@princeton.edu
mailto:dimitris.triantafyllos@gmail.com
mailto:bayen@berkeley.edu

	1. Introduction
	2. Network model dynamics
	Intersection signal controller
	Queue dynamics
	Demand feasibility

	3. Max pressure controller
	4. Cycle-based max pressure (Cb-MP)
	5. Stability of Cb-MP
	5.1. Properties of a -updated controller
	5.2. Formulating a queue bound
	5.3. Effect of a relaxed controller
	5.4. Intra-cycle queue bound
	5.5. Network queue bound
	5.6. Increase in queue bounds

	6. Numerical implementation
	7. Conclusion
	Appendix A. Feasible flows with a -updated controller
	Acknowledgments
	REFERENCES

