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Abstract. Based on experimental traffic data obtained from German and US
highways, we propose a novel two-dimensional first-order macroscopic traffic

flow model. The goal is to reproduce a detailed description of traffic dynamics

for the real road geometry. In our approach both the dynamics along the road
and across the lanes is continuous. The closure relations, being necessary to

complete the hydrodynamics equation, are obtained by regression on funda-

mental diagram data. Comparison with prediction of one-dimensional models
shows the improvement in performance of the novel model.

1. Introduction. The mathematical modeling of vehicular traffic flow uses differ-
ent descriptions and we refer to [10, 29, 55] for some review papers. Besides mi-
croscopic and cellular models there has been intense research in continuum models
where the temporal and spatial evolution of car densities is prescribed. Based on the
level of detail there are gas-kinetic or mesoscopic models (e.g., [30, 31, 37, 44, 54, 56])
and macroscopic models being fluid-dynamics models (e.g., [7, 9, 12, 20, 21, 24, 25,
40, 41, 45, 48, 52, 53, 59, 66, 68]). Among the (inviscid) macroscopic models one
typically distinguishes between first-order models based on scalar hyperbolic equa-
tions and second-order models comprised of systems of hyperbolic equations. The
pioneering work of the first case is the Lighthill and Whitham [48] and Richards [59]
model (LWR). While a specific example of the second case is the Aw and Rascle [7]
and Zhang [68] model (ARZ). Depending on the detailed level of description of the
underlying process different models have been employed and tested against data.
In recent publications it has been argued that the macroscopic models provide a
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suitable framework for the incorporation of on-line traffic data and in particular
of fundamental diagram data [3, 8, 22]. While microscopic models are nowadays
widely used in traffic engineering, continuum models have been studied mathe-
matically, but very little work has been conducted on their validation with traffic
data [3, 5, 13].

So far, most of the proposed continuum models are for single lane vehicular traf-
fic dynamics. However, the data for fundamental diagrams is taken from interstate
roads with multiple lanes [1, 2] and can be used for deriving or testing models for
real road geometry. Multi-lane models belong to this class. Typical modeling of
multi-lane traffic uses a spatially one-dimensional model (1D) of either LWR or
ARZ type for each lane. The lane-changing of cars is then modeled by interaction
terms (the sources on the right-hand sides of the equations) using empirical inter-
action rates, see e.g. [42, 43, 44]. The interaction modeling is typically assumed
to be proportional to local density on current and desired lane. A fluid dynamics
model describing the cumulative density on all lanes is proposed in [15, 16, 64],
where a two-dimensional (2D) system of balance laws is obtained by analogy with
the quasi-gas-dynamics (QGD) theory. Here, the authors model 2D dynamics as-
suming that vehicles move to lanes with a faster speed or a lower density and the
evolution equation for the lateral velocity is described by the sum of the three terms
proportional local density and mean speed along the road.

A major problem of the approaches described above is to estimate from data the
interaction rate or the great number of coefficients and parameters. Therefore, here,
we propose a different approach: we treat also lanes as continuum and postulate a
dynamics orthogonal to the driving direction. The precise form of the dynamics is
established through comparisons with fundamental diagrams obtained from trajec-
tory data recorded on a road section of the A3 German highway near Aschaffenburg.
Thus, the experimental measurements allow us to derive a model being able to take
into account the realistic dynamics on the real road geometry without prescribing
heuristically the behavior of the flow of vehicles.

The contribution and the organization of this paper is summarized below.

(i) Derivation and the presentation of historic fundamental diagrams data for the
dynamics of traffic across the lanes (see Section 2). In fact, the German data-
set provides the two-dimensional time-dependent positions of vehicles while
crossing the road section. Therefore, in addition to the classical fundamen-
tal diagrams widely studied in the literature [4, 39, 46] and used for deriving
one-dimensional data-fitted macroscopic models [22, 23], we can also gener-
ate diagrams for the dynamics across the lanes. Although two-dimensional
experimental traffic measurements are already available in the literature, this
is, to our knowledge, the first time that they are used to study the dynamics
orthogonal to the movement of vehicles;

(ii) Design of a new data-fitted two-dimensional first-order model and the analysis
of its mathematical properties (see Section 3). The historic data are therefore
used to develop the novel macroscopic model defining the flux functions by
means of a data-fitting approach. The closures are necessary to complete the
macroscopic equation and taking them using the experimental data allows to
describe the real dynamics of the flow;

(iii) validation of the novel 2D macroscopic model via time-dependent trajectory
data and the definition of a systematic methodology to study and to compare
the predictive accuracy with respect to the 1D LWR model (see Section 4).
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Finally, we end the paper with a concluding part (see Section 5) dealing with
final comments and perspectives. In particular, we briefly discuss on the difference
between the German data-set and US data, e.g. [1, 2], since the latter provide a
naive behavior of the flow across the lanes.

2. Data-set description and fundamental diagrams. We use a set of experi-
mental data recorded on a German highway. Precisely, we have two-dimensional tra-
jectory data collected on a 80 meter stretch of the westbound direction of A3 high-
way near Aschaffenburg. Laser scanners detect the two-dimensional positions (xi(t),
yi(t)) of each vehicle i at time t on the road segment with a temporal resolution of
0.2 seconds for a total time of approximately 20 minutes. Here the position x is in
driving direction, the position y is across lanes. During the time observation, the
laser scanners record the trajectories of 1290 vehicles.

The road section consists of three lanes and an outgoing ramp. However, we only
consider the stretch as if there is no ramp. In fact, the data show that the flow
on the ramp does not influence the traffic conditions, namely the amount of traffic
on the ramp is not significant. Taking into account only the three main lanes, the
road width is 12 meter. The stretch we are considering is not straight but it has
a turn with a small radius of curvature. We have taken into account this feature
when cleaning the experimental data since the curvature could mainly falsify the
data in y-direction. Precisely, the cleaning procedure is based on the knowledge of
the curvature of the road-section. We clean the time-dependent y-positions of the
vehicles on the road by adjusting them by a factor which allows to not consider
movement in y if it is only due to the curvature of the road section.

As pointed out in the Introduction, in this paper we are interested in the study of
macroscopic traffic models. In other words, instead of looking at the motion of each
single vehicle, we wish to “zoom out” to a more aggregate level by treating traffic
as a fluid. Therefore, with the aim of proposing a novel data-fitted 2D macroscopic
model, from the microscopic experimental data we need to recover the macroscopic
quantities, namely the density (measured as number of vehicles per kilometer), the
flux (measured as number of vehicles per hour) and the mean speed (measured as
kilometer per hour) of the flow.

To this end, firstly, we observe that the microscopic positions (xi(t), yi(t)) of
vehicles at each time are sufficient to recover the microscopic velocities of vehicles.
In particular, since the road section is relatively short, we compute the velocity,
both in x- and y-direction, of each vehicle by using a linear approximation in the
least squares sense of its positions, xi(t) and yi(t) respectively, on the road during
the time interval. In other words we assume that the vehicle velocity is constant
during the crossing of the road section and is exactly the slope of the linear fit.
Thus, we associate at each vehicle i the vector of the microscopic velocities (vxi , v

y
i ).

The maximum detected speed in x-direction is about 120 kilometer per hour which
means about 2.7 seconds to travel the 80 meters of the road section.

The time-dependent microscopic positions (xi(t), yi(t)) and the microscopic ve-
locities (vxi , v

y
i ) of vehicles are used to compute the macroscopic data as we describe

in the following. Clearly, since we are aimed to develop a two-dimensional data-
fitted first-order macroscopic model, the derivation of macroscopic quantities, such
as the flux and the mean speed, should be done for each direction, along the road
(x-direction) and across the lanes (y-direction), separately.

The macroscopic density gives information on the congestion level of the road
section. It is usually expressed in number of vehicles per unit length (here
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kilometers) and therefore it ignores the concept of traffic composition. This is not re-
strictive for our purpose of deriving a two-dimensional first-order macroscopic model
for traffic. The modeling of the heterogeneous composition of vehicles is studied in
multi-population models, e.g., in [11] at the macroscopic level and in [58, 57] at the
kinetic level, where the concept of density is replaced by the rate of occupancy. In
order to compute the macroscopic density, we first fix a sequence of M + 1 equally
spaced discrete times {tk}Mk=0 such that tk+1−tk = dt, t0 = 0 and tM = tmax, where
tmax is the final observation time in the data-set (here 20 minutes). Then we count
the number of vehicles N(tk) on the road at each discrete time tk defining

ρ̃(tk) =
N(tk)

L
, k = 0, . . . ,M

where L is the length of the road section expressed in the unit length. Finally, we
consider a moving mean by aggregating with respect a certain time period T , with
T � tmax and including m consecutive observations. This temporal average leads
to
⌈
M+1
m

⌉
+ 1 values of the density

ρk0 =
1

T

k0+m−1∑
k=k0

ρ̃(tk), k0 = 0, . . . ,

⌈
M + 1

m

⌉
.

In particular, in this paper we take dt = 1 second and then we aggregate the data
over the time period T = 60 seconds.

Observe that, clearly, the density does not depend on the direction we are looking
at. The computation of the flux and of the mean speed is, instead, a little bit more
complex.

In our approach, we first compute the mean speeds of the flow. Consider the
same sequence of M + 1 equally spaced discrete times {tk}Mk=0 introduced above.
Then we average the microscopic velocities vxi and vyi of all vehicles being on the
road at a fixed time tk with respect to the number of vehicles N(tk), so that we
define

ũx(tk) =
1

N(tk)

N(tk)∑
i=1

vxi , ũy(tk) =
1

N(tk)

N(tk)∑
i=1

vyi , k = 0, . . . ,M.

Using ũx(tk) and ũy(tk) we then compute the fluxes at each discrete time tk by
means of the hydrodynamics relation

q̃x(tk) = ρ̃(tk)ũx(tk), q̃y(tk) = ρ̃(tk)ũy(tk), k = 0, . . . ,M

and, as done for the density, we consider a temporal average by aggregating with
respect the same time period T , leading to the following expressions of the macro-
scopic fluxes

qxk0 =
1

T

k0+m−1∑
k=k0

q̃x(tk) =
1

TL

k0+m−1∑
k=k0

N(tk)∑
i=1

vxi ,

qyk0 =
1

T

k0+m−1∑
k=k0

q̃y(tk) =
1

TL

k0+m−1∑
k=k0

N(tk)∑
i=1

vyi ,
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Figure 1. Experimental diagrams from the A3 German highway
using 20 minutes of recorded video. Top row: flux-density (left)
and speed-density (right) diagrams in x-direction. Bottom row:
flux-density (left) and speed-density (right) diagrams in y-
direction.

for k0 = 0, . . . ,
⌈
M+1
m

⌉
. Finally, using again the hydrodynamics relation, we get the

mean speeds of the flow as

uxk0 =
qxk0
ρk0

, uyk0 =
qyk0
ρk0

, k0 = 1, . . . ,

⌈
M + 1

m

⌉
.

For a more detailed discussion on the computation of macroscopic quantities
from microscopic data, we refer to [36, 49].

The diagrams showing the relations between the vehicle density ρ and the fluxes
qx, qy or the mean speeds ux, uy are called fundamental diagrams and speed-density
diagrams, respectively. They represent the basic tools for the analysis of traffic
problems operating in a homogeneous steady state or equilibrium conditions.

In Figure 1 we show the diagrams resulting from the German data-set: the top
row shows the relations (ρ, qx) and (ρ, ux), while the bottom row shows the relations
(ρ, qy) and (ρ, uy). Observe that the data-set provides during the time period several
levels of congestion but we never observe bumper-to-bumper conditions. In fact,
the maximum density is about 70 vehicles per kilometer.

In addition to the classical fundamental relations (ρ, qx) and (ρ, ux) we also
show the diagrams (ρ, qy) and (ρ, uy). We highlight that data-sets providing 2D
trajectories are already available, e.g., see [1, 2]. But the attempt of taking into
account the study of the dynamics across the lanes, and thus considering also the
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Figure 2. Two-dimensional trajectories extrapolated from the
German data-set. In red we show the trajectories of vehicles cross-
ing a lane while traveling.

data in y-direction, is, to our knowledge, a novelty in the mathematical literature
on traffic flow.

The qualitative structure of such diagrams is defined by the properties of different
regimes, or phases, of traffic. For a description of the diagrams in x-direction we
refer, e.g., to [4, 39, 46]. Clearly, the diagrams in y-direction show a different
quantitative and qualitative behavior with respect to the classical ones. Firstly, we
observe that the values of the flux and of the mean speed are about 103 smaller
than the values in x-direction. This is obvious since the velocity of vehicles along
the road is higher then the lateral velocity and thus uy is not dominant with respect
ux. In other words, we are looking at two behaviors occurring at different scales.
But this does not mean that the behavior in y-direction can be neglected. In fact,
an analysis of the trajectories shows that about the 15% of the total vehicles crosses
a lane while traveling the road section. See Figure 2. In [34] we also show, using
the same German data-set described above, that the level of potential conflicts is
strongly affected by the lane changing. To this end we computed the average risk
on the two directions of the flow by means of the Time-To-Collision metric and we
observe that the risk due to lane changing is higher.

Moreover, notice that qy and uy have positive and negative values since across
the lanes vehicles are free to travel in the two directions, towards right and left.
Precisely, we assume that positive speeds represent the motion towards the leftmost
lane, instead negative speeds represent the motion towards the rightmost lane.

Remark 1. As pointed-out above, the fundamental diagrams in Figure 1 are ob-
tained by averaging over a time period of T = 60 seconds macroscopic data com-
puted each 1 second. If we take more frequent time observations (e.g. every 0.2
seconds) the structure of the diagrams does not change. We only observe that the
data become thicker. Compare the top-left panel in Figure 1 with the left panel in
Figure 3. This behavior is due to the fact that we consider a linear approximation
of the vehicle trajectories, i.e. we assume that the vehicle velocities are constant.
Thus, considering time observations every 1 second does not keep out information.

In contrast, the time for the data aggregation slightly influence the structure of
the fundamental diagrams. Compare the top-left panel in Figure 1 with the right
panel in Figure 3. In the following we will consider the diagrams obtained with an
aggregation time period of T = 60 seconds which is widely used in the engineering
literature on traffic flow.



2D DATA-DRIVEN MACROSCOPIC TRAFFIC MODEL 223

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000
Data computed each 0.2 second and aggregated over 60 seconds

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000
Data computed each 1 second and aggregated over 30 seconds

Figure 3. Fundamental diagrams in x direction. Left: macro-
scopic data computed each 0.2 seconds and aggregated over 60
seconds. Right: macroscopic data computed each 1 second and
aggregated over 30 seconds.

3. Two-dimensional LWR-type model. One dimensional first-order macroscopic
traffic models are based on the continuity equation

∂tρ+ ∂x(ρu) = 0, t ∈ R+, x ∈ [0, L] (1)

which gives the conservation of vehicles on the road segment [0, L]. In (1), the
vehicle density is ρ(x, t), and the vehicle velocity field is u(x, t), where x is the
position along the road, and t is time.

The simplest macroscopic traffic model, the LWR [48, 59] model, is obtained
by assuming a functional relationship between ρ and u, i.e., u = u(ρ). This turns
equation (1) into a scalar hyperbolic conservation law

∂tρ+ ∂xq(ρ) = 0, (2)

where the flux q is given by the flow rate function q(ρ) = ρu(ρ). Because the LWR
model (2) is a closed model consisting of a single equation, it is denoted a first-order
model. The velocity function u(ρ) is commonly assumed to be decreasing in ρ with
u(ρmax) = 0 for some maximal vehicle density ρmax > 0. Here, ρmax is assumed to
be the density in bumper-to-bumper conditions and its value is given in Section 3.1
below.

The strict functional relationship between ρ and u is called closure law and is
loosened in the so-called second-order models, which augment (1) by an evolution
equation for the velocity field, see [7, 22].

The one-dimensional model (2) describes the flow of vehicles in the simple case of
a single-lane road or, if the road has multiple lanes (in a given direction), it considers
these aggregated into the scalar field quantities ρ and u. Nevertheless, the dynamics
of traffic on a multi-lane highway could be more complex and is strongly influenced
by the motion of vehicles across the lanes. For this reason, we take into account
the intrinsic multi-dimensional characteristic of traffic flow by extending model (2)
to the two-dimensional first-order macroscopic model

∂tρ+ ∂xq
x + ∂yq

y = 0, t ∈ R+, x ∈ [0, Lx], y ∈ [0, Ly] (3)

where qx = ρux and qy = ρuy are the fluxes in the two possible directions of the
flow and ux, uy are the speed along the road and the lateral speed, respectively.
The quantities Lx and Ly are the length and the width of the road, respectively.
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Clearly, one expects that Ly � Lx. As in the one-dimensional model, we have the
following two closures

qx(ρ) = ρux(ρ), qy(ρ) = ρuy(ρ).

The velocity function ux(ρ) is the same speed u introduced in the one-dimensional
LWR model (2) and thus it is obvious to assume that it has the same properties
discussed previously. A heuristic description of qy and uy as function of the density
is not immediate since it depends strongly on the preference on the drivers as well
as general imposed traffic rules. It is natural to assume that the lateral speed is
uy = −V ymax for ρ ≈ 0 and uy = 0 ρ ≈ ρmax. In fact, in the first case vehicles
would travel towards the right-most lane since the road is free (according to the
traffic rules), while in the second case they cannot change lanes and thus travel
in y-direction since the lanes are almost congested. Note that contrary to the x-
direction the speed in y-direction can be negative. In the following section we
propose a functional relation obtained from data.

We finally stress the fact that the two-dimensional model (3) is able to take into
account the dynamics of traffic on a multi-lane highway but actually it is not a
multi-lane model. In fact, notice that equation (3) is continuous in y. Instead a
multi-lane model requires to treat lanes as discrete object and, thus, to develop
a system of balance laws in which the source terms describe the mass exchange
between the lanes.

3.1. Macroscopic closures and data-fitting. For the dynamics along the road,
namely in x-direction, several laws have been considered in the literature: popular
examples of flow rate functions qx(ρ) are the Greenshields’ flux [27], in which qx(ρ)
is a quadratic function, and the Newell-Daganzo flux [19, 50], in which ux(ρ) is a
piece-wise linear function. These different choices of functions lead to well-posed
first-order models. Many closure laws were proposed in the literature, for further
discussions we refer, e.g., to the book [61].

A natural way to derive closure laws is to construct a fitting of the experimental
data. Although this approach ignores the scattered behavior of data, we expect to
characterize key properties of the traffic flow (as the critical density, the maximum
flow, . . . ). For comparisons between models using classical closure laws and data-
fitted models, see [22, 23] based on the NGSIM data-set [1] and on the RTMC
data-set [2].

We are considering the German data-set described in Section 2 and we are propos-
ing a two-dimensional first-order macroscopic model. Then, in order to get the
closure laws to complete equation (3) we proceed by constructing the best fitting
via a least squares fit to the data computed in Section 2 and showed in Figure 1.
The closures for the first-order macroscopic model (3) must represent these data
via single-valued functions qx(ρ) and qy(ρ).

Since the stagnation density ρmax is not represented well via data, we prescribe it
as a fixed constant, given by the ratio between the number of lanes and the typical
vehicle length of 5 meters, plus 50% of additional safety distance, so that

ρmax =
3 lanes

7.5 m
= 400 veh./km,

where this value is obtained by considering the unit distance of 3000 meters for the
three lanes (1 kilometer per lane).

As visible in the flux-density diagram in the top left panel of Figure 1, the data
tend to exhibit a relatively linear increasing relationship between ρ and qx for low
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densities. In turn, for higher densities, a significant spread is visible, i.e., a single
ρ value corresponds to many different flow rates qx. For the data in x-direction
then we employ the same approach presented in [22] and in [23] by selecting a
three-parameter family of smooth and strictly concave flow rate curves as

qxαx,λx,px(ρ) = αx
(
d1 + (d2 − d1)

ρ

ρmax
−
√

1 + d2
3

)
, (4)

where

d1 =

√
1 + (λxpx)

2
, d2 =

√
1 + (λx(1− px))

2
, d3 = λx

(
ρ

ρmax
− px

)
.

Each flow rate function qxαx,λx,px(ρ) in this family vanishes for ρ = 0 and ρ = ρmax.
The three free parameters allow for controlling three important features of the flux-
density diagram in x-direction: the value of maximum flow rate (mainly determined
by αx), the critical density (mainly controlled by px), and the curvature (dominated
by λx).

In case of the y-direction a significant spread of the data is visible also at lower
densities and they show both positive and negative values since the motion is allowed
in two directions: towards the left-most and the right-most lane. Moreover, we
observe only uy < 0 for ρ ≈ 0, proving the fact that vehicles tend to travel towards
the right-most lane in the free-flow regime. To take into account these features we
have to propose a different flow rate curve with respect to (4). Precisely, in this
case we choose a simple two-parameter family of smooth functions as follows

qyαy,py (ρ) = αyρ

(
1−

(
ρ

ρmax

)py)
. (5)

Each flow rate function qyαy,py (ρ) in this family vanishes for ρ = ρmax. The two free
parameters allow for controlling the speed in the free-flow regime (determined by
αy) and the shape of the of the curve due to the data (mainly controlled by py).

Remark 2. Clearly, a more complex flow rate curve (5) may be postulated. The
simple choice (5) is justified by the behavior of the y-diagrams provided by the A3
German highway which do not give information on how the data behave for higher
density values. In fact, the only realistic a-priori assumption for the congested
regime is that uy = 0.

From the three- and the two-parameter family of flow rate curves (equations (4)
and (5), respectively), the closures qx and qy are selected in such a way they are
the closest, in a least-squares sense, to the experimental data points (ρj , q

x
j ), and

(ρj , q
y
j ), respectively. Thus we solve

min
αx,λx,px

∥∥qxj − qxαx,λx,px(ρj)
∥∥2

2
, min

αy,py

∥∥qyj − qyαy,py (ρj)
∥∥2

2
. (6)

The minimization problems (6) are solved numerically by using the Matlab solver
fmincon which finds the minimum of constrained nonlinear functions. For the Ger-
man data-set the solver provides the following values for the free parameters

• αx = 252.6686, λx = 0.1033 and px = 80.8620;
• αy = −0.6056 and py = 0.3712.

For the parameters in x-directions we do not prescribe a range, i.e. (αx, λx, px) ∈ R3.
While we require that αy ∈ [minuy, 0] and py ∈ [0, 5]. The constrained minimization
problems are quickly solved by the Matlab fmincon function. The CPU time needed
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Figure 4. Data-fitting of the experimental diagrams. Top row:
functions approximating the flux-density (left) and speed-density
(right) diagrams in x-direction. Bottom row: functions approx-
imating flux-density (left) and speed-density (right) diagrams in
y-direction.

is about 0.15 seconds in each direction. The relative errors obtained with the above
optimal parameters are∥∥∥qxj − qxαx,λx,px(ρj)

∥∥∥
2∥∥qxj ∥∥2

≈ 0.1812,

∥∥qyj − qyαy,py (ρj)
∥∥

2∥∥qyj ∥∥2

≈ 0.4.

In Figure 4, the red curves represent the least-squares fits to the given data points
computed in Section 2. These functions are used to close the two-dimensional first-
order macroscopic model (3) and to validate the model in the next section.

The mathematical properties of the proposed flux in y are similar to classical
LWR type models. Therefore, a detailed discussion is skipped. For the numerical
scheme below we remark that the conservation law (3) with choice (5) is strictly
hyperbolic. Moreover, the optimal parameters αy and py lead to a single inflection
point function of the flux function and therefore conservation law (3) still give rise
to only simple waves (either shock or rarefaction waves) also in y-direction.

4. Numerical simulations. In this section we study the predictive accuracy of
the 2D LWR-type model (3) with respect to measurement data. In particular, we
show that model (3) is more accurate than its 1D version (2) in which we choose as
closure the flow rate function (4).
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To this end, we firstly present the scheme used to numerically solve model (3).
Then, we specify how continuous field quantities are constructed from the trajectory
data, following the approach described in [22] and [23] for 1D data-fitted models.

4.1. Numerical scheme. In the following, we simply describe the numerical
scheme for solving the two-dimensional model (3). For the one-dimensional one (2),
the same numerical scheme is used, clearly neglecting the computation of transport
term in y.

In order to approximate the solution ρ of (3), we use the dimensional splitting
method or method of fractional steps, [47, 65]. We split (3) into

∂tρ(t, x, y) + ∂xq
x(ρ) = 0, (7a)

∂tρ(t, x, y) + ∂yq
y(ρ) = 0 (7b)

and for each problem we apply a finite volume approximation. To this end we divide
the spatial domain Ω = [0, Lx]× [0, Ly] into Nx ×Ny cells Ωij = (xi−1/2, xi+1/2)×
(yj−1/2, yj+1/2), i = 1, . . . , Nx, j = 1, . . . , Ny, such that ∪i,jΩij = Ω and xi+1/2 −
xi−1/2 = ∆x, yj+1/2 − yj−1/2 = ∆y. Thus |Ωij | = ∆x×∆y.

We consider a semi-discrete finite volume scheme and denote by

ρij(t) =
1

|Ωij |

∫
Ωij

ρ(t, x, y)dxdy

the cell average of the exact solution in the cell Ωij at time t and U ij(t) its numerical
approximation. By integrating each equation (7) over Ωij , dividing by |Ωij |, using
the midpoint rule and finally a s-stage Strong Stability Preserving Runge-Kutta
method (SSPRK) with Butcher’s tableau (A, b) and time step ∆t, we get the fully
discrete scheme

U
∗
ij = U

n

ij −
∆t

∆x

s∑
k=1

bi

(
F

(k)
i+1/2,j − F

(k)
i−1/2,j

)
, i = 1, . . . , Nx (8a)

U
n+1

ij = U
∗
ij −

∆t

∆y

s∑
k=1

bi

(
G
∗(k)
i,j+1/2 −G

∗(k)
i,j−1/2

)
, j = 1, . . . , Ny. (8b)

giving the approximation of the solutions at time tn+1 = Tinit + (n + 1)∆t, where
Tinit is the initial time. Notice that in the x-sweeps we start with the cell averages
U
n

ij at time tn and solve Ny one-dimensional problems with j fixed updating U
n

ij to

U
∗
ij . In the y-sweeps we then use the U

∗
ij values as data for solving the Nx problems

with i fixed, which results in U
n+1

ij . Here,

F
(k)
i+1/2,j = F

(
U

(k),+

i+1/2,j , U
(k),−
i+1/2,j

)
, G

∗(k)
i,j+1/2 = G

(
U
∗(k),+

i,j+1/2, U
∗(k),−
i,j+1/2

)
,

for k = 1, . . . , s, are the numerical fluxes approximating qx(ρ(t, xi+1/2, yj)) and
qy(ρ(t, xi, yj+1/2)), respectively. We consider F and G as local Lax-Friedrichs fluxes.
We could also use the Godunov scheme which is less diffusive. However, we choose

Lax-Friedrichs for its ease. Instead, U
(k),±
i+1/2,j and U

∗(k),±
i,j+1/2 are the reconstructions

at the cell interfaces, at left and right sides, from the stage values U
(k)

i,j and U
∗(k)

i,j ,
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respectively. The stage values of the cell averages are evolved by

U
(k)

ij = U
n

ij −
∆t

∆x

k−1∑
`=1

ak`

(
F

(`)
i+1/2,j − F

(`)
i−1/2,j

)
, k = 1, . . . , s

U
∗(k)

ij = U
∗
ij −

∆t

∆y

k−1∑
`=1

ak`

(
G
∗(`)
i,j+1/2 −G

∗(`)
i,j−1/2

)
, k = 1, . . . , s,

where the k-th stage value is assumed to be at time tn + ck∆t.
Without using additional tools, the scheme described above is first-order accu-

rate. In order to get a second-order scheme the following ingredients are necessary.
The reconstruction at the interfaces from the stage values is performed using a
piece-wise linear reconstruction in each direction. To guarantee the non-oscillatory
nature of the reconstruction, we apply a nonlinear limiter for the computation of
the slopes and here we use the minmod slope limiter. Thus, e.g.,

U
(k),−
i+1/2,j = U

(k)

i,j +
∆x

2
σi, U

∗(k),−
i,j+1/2 = U

∗(k)

i,j +
∆y

2
σ∗j

where

σi = minmod

U (k)

i,j − U
(k)

i−1,j

∆x
,
U

(k)

i+1,j − U
(k)

i,j

∆x

 ,

σ∗j = minmod

U∗(k)

i,j − U
∗(k)

i,j−1

∆y
,
U
∗(k)

i,j+1 − U
∗(k)

i,j

∆y


and the minmod function is defined as

minmod(a, b) =


a, |a| < |b| and ab > 0

b, |a| > |b| and ab > 0

0, ab < 0

.

For further details we refer, e.g., to [28, 67].
The dimensional splitting (8a)-(8b) is only first-order accurate. See [26]. For a

second-order scheme the Strang splitting technique [63] has to be employed. This
method consists in a slight different application of the equations (8a)-(8b). More
precisely, equation (8a) is used to obtain the update up to time tn+ ∆t

2 , i.e. with time

step ∆t
2 . This datum is then used in equation (8b). Finally, the datum resulting

from (8b) is used to compute the approximation of the solution at time tn+1 by
means of equation (8a) starting from the time level tn + ∆t

2 , thus with time step
∆t
2 . For further details we refer to [47, 63].

A time-stepping of (at least) second-order is mandatory for all subproblems de-
scribed in the Strang splitting. Here, as Runge-Kutta scheme we take the Heun’s
method [35] whose coefficients {aij}si,j=1, {bi}si=1 and {ck}sk=1 are defined in the
following Butcher tableau

c1 a11 a12

c2 a21 a22

b1 b2

=

0 0 0
1 1 0

1
2

1
2

.

The time step ∆t is chosen in such a way it satisfies the CFL condition [17]. In
particular, if not explicitly specified, in the following we will consider as CFL 0.45
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Figure 5. Log-log graph of the convergence test on the Gaussian
initial datum (left panel) and on the double sine wave (right panel).

and the time step ∆t is

∆t = 0.45 min

{
∆x

max(qx)′(ρ)
,

∆y

max(qy)′(ρ)

}
,

where the maximum of the derivative of the flux functions is computed on the
density profile ρ at initial time.

For the numerical solution of the one-dimensional LWR model (2) we consider the
natural one-dimensional version of the second-order finite volume scheme presented
above.

The scheme described above is a second-order scheme and for our purposes is suffi-
cient. We choose to employ a dimensional splitting technique since it is conceptually
easy to understand, allowing to take advantage of using classical one-dimensional
methods for conservation laws. There are also methods for multidimensional con-
servation laws that are intrinsically multidimensional, see e.g. [6]. These methods
should be used to get more accurate numerical schemes and in this case high-order
spatial reconstructions [18, 62] combined with high-order Runge-Kutta schemes
have to be considered.

Although the scheme presented here is already well-known, for the sake of com-
pleteness in Figure 5 we show the order of convergence for the case of the two-
dimensional linear scalar conservation law

∂tρ(t, x, y) + ∂xρ(t, x, y) + ∂yρ(t, x, y) = 0, (x, y) ∈ [−1, 1]× [−1, 1]

with a Gaussian initial datum

ρ0(x, y) =
1

5
e−30(x2+y2)

up to time Tfin = 2 (left panel of Figure 5) and with a double sine wave initial
datum

ρ0(x, y) = sin(2πx) sin(2πy)

up to time Tfin = 2 (right panel of Figure 5). In both cases we use periodic boundary
conditions. It is well-known that the scheme still remains second-order accurate also
for nonlinear conservation laws on smooth solutions.
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4.2. Treatment of experimental data. The numerical implementation of the
macroscopic traffic models (2) and (3), require the knowledge of continuously in
space initial data. Since we are aimed to compare the predictive accuracy of the two
models against the data-set described in Section 2, here we specify how continuous
field quantities can be constructed from trajectory data. In particular, we follow
the same approach used in [22] and [23]. The same idea is applied for computing
the reference data in order to compare the model predictions.

From the German data-set we have the two-dimensional trajectories of vehicles
(xi(t), yi(t)), with a temporal resolution 0.2 seconds, that is essentially continuous
in time. However, at each time, the vehicle positions are discrete. In order to
incorporate this data as initial condition into the continuous models (2) and (3), we
must generate a function ρ(t, x, y), for t = Tinit, that is defined everywhere on the
road segment. This approach also allows to compare the model accuracy against
the experimental data, constructing at a certain final time the continuous function
ρ(t, x, y) from the discrete positions of vehicles with t = Tfin.

The construction of density functions from discrete samples is a statistic problem.
We employ a kernel density estimation (KDE) approach, with a fixed Gaussian
kernel. The specific KDE approach used here is described in [23] for the case
of traffic models and it is called the Parzen-Rosenblatt window method [51, 60]:
Assume that at time t we have the positions of vehicles on the road. This data are
interpreted as a finite sample of some (unknown) density function. The goal is to
reconstruct a kernel density estimator from the discrete information that is close
to. At each time instant t, KDE starts with a two-dimensional comb function

C(x, y) =

N(t)∑
i=1

δ
(
x− xi(t), y − yi(t)

)
where δ

(
x − xi(t), y − yi(t)

)
:= δ

(
x − xi(t)

)
⊗ δ
(
y − yi(t)

)
is the two-dimensional

Dirac delta function and N(t) the number of vehicles on the road section at time
t. Thus the function C accounts for the positions of vehicles on the road at time
t. Clearly, C cannot be used as initial condition of numerical simulations but we
need to define its smoothed version. To this end, we consider a two-dimensional
Gaussian kernel

K(x, y) =
1

2πhxhy
e−

1
2 ( x

hx )
2− 1

2 ( y
hy )

2

(9)

and we define the density function at time t as

ρ(t, x, y) =

∫
Ω

K(x− ξ, y − η)C(ξ, η)dξdη =

N(t)∑
i=1

K
(
x− xi(t), y − yi(t)

)
. (10)

Here hx and hy are the bandwidths in x- and y-direction respectively. There are
several works dealing with the optimal choice of the bandwidth in the KDE ap-
proach, e.g., see [14, 38]. Here we take the same values already used in [22, 23]
in which the bandwidths are chosen in such a way equally distant vehicles lead
to an almost constant density profile. It is clear that this technique for choosing
the bandwidths does not depend on the type of data but only on the road section
dimensions. Therefore, we recompute the values given in [22, 23] for the case of a
80 × 12 meter road and then we get the kernel widths hx = 4 meter and hy = 0.6
meter.
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Finally, we note that the road section is 80 meters and therefore vehicles travel
from the initial point to the exiting one in about 2.7 seconds, at the maximum
speed.

4.3. Validation of the model. In the following, we validate the presented two-
dimensional first-order macroscopic model (3) by comparing the evolution of the
model with the corresponding measured trajectories. Also, we compare the predic-
tive accuracy of the model with respect to its one-dimensional version (2).

The deviation between predicted and real traffic states quantifies the model error.
Thus we choose the spatial discretization sufficiently fine, namely ∆x = ∆y = 0.5
meter.

In order to quantify the deviation of the model predictions from the real data,
we proceed as follows. Firstly, we compute the continuous density that defines the
starting condition at a fixed initial time Tinit as in (10). Then, we numerically evolve
the density profile up to a final time Tfin > Tinit using the numerical scheme defined
in Section 4.1 and applied to the model (3). The numerical simulation gives the data
output U (Tfin). The continuous reference solution at time Tfin is constructed from
the real data by means of the density estimation defined in (10). From this function

we obtain discrete values U
exact

(Tfin), and we finally compute the prediction error
as

E (Tfin) =
∥∥∥U (Tfin)−U

exact
(Tfin)

∥∥∥
L1(R)

. (11)

4.3.1. Predictive accuracy against trajectory data. We study the predictive accuracy
of the 2D model (3) with respect to the trajectory data provided by the data. In
the first test we simply study the accuracy of the model without possible spurious
errors included by the treatment of boundary data. We choose an initial time Tinit

and using the kernel density estimation approach we compute the density profile.
Then we evolve it up to a final time Tfin, such that Tfin−Tinit = 0.5 seconds, in order
to guarantee that the simulation is not influenced by outgoing boundary conditions.
Moreover, at the same time we wish to reduce errors due to the numerical scheme
and therefore we choose a very small CFL condition. Finally, we compute the
difference between the simulated profile and the real density profile at final time,
normalizing with respect to the maximum value, c.f. Figure 6 and in Figure 7.

Clearly, the boundary data are important for computing long time simulations.
To this end, we extrapolate the incoming and the outgoing boundary data by ar-
tificially extending the trajectory data in computational cells outside the domain.
In fact, recall that the trajectories of vehicles are approximated by means of a least
squares linear approximation of their positions on the road section (see Section 2),
thus we are able to detect the cars in the ghost part of the computational domain
at a fixed time. Then, using the KDE technique, we compute the two-dimensional
density in the ghost cells which is used as boundary condition. More precisely, the
extrapolation and the computation of the density in the ghost cells is based on the
following procedure:

1. as described in Section 2, starting from the knowledge of the time dependent
positions (xi(t), yi(t)) of each vehicle, we have considered the linear approxi-

mation of the data {tk, xi(tk)}Mi

k=mi
and {tk, yi(tk)}Mi

k=mi
, where tmi

and tMi

would represent the minimum and the maximum time, respectively, such that
xi(t) ∈ [0, Lx] for each t ∈ [tmi , tMi ]. Thus, for each vehicle i, we have the
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Figure 6. Top-left: initial density profile at time Tinit = 407.4
seconds. Top-right: simulated density profile after 0.5 seconds.
Bottom-left: real density profile at final time. Bottom-right: dif-
ference between the simulated and the real density profiles.

linear trajectories

x(t) = mx
i t+ qxi , y(t) = my

i t+ qyi , (12)

minimizing

Mi∑
k=mi

(xi(tk)− x(tk))2,

Mi∑
k=mi

(yi(tk)− y(tk))2.

2. once the linear trajectories, and thus the coefficients mx,y
i and qx,yi are known

∀ i, we can use equations (12) to extrapolate the position along the road of a
vehicle i at time t = t̂ such that t̂ /∈ [tmi

, tMi
], computing

x(t̂) = mx
i t̂+ qxi .

3. using step 2, we count and identify the vehicles that at time t̂ are in a position
such that the KDE approach (10) applied to these data produces a nonzero
density profile in the ghost cells. We use this density as boundary data.

Notice that, since we choose a very fine space discretization, the above extrapolation
is supposed to be not too far beyond the known data.

In Figure 8 we study the predictive accuracy of the 2D model (3) for 15 seconds
taking into account the boundary data. We choose different time periods for the
simulations in Figure 6 and in Figure 7. The error is computed every 0.5 seconds
on the whole domain using the 1-norm error, see equation (11).
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Figure 7. Top-left: initial density profile at time Tinit = 870.9
seconds. Top-right: simulated density profile after 0.5 seconds.
Bottom-left: real density profile at final time. Bottom-right: dif-
ference between the simulated and the real density profiles.
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Figure 8. Left: 15 seconds of simulation between 400 − 415 sec-
onds, showing the 1-norm error each 0.5 seconds (the top panel).
Right: 15 seconds of simulation between 863− 878 seconds, show-
ing the 1-norm error each 0.5 seconds (the top panel). The mid
and the bottom panels show the variation of density in the time
intervals and on the whole recorded time period, respectively.
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Figure 9. Error plots comparing the predictive accuracy of the 1D
model (2) (red data) and of the 2D model (3) (blue data). Each
panel refers to different initial density profiles computed by using
the kernel density estimation approach. On the x-axis we show the
percentage of the traveling time with respect to the total time to
cover the road section at the maximum speed.

4.3.2. Comparison between the 1D and the 2D model. We compare now the 2D
model (3) with respect its 1D version (2) in order to estimate the benefit of a
refined model compared with a commonly used averaged one-dimensional model.

We select different initial conditions, characterized by different densities on the
road. Then, we evolve the initial density profiles up to different final times Tfin =
1/2i seconds, with i = 0, 1, 2, 3. In Figure 9 we compare the errors (the 1-norm error
as in (11)) on the density produced by the two macroscopic models (2) (red data)
and (3) (blue data). The results show that the 2D model produces smaller errors
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Figure 10. Error plots comparing the predictive prediction of
traveling time of the 1D model (2) (red data) and of the 2D model
(3) (blue data). On the x-axis we show the percentage of the trav-
eling time with respect to the total time to cover the road section
at the maximum speed.

and therefore it can results in more realistic evolution of traffic conditions. This is
mainly due to the fact that, for the 1D model (2), the kernel density estimation as
well as the definition of the prediction error is done following the same approach
of [22]. Hence, we project the x positions on the same y coordinate and this may
result in an overestimation of the density. In the projected point of view, we could
have two or more vehicles being near each other leading to, in the kernel density
estimation approach, higher values of density traveling thus with a lower speed. But
in the realistic data vehicles could be distant due to different y positions.

In order to better evaluate the performances between the 2D and the 1D model,
in Figure 10 we also compare them in the prediction of traveling time, only for the
case Tinit = 553.7, thus for the same initial time used in the middle left panel of
Figure 9. The traveling time TT for both models is computed up to the final times
Tfin = 1/2i seconds, with i = 0, 1, 2, 3, as

TT 1D =
Lx

ux
, TT 2D =

Lx√
(ux)2 + (uy)2

where ux = qx(ρ)/ρ and uy = qy(ρ)/ρ are the speed functions computed using the
flux functions qx and qy in equation (4) and equation (5), respectively, with the
optimal parameters determined in Section 3.1. The exact traveling time is instead
computed by applying the kernel density estimation approach to find a continuous
estimation for the fluxes at time t as

Fluxx(t, x, y) =

N(t)∑
i=1

vxi K
(
x− xi(t), y − yi(t)

)
Fluxy(t, x, y) =

N(t)∑
i=1

vyiK
(
x− xi(t), y − yi(t)

)
,

where K is defined in (9) and vxi , vyi are the microscopic velocities in x- and y-
direction of vehicle i being on the road section at time t. Finally, a continuous
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each pair of possible parameters in the vectors αy and py.

estimation for the speeds is computed as

Speedx(t, x, y) =
Fluxx(t, x, y)

ρ(t, x, y)
, Speedy(t, x, y) =

Fluxy(t, x, y)

ρ(t, x, y)

where ρ is given by (10) and the exact traveling time, for the 2D case, is

TT =
Lx√

(Speedx)2 + (Speedy)2
.

The traveling time for the 1D model is instead computed by applying the kernel
density estimation approach for the flux following the same approach of [22] and
thus, as done above, by projecting the x positions on the same y coordinate. In this
way, we get the estimation for the flux in x-direction and then we can compute the
estimation for the velocity which is used to find the exact traveling time.

4.3.3. Dependence on the fitting parameters. We study the dependence of the pre-
sented results on the choice of the fitting parameters, those being crucial in the
derivation. In particular, we are interested in the magnitude of the error changes
due to the variation of the parameters defining the closure in y-direction, see equa-
tion (5).

We consider the same initial conditions as studied in Figure 6 and in
Figure 7. In both cases we consider 20 values of the fitting parameters αy and
py sampled from the intervals αy =

[
αyopt(1 + 5%), αyopt(1− 5%)

]
and py =[

pyopt(1− 5%), pyopt(1 + 5%)
]
, respectively. Then, we evolve the density profile with

the 2D model (3) for 0.5 seconds and for each of the 400 pairs (αy, py). Finally,
we compute the errors Eαy,py at final time as in (11). We recall that the error
for the optimal pair (αyopt, p

y
opt) is Eαy

opt,p
y
opt

(Tfin) = 0.1540 for the time period

407.4−407.9 and Eαy
opt,p

y
opt

(Tfin) = 0.0660 for the time period 870.9−871.4. Notice

that the different parameters do not modify the errors strongly and therefore the
presented procedure is robust against those variations. In order to quantify this
consideration, in Figure 11 we show the relative difference between Eαy,py and
Eαy

opt,p
y
opt

(Tfin). We observe that the maximum differences are of order 10−4 and

10−3 and therefore of the order of the numerical scheme.
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Figure 12. Experimental diagrams in y-direction resulting from
the US101 highway and using 15 minutes of recorded data (07:50
- 08:05 a.m.). The macroscopic quantities are obtained by aggre-
gating each 100 meter sections and every 1 second. Left panel:
flux-density diagram. Right: speed-density diagram.

5. Conclusions and outlook. In this paper we proposed a two-dimensional scalar
macroscopic model to describe traffic flow on multi-lane roads. Therefore, the equa-
tion generalizes the one-dimensional LWR model. We prescribed the closure laws
describing the two flux functions by using a data-fitting technique with respect to
experimental measurements on a German highway.

Since laser sensors provide the two-dimensional trajectory of vehicles, we re-
covered also the fundamental diagram for traffic behavior across lanes. To our
knowledge, this the first time that the resulting behavior of the flow across lanes is
taken into account. This is possible thanks to the particular traffic rules on Euro-
pean highways which lead to a non-naive dynamics in the orthogonal direction to
the movement of vehicles. In fact, if we consider experimental data on US highway,
where there is no obligation to overtake on left lanes, the resulting behavior across
lanes is naive. For instance, see Figure 12 in which we show the fundamental and
speed-density diagrams in y-direction computed from NGSIM data on US101 [1].
The mean dynamics of the flow seems to suggest qy = 0 and therefore the 2D
model (3) reduces to the 1D LWR-type model (2).

On the German data-set, numerical examples show the validity of the macro-
scopic modeling when comparing with experiments. In particular, the numerical
comparison with trajectory data shows that the two-dimensional scalar model al-
ready outperforms a corresponding lane-averaged one-dimensional model. From an
application point of view, in future works we plan to investigate now the effect of
regulations on lane reduction using the two-dimensional setting as well as higher-
order models. In fact, it is expected that as in [22] the additional degree of freedom
in the modeling allows for a better adjustment of the models to data. Further,
in [32] we study a second-order two-dimensional macroscopic model as limit of a
two-dimensional microscopic follow-the-leader model which is validated using the
German data-set. Instead, in [33] we study a two-dimensional hybrid kinetic model
which allows to take into account the two-dimensional phenomena of traffic flow
in the kinetic theory showing, as application, that it is able to reproduce the US
data-sets.
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[40] B. S. Kerner and P. Konhäuser, Cluster effect in initially homogeneous traffic flow, Phys. Rev.

E , 48 (1993), R2335–R2338.
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