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Université Côte d’Azur, Inria, CNRS, LJAD
06902 Sophia Antipolis Cedex, France

(Communicated by Benedetto Piccoli)

Abstract. In this paper, we illustrate how second order traffic flow mod-
els, in our case the Aw-Rascle equations, can be used to reproduce empirical

observations such as the capacity drop at merges and solve related optimal

control problems. To this aim, we propose a model for on-ramp junctions and
derive suitable coupling conditions. These are associated to the first order

Godunov scheme to numerically study the well-known capacity drop effect,
where the outflow of the system is significantly below the expected maximum.

Control issues such as speed and ramp meter control are also addressed in a

first-discretize-then-optimize framework.

1. Introduction. The description of vehicular traffic flow based on systems of con-
servation or balance laws has been proposed by many researchers during the last
decades, see for example [9, 30] and the references therein. In contrast to first order
traffic models consisting only of one scalar equation for the traffic density, second
order models are characterized by a second equation for the evolution of traffic mean
velocity. Among these, Aw and Rascle [2] proposed a model that overcomes the
drawbacks of previous models, and is capable to capture some traffic characteristics
linked to the anticipation behavior of drivers. Greenberg [12] presented an exten-
sion of the Aw-Rascle model including a relaxation term towards a preferred (or
equilibrium) velocity. Since then many contributions have appeared on theoretical
and numerical investigations [1, 3, 4, 10], networked problems [8, 13, 15, 16, 26],
and more recently phenomenological and data driven approaches [7, 17, 21, 24, 29].

In this work, we present results concerning the coupling of interlinked road net-
works to on-ramps. It is known that in such situations capacity drops occur for
high traffic densities, see e.g. [13, 17, 21, 23, 29]. Capacity drop means that the
measured outflow of the system is smaller than the expected maximal flow if the
system is well utilized. The difference might be up to 10% or even higher [17, 29].

2010 Mathematics Subject Classification. 90B20, 35L65.
Key words and phrases. Traffic flow, second order model, on-ramp coupling, numerical simu-

lations, optimal control.
The second author is supported by DFG grant GO 1920/4-1.

663

http://dx.doi.org/10.3934/nhm.2017027


664 OLIVER KOLB, SIMONE GÖTTLICH AND PAOLA GOATIN

This can be explained by a less efficient driving style when exiting a congested zone
(upstream the on-ramp), which reduces the downstream flow compared to free-flow
conditions [30].

The coupling of on-ramps to roads is similar to the modeling of a merge [18].
However, in contrast to the majority of already existing approaches, here we assume
that the on-ramp is given by an ordinary differential equation, see [6, 11]. For
second order models, the challenge here is to find appropriate conditions to ensure
the conservation of mass and momentum flow. Once these coupling conditions
are defined, they can be integrated in a finite-volume type numerical scheme to
compute the evolution of traffic conditions on the network. We use a first-order
Godunov scheme combined with a time splitting to resolve the relaxation term. In
particular, we observe that the model is able to reproduce the capacity drop effect
for increasing inflows, similar to the study made in [13] and in contrast to [23],
where the phenomenon is only observed for a short time period.

Furthermore, our approach gives the opportunity to consider questions of optimal
control in a first-discretize-then-optimize framework. Typical control issues arising
in the on-ramp context are speed limit and ramp metering. These kind of traffic
flow control problems have been mainly studied in the context of first-order models
based on the Lighthill-Whitham-Richards (LWR) equations [22], see e.g. [5, 11, 14,
25]. To the best of our knowledge, speed limit and ramp meter control has been
not considered for the Aw-Rascle model so far. We discuss the numerical results
obtained from the adjoint calculus and compare them to the LWR equations.

The outline is as follows: In Section 2 we present the Aw-Rascle model with
relaxation term and the coupling conditions at on-ramps. Our discretization scheme
will be introduced in Section 3. Numerical results concerning the capacity drop and
optimal control issues can be found in Section 4. Comparisons to the solution of
the LWR model are also given for all experiments.

2. Modeling. We introduce the modeling equations given by the Aw-Rascle (AR)
model [2] including a relaxation term as originally introduced in [12]. The model
consists of a 2×2 system of conservation laws for the density and a sort of generalized
momentum derived from the (anticipate) acceleration equation.

In this work, our focus is on the coupling of the Aw-Rascle model to on-ramps
whose dynamics are modeled by ordinary differential equations. We will derive
appropriate coupling conditions that allow for the definition of boundary conditions
at junctions. As we will see in the numerical experiments, our modeling approach
covers the capacity drop effect and allows to solve optimal control problems such
as speed limit and ramp metering, cf. Section 4.3.

2.1. Road dynamics. We briefly recall the Aw-Rascle traffic flow model [2] and
explain how it can be extended to the context of networks. Traffic states are de-
scribed by the density ρi(x, t) and the mean speed of vehicles vi(x, t) on each road
i at position x and time t.

Given some initial state
(
ρi(x, 0), vi(x, 0)

)
on each road i, the dynamics for x ∈

(0, Li) and t ∈ (0, T ) are described by [2, 12]

∂tρi + ∂x(ρivi) = 0, (1)

∂t(ρiwi) + ∂x(ρiviwi) = −ρi
vi − Vi(ρi)

δ
, (2)

wi = vi + pi(ρi), (3)
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or in conservative form with yi = ρiwi

∂t

(
ρi
yi

)
+ ∂x

(
yi − ρipi(ρi)(
yi − ρipi(ρi)

)
yi
ρi

)
=

(
0

− (yi−ρipi(ρi))−ρiVi(ρi)
δ

)
︸ ︷︷ ︸

=gi(ρi,yi)

, (4)

where pi(ρ) is a known pressure function satisfying p′i(ρ) > 0 and ρp′′i (ρ)+2p′i(ρ) > 0

for all ρ. The latter condition ensures that the curve {wi(ρ, v) = v + pi(ρ)
!
= c} for

any constant c > 0 is strictly concave and passes through the origin of the (ρ, ρv)-
plane. Further, there exists a sonic point σi(c) maximizing the flux ρv along the
curve {wi(ρ, v) = c}. The relaxation term in the velocity equation includes the
preferential speed function Vi(ρ) which the drivers tend to adopt and a relaxation
parameter δ.

We consider the preferential velocity depending on the density,

Vi(ρ) = vmax
i

(
1− ρ

ρmax
i

)
, (5)

and the pressure function (as in [13, 23])

pi(ρ) =
vref
i

γi

(
ρ

ρmax
i

)γi
(6)

equipped with maximal density ρmax
i > 0, maximal velocity vmax

i > 0, reference
velocity vref

i > 0 and γi > 0. Later, in Section 4.3, we will also consider time
dependent velocities vmax

i (t) and vref
i (t) so that actually pi(ρ) = pi(ρ, t), Vi(ρ) =

Vi(ρ, t) and gi(ρ, y) = gi(ρ, y, t).
Note that above and in the following, we use wi = wi(x, t) as space and time

dependent state variable but also as function, e.g. in the form wi(ρ, v, t) = v +
pi(ρ, t). Analogously, we will use the notation vi(U, t) = w− pi(ρ, t) for the velocity
of a state U = (ρ, ρw). Similar to first order traffic models, we define the demand
and supply functions for each road i as follows: For a given constant c (corresponding
to a fixed value of w) we have

Di(ρ, c, t) =

{(
c− pi(ρ, t)

)
ρ if ρ ≤ σi(c, t),(

c− pi(σi(c, t), t)
)
σi(c, t) if ρ ≥ σi(c, t),

(7)

Si(ρ, c, t) =

{(
c− pi(σi(c, t), t)

)
σi(c, t) if ρ ≤ σi(c, t),(

c− pi(ρ, t)
)
ρ if ρ ≥ σi(c, t),

(8)

where

σi(c, t) = ρmax
i

(
c γi

vref
i (t) (1 + γi)

) 1
γi

(9)

is the sonic point on the curve {wi(ρ, v, t) = v + pi(ρ, t)
!
= c} in the (ρ, ρv)-plane.

An illustration of the considered demand and supply functions is given in Figure 1.
Supply and demand functions are needed to formulate the coupling of different
roads or on-ramps. Note that due to the dependence on a given value of w, the
value of the supply function at ρmax may differ from zero. Even though this can be
considered as a potential drawback of the applied model, the effect is compensated
by the relaxation term to a great extent, since the latter forces the velocity and
therewith the flux to zero when the density approaches ρmax.
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Figure 1. Demand and supply functions on a fixed road for
ρmax = 1, vref = 2, γ = 2 and the given values for c.

2.2. Coupling and boundary conditions. In the following, we present the serial
coupling between single roads as well as the coupling with an on-ramp. In general,
for well-posed coupling conditions in networks of hyperbolic conservation laws, one
considers (half-)Riemann problems defining the set of admissible states for each road
at the junction, i.e., states such that all waves produced by the Riemann problem
have negative/positive speed if the considered road is an incoming/outgoing road
(cf. [13]). Under these constraints, the flow at the junction is maximized, where
additional conditions have to be posed to achieve uniqueness of the solution. Those
conditions as well as the flow maximization are already included in the following
description.

The considered coupling and boundary conditions can be given in terms of mass
flow q = ρv and “momentum flow” qw. The computation of the actual states at
a junction is not necessary (cf. the discretization in Section 3). Different to other
coupling conditions [13, 15, 18, 23, 26], we assume that in the situation of a merge
the priority parameter P is independent of the demand of the ingoing roads. This
guarantees the consistency of the corresponding Riemann solver, see [9, Definition
4.2.2].

q1 q2

Figure 2. 1-to-1 junction.

1-to-1 junction. We use index 1 for the ingoing road, index 2 for the outgoing road,
and consider the data Ui = (ρi, ρiwi) at the adjacent boundaries of roads 1 and 2,
respectively. Note that we omit the time dependency of the states Ui and the fluxes
qi in the following for a better reading, whereas we still indicate the explicit time
dependency of the demand and supply functions.

Flow maximization at the junction over all admissible states leads to

q1 = q2 = q̃ = min
{

D1

(
ρ1, w1, t

)
, S2

(
ρ̃2, w1, t

)}
, (10)

where ρ̃2 is either obtained by the intersection of the curves

{v2(U, t) = v2(U2, t)} and {w2(U, t) = w1}, (11)
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or ρ̃2 = 0. Note that for the considered pressure functions this problem can be
solved explicitly:

ρ̃2 = ρmax
2

(
max

(
γ2

vref
2 (t)

(
w1 − v2(U2, t)

)
, 0

)) 1
γ2

. (12)

Then, q1 = q2 = q̃ determines the mass flow out of road 1/into road 2. Further,
with w̃ = w1 at the junction, the momentum flow is given by q̃w̃.

q1 q3

q2

Figure 3. 1-to-1 junction with on-ramp.

On-ramp at a 1-to-1 junction. We consider a 1-to-1 junction with an on-ramp.
Here, we use index 1 for the ingoing road, index 2 for the on-ramp, index 3 for the
outgoing road, and consider the data Ui = (ρi, ρiwi) on roads 1 and 3, respectively,
and the queue length l2 at the on-ramp.

For the demand D2(l, t) at the on-ramp we apply

D2(l, t) = u2(t)

{
fmax

2 if l > 0,

min{f in
2 (t), fmax

2 } if l = 0,
(13)

where l is the length of the queue, u2(t) ∈ [0, 1] is the (time-dependent) metering
rate, f in

2 (t) the “inflow” of cars arriving at the on-ramp and fmax
2 the maximum

flow onto the main road.
To get a unique solution, we assign the priority parameter P to road 1, and apply

q1 = min
{

D1

(
ρ1, w1, t

)
, max

{
PS3

(
ρ̃3, w1, t

)
, S3

(
ρ̃3, w1, t

)
−D2

(
l2, t
)}}

, (14)

q2 = min
{

D2

(
l2, t
)
, max

{
(1− P )S3

(
ρ̃3, w1, t

)
, S3

(
ρ̃3, w1, t

)
−D1

(
ρ1, w1, t

)}}
,

(15)

q3 = q1 + q2, (16)

where ρ̃3 is either obtained by the intersection of the curves

{v3(U, t) = v3(U3, t)} and {w3(U, t) = w1}, (17)

or ρ̃3 = 0. Again, the density ρ̃3 can be computed explicitly:

ρ̃3 = ρmax
3

(
max

(
γ3

vref
3 (t)

(
w1 − v3(U3, t)

)
, 0

)) 1
γ3

. (18)

As before, the momentum flow is computed by multiplication of q1 and q3 with
w̃ = w1, while the formal momentum flow w̃q2 from the on-ramp does not influence
the state of the on-ramp and is therefore not computed.

The evolution of the queue at the on-ramp is given by

d l2(t)

dt
= f in

2 (t)− q2, (19)

where we typically start with empty queues, i.e., l2(0) = 0.
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q1

q2

Figure 4. On-ramp at origin.

On-ramp at origin. We consider an on-ramp at a vertex with only one outgoing
road. We use index 1 for the on-ramp with queue length l1, and index 2 for the
road with data U2 = (ρ2, ρ2w2).

Similar to above we apply

D1(l, t) = u1(t)

{
fmax

1 if l > 0,

min{f in
1 (t), fmax

1 } if l = 0
(20)

for the demand at the on-ramp, where l is the length of the queue, u1(t) ∈ [0, 1] is
the (time-dependent) metering rate, f in

1 (t) the inflow of cars arriving at the on-ramp
and fmax

1 the maximum flow onto the road.
In this case there is no value for w to evaluate the supply function of the road,

which is needed to determine the actual flux onto the road q̃ in a similar fashion as
in the case of a simple 1-to-1 junction, i.e., similar to (10). Therefore, we consider
an auxiliary left state U1 mimicking the desired inflow of the on-ramp. We assume
that the velocity of the auxiliary state is at equilibrium with respect to the desired
velocity of the road, i.e., we search for a state

U1 =
(
ρ, ρw̃

)
such that ρV2(ρ, t) = D1(l, t), (21)

where w̃ = w2(ρ, V2(ρ, t), t). Assuming that the flux D1(l, t) ≤ fmax
1 can be realized

with the velocity function V2, we get the solutions

ρ± =
ρmax

2

2
±

√
(ρmax

2 )2

4
− ρmax

2 D1(l, t)

vmax
2 (t)

. (22)

Here we choose ρ−, since this choice also fulfils

D2(ρ−, w̃, t) = D1(l, t). (23)

Finally, we apply

q1 = q2 = q̃ = min
{

D1(l1, t), S2

(
ρ̃2, w̃, t

)}
(24)

with w̃ = w2(ρ−, V2(ρ−, t), t), and ρ̃2 is either obtained by the intersection of the
curves

{v2(U, t) = v2(U2, t)} and {w2(U, t) = w̃}, (25)

or ρ̃2 = 0. The explicit representation is the same as (12).
Similar to above, the evolution of the queue at the on-ramp is given by

d l1(t)

dt
= f in

1 (t)− q1. (26)
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q1 q1

Figure 5. Outflow at a vertex.

Outflow conditions. At nodes with only one ingoing road (with index 1) we consider
absorbing boundary conditions up to a given maximum flow rate fout

1 (t):

q1 = min
{

D1

(
ρ1, w1, t

)
, fout

1 (t)
}
. (27)

The momentum flow is given by q1w1.

3. Discretization. For the numerical solution of the described model, a finite
number of time points tn = n∆t is considered, where ∆t = T/Nt. Further, each
road i is divided into Nxi cells of equal size ∆xi = Li/Nxi. To fulfill the CFL
condition, we will claim (at least) ∆t vmax

i ≤ ∆xi in all numerical examples.

3.1. Roads. The underlying balance law (4) is discretized with a fractional step
method: We use a first order Godunov scheme for the flux term and an implicit
Euler method for the relaxation term. Due to the fundamental idea of the Godunov
scheme, the computation of the actual states at junctions is not necessary and the
coupling will be given in terms of fluxes only. Note that in the following Ui =
(ρi, ρiwi) denotes again the state.

On each road i the initial conditions (for j ∈ {1, . . . ,Nxi}) are given by the cell
averages

U0
i,j−0.5 =

1

∆xi

j∆xi∫
(j−1)∆xi

Ui(x, 0) dx . (28)

Then, for n ∈ {0, . . . ,Nt− 1} and j ∈ {1, . . . ,Nxi} we apply

Ũn+1
i,j−0.5 = Uni,j−0.5 −

∆t

∆xi

(
Fni,j − Fni,j−1

)
, (transport) (29)

Un+1
i,j−0.5 = Ũn+1

i,j−0.5 + ∆t g(Un+1
i,j−0.5). (relaxation term) (30)

The flux terms Fni,0 and Fni,Nxi
are given via coupling/boundary conditions (see

next subsection) and for j ∈ {1, . . . ,Nxi − 1} we have

Fni,j =

(
qni,j

wni,j−0.5 q
n
i,j

)
(31)

with

qni,j = min
(
Di(ρ

n
i,j−0.5, w

n
i,j−0.5, t

n), Si(ρ̃
n
i,j , w

n
i,j−0.5, t

n)
)
, (32)

where ρ̃ni,j is either obtained by the intersection of the curves

{vi(U, tn) = vni,j+0.5} and {wi(U, tn) = wni,j−0.5}, (33)

or ρ̃ni,j = 0. Note that this treatment is consistent with the treatment of a 1-to-1
junction where two roads with the same parameters meet.

3.2. Coupling and boundary conditions. We complete the numerical scheme
by the description of the coupling and boundary conditions according to the model
equations from Section 2.2. As already mentioned, we only need the coupling fluxes
here and not the actual states at the junctions.
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1-to-1 junction. As before, we use index 1 for the ingoing road and index 2 for the
outgoing road. According to (10) we apply for n ∈ {0, . . . ,Nt− 1}

q̃n = min
{

D1

(
ρn1,Nx1−0.5, w

n
1,Nx1−0.5, t

n
)
, S2

(
ρ̃n2,0, w

n
1,Nx1−0.5, t

n
)}
, (34)

where ρ̃n2,0 is either obtained by the intersection of the curves

{v2(U, tn) = vn2,0.5} and {w2(U, tn) = wn1,Nx1−0.5}, (35)

or ρ̃n2,0 = 0. Due to the choice of the pressure function (6), ρ̃n2,0 can be directly
computed according to (12). Finally, we get

Fn1,Nx1 = Fn2,0 =

(
q̃n

wn1,Nx1−0.5 q̃
n

)
. (36)

On-ramp at a 1-to-1 junction. We use index 1 for the ingoing road, index 2 for the
on-ramp and index 3 for the outgoing road. According to (13) we apply

D̃2(l, t) = u2(t) min

{
f in

2 (t) +
l

∆t
, fmax

2

}
(37)

for the demand at the on-ramp. Then, using the abbreviations

dn1 = D1

(
ρn1,Nx1−0.5, w

n
1,Nx1−0.5, t

n
)
, (38)

dn2 = D̃2(ln2 , t
n), (39)

sn3 = S3

(
ρ̃n3,0, w

n
1,Nx1−0.5, t

n
)
, (40)

we get from (14) and (15)

qn1 = min {d1, max {Ps3, s3 − d2}} , (41)

qn2 = min {d2, max {(1− P )s3, s3 − d1}} , (42)

qn3 = qn1 + qn2 , (43)

where ρ̃n3,0 is either obtained by the intersection of the curves

{v3(U, tn) = vn3,0.5} and {w3(U, tn) = wn1,Nx1−0.5}, (44)

or ρ̃n3,0 = 0. Again, in our case a direct computation is possible due to (18). Finally,
we have

Fn1,Nx1 =

(
qn1

wn1,Nx1−0.5 q
n
1

)
, Fn3,0 =

(
qn3

wn1,Nx1−0.5 q
n
3

)
(45)

and apply

ln+1
2 = ln2 + ∆t

(
f in

2 (tn)− qn2
)

(46)

for the update of the queue length via the explicit Euler scheme. Note that we always
achieve a non-negative queue length by our choice of the demand function (37).
Alternatively, the time step ∆t could be adapted, cf. [6].

On-ramp at origin. We use index 1 for the on-ramp and index 2 for the road. Similar
to above we apply

D̃1(l, t) = u1(t) min

{
f in

1 (t) +
l

∆t
, fmax

1

}
(47)

for the demand at the on-ramp. Next, following the idea introduced in Section 2.2,
we compute

ρn1,− =
ρmax

2

2
−

√
(ρmax

2 )2

4
− ρmax

2 D̃1(ln1 , t
n)

vmax
2 (tn)

(48)
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and

q̃n = min
{

D̃1(ln1 , t
n), S2

(
ρ̃n2,0, w̃

n, tn
)}

(49)

with w̃n = w2(ρn1,−, V2(ρn1,−, t
n), tn), and ρ̃n2,0 is either obtained by the intersection

of the curves

{v2(U, t) = vn2,0.5} and {w2(U, tn) = w̃n}, (50)

or ρ̃n2,0 = 0. Again, ρ̃n2,0 can be computed explicitly according to (12). Finally, we
use

Fn2,0 =

(
q̃n

w̃n q̃n

)
(51)

and apply

ln+1
1 = ln1 + ∆t

(
f in

1 (tn)− q̃n
)

(52)

for the update of the queue length. Again, non-negativity of the queue length is
ensured by our choice of the demand function (47).

Outflow conditions. At nodes with only one ingoing road (with index 1) we apply
according to (27)

Fn1,Nx1 =

(
qn1

wn1,Nx1−0.5 q
n
1

)
(53)

with

qn1 = min
{

D1

(
ρn1,Nx1−0.5, w

n
1,Nx1−0.5, t

n
)
, fout

1 (tn)
}
. (54)

In the next section, we present a numerical study to show the characteristics of
our modeling approach. We also comment on already existing examples from the
literature, pointing out differences and similarities.

4. Numerical results. Our numerical results emphasize on three different scenar-
ios that our approach is able to deal with from a modeling and computational point
of view. First, we show that, for a single road, the Aw-Rascle (AR) model with
relaxation term numerically converges to the Lighthill-Whitham-Richards (LWR)
model as expected [12]. The second example considers the capacity drop for a 1-
to-1 junction with on-ramp. We will see that this phenomenon is not covered by
the classical LWR model. The third example tackles speed control and coordinated
ramp metering control issues. It will turn out that the control strategies considered
individually do not lead to the best possible travel times, while the combination of
both lead to satisfying results.

4.1. Aw-Rascle towards LWR. We consider a single road as depicted in Figure 6
with length L = 1 km, ρmax = 200 cars

km , vmax = vref = 100 km
h and ρ0 = 80 cars

km as

initial density. For the AR model we further use γ = 2, v0 = 60 km
h (in equilibrium

state) and decreasing values for the relaxation parameter δ starting from a usual
value of δ = 0.005 hours (18 seconds, see e.g. [14]).

in out
road

Figure 6. A single road.
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We consider a simulation time of T = 36 seconds and

f in(t) =

{
4000 + 800 cos(4π t

T ) for 0 ≤ t ≤ T
2 ,

4800 otherwise

as inflow profile at the origin “in” (in cars
h ). As discretization parameters, we apply

∆x = 10 meters and ∆t = 0.18 seconds.
Figure 7 shows density and velocity profiles on the whole road after 36 seconds.

As expected, the solution of the Aw-Rascle model with relaxation term tends to-
wards the LWR model for decreasing relaxation parameter δ. Moreover, decreasing
densities are correlated with increasing velocities. Note that the application of
larger values for the parameter γ in the pressure term leads to higher peaks in the
simulation results (not shown here).

δ = 5 · 10−3 (original) δ = 5 · 10−4 (smaller)

δ = 5 · 10−5 (smallest) LWR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

40

60

80

100

120

x [kilometres]

d
en
si
ty

[c
ar
s/
k
m
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

60

70

x [kilometres]

ve
lo
ci
ty

[k
m
/h

]

Figure 7. Density (top) and velocity (bottom) after 36 seconds
for different choices of the relaxation parameter δ and for the LWR
model.



CAPACITY DROP AND TRAFFIC CONTROL 673

4.2. Capacity drop. Now we turn our attention to study the capacity drop effect,
cf. [13]. We will see that increasing the inflow into the network depicted in Figure 8
will at a certain point lead to a decreasing outflow. Thus, a significant difference
between the effective and maximal possible outflow occurs in the Aw-Rascle model.
Conversely, this effect is not captured by the classical LWR model. This is due to
the different modeling of the supply function. In the congested regime, the value of
the supply function is at its maximum in the LWR model and therefore no capacity
drop occurs. However, in the AR model, the supply function additionally depends
on the “incoming” value of w that allows for a different behavior.

in on-ramp out
road1 road2

Figure 8. Two roads with an on-ramp in between.

We consider two roads of 1 km length with an on-ramp in between, see Figure 8.
On both roads we use ρmax = 180 cars

km , vmax = vref = 100 km
h , γ = 2, δ = 0.005 h

and an initial density of 50 cars
km . At the origin “in” we consider a constant (desired)

inflow f in
1 = 3500 cars

h . At the on-ramp we consider different (desired) inflows,

starting from f in
2 = 500 cars

h up to 2500 cars
h and down to 500 cars

h again. As priority
parameter at the on-ramp we use P = 0.5.

Table 1 and Figure 9 show the simulation results for the AR and the LWR model
(with ∆x = 100 metres and ∆t = 1.8 seconds), i.e., the resulting stationary states.
The first two columns report the desired and the actual inflow at the on-ramp. The
following three values are the resulting density, velocity and the value of w just
upstream the on-ramp (end of the first road). The last two columns show the total
outflow at the end of the second road.

Table 1. Capacity drop effect

inflow at on-ramp in [ cars
h

] ρ1 v1 w1 outflow AR outflow LWR
desired actual in [ cars

km
] in [ km

h
] in [ km

h
] in [ cars

h
] in [ cars

h
]

500 500 47.6 73.6 77.1 4000 4000
1000 1000 47.6 73.6 77.1 4500 4500
1500 1500 156.4 13.1 50.9 3554 4500
2000 1764 160.2 11.0 50.6 3527 4500
2500 1764 160.2 11.0 50.6 3527 4500

1000 1000 148.0 17.8 51.6 3629 4500
500 500 137.2 23.8 52.8 3762 4000

We begin with the interpretation of the results obtained from the AR model:
Obviously, up to an inflow of 1000 cars

h at the on-ramp, the total inflow (of 4500 cars
h )

is within the capacity of the given road. When the inflow at the on-ramp further
increases, the resulting total flux cannot be realized at some point. From then on,
the value of w at the end of the first road directly influences the total flux entering
the second road (compare equations (14) and (15) and the definition of the supply
function (8)). As a consequence, the outflow at the end of the second road for the
cases f in

2 ∈ {1500 cars
h , 2000 cars

h , 2500 cars
h } is lower than the outflow for the cases
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f in
2 ∈ {500 cars

h , 1000 cars
h }. Due to the choice of the priority parameter P = 0.5, the

effect of a decreasing outflow while the desired inflow increases stagnates as soon
as the fluxes from the first road and the on-ramp are equal, which is the case for
f in

2 ∈ {2000 cars
h , 2500 cars

h }.
Interestingly, even when the desired inflow at the on-ramp is lowered again, the

original state for the same values of f in
1 and f in

2 is not reached. This is due to the
fact that the outflow in the congested situation is below the accumulated desired
inflows. Accordingly, the queue at the origin permanently increases in the final
situation even though the capacity of the road could handle the desired inflows in
the free flow situation.

Note that compared to the existing literature the capacity drop is investigated for
different situations. In [13] no relaxation term is considered but a similar result is
obtained. The construction principle for the capacity drop is the same (decreasing
value of w for increasing flux), but in our investigations the possible equilibrium
states are restricted due to the relaxation term so that higher densities on the
incoming road lead to lower velocities (in difference to the equilibria 3 and 5 in [13,
Table 3]). In [23], where a different junction model and also a different numerical
scheme is used, the capacity drop effect for the model with relaxation term is only
observed for short time intervals, whereas we identify a permanent drop, cf. Figure 9.

AR LWR

500 1,000 1,500 2,000 2,500

3,500

4,000

4,500
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Figure 9. Actual outflow depending on the desired inflow at the
on-ramp for the AR and the LWR model.

Finally, considering the same scenario with the LWR model (see [11] for the de-
tails), one observes that the outflow increases with the accumulated desired inflows

until it reaches the maximum capacity of 4500 cars
h = ρmax

2 · v
max

2 (see again Table 1
and Figure 9). According to the chosen priority P = 0.5, the actual inflows at the
origin and at the on-ramp are 2250 cars

h in that situation. Any further increase of
the desired inflow at the on-ramp does not have any effect on the situation on the
roads. Further, unlike the AR model, a decrease of the desired inflow f in

2 below
1000 cars

h leads back to the original situation (as soon as the queues have emptied).
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4.3. Coordinated speed control and ramp metering. For optimization pur-
poses, we are finally interested in controlling maximal speed limits as well as on-
ramp inflows to minimize the total travel time. As already introduced in equa-
tions (13) and (20), the ramp metering rate ui(t) is used to control the demand at the

on-ramp. Similar to our recent work [11], we will use vmax
i = vmax

i (t) ∈ [vlow
i , vhigh

i ]
as another time-dependent (piecewise constant) control variable so that actually
Vi(ρ) = Vi(ρ, t) and gi(ρ, y) = gi(ρ, y, t) for the relaxation term. Regarding the
influence of the pressure term, we will consider two variants:

1. vref
i (t) = vmax

i (t), i.e., the pressure term directly depends on the (controllable)
speed limit and therefore pi(ρ) = pi(ρ, t);

2. vref
i (t) = vhigh

i , i.e., the pressure term is independent of the current speed limit

in the sense that ∂pi
∂vmax
i

= 0.

For our investigations, we consider the road network depicted in Figure 10
(adapted from [14]) with the road parameters of Table 2. The exponents in the
pressure function are γi = γ = 2 for all roads and δ = 0.005 h for the relaxation pa-
rameter. The priority parameter P at the on-ramp equals 0.5 and fmax = 2000 cars

h .
At the origin “in” we consider fmax = 4000 cars

h .

in mid mid2 on-ramp out
road1 road2 road3 road4

Figure 10. Road network with an on-ramp at the node “on-ramp”.

Table 2. Properties of the roads in Figure 10

road length [km] ρmax [ cars
km ] vlow [km

h ] vhigh [km
h ] initial density [ cars

km ]

road1 2 180 100 100 50
road2 1 180 50 100 50
road3 1 180 50 100 50
road4 2 180 100 100 50

We consider a time horizon of T = 3.0 hours and the boundary conditions shown
in Figure 11. For the given scenario, we are interested in minimizing the total travel
time ∑

roads i

T∫
0

Li∫
0

ρi(x, t) dx dt +
∑

on-ramps j

T∫
0

lj(t) dt , (55)

given an upper bound of 100 vehicles in the queue of the on-ramp. To solve this
optimization task, we apply a first-discretize-then-optimize approach and adjoint
calculus, see also [11]. Thus, for given control decisions (speed limits and metering
rates), the discretization scheme described in Section 3 is always used to evaluate
the objective function (55) (using the trapezoidal rule for quadrature). Further,
sensitivity/gradient information with respect to the control decisions is computed
based on the same discretization (we refer to [19, 20] for more details). Finally, the
SQP solver DONLP2 [27, 28] is used for the optimization of the control decisions.
The applied discretization parameters are ∆x = 250 meters and ∆t = 7.2 seconds.
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Figure 11. Inflow profiles for the network in Figure 10.

Table 3 shows the total travel times for the different models with and without
optimization. The resulting queues for the AR model with scaling of the pressure
function ( ∂pi

∂vmax
i
6= 0) are shown in Figure 12. Without ramp metering and speed

control the queue at the on-ramp stays empty whereas more than 300 cars accumu-
late in the queue at the origin. When only ramp metering is considered, the queue
at the origin is reduced to zero, while up to 100 cars accumulate in the queue at the
on-ramp. Obviously, the prescribed upper bound for the queue at the on-ramp is
active, impeding further improvement of the objective function. When ramp meter-
ing and speed control are used, the upper bound of 100 cars is even never touched.
In the case of speed control only, the queue at the on-ramp stays empty, whereas
the queue at the origin cannot be kept empty during the complete time horizon.

Table 3. Optimization results for the network in Figure 10

AR, ∂pi
∂vmax
i
6= 0 AR, ∂pi

∂vmax
i

= 0 LWR

no control 1871.7 1871.7 834.9
ramp metering only 1325.3 1325.3 834.9
speed control only 1122.8 872.6 834.9
both control types 814.5 818.4 834.9

Note that the results for the model without scaling of the pressure function
( ∂pi
∂vmax
i

= 0) are quite similar considering the queues and therefore are not plotted.

Nevertheless the possible improvement with respect to total travel time is much
larger in the case of speed control only (872.6 versus 1122.8). Concerning the
LWR model, both queues stay empty during the whole time horizon already in the
uncontrolled case and the optimization procedure terminates directly in the other
cases - leading to the same result. The optimality of the uncontrolled case with
respect to total travel time results from the fact that the classical LWR model does
not capture the capacity drop effect (cf. Section 4.2).

Figure 13 exemplarily shows where the improvement in total travel time comes
from in the case of coordinated ramp metering and speed control in the model with
scaling of the pressure function: The outflow of the system (plot on the right) in



CAPACITY DROP AND TRAFFIC CONTROL 677
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Figure 12. Queue at the origin “in” and the on-ramp with and
without optimization.

the optimized scenario is permanently above the outflow of the uncontrolled system
until it drops to the low inflow level after two hours. Figure 14 shows the applied
(optimal) controls.
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Figure 13. Flow at the origin “in” of the network (left) and at
the node “out” (right) with and without optimization.

As shown in Table 3, the uncontrolled case is already optimal for the LWR model,
i.e., no ramp metering or speed control is required. Accordingly, we take a look at
the influence of the relaxation parameter δ within the second order model, which
regulates the acceleration towards the desired velocity V (ρ, t) of the LWR model.

Table 4 shows the simulation and optimization results for a wide choice of δ (on
all roads). Since smaller values of δ lead to larger values for the acceleration towards
the desired velocity, one would expect that the results for small values of δ get close
to the results of the LWR model (as in Section 4.1). Surprisingly, it is the other
way around for the considered scenario.

First, one observes larger total travel times in the case of smaller values for δ.
These result from the faster reaction of the velocity on the increase in density behind
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Figure 14. Optimal control of vmax
i (t) on road2 (top left) and

road3 (top right) and u(t) at the on-ramp (bottom).

Table 4. Total travel time for different choices of the relaxation
parameter δ

δ no control opt. control, ∂pi
∂vmax
i
6= 0 opt. control, ∂pi

∂vmax
i

= 0

5 · 10−5 2199.4 868.8 953.4
5 · 10−4 2137.1 860.1 856.3
5 · 10−3 1871.7 814.5 818.4
5 · 10−2 731.4 731.4 731.4
5 · 10−1 725.9 725.9 725.9

the on-ramp at the beginning of the scenario, which in turn accelerates the increase
in density compared to the other parameter choices (see Figure 15 where the results

for the case ∂pi
∂vmax
i
6= 0 are plotted). For very large values of δ there is almost no

reaction of the velocity on the density increase and no congestion. Qualitatively,
the corresponding results are quite similar to the results of the LWR model (see
again Figure 15).
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δ = 5 · 10−3 (original) δ = 5 · 10−5 (smallest)
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Figure 15. Density (top) and velocity (bottom) behind the on-
ramp in the uncontrolled case for different choices of the relaxation
parameter δ and for the LWR model.

5. Conclusion. In this work, we have set up coupling conditions for the Aw-Rascle
model linked to on-ramps described by ordinary differential equations. Applying a
first order Godunov scheme, the presented approach allows for numerical investiga-
tions of the capacity drop effect and optimal control problems.
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Future work will include extensions to on-ramps that are described by first or-
der traffic models such as the LWR model. We will derive appropriate coupling
conditions and focus on theoretical properties.
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