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Abstract. In this paper, we present a multiscale model reduction framework
within Generalized Multiscale Finite Element Method (GMsFEM) for nonlinear

elliptic problems. We consider an exemplary problem, which consists of nonlinear

p-Laplacian with heterogeneous coefficients. The main challenging feature of this
problem is that local subgrid models are nonlinear involving the gradient of the

solution (e.g., in the case of scale separation, when using homogenization). Our
main objective is to develop snapshots and local spectral problems, which are the

main ingredients of GMsFEM, for these problems. Our contributions can be sum-

marized as follows. (1) We re-cast the multiscale model reduction problem onto
the boundaries of coarse cells. This is important and allows capturing separable

scales as discussed. (2) We introduce nonlinear eigenvalue problems in the snap-

shot space for these nonlinear “harmonic” functions. (3) We present convergence
analysis and numerical results, which show that our approaches can recover the
fine-scale solution with a few degrees of freedom. The proposed methods can, in

general, be used for more general nonlinear problems, where one needs nonlinear
local spectral decomposition.

1. Introduction. Many processes in nature have multiscale nature and nonlinearities.
The interaction between nonlinearities and multiple scales can be complex and non
separable. This occurs in many applications. A specific feature for this non-separability
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is that nonlinearities change the multiscale nature of the solution. To discuss some main
concepts, we consider an example

div(a(x, u,∇u)) = f. (1)

We assume a(x, ·, ·) is highly heterogeneous with respect to x. From the point of
view of the interaction between nonlinearities and the multiple scales, one can dis-
tinguish several classes. In some nonlinear problems, the nonlinearities within coarse
regions (a computational grid), that induce the change in the heterogeneities, can
be parametrized with a low dimensional parameter, e.g., a(x, u,∇u) = a0(x, u)∇u
(assuming smoothness and boundedness of a). Within each coarse region, one can
approximate the solution u by a constant and thus, can handle these nonlinearities
via a low dimensional parametrization (see, e.g., [30, 46] for homogenization and nu-
merical homogenization discussions). If the nonlinearities and heterogeneities are sep-
arable in this case, i.e., a(x, u,∇u) = a(x)b(u)∇u, then, in fact, one can use a lin-
ear theory of multiscale methods (cf. [30, 46]). The situation is very different when
a(x, u,∇u) = a1(x,∇u)∇u. Because ∇u is highly heterogeneous, one can not use any
low dimensional approximation and linear theories (see e.g., [30, 46, 37, 36, 13, 3, 42, 44]
for homogenization and numerical homogenization). This is true even for a separable
case a(x, u,∇u) = a0(x)b(|∇u|)∇u. These problems require nonlinear cell problems
([30, 46, 37, 36, 13, 3, 42, 44]). In the paper, we focus on a(x, u,∇u) = a(x,∇u) and
discuss these nonlinear cell problems for GMsFEM.

Many previous research on multiscale methods have considered nonlinear prob-
lems. The approaches including homogenization [47, 41], numerical homogenization
[2, 49, 21], heterogeneous multiscale methods [22, 1, 37, 43], multiscale network ap-
proximations [8, 9, 7], multiscale finite element methods [21, 49, 4, 27, 24, 28, 34, 33,
23, 25, 29, 14], variational multiscale methods [39, 38, 6, 40], polyharmonic homogeniza-
tion [45, 10], generalized multiscale finite element methods [24, 26, 11, 18, 16, 17] have
been developed and applied. These approaches approximate the solution of nonlinear
PDEs on a coarse grid (see Figure 1 for illustration of coarse and fine grids) by using
subgrid models. Some common ingredients in these methods for linear problems are
that local solutions are calculated and used to form equations on a coarse grid. GMs-
FEM approaches propose a systematic enrichment, which calculates multiscale basis
functions via local spectral decomposition in each coarse cell. The extensions of these
methods to nonlinear problems (as (1)) use nonlinear local problems. For example, in
numerical homogenization methods, one can use as a local problem in each coarse cell,
for the case a(x, u,∇u) = a(x,∇u),

−div(a(x,∇φξ)) = 0

with the boundary conditions φ = ξ · x. The homogenized fluxes are computed by
averaging the flux a∗(ξ) = 〈a(x,∇φξ)〉. These approaches follow homogenization theory
([46, 37, 36, 13, 3, 42, 44], see also [1, 37, 43] and, the references therein, for numerical
homogenization), which is well developed. For GMsFEM, a systematic local enrichment
via appropriate local nonlinear spectral problems is needed.

The main idea of GMsFEM for linear problems is to form snapshot spaces and per-
form local spectral decomposition in the snapshot space. In this paper, we will follow
the same general concept and introduce nonlinear eigenvalue problems. Previous ap-
proach [31] develops local nonlinear eigenvalue problems in each coarse cell. Our main
contribution is the development of a systematic model reduction using nonlinear har-
monic functions. The latter is important as it allows capturing the effects of separable
scales. Without using nonlinear harmonic functions, one can not, in general, capture
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the effects of small separable scales. This is in contrast to linear problems, where one
can construct one linear basis function per every coarse node that contains the effects of
small scales. Using local solutions allows compressing the effects of small scales within
a coarse block and we work with a system reduced to the boundaries of coarse cells.
In this case, we can also guarantee that our approaches recover homogenization results
when there is a scale separation (note that previous approaches [31] can not guarantee
it). The proposed method is in a spirit of hybridization techniques [20, 32, 15] and
necessary to eliminate the scale interactions in each block.

In the paper, we present a local enrichment procedure for the degrees of freedom
defined on the boundaries. Our computations are performed in a nonlinear space,
where any function defined on the boundaries of coarse cells is extended harmonically
to the interior by using local nonlinear PDEs. Our snapshot space can be thought as
a nonlinear map from the boundaries to the interior. We discuss the use of nonlinear
eigenvalue problems, which are motivated by the analysis. Our analysis allows removing
some of major assumptions that are used when not using local nonlinear-harmonic
functions (see [31]).

The numerical results are presented for several examples. We consider a high-
contrast permeability field in p-Laplacian example with heterogeneous coefficients. The
high-contrast permeability field contains several channels and inclusions with a high
permeability. In our numerical results, we increase the number of local multiscale basis
functions and compute the errors. The results show that the error decreases rapidly as
we increase the number of basis functions and we can approximate the global solution
accurately with a very few degrees of freedom.

The paper is organized as follows. In Section 2, we present some preliminaries and
also present a motivation. The description of the GMsFEM for nonlinear problem is
presented in Section 3. The convergence analysis of the method is given in Section 4.
We present numerical results in Section 5. The conclusion is drawn in Section 6.

2. Preliminaries and motivation.

2.1. Preliminaries and notations. Let D be a bounded open set in R2 with Lips-
chitz boundary ∂D. We consider the following heterogeneous p-Laplacian equation

− div(a(x,∇u)) = f(x) in D, u = g on ∂D, (2)

where a(x,∇u) = κ(x)|∇u|p−2∇u, p ≥ 2, κ(x) ≥ κ0 > 0 is a high-contrast coefficient
(i.e., κmax/κmin is large), f ∈ W−1,q(D) (1/p + 1/q = 1) is an external forcing term,
and g ∈W 1/q,p(D) is the Dirichlet boundary data.

The corresponding weak formulation is: (P) Find u ∈ W 1,p
g (D) ≡ {v ∈ W 1,p(D) :

v = g on ∂D} such that∫
D

a(x,∇u) · ∇v =

∫
D

fv, ∀v ∈W 1,p
0 (D).

The well-posedness of (P) is well established, and one can refer to, for example, Glowin-
ski and Marrocco [35] or the account in Ciarlet [19]. Throughout the paper, we define
the energy norm of u ∈W 1,p(D) as

‖u‖1,p(D) =

(∫
D

κ(x)|∇u|pdx
)1/p

.

Next, we describe the finite element approximation of the solution. We let T h
be a fine triangulation, and denote by V h = V h(D) the usual finite element space
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containing continuous piecewise linear functions with respect to T h. We also let V h0 (D)
be the subset of V h(D) containing functions that vanish on ∂D. Similar notations,
V h(Ω), V h0 (Ω), are used for Ω ⊂ D.

The discrete fine-scale problem is defined in the following: (Ph) Find uh ∈ V h(D)
such that ∫

D

a(x,∇uh) · ∇v =

∫
D

fv, ∀v ∈ V h0 (D).

Additionally, we introduce a coarse discretization T H in which each coarse element
is comprised of a localized fine mesh. See Figure 1 for an illustration of a multiscale
discretization containing both fine and coarse elements. We use {yi}Nv

i=1 to denote the
vertices of the coarse mesh, and define a coarse neighborhood of yi by

ωi =
⋃
{Kj ∈ T H ; yi ∈ Kj}, (3)

where Kj denotes a coarse element in the domain and Nv is the number of coarse
vertices. See Figure 2 for an illustration of a coarse neighborhood and elements. Inside
each coarse neighborhood ωi (i = 1, · · ·, Nv), we call the collection of the coarse edges
with yi being a common vertex the cross of yi.

2.2. Motivation. First, we introduce the concept of p-harmonic extension.

Definition 2.1. Let u ∈ W 1,p(K) (p ≥ 2) be a given function. Let ũ ∈ W 1,p(K) be

defined so that ũ− u ∈W 1,p
0 (K), and that ũ satisfies:

−div(a(x,∇ũ)) = 0 in K,

where a(x,∇ũ) = κ(x)|∇ũ|p−2∇ũ. Then ũ is called the p-harmonic extension of u.
We denote ũ := Hp(u).

Remark 1. The p-harmonic extension minimizes the energy norm, i.e.∫
K

κ(x)|∇ũ|pdx = min
v∈W 1,p

u (K)

∫
K

κ(x)|∇v|pdx,

where W 1,p
u (K) = {v ∈W 1,p(K) | v = u on ∂K}.

Remark 2. In this context, all p-harmonic extensions are accomplished coarse-element
by coarse-element. Though, we might use the notation Hp directly on a larger domain
such as a coarse neighborhoods ωi or the whole domain D, it means that the p-harmonic
extension is performed on each coarse element contained in ωi or D.
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Our main idea is solving for the Generalized Multiscale Finite Element solution of
Equation (2) on the crosses of the coarse mesh and then the solution in the whole
domain can be approximated by p-harmonically extending the obtained cross values
into the domain. This idea is motivated by the technique of Numerical Homogenization
(NH), which is described in the following. Our goal is to show that our proposed
Generalized Multiscale Finite Element Method recovers NH.

2.2.1. Numerical Homogenization(NH) and Generalized Multiscale Finite Element. Fir-
st, we describe a well known numerical homogenization technique. This method can
be regarded as using a limited number of degrees of freedom per coarse element. Our
objective is to show that the numerical homogenization is a finite element approxima-
tion on a coarse grid using p-harmonic extension with only one degree of freedom per
edge. We consider

−div(a(x,∇u)) = f in D,

with u = 0 on ∂D. We consider a coarse-grid block K and our goal for each coarse-grid
block is to compute the effective property. This is done by solving local problem

−div(a(x,∇Nξ)) = 0 in K,

with boundary condition Nξ = ξ · x on ∂K. According to the previous definition, we
can write Nξ = Hp(ξ · x). Then a∗(·) is defined as

a∗(ξ) =
1

|K|

∫
K

a(y,∇Nξ)dy.

The coarse-grid equation is given by

−div(a∗(x,∇u∗)) = f in D,

with u∗ = 0 on ∂D. Suppose u∗ =
∑
ckφk, where {φk} is a linear basis, then

FNH(~c) =

∫
D

a∗(x,∇
∑

ckφk) · ∇φjdx

=
∑
K∈D

∫
K

a∗(
∑

ck∇φk) · ∇φjdx,

At this step, we denote
∑
ck∇φk = ξ = constant, then Nξ = Hp(

∑
ck∇φk · x) and

FNH(~c) =
∑
K∈D

∫
K

a∗(ξ) · ∇φjdx

=
∑
K∈D

∫
K

(
1

|K|

∫
K

a(x,∇Nξ)dx
)
· ∇φjdx

=

∫
D

1

|K|

(∫
K

a(x,∇Hp(
∑

ck∇φk · x))dx

)
· ∇φjdx

=

∫
D

1

|K|

(∫
K

a(x,∇Hp(
∑

ckφk))dx

)
· ∇φjdx

=

∫
D

fφjdx.

Compared with the numerical homogenization, Generalized Multiscale Finite Ele-
ment method seeks the approximation of the solution in the form

∑
i,k χic

ωi

k φ
ωi

k , which
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solves

F (~c) =

∫
D

a(x,∇Hp(
∑
i,k

χic
ωi

k φ
ωi

k ) · ∇φωi
j dx

=

∫
D

fφωi
j dx,

where {φωi

k }Li

k=1 (Li is the number of basis chosen in ωi) are generalized multiscale basis

constructed in each ωi (i = 1, · · ·, Nv), {χi}Nv
i=1 is the set of partition of unity functions.

Our main approach is to construct multiscale basis functions in a systematic way and
provide a priori error. We see from the above discussion that Generalized Multiscale
Finite Element Method can be thought as an extension of Numerical Homogenization,
where we need to identify appropriate procedures for finding multiscale basis functions.
In the following section, we will describe the details of constructing multiscale basis as
well as partition of unity functions.

3. Generalized multiscale finite element method. The goal of our proposed gen-
eralized multiscale finite element method is to find a numerical approximation of the
solution as well as employing the degree of freedoms only on the crosses in order to
exhibit model reduction. Suppose the generalized multiscale finite element solution we

are seeking for is ums = Hp(
∑
i

∑Li

k=1 χic
ωi

k φ
ωi

k ), where {φωi

k }Li

k=1 are multiscale basis

constructed in each coarse neighborhood ωi, {χi}Nv
i=1 is the set of partition of unity

functions, then the generalized multiscale finite element formulation for Equation (2)
is the following: Find ~c = {cωi

k }i,k such that∫
D

a(x,∇Hp(
∑
i

Li∑
k=1

χic
ωi

k φ
ωi

k ) · ∇φωi
j dx =

∫
D

fφωi
j dx for any j, (4)

where a(x,∇u) = κ(x)|∇u|p−2∇u, as defined in Section 2.1.

Remark 3. The GMsFEM numerical solution ums in (4) is uniquely defined. We sup-

pose there are two solutions u1 = Hp(
∑
i

∑Li

k=1 χic
ωi

k,1φ
ωi

k ) and u2 = Hp(
∑
i

∑Li

k=1 χic
ωi

k,2

φωi

k ) to (4). Then, we have∫
D

(a(x,∇u1)− a(x,∇u2)) · ∇vdx = 0,

for any test function. Since u1 and u2 are harmonic in each coarse block, we have∫
D

κ(x)|∇u1 −∇u2|pdx ≤
∫
D

(a(x,∇u1)− a(x,∇u2)) · ∇(u1 − u2)dx = 0,

which guarantees u1 = u2. So the solution to (4) is uniquely defined.

3.1. Partition of unity functions. To propose our method, we first need to construct
a set of partition of unity functions {χi}Nv

i=1. These functions are supported in coarse

neighborhoods, and summed to one. Specifically, the support of χi is ωi, and
∑Nv

i=1 χ1 =
1. In addition, χi has value 1 at the vertex yi. There are two commonly used sets of
partition of unity functions, which are presented below.

• A bilinear partition of unity: χi is defined as usual bilinear basis functions χ0
i on

ωi, which is equal to 1 at node yi and equal to 0 on ∂ωi.
• A multiscale partition of unity (with linear boundary conditions): χi is defined

by

−div(a(x,∇χi) = 0 in K ∈ ωi, χi = χ0
i on ∂K, for all K ∈ ωi.
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We remark that using the second choice of partition of unity functions can, in general,
provide better numerical performance.

3.2. Generalized multiscale finite element basis.

3.2.1. Snapshot space. Let ωi be a given coarse neighborhood. The construction of the
multiscale basis functions on ωi starts with a snapshot space V ωi

snap. The snapshot space
V ωi

snap is a set of functions defined on ωi and contains all or most necessary components
of the fine-scale solution restricted to ωi. A spectral problem is then solved in the
snapshot space to extract the dominant modes in the snapshot space. These dominant
modes are the offline basis functions and the resulting reduced space is called the offline
space. There are two choices of V ωi

snap that are commonly used.
The first choice is to use all possible fine-grid functions in ωi. This snapshot space

provides accurate approximation for the solution space; however, this snapshot space
can be very large. The second choice for the snapshot space consists of harmonic
extensions. In particular, we denote by Mh(ωi) the set of all nodes of the fine mesh T h
which lie on ∂ωi. For each fine-grid node xj ∈ Mh(ωi), we construct a discrete delta
function δhj (x) defined on Mh(ωi) by

δhj (xk) =

{
1 for k = j

0 for k 6= j
, ∀xk ∈Mh(ωi).

Then the j−th snapshot basis function ψωi
j is defined as the solution of

−div(κ(x)∇ψωi
j ) = 0 in ωi,

ψωi
j = δhj on ∂ωi.

(5)

The dimension of V ωi
snap is equal to the size of Mh(ωi). We note that one can use

randomized snapshots in conjunction with oversampling to reduce the computational
cost associated with the snapshot calculations. We refer to [12] for more details.

With these snapshots, we follow the procedure in the following subsection to generate
offline basis functions by using an auxiliary spectral decomposition.

3.2.2. Offline space. The construction of generalized multiscale basis for solving p-
Laplacian equation in the fashion of p-harmonic extension is based on the design of a
proper nonlinear spectral problem which will be solved in the snapshot space. In each
coarse neighborhood ωi, we define the following nonlinear eigenvalue problem which
can be characterized by the Rayleigh-Ritz method (RRM).

φωi
1 = cωi , λωi

1 = 0,

φωi

k = arg min
v∈V ωi

snap

Gωi(v)

Gωi
χ (v − Pk−1(v))

, λωi

k =
Gωi(φωi

k )

Gωi
χ (φωi

k − Pk−1(φωi

k ))
, for k ≥ 2,

(6)
where cωi ∈ V ωi

snap is a constant function in ωi, the functionals are given by Gωi(v) =∫
ωi
κ(x)|∇Hp(v)|pdx and Gωi

χ (v) =
∫
ωi
κ(x)|∇Hp(χiv)|pdx, the projector Pk(u) =

arg min
v∈V ωi

k−1

Gωi(u− v), V ωi

k−1 = span{φωi
1 , · · ·, φωi

k−1}. This nonlinear eigenvalue problem

is a standard orthogonal subspace minimization method and is well-defined (see e.g.,
[50]).

The eigenfunctions {φωi

k }k in each coarse neighborhood ωi will contribute as offline
basis (or we call them generalized multiscale basis or eigenbasis) after being multiplied
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by the associated partition of unity function χi. We choose the first Li eigenfunctions
on each ωi and denote the offline space as

V c = span{χiφωi

k : k = 1, · · ·, Li; i = 1, · · ·, Nv} ⊆W 1,p(D).

Recall that our solution assumes the form of ums = Hp(
∑
i

∑Li

k=1 c
ωi

k χiφ
ωi

k ), which

means ums is obtained by p-harmonically extending
∑
i

∑Li

k=1 c
ωi

k χiφ
ωi

k in each coarse

block K, thus only the values of
∑
i

∑Li

k=1 c
ωi

k χiφ
ωi

k on each coarse edge matter in this
sense. If we consider one coarse neighborhood ωi, for example the coarse neighbor-
hood of an interior coarse vertex (see yi and ωi in Figure 2), it is the restriction of∑Li

k=1 c
ωi

k χiφ
ωi

k on the 12 coarse edges that will matter in the process of p-harmonic
extension. Notice that the partition of unity function χi vanishes on and beyond

the boundary of ωi, thus merely the restriction of
∑Li

k=1 c
ωi

k χiφ
ωi

k on the cross (that
is, the inside 4 coarse edges) makes an influence. Therefore, we can restrict χiφ

ωi

k

(k = 1, · · ·, Li) on the cross of ωi and denote the restricted basis (which we call cross

basis in this context) by φ̂ωi

k . Then we can write ums = Hp(
∑
i

∑Li

k=1 c
ωi

k φ̂
ωi

k ). We
denote

V̂ c = span{φ̂ωi

k : k = 1, · · ·, Li; i = 1, · · ·, Nv}.
In this way, we can focus on the degree of freedoms on the crosses and perform spectral
decomposition on these crosses.

Remark 4. In the computation, we use a simpler eigenvalue problem
φωi

1 = cωi , λωi
1 = 0,

φωi

k = arg min
v∈Xωi

k

Gωi(v)

Gωi
χ (v)

, λωi

k =
Gωi(φωi

k )

Gωi
χ (φωi

k )
, for k ≥ 2,

(7)

where Xωi

k is a subspace of V ωi
snap and defined as Xωi

k =
(
span{φωi

1 , · · ·, φωi

k−1}
)⊥

where

the orthogonality ⊥ is defined with respect to the H1 norm in V ωi
snap.

4. Convergence analysis. To analyze the convergence of our proposed method, we
first prove several lemmas. The first two lemmas are the direct applications of Lemmas
5.1 and 5.3 in Glowinski and Marrocco [35] and prove the monotonicity and continuity of
p-Laplacian operator a(x,∇u) = κ(x)|∇u|p−2∇u, respectively. In the following proof,
we introduce the notation F � G to represent F ≤ CG with a constant C independent
of the mesh, contrast and the functions involved.

Lemma 4.1. ∀u, v ∈W 1,p(K), p ≥ 2, the following inequality holds:

κ(x)|∇u−∇v|p � (a(x,∇u)− a(x,∇v)) · ∇(u− v). (8)

Proof. We use Lemma 5.1 in Glowinski and Marrocco [35], which proves the following
inequality: ∀p ≥ 2, ∃α > 0 such that ∀y, z ∈ R2,

(|z|p−2z − |y|p−2y, z − y)R2 ≥ α|z − y|p.
If we take z = (κ(x))1/p∇u, y = (κ(x))1/p∇v, then (8) is proved.

Lemma 4.2. ∀u, v ∈W 1,p(K), p ≥ 2, the following inequality holds:

|a(x,∇u)− a(x,∇v))| �M(x, u, v)|∇u−∇v|, (9)

where M(x, u, v) = κ(x)(|∇u|+ |∇v|)p−2.
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Proof. According to Lemma 5.3 in Glowinski and Marrocco [35], there holds the fol-
lowing inequality: ∀p ≥ 2, ∃β > 0 such that ∀y, z ∈ R2,

||z|p−2z − |y|p−2y| ≤ β|z − y|(|z|+ |y|)p−2.

If we take z = (κ(x))1/(p−1)∇u, y = (κ(x))1/(p−1)∇v, then (9) is proved.

The next two lemmas deal with the properties of p-harmonic extension operator.

Lemma 4.3. Suppose ũ = Hp(u0), ṽ = Hp(v0), w̃ = Hp(u0 − v0), where u0, v0 ∈
W 1,p(K), p ≥ 2. Then we have∫

K

κ(x)|∇(ũ− ṽ)|pdx

�
(∫

K

κ(x)|∇w̃|pdx
) q

p
(∫

K

κ(x)|∇ũ|pdx+

∫
K

κ(x)|∇ṽ|pdx
) p−2

p−1

, (10)

where 1/p+ 1/q = 1.

Proof. Using Lemma 4.1 and integrating by parts, we immediately obtain the following
inequality:∫

K

κ(x)|∇(ũ− ṽ)|pdx �
∫
K

(a(x,∇ũ)− a(x,∇ṽ)) · ∇(ũ− ṽ)

=

∫
∂K

(a(x,∇ũ)− a(x,∇ṽ)) · ~n(ũ− ṽ)ds−
∫
K

div(a(x,∇ũ)− a(x,∇ṽ)) (ũ− ṽ)dx

=

∫
∂K

(a(x,∇ũ)− a(x,∇ṽ)) · ~n (ũ− ṽ)ds− 0

=

∫
∂K

(a(x,∇ũ)− a(x,∇ṽ)) · ~n w̃ds−
∫
K

div(a(x,∇ũ)− a(x,∇ṽ)) w̃dx

=

∫
∂K

(a(x,∇ũ)− a(x,∇ṽ)) · ∇w̃dx

�
∫
K

M(x, ũ, ṽ)|∇ũ−∇ṽ||∇w̃|dx, (11)

where on the last line we have used the continuity property of a(x,∇u) proved in
Lemma 4.2. Applying Hölder’s inequality to (11), we have∫

K

κ(x)|∇(ũ− ṽ)|pdx �
(∫

K

κ(x)|∇ũ−∇ṽ|pdx
) 1

p

(∫
K

κ(x)|∇w̃|pdx
) 1

p
(∫

K

(
κ(x)−

2
p |M(x, ũ, ṽ)|

) p
p−2 dx

) p−2
p

.

Dividing both sides by
(∫
K
κ(x)|∇ũ−∇ṽ|pdx

) 1
p gives∫

K

κ(x)|∇(ũ− ṽ)|pdx �
(∫

K

κ(x)|∇w̃|pdx
) q

p
(∫

K

(
κ(x)−

2
p |M(x, ũ, ṽ)|

) p
p−2 dx

) p−2
p−1

.

(12)
Recall from Lemma 4.2 that M(x, ũ, ṽ) = κ(x)(|∇ũ|+ |∇ṽ|)p−2, thus(∫

K

(
κ(x)−

2
p |M(x, ũ, ṽ)|

) p
p−2 dx

) p−2
p−1

=

(∫
K

κ(x)(|∇ũ|+ |∇ṽ|)pdx
) p−2

p−1
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�
(∫

K

κ(x)|∇ũ|pdx+

∫
K

κ(x)|∇ṽ|pdx
) p−2

p−1

. (13)

We substitute (13) into (12), and we then see that (10) is proved.

Lemma 4.4. For any u0, v0 ∈W 1,p(K), p ≥ 2, we have∫
K

κ(x)|∇Hp(u0 + v0)|pdx ≤
∫
K

κ(x)|∇(Hp(u0) +Hp(v0))|pdx. (14)

Proof. Recall Remark 1, we have∫
K

κ(x)|∇Hp(u)|pdx = min
v∈W 1,p

u (K)

∫
K

κ(x)|∇v|pdx.

Therefore,∫
K

κ(x)|∇Hp(u0 + v0)|pdx = min
w∈W 1,p

u0+v0
(K)

∫
K

κ(x)|∇w|pdx

= min
w1+w2∈W 1,p

u0+v0
(K)

∫
K

κ(x)|∇(w1 + w2)|pdx

≤ min
w1∈W 1,p

u0
(K), w2∈W 1,p

v0
(K)

∫
K

κ(x)|∇(w1 + w2)|pdx.

Taking w1 = Hp(u0), w2 = Hp(v0), we obtain∫
K

κ(x)|∇Hp(u0 + v0)|pdx ≤
∫
K

κ(x)|∇(Hp(u0) +Hp(v0))|pdx.

4.1. Main convergence result. We will show the main convergence result in this
section. First, we will prove Lemma 4.5 which approximates the error of GMsFEM
solution by using functions from the offline space V c.

Lemma 4.5. Suppose u is the exact solution of Equation (2), ums is the GMsFEM
solution from Equation (4), then for any p ≥ 2, we have

‖u− ums‖1,p(D) � ‖u−Hp(vH)‖
q
p

1,p(D)‖u‖
p−2
p−1

1,p(D) for any vH ∈ V c,

where 1/p + 1/q = 1, ‖u‖1,p(D) =
(∫
D
κ(x)|∇u|pdx

)1/p
is the energy norm defined in

Section 2.1.

Proof. Using Lemma 4.1, we immediately obtain the following inequality:∫
D

κ(x)|∇(u− ums)|pdx �
∫
D

(a(x,∇u)− a(x,∇ums)) · ∇(u− ums)

=

∫
D

(a(x,∇u)− a(x,∇ums)) · ∇(u−Hp(vH))

�
∫
D

M(x, u, ums)|∇u−∇ums||∇u−∇Hp(vH)|dx,

for any vH ∈ V c, where on the last line we have used the continuity property of
a(x,∇u). Applying Hölder’s inequality, we have∫

D

κ(x)|∇(u− ums)|pdx
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�
(∫

D

κ(x)|∇(u− ums)|pdx
) 1

p
(∫

D

κ(x)|∇(u−Hp(vH))|pdx
) 1

p

(∫
D

(
κ(x)−

2
p |M(x, u, ums)|

) p
p−2

dx

) p−2
p

.

Dividing both sides by
(∫
D
κ(x)|∇(u− ums)|pdx

) 1
p gives∫

D

κ(x)|∇(u− ums)|pdx �
(∫

D

κ(x)|∇(u−Hp(vH))|pdx
) q

p

×(∫
D

(
κ(x)−

2
p |M(x, u, ums)|

) p
p−2

dx

) p−2
p−1

=

(∫
D

κ(x)|∇(u−Hp(vH))|pdx
) q

p

×(∫
D

(
κ(x)−

2
p · κ(x)(|∇u|+ |∇ums|)p−2

) p
p−2

dx

) p−2
p−1

=

(∫
D

κ(x)|∇(u−Hp(vH))|pdx
) q

p
(∫

D

κ(x)(|∇u|+ |∇ums|)pdx
) p−2

p−1

�
(∫

D

κ(x)|∇(u−Hp(vH))|pdx
) q

p
(∫

D

κ(x)(|∇u|p + |∇ums|p)dx
) p−2

p−1

�
(∫

D

κ(x)|∇(u−Hp(vH))|pdx
) q

p
(∫

D

κ(x)|∇u|pdx+

∫
D

κ(x)|∇ums|pdx
) p−2

p−1

�
(∫

D

κ(x)|∇(u−Hp(vH))|pdx
) q

p
(∫

D

κ(x)|∇u|pdx
) p−2

p−1

.

It follows immediately

‖u− ums‖1,p(D) � ‖u−Hp(vH)‖
q
p

1,p(D)‖u‖
p−2
p−1

1,p(D).

Lemma 4.6. Suppose u is the exact solution of Equation (2), K is any coarse block
of size H, p ≥ 2, then we have∫

K

κ(x)|∇(u−Hp(u))|pdx � Hq

∫
K

|f |qdx, (15)

where 1/p+ 1/q = 1.

Proof. It’s clear that

−div(a(x,∇u)− a(x,∇Hp(u))) = f.

Thus, ∫
K

(a(x,∇u)− a(x,∇Hp(u))) · ∇(u−Hp(u))dx =

∫
K

(u−Hp(u))fdx.

By Lemma 4.1, ∫
K

κ(x)|∇(u−Hp(u))|pdx �
∫
K

|u−Hp(u)||f |dx
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�
(∫

K

|u−Hp(u)|pdx
) 1

p
(∫

K

|f |qdx
) 1

q

.

Using Poincaré’s inequality, we get∫
K

κ(x)|∇(u−Hp(u))|pdx � H
(∫

K

|∇(u−Hp(u))|pdx
) 1

p
(∫

K

|f |qdx
) 1

q

= κ
− 1

p

0 H

(∫
K

κ0|∇(u−Hp(u))|pdx
) 1

p
(∫

K

|f |qdx
) 1

q

� H
(∫

K

κ(x)|∇(u−Hp(u))|pdx
) 1

p
(∫

K

|f |qdx
) 1

q

.

Dividing both sides by
(∫
K
κ(x)|∇(u−Hp(u))|pdx

) 1
p , we get∫

K

κ(x)|∇(u−Hp(u))|pdx � Hq

∫
K

|f |qdx.

Remark 5. This local error estimate proved in Lemma 4.6 immediately deduces the
global error estimate:

‖u−Hp(u)‖p1,p(D) � Hq‖f‖qLq(D). (16)

Now, we come to the main convergence theorem.

Theorem 4.7. Suppose u is the exact solution of Equation (2), ums is the GMsFEM
solution from Equation (4), then for any p ≥ 2, we have

‖u− ums‖1,p(D) � ‖u‖
p−2
p−1

1,p(D)

{
H

1
(p−1)2 ‖f‖

1
(p−1)2

Lq(D) +

(
1

Λ∗

) 1
p(p−1)2

‖u‖
1

p−1

1,p(D)

}
, (17)

where Λ∗ = minωi λ
ωi

Li+1, {λωi
j } are the eigenvalues defined by (6) in Section 3.2.2, Li

is the number of eigenbasis chosen in each coarse neighborhood ωi.

Proof. We first define the interpolation of u onto the offline space V c as

I0u = arg min
v∈V c
{‖u−Hp(v)‖1,p(D)}.

Since I0u ∈ V c, we denote I0u =
∑
i χiu

ωi
0 , where uωi

0 =
∑Li

k=1 c
ωi

k φ
ωi

k . By Lemma 4.5
and (16), it follows that

‖u− ums‖1,p(D) � ‖u‖
p−2
p−1

1,p(D) ‖u−Hp(I0u)‖
q
p

1,p(D)

� ‖u‖
p−2
p−1

1,p(D)

(
‖u−Hp(u)‖1,p(D) + ‖Hp(u)−Hp(I0u)‖1,p(D)

) q
p

� ‖u‖
p−2
p−1

1,p(D)

(
‖u−Hp(u)‖

q
p

1,p(D) + ‖Hp(u)−Hp(I0u)‖
q
p

1,p(D)

)
� ‖u‖

p−2
p−1

1,p(D)

(
H

q2

p2 ‖f‖
q2

p2

Lq(D) + ‖Hp(u)−Hp(I0u)‖
q
p

1,p(D)

)

= ‖u‖
p−2
p−1

1,p(D)

(
H

1
(p−1)2 ‖f‖

1
(p−1)2

Lq(D) + ‖Hp(u)−Hp(I0u)‖
1

p−1

1,p(D)

)
. (18)

In the following, we will estimate ‖Hp(u)−Hp(I0u)‖
1

p−1

1,p(D).
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Using Lemma 4.3, we have

‖Hp(u)−Hp(I0u)‖p1,p(D) �
(∫

D

κ(x)|∇Hp(u− I0u)|pdx
) q

p

× (19)(∫
D

κ(x)|∇Hp(u)|pdx+

∫
D

κ(x)|∇Hp(I0u)|pdx
) p−2

p−1

�
(∫

D

κ(x)|∇Hp(
∑
ωi

χi(u− uωi
0 ))|pdx

) q
p (∫

D

κ(x)|∇u|pdx
) p−2

p−1

. (20)

Applying the property of Hp(·) proved in Lemma 4.4 to (20), we achieve

‖Hp(u)−Hp(I0u)‖p1,p(D) �
(∫

D

∑
ωi

κ(x)|∇Hp(χi(u− uωi
0 ))|pdx

) q
p

×

(∫
D

κ(x)|∇u|pdx
) p−2

p−1

�
(∑

ωi

∫
ωi

κ(x)|∇Hp(χi(u− uωi
0 ))|pdx

) q
p (∫

D

κ(x)|∇u|pdx
) p−2

p−1

. (21)

Recall that uωi
0 =

∑Li

k=1 c
ωi

k φ
ωi

k with {φωi

k } being eigenfunctions defined by (6) in
Section 3.2.2. We have the following inequality∫

ωi

κ(x)|∇Hp(χi(u− uωi
0 ))|pdx � 1

λLi+1

∫
ωi

κ(x)|∇Hp(u− uωi
0 )|pdx. (22)

Define Λ∗ = minωi
λωi

Li+1, then through (21) and (22) we get

‖Hp(u)−Hp(I0u)‖p1,p(D) �
(∑

ωi

1

λLi+1

∫
ωi

κ(x)|∇Hp(u− uωi
0 )|pdx

) q
p

× (23)

(∫
D

κ(x)|∇u|pdx
) p−2

p−1

�
(

1

Λ∗

∑
ωi

∫
ωi

κ(x)|∇Hp(u− uωi
0 )|pdx

) q
p (∫

D

κ(x)|∇u|pdx
) p−2

p−1

=

(
1

Λ∗

) q
p

(∑
ωi

∫
ωi

κ(x)|∇Hp(u− uωi
0 )|pdx

) q
p (∫

D

κ(x)|∇u|pdx
) p−2

p−1

�
(

1

Λ∗

) q
p
(∫

D

κ(x)|∇Hp(u)|pdx
) q

p
(∫

D

κ(x)|∇u|pdx
) p−2

p−1

. (24)

Using the energy minimization property of Hp(·) claimed in Remark 1, we obtain from
(24) that

‖Hp(u)−Hp(I0u)‖p1,p(D) �
(

1

Λ∗

) q
p
(∫

D

κ(x)|∇u|pdx
) q

p
(∫

D

κ(x)|∇u|pdx
) p−2

p−1

=

(
1

Λ∗

) q
p
(∫

D

κ(x)|∇u|pdx
) q

p + p−2
p−1
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=

(
1

Λ∗

) 1
p−1

∫
D

κ(x)|∇u|pdx.

This gives

‖Hp(u)−Hp(I0u)‖
1

p−1

1,p(D) �
(

1

Λ∗

) 1
p(p−1)2

‖u‖
1

p−1

1,p(D). (25)

Substituting (25) into (18), we obtain

‖u− ums‖1,p(D) � ‖u‖
p−2
p−1

1,p(D)

{
H

1
(p−1)2 ‖f‖

1
(p−1)2

Lq(D) +

(
1

Λ∗

) 1
p(p−1)2

‖u‖
1

p−1

1,p(D)

}
.

Remark 6. We notice that Λ∗ will increase to infinity. Considering a function u with

highly oscillating boundary conditions, the value of
Gωi(u)

Gωi
χ (u)

will be very large. More

specifically, for u having highly oscillating boundary conditions, the value of Gωi(u)
is large. But χiu will have less oscillation on the cross since u solves the harmonic
problem. Therefore, Gωi

χ (u) will be small and the ratio of Gωi(u) over Gωi
χ (u) will be

large.
Besides, we can improve the offline convergence rate by using multiple oversampled

spectral problems. To be simple, we start with two eigenvalue problems. We denote
Iωi
0 (u) = uωi

0 , χ̃i = χi

χ+
i

, ũ = χ+
i (u−Iωi

0 (u)), where χ+
i is the partition of unity function

on the oversampled domain ω+
i . Following inequality (21),∑

ωi

∫
ωi

κ(x)|∇Hp(χi(u− Iωi
0 (u)))|pdx =

∑
ωi

∫
ωi

κ(x)|∇Hp(χ̃i(ũ− Iωi
0 (ũ)))|pdx

�
∑
ωi

1

λωi

Li+1

∫
ωi

κ(x)|∇Hp(ũ− Iωi
0 (ũ))|pdx

� 1

Λ∗

∑
ω+

i

∫
ω+

i

κ(x)|∇Hp(χ
+
i (u− Iωi

0 (u)))|pdx

� 1

Λ∗

∑
ω+

i

1

λ
ω+

i

Li+1

∫
ω+

i

κ(x)|∇Hp(u− Iωi
0 (u))|pdx

� 1

Λ∗

1

Λ+
∗

∑
ω+

i

∫
ω+

i

κ(x)|∇Hp(u− Iωi
0 (u))|pdx

� 1

Λ∗

1

Λ+
∗

∫
D

κ(x)|∇Hp(u)|pdx

� 1

Λ∗

1

Λ+
∗

∫
D

κ(x)|∇u|pdx,

where Λ∗ = minωi
λωi

Li+1 and Λ+
∗ = minω+

i
λ
ω+

i

Li+1. This result can be easily extended to

multiple oversampled eigenvalue problems (instead of two eigenvalue problems), and
the result would be∑

ωi

∫
ωi

κ(x)|∇Hp(χi(u− Iωi
0 (u)))|pdx � 1

Λ∗

1

Λ+
∗
· · · 1

Λ+N
∗

∫
D

κ(x)|∇u|pdx,
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where Λ+N
∗ = minω+

i
λ
ω+N

i

Li+1, ω+N
i is a N layers oversampled domain (ω+

i is a 1 layer

oversampled domain). We note that if we choose all these 1
Λ∗

and 1

Λ+k
∗

’s to be less

than some δ (0 < δ < 1), then 1
Λ∗

1
Λ+
∗
· · · 1

Λ+N
∗

< δN+1 and the offline error would be

exponential decay as the number of oversampled layers increases.

5. Numerical implementation and results. In this part, we exhibit the process
of numerically implementing the proposed method for p-Laplacian equation. From
Glowinski and Marrocco [35], or Ciarlet [19], (P) is equivalent to the following min-
imization problem: (Q) Find u ∈ W 1,p

g (D) ≡ {v ∈ W 1,p(D) : v = g on ∂D} such
that

JD(u) = inf
v∈W 1,p

g (D)
JD(v), (26)

where JD(u) = 1
p

∫
D
κ(x)|∇u|pdx−

∫
D
fudx.

It is easily established that JD(u) is strictly convex and continuous on W 1,p
g (D).

Besides, JD(u) is Gateaux differentiable with

J
′

D(u)(w) =

∫
D

κ(x)|∇u|p−2∇u · ∇wdx−
∫
D

fwdx ∀w ∈W 1,p
0 (D).

Hence, there exists a unique solution to (Q), and (Q) is equivalent to its Euler
equation (P). The corresponding discrete problem of (Q) is: (Qh) Find uh ∈ V h(D)
such that

JD(uh) = min
vh∈V h

0 (D)
JD(vh). (27)

The well-posedness of (Qh) = (Ph) follows in an analogous way to that of (Q) and
(P), see Glowinski and Marrocco [35] or Ciarlet [19].

Recall the discussion in Section 3.2.2, we can represent the GMsFEM solution by

uh = Hp(
∑
i

∑Li

k=1 c
ωi

k φ̂
ωi

k ). For notational brevity we use a single-index notation to

write uh = Hp(
∑N
j=1 cj φ̂j). Then we apply Broyden’s method (which is a Quasi-

Newton’s method) to solve the minimization problem (Qh), see Algorithm 1.

Algorithm 1 A Quasi-Newton algorithm

1: Initialization: An initial guess ~c(0) =
(
c
(0)
j

)N
j=1

and B(0) ∈ RN×N

2: (1) Compute the gradient vector ~g(0)(~c(0)) = ∇JD(Hp(
∑N
j=1 c

(0)
j φ̂j)).

3: (2) Compute the stepsize τ (0).
4: (3) Set: ~c(1) = ~c(0) − τ (0)B(0)~g(0).
5: (4) If ‖~c(1) − ~c(0)‖ < δ, where ‖ · ‖ is a suitable norm, return.

6: for k = 1 to N : do
7: (1) Compute the gradient vector ~g(k)(~c(k)) = ∇JD(Hp(

∑N
j=1 c

(k)
j φ̂j)).

8: (2) Compute the approximation of the inverse of Hessian matrix:

B(k) = B(k−1) +
[(~c(k) − ~c(k−1))−B(k−1)(~g(k) − ~g(k−1))](~c(k) − ~c(k−1))TB(k−1)

(~c(k) − ~c(k−1))TB(k−1)(~g(k) − ~g(k−1))
.

9: (3) Compute the stepsize τ (k).
10: (4) Set: ~c(k+1) = ~c(k) − τ (k)B(k)~g(k).
11: (5) If ‖~c(k+1) − ~c(k)‖ < δ, return.
12: end for
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Figure 3. Illustration of the high-contrast permeability field κ1(x).

5.1. Numerical results. In this section, we offer a number of representative numer-
ical results to verify the proposed methods in the previous sections. In particular, we
solve Equation (2) using the proposed GMsFEM to validate the effectiveness of the re-
spective approaches. To obtain benchmark fine-grid solutions we solve (2) on the unit
square D = [0, 1] × [0, 1] using a uniform fine grid of 100 × 100 square finite elements
which is divided into 10× 10 square coarse elements uniformly. We also use a forcing
term f = 1 and impose a linear Dirichlet boundary condition u(x, y) = x + y. The
high-contrast permeability field κ1(x) used in our experiments is shown in Figure 3,
with high-contrast ratio κmax/κmin being 105. We note that the fine-grid discretization
leads to a system of size Nf = 10201. As such, we aim to construct a reduced-order
system that can accurately approximate the benchmark solutions from the original
fine-scale system.

5.1.1. Accuracy of GMsFEM using different numbers of basis functions. We employ
both fine-grid (FEM) and coarse-grid (GMsFEM) methods to solve the model equa-
tion (2). In comparing the respective approaches, we introduce relative Lp errors and
relative energy errors, which are defined as

Lp error =
‖u− ums‖Lp(D)

‖u‖Lp(D)
× 100%,

Energy error =
‖u− ums‖1,p(D)

‖u‖1,p(D)
× 100%,

(28)

where we recall that u denotes the FEM solution and ums denotes the GMsFEM
solution.

For the first set of experiments, we take p = 3, 4, 5, 6 separately and use different
numbers of cross basis (Li for each ωi) for each fixed value of p. Then we check the
relative errors of the GMsFEM solutions. Numerical results are shown in Table 1 and
Figure 4. Note that in the first column of each sub-table, we show the numbers of basis
functions used for each coarse neighborhood ωi, and the degrees of freedom (DOF) of
offline space which are the numbers in parentheses. To visually observe the accuracy
of GMsFEM, we plot the solutions obtained by both FEM and GMsFEM in the case
p = 3 using 4 cross basis functions in each coarse neighborhood, see Figure 5.

By observing the columns in Table 1 (or the curves in Figure 4), we can clearly see
that for each p, the relative error decays as we use more cross basis functions. We
note that as Li increases, the the value of (Li + 1)’s eigenvalue increases, and the error
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bound 1/Λ∗ will correspondingly decrease. In other words, the analysis suggests (and
the results validate) that keeping more basis functions for the coarse space construction
will indeed yield a decreasing global error. Through a more careful examination, we
notice that for each p, when 4 or more than 4 cross basis are chosen in each coarse
neighborhood (i.e. Li ≥ 4 for each ωi), the errors are much smaller. This might suggest
that if we use 4 or more than 4 cross basis in each coarse neighborhood, we would get
a better convergence. We will explore this in more details in the following subsection.

Li (DOF)
p = 3

Lp error Energy error
1(81) 9.52 % 41.03 %
2(162) 6.45 % 34.38 %
3(243) 5.76 % 27.76 %
4(324) 0.52 % 6.55 %
5(405) 0.45 % 5.15 %

Li (DOF)
p = 4

Lp error Energy error
1(81) 10.88 % 42.35 %
2(162) 6.47 % 32.93 %
3(243) 5.12 % 24.13 %
4(324) 0.92 % 8.57 %
5(405) 0.82 % 6.65 %

Li (DOF)
p = 5

Lp error Energy error
1(81) 10.12 % 40.46 %
2(162) 7.71 % 34.05 %
3(243) 5.17 % 27.88 %
4(324) 0.94 % 9.94 %
5(405) 0.81 % 7.92 %

Li (DOF)
p = 6

Lp error Energy error
1(81) 8.95 % 39.68 %
2(162) 6.94 % 30.92 %
3(243) 4.37 % 23.85 %
4(324) 1.07 % 8.70 %
5(405) 0.91 % 7.08 %

Table 1. Relative errors for p = 3, 4, 5, 6 using different numbers of
cross basis.

5.1.2. Correlation between errors and eigenvalues. Aside from the accuracy of our pro-
posed method, we are interested in determining how many cross basis (or DOFs) should
be used. As we mentioned earlier, there is a “jump” in the relative energy errors when
we take 4 cross basis in each coarse neighborhood (i.e. Li = 4 for each ωi, see Table 1).
Thus, Li = 4 might be a good choice. According to our analysis in Section 4, that is
probably due to a sudden decrease in the quantity of 1/Λ∗, where Λ∗ = minωi

λωi

Li+1,
{λωi

j } are the eigenvalues defined in (7) in Section 3.2.2. To verify this theory, we

calculate the corresponding 1/Λ∗ for each Li in the case of p = 3. The results are
shown in Table 2. In this table, we see the jump in Λ∗ and 1/Λ∗ at Li = 4, which
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Figure 4. Relative error vs Li for p=3,4,5,6.

explains our earlier inference. Hence, we conclude that the proper number of cross
basis is chosen at the spot where there is a sudden increase in the values of Λ∗ (or
a sudden decrease in the values of 1/Λ∗). We would like to remark that an adaptive
method can be employed to determine a best choice of Li for each coarse neighborhood
ωi. Moreover, to see a more quantitative relationship between the relative errors and
the values of Λ∗ as well as being inspired by the result in Theorem 4.7, we calculate the
cross-correlation coefficient between the relative energy errors and the corresponding

values of ( 1
Λ∗

)
1

p(p−1)2 for the case p = 3. We recall that the quantity ( 1
Λ∗

)
1

p(p−1)2 comes

from (17) in Theorem 4.7. The evaluated cross-correlation coefficient is 0.99. This
indicates a linear relationship between the relative energy error and the corresponding

( 1
Λ∗

)
1

p(p−1)2 , which verifies our result in (17).

Li Λ∗ 1/Λ∗

1 8.86e-4 1.13e3
2 2.59e-3 3.86e2
3 4.46e-3 2.24e2
4 1.55e2 6.44e-3
5 4.01e2 2.50e-3

Table 2. Values of Λ∗ and 1/Λ∗ when p = 3.
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Figure 5. FEM v.s. GMsFEM node-wise solutions, p=3, DOF=324.

Remark 7. We note that the choice of Li is highly related to the number of “chan-
nels” and “inclusions” in each coarse neighborhood. In more details, if there are m
inclusions and channels in a coarse neighborhood ωi , then one can observe m small,
asymptotically vanishing, eigenvalues. In the example presented in this section, we can
see that there are at most 4 inclusions and channels in each coarse neighborhood. This
suggests the choice of Li = 4, and we verify this choice by observing the values of Λ∗i .

Since Li is the number of eigen-pairs solved from the nonlinear eigenvalue problem,
it’s a finite number and can not grow to infinity. We can only guarantee that as Li
grows (not necessary to be a large number), the error will decay, which is observed by
our numerical results.

5.1.3. Numerical tests with more permeability fields. To verify that our proposed
method is applicable to more situations, we examine other choices of permeability
field κ(x). First, we would like to check that the GMsFEM solution errors do not de-
pend on the high-contrast ratio κmax/κmin. To see this, we increase the high-contrast
ratio of κ1(x), which is used in the previous subsections, from 105 to 107. We denote
the new permeability field by κ2(x). Then we solve Equation (2) using both FEM and
proposed GMsFEM, and calculate the relative errors and the error bound quantity
1/Λ∗. Numerical results for p = 3 are shown in Table 3. Comparing these results with
the top left sub-table in Table 1 and Table 2, we can observe similar trend inside the
columns as well as a slight increase in the values of both relative energy errors and
1/Λ∗’s. The jump at Li = 4 still occurs. The cross-correlation coefficient between the

relative energy errors and ( 1
Λ∗

)
1

p(p−1)2 is calculated to be 0.98.
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Li Energy error 1/Λ∗

1 44.15 % 1.42e3
2 36.44 % 4.04e2
3 27.99 % 2.35e2
4 6.77 % 6.49e-3
5 5.30 % 2.50e-3

Table 3. Relative energy errors and values of 1/Λ∗ using κ2(x), p = 3.

We also consider a different high-contrast permeability field κ3(x), see Figure 6.
We solve Equation (2) for p = 3 and the results are presented in Table 4. The cross-

correlation coefficient between the relative energy errors and ( 1
Λ∗

)
1

p(p−1)2 is calculated
to be 0.94. Similar conclusions as made in Section 5.1.1 and 5.1.2 can be drawn for
this new choice of permeability field. We can see that our proposed method works well
for this permeability field.
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Figure 6. Illustration of the high-contrast permeability field κ3(x).

Li Energy error 1/Λ∗

1 47.08 % 1.85e1
2 27.68 % 4.64e0
3 20.81 % 2.68e0
4 4.33 % 2.26e-3
5 2.69 % 1.01e-3

Table 4. Relative energy errors and values of 1/Λ∗ using κ3(x), p = 3.

5.1.4. Comments on the computational cost. The online cost is independent of fine
mesh parameters, while it will grow as the spectral basis parameters increase. We
note that the online cost is proportional to that of solving homogeneous p-Laplacian
equation with polynomial basis. In practise, we usually only use a few spectral basis, so
the online cost is close to that of solving homogeneous p-Laplacian equation with low
order polynomial basis. We note that solving the nonlinear eigenvalue problem in each
coarse neighborhood is one source of the computational cost. However, this is an offline
step, which means when dealing with different forcing terms and boundary conditions
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we only need to solve this nonlinear eigenvalue problem for a single time. Thus, the
computation of this eigenvalue problem will not affect the online cost of our method. We
also note that in Algorithm 1, a nonlinear function of the form N(∇u) = κ(x)|∇u|p−2

requires a fine-grid update at each iterative step. In particular, at each iterative step,
we must use the fine-scale solution values to construct a gradient and its norm, and we
must subsequently multiply the resulting expressions with the original coefficient κ(x)
at all fine grid points in order to update the nonlinear permeability coefficient. This
is a fine-grid dependent process that adds an increasing computational cost depending
on the size of the fine grid. To decrease this cost, we introduce the discrete empirical
interpolation method (DEIM), which allows us to approximate the nonlinear function
on the fine grid while only evaluating at a few carefully selected points. In itself, DEIM
is a snapshot-based preprocessing procedure in which the dominant spectral behavior
of the global nonlinear function is extracted. We refer to [5] [48] for more detailed
discussions on the use of DEIM. Moreover, by comparing the degrees of freedoms listed
in Table 1 with the size of the fine-scale finite element system Nf = 10201, we see that
we obtain a reduced sized system by applying generalized multiscale finite element
method, which will reduce the computational cost.

Remark 8. Compared with the online cost, the offline cost depends on the fine mesh
parameter, considering that each local snapshot problem is solved on the local coarse
neighborhood consisting of fine grids. We note that the cost of numerical homogeniza-
tion is high because the local problem −div(a(x,∇Nξi)) = 0 in K with boundary
condition Nξi = ξi · x on ∂K (K is a coarse block) is solved for all ξ1, ξ2, · · ·, ξN . Sim-
ilarly, the local problem in offline stage is solved for all possible boundary conditions,
which is consistent to numerical homogenization. So the offline cost is high. However,
as mentioned in Section 3.2.1, one can use randomized snapshots in conjunction with
oversampling to reduce the offline computational cost associated with the snapshot
calculations. Also, one can select and compute eigenbasis adaptively in each coarse
neighborhood which can eliminate the use of non-dominated modes and reduce offline
cost. Besides, as mentioned above, DEIM is introduced to reduce offline computational
cost when it comes to the evaluation of nonlinear functions.

Remark 9. To illustrate how the error of DEIM affects the global error estimate of
Theorem 4.8, we adopt the notation aDEIM (x,∇u) = N1(∇u)∇u, where N1(∇u)(≈
κ(x)|∇u|p−2) is evaluated using DEIM. We denote ũms the DEIM solution which is
obtained by solving∫

D

aDEIM (x,∇ũms) · ∇v =

∫
D

fv, ∀v ∈ V h0 (D).

Then we have

‖ums − ũms‖p1,p(D) =

∫
D

a(x,∇(ums − ũms)) · ∇(ums − ũms)

≤
∫
D

a(x,∇ums) · ∇(ums − ũms)−
∫
D

a(x,∇ũms) · ∇(ums − ũms)

=

∫
D

(ums − ũms)f −
∫
D

a(x,∇ũms) · ∇(ums − ũms)

=

∫
D

(aDEIM (x,∇ũms)− a(x,∇ũms)) · ∇(ums − ũms).
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We note that ‖aDEIM (x,∇ũms) − a(x,∇ũms)‖ is the DEIM error, which can be as-
sumed to be a small quantity (ref. [5]). Then from the above inequality, it follows

‖ums − ũms‖p1,p(D) ≤ δp−1‖ums − ũms‖1,p(D), (29)

for some small δ(0 < δ < 1).
Combining (29) with Theorem 4.8, we obtain

‖u− ũms‖1,p(D) ≤ ‖u− ums‖1,p(D) + ‖ums − ũms‖1,p(D)

� δ + ‖u‖
p−2
p−1

1,p(D)

{
H

1
(p−1)2 ‖f‖

1
(p−1)2

Lq(D) +

(
1

Λ∗

) 1
p(p−1)2

‖u‖
1

p−1

1,p(D)

}
.

6. Conclusion. In this paper, our objective is to develop a multiscale model reduction
using the framework of GMsFEM. We re-cast the problem and use the degrees of
freedom defined on the boundaries of coarse elements (cf. hybridization techniques
[20, 32, 15]). Our motivation stems from homogenization and the analysis of multiscale
methods. Homogenization and numerical homogenization methods rely on nonlinear
harmonic extensions of boundary values in order to capture the effects of scales within
the domain. Via these local solutions, we can capture the effects of small separable
scales. In the linear case, one can use a single basis per coarse element to capture
these effects; however, for nonlinear problems, this is not possible because of non-
additivity. Moreover, the use of degrees of freedom on the boundaries of coarse elements
is important for achieving low dimensional approximate models. If nonlinear harmonic
extensions are not used, one can not estimate the residuals (see [31]). In our framework,
we propose a local nonlinear spectral decomposition, which select dominant modes in
these nonlinear snapshot spaces. We present a convergence analysis and numerical
results.
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